
Under review as a conference paper at ICLR 2024

LARG2, LANGUAGE-BASED AUTOMATIC REWARD
AND GOAL GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Robotic tasks currently addressed with reinforcement learning such as locomo-
tion, navigation, and manipulation are challenged with the problem of defining
reward functions to maximize and goals to reach. Alternative methodologies,
like imitation learning, often require labor-intensive human annotations to pro-
duce datasets of task descriptions associated with trajectories. As a response,
this paper introduces ”Language-based Automatic Reward and Goal Generation”
(LARG2), a framework that harnesses code generation capabilities of LLMs to
enables the conversion of text-based task descriptions into corresponding reward
and goal-generation functions. We leverages Chain-of-thought mechanisms and
the common-sense knowledge embedded in Large Language Models (LLMs) for
this purpose. It is complemented by automatic error discovery and correction
mechanisms. We validate the effectiveness of LARG2 by conducting extensive
experiments in the context of robotic manipulation demonstrating its ability to
train and execute without human annotation of any kind.

1 INTRODUCTION

The statistical learning approach to robot control has emerged with the potential of revolutionizing
various industries, spanning from manufacturing to healthcare. Various preliminary approaches,
such as imitation learning (Tai et al., 2016; Kumar et al., 2022), transfer learning (Stüber et al.,
2018; Wiese et al., 2021; Weng et al., 2020), and interactive learning (Kelly et al., 2018; Chisari
et al., 2021; Faulkner et al., 2020), have been proposed for that matter.

In the field of robotic manipulation, decision models are currently evolving from the traditional
optimal control approaches towards policy learning through Multi-task and Goal-Conditioned Re-
inforcement Learning (Huang et al., 2022b). Following this line of work, multi-modal task defini-
tion (Jiang et al., 2022; Shah et al., 2022), associated with reasoning and action planning abilities
facilitated by Large Language Models (LLMs) (Huang et al., 2022a), have enabled agents to adapt
to real-world uncertainty which is hardly handled with traditional robotic control. However, the
difficulties of connecting textual descriptions of tasks with their associated goals and reward
functions have led to unscalable solutions involving labor-intensive annotation practices.

Motivated by these observations, we introduce LARG2 , Language-based Automatic Reward and
Goal Generation. For a given sequential decision task described using natural language, our method
automates the generation of either goals or associated reward functions depending on the learn-
ing scheme. It leverages the common-sense and reasoning capabilities offered by recent LLMs in
terms of text understanding and source code generation. In the context of robotic manipulation,
our approach samples goals conditioned by a task description to train a corresponding policy using
Goal-Conditioned Reinforcement Learning (GCRL). Following this idea, we generate executable re-
ward functions to train corresponding policies using Multi-Task Reinforcement Learning (MTRL),
assuming task descriptions are given as input to the policy. Finally, we evaluate these two settings
of LARG2 over a set of language-formulated tasks in a tabletop manipulation scenario.

1

Under review as a conference paper at ICLR 2024

2 PRELIMINARIES: REINFORCEMENT LEARNING FOR ROBOTIC
MANIPULATION

Reinforcement Learning deals with an agent performing sequences of actions in a given environment
to maximize a cumulative sum of rewards. Such problem is commonly framed as Markov Decision
Processes (MDPs): M = {S,A, T, ρ0, R} (Sutton & Barto, 2005; Mnih et al., 2016; Lillicrap et al.,
2016). The agent and its environment, as well as their interaction dynamics, are defined by the
first components {S,A, T, ρ0}, where s ∈ S describes the current state of the agent-environment
interaction and ρ0 is the distribution over initial states. The agent interacts with the environment
through actions a ∈ A. The transition function T models the distribution of the next state st+1

conditioned with the current state and action T : p(st+1|st, at). Then, the objective of the agent is
defined by the remaining component of the MDP, R : S → R. Solving a Markov decision process
consists in finding a policy π : S → A that maximizes the cumulative sum of discounted rewards
accumulated through experiences.

In the context of robotic manipulation, a task commonly consists in altering the environment into
a targeted state through selective contact (Gu et al., 2017). Naturally, tasks are expressed as
g = (cg, RG) pair where cg is a goal configuration such as Cartesian coordinates of each ele-
ment composing the environment or a textual description of it, and RG : S × G → R is a goal-
achievement function that measures progress towards goal achievement and is shared across goals.
A goal-conditioned MDP is defined as : Mg = {S,A, T, ρ0, cg, RG} with a reward function shared
across goals. In multi-task reinforcement learning settings, an agent solves a possibly large set of
tasks jointly. It is trained on a set of rewards associated with each task. Finally, goals are defined as
constraints on one or several consecutive states that the agent seeks to satisfy (Plappert et al., 2018;
Nair et al., 2018; OpenAI et al., 2021).

3 RELATED WORK

3.1 CHALLENGES OF REWARD DEFINITION AND SHAPING

A sequential decision task which is not solved through imitation but reinforcement requires defining
an informative reward function to enable the learning paradigm. Reward shaping consists in man-
ually designing a function incorporating elements from domain knowledge to guide policy search
algorithms. Formally, this can be defined as R′ = R + F , where F is the shaping reward function,
and R′ is the modified reward function Dorigo & Colombetti (1994); Randløv & Alstrøm (1998).
As a main limitation, a reward function needs to be crafted for each task. For instance Brohan
et al. (2022) leveraged large number of human demonstrations and specific handcrafted definitions
of tasks to train a robotic transformer. However, as MTRL aims at dealing with a large set of goals
and tasks to implement, such an approach becomes hardly scalable. In this work, we study how
to leverage the common-sense and prior knowledge embedded in LLMs to automate the textual
paraphrasing of task description and the generation of associated reward functions.

3.2 LARGE LANGUAGE MODELS FOR CONTROL

The use of Large Language Models to control autonomous agents has recently started to be inves-
tigated. Shah et al. (2022) has combined a text encoder, a visual encoder, and visual navigation
models, to provide text-based instructions to a navigating agent. This idea has been further devel-
oped in Huang et al. (2022b) using LLM capabilities to support action planning, reasoning, and
internal dialogue among models for manipulation tasks. Similarly, Liang et al. (2022) proposes to
use LLMs to transform textual instructions into a code-based policy. Unfortunately, it involves an
interactive design process for a hard-coded policy, rather than a task-conditional learning process.
In contrast, our method, which also relies on a specific prompt design, allows the agent to learn new
skills through goal generation and automatic reward shaping.

Along this line, Colas et al. (2020b) proposes to derive goals from a textual description of the task.
However, the language remains limited to the logical descriptions of the expected configuration of
the scene and the goal is reduced to a finite set of eligible targets. In contrast, our approach allows us-
ing natural language beyond logical forms, grounded with reasoning capabilities and enriched with
common-sense captured in large pre-trained language models. Also related, Colas et al. (2020a)

2

Under review as a conference paper at ICLR 2024

proposes to train a conditional variational auto-encoder to create a language-conditioned goal gen-
erator. However, it assumes the existence of pre-trained goal-conditioned policies and no LLM is
considered to achieve this objective.

3.3 IMPROVING GENERATION WITH CHAIN OF THOUGHT

To address LLMs limitations such as hallucination, lack of consistency or lack of grounding several
works attempt to enhance the alignment of generated answers with expected behavior or constraints.
The ”Chain-of-Thought” (CoT) approach (Wei et al., 2023) aims to influence text generation by
using a sequence of intermediate reasoning steps as part of the LLM prompt, thereby promoting a
consistent generation path. It involves providing examples of expected reasoning behavior as part
of the prompt (Wei et al., 2022; Wang et al., 2023b; Wu et al., 2023; Diao et al., 2023). This ap-
proach has recently shown successes, particularly in handling complex queries such as mathematics
reasoning questions (Imani et al., 2023).

In a subsequent study (Wang et al., 2023a), the authors conducted an analysis of the influence of
example composition on reasoning consistency and accuracy. They underscored the importance of
example relevance in provided reasoning steps to achieve accurate answers.

In our approach, we hypothesize that CoT presents a promising mechanism to enhance LLM’s code
generation capabilities. To this end, we leverage existing code repositories to support reasoning for
goal and reward function generation.

3.4 CONCURRENT WORK

Recently, a method for the generation of reward functions in the context of robotic skill learning
as been introduced in Yu et al. (2023). However, this concurrent work exclusively focuses on gen-
erating goal poses to complement existing reward functions in the context of robotic manipulation
and quadruped’s pose control. The generation of reward functions is not addressed in this work.
Furthermore, neither code correction nor Chain-of-though mechanism are considered to guide and
possibly fix code generation.

4 LARG2 , LANGUAGE-BASED AUTOMATIC REWARD AND GOAL
GENERATION

Our method, illustrated in figure 1, translates textual task descriptions into both goal and reward
functions to enable scalable training of goal conditioned (GCRL) and muti-tasks reinforcement
learning (MTRL) policies. It is composed of three sequential steps. The initial one is responsible
for gathering input for the second step, which carries out code generation. The final step assesses
and, if necessary, correct generated functions through a feedback loop. Once validated, the code is
used with standard off-the-shelf GCRL or MTRL frameworks. For the MTRL scenario, the second
step also encodes textual task descriptions into an embedding vector which is appended to the state
vector to align policies with task definitions.

4.1 ELEMENTS OF THE PROMPT

Our first step consists in collecting inputs for building a dedicated prompt (P2) to condition code
generation. One main element is the task definition (T) so to automate the production of a large
training set we leverage paraphrasing capabilities of a pre-trained LLM (L1) to generate variations
from a single description. We use a prompt (P1) such as: ”Generate n paraphrases for the task
bellow:”. It produces a set of semantically similar tasks without handcrafting a whole collection of
tasks such as, L1(P, T) → {T1, ..., Tn}.

Supplemental code examples (X) can also be collected to complement the main prompt (P2) en-
abling a Chain-of-Thought (CoT) mechanism to guide the code production process. For this, we
assume the availability of code repositories such as Github1. These repositories need to possess
adequate documentation, and the code should be commented. Naturally, it is preferable for this code

1https://www.github.com

3

Under review as a conference paper at ICLR 2024

Figure 1: LARG2 transforms a textual task description into either 1) a goal to be used as input
of a given reward function for GCRL, or 2) a reward function for MTRL. We use pre-trained and
instructed LLMs with dedicated prompts for our generation procedures. For GCRL, the goal is
appended to the state description given as input to the policy. For MTRL, the text-based task de-
scription is encoded using a pre-trained language model to complement the state vector. Optionally,
supplemental code examples can be searched and retrieved to complement the prompt therefore
leveraging a Chain-of-Through mechanism. A code validation loop is provided to ensure that gen-
erated functions can be properly executed within GCRL or MTRL frameworks.

Figure 2: LARG2 leverages context, environment, guidelines and task descriptions to query either
the parametric memory of a LLM or a code database to retrieve function examples. It serves as
additional context, enriching a dedicated prompt used to convert textual task descriptions into goal
poses or reward functions.

to be correct, although Wang et al. (2023a) has shown that even invalid examples used in a CoT
mechanism can still yield valid answers.

As illustrated in figure 15, we propose two viable options. Either code repositories are part of a
dataset used to train a LLM, in which case the information is embedded within and accessible from
the model’s parametric memory, or they are independently indexed. The latter option allows to
extend the LLM’s background knowledge with external information, which may be more relevant
for a specific application.

In the following description, we focus on the latter approach although we also test parametric mem-
ory during our experiments. First, we segment each code file from a repository into a set of functions
and each function is indexed individually. This indexing process (I) combines information from
multiple sources, including the readme.md file (R), the function’s signature (S), its docstring (D),
and its code (C). This aggregation can be represented as: R,S,D,C → F , where F represents the
indexed function. The result is encoded into a collection of embeddings and stored within a Vector
database for semantic retrieval.

4.2 GENERATING GOAL AND REWARD FUNCTIONS

The second stage use a dedicated prompt (P2) with ad-hoc parameters to query a LLM (L2) for
generating either goal or reward functions. This prompt, illustrated in figure 3, is composed of
{T,G,E,X} where T and G are provided by the user, or through paraphrasing, E from pre-

4

Under review as a conference paper at ICLR 2024

Figure 3: The prompt is composed of a set of parts describing the general context which is high-
lighted in grey, supporting code examples in blue, the environment description in orange, the task
description in green, guidelines in yellow and the description of the function signature to be used as
template for code generation.

requisite dataset and, optionally, X either from the parametric memory of a LLM or from queries to
an ad-hoc code database.

C is the high level description of the objective such as ”We aim to develop a Python function for
generating goals for a Franka-Move tabletop rearrangement task within IsaacGym”. T is the task
description and E provides critical information defining the action space. It includes details such as
the dimensions, and locations of objects involved in the experiments. X is an optional list of code
examples to guide intermediate reasoning steps of the LLM. Guidelines, G, reflect a comprehensive
summary referencing preceding sections. It consolidates the list of elements or constraints that must
be taken into account when generating the code. For CoT, its purpose is to provide the reasoning
schema required to generate a more relevant function. S is the signature of the function that needs to
be completed, along with its docstring. This specification ensures that the generated function aligns
with specific requirements, enabling it to be executed seamlessly within a larger GCRL or MTRL
framework. Figure 15 illustrates the search and retrieval process for supplemental examples (X).

4.2.1 AUTOMATIC GENERATION OF GOALS FOR GCRL APPLICATIONS

In the context of tabletop manipulation scenarios, a task consists in re-arranging a set of objects com-
posing the scene. In such a case, goals are objects’ Cartesian coordinates. In a GCRL settings, these
goals parameterize a reward function which, for instance, incorporates environment-dependent re-
ward terms and Euclidian distance between the current pose of the objects and the target pose. There-
fore, goals generated by LARG2 are used to compute the reward signal at each step. The prompt p,
described in previous section, allows to generates a function F such as L2({T,G,E,X}, P2) → F
to set goal values.

4.2.2 AUTOMATIC GENERATION OF REWARD FUNCTIONS FOR MTRL APPLICATIONS

The second utilization of LARG2 generates the implementation of a reward function. While
Large Language Models can support the full generation of complex reward functions (R), we pro-
pose to simplify the generation by identifying different parts in such a function, some being task-
independent (I) and others closely related to the task definition (D) so that R is a composition of
both parts, R = I + D. In robotic manipulation, common task-independent components address
bonuses for lifting the objects or penalties for the number of actions to achieve a given purpose.
Task-dependent components, which are driven by the textual task description, align constraints with
penalties (N) and guidelines with bonuses (B). Both components are combined in a global reward
function.

5

Under review as a conference paper at ICLR 2024

To compose this global reward function, we consider the existence of predefined categories of tasks
with their environments, formalized using languages such as YAML 2 or Python, providing indepen-
dent reward components (I) available in repositories like Isaac Gym 3. In that respect, the search
and retrieval step allows to collect reward components as examples to support full reward generation.

For the task dependant part of the reward, we leverage the generation capability of the LLM (L2) to
map task descriptions into bonuses (B) and penalties (N) so that:

R = I +

n∑
i=1

αi.Bi +

m∑
j=1

βj .Nj

Weights (α and β) associated with these parameters could be adjusted in an optimization loop.

4.2.3 TASK-ENCODING AND POLICY

For GCRL, the input of the policy is composed with the environment state and the goal generated by
LARG2 . For MTRL, the goal of each task is replaced by a textual description of the task. We use
Google T5 (Raffel et al., 2020a;b) as pre-trained text encoder to encode the text into an embedding
vector. This vector is added to the state vector, along with proprioception and exteroception data, in
the training phase to label tasks. This approach allows to use textual descriptions of tasks as input
to neural policies such as what is proposed by (Jiang et al., 2022).

4.3 CODE VALIDATION AND AUTO-CORRECTION

Naturally, the generated code can not be guarantee in terms of code validity or outcomes. As a
consequence, we automate iterations, emphasizing the elements that need to be modified until the
result converges toward expectations. The errors which are commonly encounter correspond to
under-specified elements in the original prompt or from LLM limitations such as hallucinations (Ji
et al., 2022). So, we finalize the code generation with an automatic validation step described in
Figure 4 which exploits the output of the Python interpreter.

Figure 4: The code correction loop uses the exceptions raised during execution to request modifica-
tions. Then, a functional test is generated before moving to the learning loop.

For validation purposes, we execute the generated code using placeholder variables. If the code fail,
we catch the exceptions raised by the Python interpreter filtering the thread of exceptions to keep the
latest stack and use the error message to fill a prompt requesting code modifications. As illustrated
in Figure 5, our prompt contains (1) a header which requests the LLM to fix the raised exception,
(2) the text of the raised exception, and (3) the code of the incorrect function. Several iterations can
be performed until the code can be properly executed.

Once the generated function satisfies the code correction step, we use another prompt to generate a
functional test to evaluate this first function as detailed in section A.1.5 of the appendix. This step
filters out potentially incorrect code prior to running the training loop. This prompt, illustrated in
Figure 6, is composed of (1) a header requesting the LLM to generate a functional test, (2) a list of
guidelines conditioning the test, and (3) the generated function.

2https://yaml.org/
3https://developer.nvidia.com/isaac-gym

6

Under review as a conference paper at ICLR 2024

Figure 5: Prompt for the automatic code correc-
tion step which contains the error message and
the code to be improved in blue.

Figure 6: Prompt requesting the generation of a
functional test for the provided function, in blue.

5 EXPERIMENTS

Three experiments are designed in the context of robotic manipulation using a table top scenario to
answer the following questions: Can we generate valid goal positions from textual task descriptions
for GCRL settings; Can we automatically generate reward functions to train multi-task policies;
How code examples enhance the relevance of generated functions?

In the GCRL case, we evaluate goal generation on a series of 8 tasks involving a single object, and
4 tasks involving a set of 3 objects. The list of tasks is detailed in Table 2. In the MTRL case,
we address the generation of reward functions for 9 manipulation tasks detailed in Table 5 of the
appendix. As a source of predefined environments and reward functions for the GCRL experiment,
we use Pick and Place scenarios and repositories defined in the IsaacGym repository designed for a
Franka Emika Panda robot arm 4.

5.1 CHAIN-OF-THOUGHT FOR CODE GENERATION

As a first experiment, we test the compliance of the generated poses against specifications provided
in task descriptions. Also, we evaluate the impact of the additional code examples on the relevance
of generated goals. For this, we prompt a pretrained LLM to generate a short set of supplemental
python functions. A list of these prompts is provided in section A.2.4 of the appendix.

In this evaluation, we use three LLMs: GPT4 (GPT) 5, Hyper Clova X (HCX) 6, and StarCoder
(SC)7. These models are used in the LARG2 pipeline either in a straightforward manner without
supplemental examples in the prompt, or with retrieved functions (RF) provided as examples.

Task GPT GPT+RF HCX HCX+RF SC SC+RF
Move a cube in the top right corner of the table. 0.8 0.75 1 0.25 0 0
Lift the cube 15cm above the table. 0.8 0.9 0.8 0 0 0
Take the cube and move it to the left side of the table. 1 0.75 1 0.5 0.25 0
Take the cube and move it closer to the robotic arm. 0.4 0.5 0 1 0 0
Move the cube 20cm to the left of its initial position. 0.5 0.75 0.5 0 0 0

Table 1: Performance comparison between three LLMs: GPT4 (GPT), HyperClovaX (HCX), and
StarCoder (SC).

Inspired by the results presented in table 1 which highlight a positive impact of supplemental ex-
amples using the GPT4 model, we apply this model in subsequent experiments to test LARG2 for
Goal-Conditioned and Multi-Task Reinforcement Learning.

5.2 LARG2 FOR GOAL-CONDITIONED REINFORCEMENT LEARNING

For this experiment, we use a neural policy trained beforehand using Proximal Policy Optimization
(Schulman et al., 2017). The policy takes as input the position and velocity of each joint of the robot
and the respective pose of the objects composing the scene. The policy triggers joint displacement

4https://www.franka.de/
5https://openai.com/gpt-4
6https://clova.ai/hyperclova
7https://huggingface.co/blog/starcoder

7

Under review as a conference paper at ICLR 2024

in a R7 action space. The goal information, generated by LARG2 is used as additional input to the
policy.

Regarding prompting, we create a dedicated code database to support search and retrieval for sup-
plemental examples using The Stack 8 which is a database that contains 6TB of source code files
covering 358 programming languages build as part of the BigCode project 9. For the sake of per-
formance, we keep only Python files from repositories related to robot learning for manipulation
tasks. We use text-based information found in markdown files associated with each repository for
this filtering process. Once filtered, we index and store this dataset in a vector database, ChromaDB
10. Repository descriptions, comments and function names are encoded using SentenceTransformer
11.

To evaluate the benefit of the search and retrieval process, we test the influence of two parameters:
the number of provided examples and the alignment, or lack of, between the names of these functions
and the name of the targeted one as defined in the signature (S) part of the prompt.. Specifically,
we include either one, two, or three functions as examples and explore modifications of the supple-
mental function names to match the name of the expected function. This particular modification is
inspired by an observation highlighted in Wang et al. (2023a) which underscores the importance of
name coherence within the Chain-of-Thought mechanism.

In Table 2, we evaluate the validity of generated goal poses with respect to textual task descrip-
tions. We compare LARG2without supplemental examples (L) with the retrieval augmented version
including 2 and 3 top ranked functions (I 2 and I 3), only the best function (I b) and a random selec-
tion among the top 4 excluding the top one. Similarly we replicate the experiment with modifications
of supplemental function names to match the targeted function (M 2, M 3, M b, M r).

Task L I b I r I 2 I 3 M b M r M 2 M 3
Move a cube in the top right corner of the table. 0.75 0.7 0.9 0.9 0.4 0.5 0.9 0.9 0.25
Lift the cube 15cm above the table. 1.0 1.0 0.8 0.9 0.8 0.0 1.0 1.0 1.0
Take the cube and move it to the left side of the table. 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.6 1.0
Take the cube and move it closer to the robotic arm. 0.5 0.6 0.6 0.4 0.3 0.3 0.7 0.3 0.7
Lift the cube 20cm above the table and 15 cm ahead. 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Push a cube 10cm to the right and 10cm backward. 0.2 0.5 0.2 0.2 0.5 0.6 0.5 0.5 0.5
Grab a cube and lift it a bit and move it a bit ahead. 1.0 0.5 0.7 0.8 0.7 0.7 0.7 0.8 0.9
Move the cube at 20cm to the left of its initial position. 0.5 0.6 0.7 0.8 0.9 0.7 0.5 0.5 0.5
Move one cube to the left side of the table, another one to the right side of the table,
and put the last cube at the center of the table.

0.9 0.7 0.8 0.5 0.4 1.0 0.6 0.7 0.7

Move the three cubes so they are 10 cm close to one another. 0.9 1.0 1.0 0.3 0.2 1.0 1.0 0.2 0.2
Move the three cubes on the table so that at the end they form a right-angled triangle. 1.0 1.0 0.9 0.2 0.1 1.0 1.0 0.3 0.2
Reposition the three cubes on the table such that they create a square, with the
table’s center serving as one of the square’s corners.

0.8 0.2 0.9 0.2 0.1 0.8 0.9 0.9 0.8

Table 2: Evaluation of LARG2performance for goal pose generation according to various configu-
rations of the code example part of the prompt.

This experiment demonstrates both the capability of LARG2 to generate goals that match require-
ments as defined in task descriptions and the positive influence of additional code samples on the
accuracy of generated functions. Furthermore, it reveals that the naming of functions has minimal
impact on performance.

5.3 LARG2 FOR MULTI TASK REINFORCEMENT LEARNING

In this experiment, we train a policy using Proximal Policy Optimization with default Franka Move
parameters. The policy takes as input the task description which is encoded using a pre-trained
Google T5-small language model Raffel et al.. For each task, we use the [CLS] token embedding
computed by the encoder layer of the model which is defined in R512. We concatenate this embed-
ding with the state information of our manipulation environment defined in R7 and feed it into a
stack of fully connected layers used as policy. This policy is composed of 3 layers using respec-
tively, {512, 128, 64} hidden dimensions. Alternately, as suggested by Jiang et al. (2022), we tested
feeding the token embedding into each layer of the stack instead of concatenating it as input but we
did not observe improvements.

8https://huggingface.co/datasets/bigcode/the-stack
9https://www.bigcode-project.org/

10https://www.trychroma.com/
11https://www.sbert.net/

8

Under review as a conference paper at ICLR 2024

For the reward generation process, we first set the task-independent reward component leveraging
rewards available from IsaacGym for pick and place manipulation. This component handles gripper
finger distance to the object, bonuses for lifting the object and penalties for the number of actions
to reach the objective. This component, which is therefore common to each task, is not generated.
It is added to the task dependant reward generated by LARG2 for each task. Details about this
process are further discussed in section A.1.3 of the appendix. Reward functions apply goal poses
generated according to the task to compute related scores. Figures 7 and 8, respectively present
generated goal positions for 9 manipulation tasks, detailed in the appendix, and the success rate of
subsequently trained policies.

Figure 7: Generated goal position for 9 manipula-
tion tasks.

Figure 8: Success rate evaluations of MTRL
over automatic reward generation.

As a summary, LARG2 demonstrates its capability of producing valid reward functions to success-
fully train and execute MTRL policies from textual task descriptions.

6 LIMITATIONS AND FUTURE WORKS

Our experiments have highlighted limitations in LLM reliability to convert user instructions into
executable and valid code. Even though our experiments involved highly structured information
such as function signature and docstring, which limits the effect of hallucination, the risk of semantic
errors cannot be ruled out. To address these limitations, the auto-correction loop described in our
paper seems an effective option to be further investigated.

7 CONCLUSION

In this paper, we introduce LARG2 which enables scalable task-conditioned reinforcement learn-
ing from textual descriptions. Our method leverages the in-context learning and code-generation
capabilities of large language models to complete or fully generate goal-sampling and reward func-
tions from textual descriptions of tasks. For this purpose, our method incorporates automatic code
validation and functional testing. Additionally, our approach augments the contextual information
provided to the LLM with supplemental functions to activate a Chain-of-Thought mechanism to fur-
ther increase the relevance of generated code. We evaluate the capability of our method to translate
a series of text-based task descriptions into actionable objectives for GCRL and to generate rewards
functions to train MTRL policies for robotic manipulation. Our experiment confirms the benefit of
LARG2 for aligning textual task descriptions with generated goal and reward functions. We believe
it opens a novel and scalable direction for training RL-based policies for robots on the basis of tex-
tual instructions. Still, further work remains to address reward generation for long horizon objectives
as well as for improvements in supplemental function retrieval using for instance a learning to rank
approach.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan C. Julian, Dmitry
Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla,
Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia Salazar, Pannag R. San-
keti, Kevin Sayed, Jaspiar Singh, Sumedh Anand Sontakke, Austin Stone, Clayton Tan, Huong
Tran, Vincent Vanhoucke, Steve Vega, Quan Ho Vuong, F. Xia, Ted Xiao, Peng Xu, Sichun Xu,
Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale.
ArXiv, abs/2212.06817, 2022.

Eugenio Chisari, Tim Welschehold, Joschka Boedecker, Wolfram Burgard, and Abhinav Valada.
Correct me if i am wrong: Interactive learning for robotic manipulation. IEEE Robotics and
Automation Letters, 7:3695–3702, 2021.

Cédric Colas, Ahmed Akakzia, Pierre-Yves Oudeyer, Mohamed Chetouani, and Olivier Sigaud.
Language-conditioned goal generation: a new approach to language grounding for RL. CoRR,
abs/2006.07043, 2020a. URL https://arxiv.org/abs/2006.07043.

Cédric Colas, Ahmed Akakzia, Pierre-Yves Oudeyer, Mohamed Chetouani, and Olivier Sigaud.
Language-conditioned goal generation: a new approach to language grounding for rl. ArXiv,
abs/2006.07043, 2020b.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting with chain-of-thought
for large language models. ArXiv, abs/2302.12246, 2023.

Marco Dorigo and Marco Colombetti. Robot shaping: Developing autonomous agents through
learning. Artificial intelligence, 71(2):321–370, 1994.

Taylor A. Kessler Faulkner, Elaine Schaertl Short, and Andrea Lockerd Thomaz. Interactive rein-
forcement learning with inaccurate feedback. 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 7498–7504, 2020.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 3389–3396, 2017. doi: 10.1109/ICRA.2017.
7989385.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. 2022a. doi: 10.48550/ARXIV.
2201.07207. URL https://arxiv.org/abs/2201.07207.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reason-
ing through planning with language models. 2022b. doi: 10.48550/ARXIV.2207.05608. URL
https://arxiv.org/abs/2207.05608.

Shima Imani, Liang Du, and H. Shrivastava. Mathprompter: Mathematical reasoning using large
language models. In Annual Meeting of the Association for Computational Linguistics, 2023.
URL https://api.semanticscholar.org/CorpusID:257427208.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. Survey of hallucination in natural language generation. CoRR,
abs/2202.03629, 2022. URL https://arxiv.org/abs/2202.03629.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. 2022. doi: 10.48550/ARXIV.2210.03094. URL https://arxiv.org/
abs/2210.03094.

10

https://arxiv.org/abs/2006.07043
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2207.05608
https://api.semanticscholar.org/CorpusID:257427208
https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/2210.03094
https://arxiv.org/abs/2210.03094

Under review as a conference paper at ICLR 2024

Michael Kelly, Chelsea Sidrane, K. Driggs-Campbell, and Mykel J. Kochenderfer. Hg-dagger:
Interactive imitation learning with human experts. 2019 International Conference on Robotics
and Automation (ICRA), pp. 8077–8083, 2018.

Aviral Kumar, Joey Hong, Anika Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. 2022. doi:
10.48550/ARXIV.2209.07753. URL https://arxiv.org/abs/2209.07753.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. CoRR, abs/1509.02971, 2016.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

Ashvin Nair, Vitchyr H. Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In NeurIPS, 2018.

OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju, Peter
Welinder, Ruben D’Sa, Arthur Petron, Henrique Pondé de Oliveira Pinto, Alex Paino, Hyeonwoo
Noh, Lilian Weng, Qiming Yuan, Casey Chu, and Wojciech Zaremba. Asymmetric self-play for
automatic goal discovery in robotic manipulation. ArXiv, abs/2101.04882, 2021.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. ArXiv,
abs/2203.02155, 2022.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Joshua Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: Challenging robotics environments and request for
research. ArXiv, abs/1802.09464, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. URL http://arxiv.org/abs/1910.10683.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2020a.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. ArXiv, abs/1910.10683, 2020b.

11

https://arxiv.org/abs/2209.07753
http://arxiv.org/abs/1910.10683

Under review as a conference paper at ICLR 2024

Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using reinforcement learning and
shaping. In Proceedings of the 15th International Conference on Machine Learning (ICML’98),
pp. 463–471, 1998.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey Levine. Lm-nav: Robotic navigation with
large pre-trained models of language, vision, and action. 2022. doi: 10.48550/ARXIV.2207.
04429. URL https://arxiv.org/abs/2207.04429.

Jochen Stüber, Marek Kopicki, and Claudio Zito. Feature-based transfer learning for robotic push
manipulation. 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–5,
2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE Transac-
tions on Neural Networks, 16:285–286, 2005.

Lei Tai, Jingwei Zhang, Ming Liu, Joschka Boedecker, and Wolfram Burgard. A survey of deep net-
work solutions for learning control in robotics: From reinforcement to imitation. arXiv: Robotics,
2016.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters, 2023a.

Hongru Wang, Rui Wang, Fei Mi, Zezhong Wang, Rui-Lan Xu, and Kam-Fai Wong. Chain-
of-thought prompting for responding to in-depth dialogue questions with llm. ArXiv,
abs/2305.11792, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. ArXiv,
abs/2201.11903, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

Thomas Weng, Amith Pallankize, Yimin Tang, Oliver Kroemer, and David Held. Multi-modal
transfer learning for grasping transparent and specular objects. IEEE Robotics and Automation
Letters, 5:3796–3803, 2020.

Mats Wiese, Gundula Runge-Borchert, Benjamin-Hieu Cao, and Annika Raatz. Transfer learning
for accurate modeling and control of soft actuators. 2021 IEEE 4th International Conference on
Soft Robotics (RoboSoft), pp. 51–57, 2021.

Skyler Wu, Eric Meng Shen, Charumathi Badrinath, Jiaqi Ma, and Himabindu Lakkaraju. Analyz-
ing chain-of-thought prompting in large language models via gradient-based feature attributions.
ArXiv, abs/2307.13339, 2023.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted
Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa,
and Fei Xia. Language to rewards for robotic skill synthesis, 2023.

12

https://arxiv.org/abs/2207.04429

Under review as a conference paper at ICLR 2024

A APPENDIX

In this section, we delve into further details regarding LARG2 and present the results of experiments
conducted to assess its performance in both Goal Conditioned Reinforcement Learning (GCRL) and
Multi-Task Reinforcement Learning (MTRL) settings. Additionally, we analyze how the inclusion
of supplementary function examples influences the quality and relevance of the generated code.
Furthermore, we provide examples of the prompts used in our experiments.

A.1 METHOD

A.1.1 PREREQUISITES

LARG2 offers a scalable approach for aligning language-based task descriptions with goal and
reward functions, addressing both Goal-Conditioned and Multi-Task Reinforcement Learning chal-
lenges. This method harnesses the code generation capabilities provided by recent Large Language
Models (LLMs) that encapsulate prior background knowledge and common sense. Regarding cod-
ing capabilities, these LLMs leverage existing code repositories like GitHub 12. While one might
argue that LLMs can generate appropriate code solely from textual descriptions, our experiments
demonstrate that they still benefit from additional contextual guidelines. These guidelines encom-
pass aspects such as scene understanding and function signature. Optionally, supplemental code
samples can also be provided to activate a Chain-of-Thought (CoT) mechanism.

As a pre-requisite, we assume the existence of a set of categories of manipulation tasks defined in
repositories like Isaac Gym 13 with descriptions of environments formalized using languages like
YAML 14 or Python 15. Accordingly, we assume that such environments provide signatures of
expected functions commented with a formalism like Docstring 16.

In such a case, the search and retrieval process proposed in LARG2 utilizes this information to align
the generated code with the expected goal or reward function’s signature. This facilitates seamless
integration into existing training frameworks.

A.1.2 GENERATION OF GOAL POSES FOR GCRL

A first application of LARG2generates goals to be used as parameters for goal-conditioned reward
functions. As an example, within tabletop robotic manipulation scenarios, a pick-and-place task
involves rearranging a set of objects that make up a scene. In this scenario, the goal is defined by
a set of Cartesian coordinates representing target poses. Consequently, reward functions typically
calculate the Euclidean distance between a given object and its corresponding target pose.

The prompt design used in LARG2 is composed of 4 main elements: (1) the environment descrip-
tion, (2) the task description, (3) the specifications of the expected function and (4) optional guide-
lines. Optionally, it may be complemented by supplemental information like additional functions to
initiate a Chain-of-Though (CoT) mechanism. The impact of such additional input is discussed in
section A.1.4. Figure 9 illustrates our prompt design and figure 10 shows the resulting code.

12https://github.com/
13https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
14https://yaml.org/
15https://www.python.org/
16https://peps.python.org/pep-0257/

13

Under review as a conference paper at ICLR 2024

Figure 9: GCRL: Prompt requesting the generation of the goal function. The function signature is
highlighted in blue and the text-based goal description is in grey.

Figure 10: GCRL: Generated code for the goal pose function.

14

Under review as a conference paper at ICLR 2024

A.1.3 GENERATION OF REWARD FUNCTION FOR MTRL

The second utilization of LARG2 generates the executable source code of a reward function accord-
ing to a task description.

For MTRL, the policy takes both the textual task description and the standard state input into ac-
count. In contrast to the GCRL case, goals are no longer explicitly present in the environment.
However, this information remains crucial for the reward function, as it is required to compute a
gain, which is generated in accordance with the provided task description.

To enhance efficiency and accommodate certain limitations in current Large Language Models
(LLMs), we assume that the task reward is a composite sum of various components. We distin-
guish between task-independent components and task-dependent components. In the context of
robotic manipulation, task-independant components typically include rewards for lifting objects or
penalties for the number of actions required to reach the goal. Task-independent components can
be sourced from existing code repositories or predefined environment settings, such as those in the
Pick and Place scenario in Isaac Gym. LARG2 is primarily focused on generating the portion of
the reward that depends on specific requirements and constraints outlined in the guidelines and task
descriptions.

The structure used for generating the reward function closely resembles the one employed for goal
generation. It comprises (1) the environment description, (2) the task description, (3) specifications
for the expected reward function, and (4) optional guidelines.

The following figures illustrate prompts and the results obtained when requesting the generation of
a reward function to train a policy for manipulating a cube and bringing it closer to a robotic arm.
For this example, we do not consider supplemental examples to condition code generation using
Chain-of-Thought (CoT). Figure 11 details the global reward function that combines both elements
from the task independent, which is illustrated by figure 12, and task dependent part. In this case,
LARG2focuses on generating the dependent part using a prompt illustrated by Figure 13 to produce
the code depicted in Figure 14.

15

Under review as a conference paper at ICLR 2024

Figure 11: MTRL: Source code of a global reward function combining a task independent and task
dependent component (highlighted section in yellow).

16

Under review as a conference paper at ICLR 2024

Figure 12: MTRL: Source code of the task independent reward component.

17

Under review as a conference paper at ICLR 2024

Figure 13: MTRL: Prompt requesting the generation of a task dependent part of a reward function.

Figure 14: MTRL: Source code generated by LARG2 for the task dependent part of a reward func-
tion.

18

Under review as a conference paper at ICLR 2024

Figure 15: The LARG2system enhanced with retrieval leverages context, environment, guidelines
and task descriptions to query either the parametric memory of a LLM or a code database to retrieve
function samples. These samples serve as additional context, enriching a dedicated prompt. This
prompt is then utilized to convert textual task descriptions into goal poses or reward functions, a
crucial process for applications like GCRL or MTRL.

A.1.4 SEARCH AND RETRIEVAL FOR SUPPLEMENTARY EXAMPLES

The prompt can be enriched with function examples to guide intermediate reasoning steps. To
achieve this, we can leverage either the contextual knowledge embedded within the parametric space
of a large language model pre-trained on code repositories or employ a search and retrieval process
from an external source of code examples.

Our method assumes the availability of code repositories such as Github17. To ensure the efficiency
of the search and retrieval process, it is important for these repositories to contain sufficient docu-
mentation and comments. Additionally, while it is preferable for this code to be correct, previous
research conducted by Wang et al. (2023a) has demonstrated that even invalid examples used in a
Chain-of-Thought mechanism can still yield valid answers.

As depicted in Figure 15, we propose two viable options. Firstly, these repositories can be integrated
into a dataset used for training a Large Language Model (LLM), in which case the information be-
comes embedded within the model’s parametric memory, accessible for retrieval. Alternatively,
repositories can be independently indexed, possibly utilizing a vector database that stores infor-
mation as high-dimensional vectors. This latter option enables the augmentation of the LLM’s
background knowledge with external information sources, which may be more pertinent for specific
applications.

While we do evaluate code retrieval from general-purpose Large Language Models (LLMs) in our
experiments, our primary focus here centers on a dedicated external codebase search process. To
achieve this, we implement a dense indexing system encompassing code, comments, and documen-
tation extracted from code repositories.

In this indexing approach, each code file undergoes segmentation into a set of functions, with each
function being individually indexed. This indexing process, denoted as I , aggregates information
from various sources, including the readme.md file (R), the function’s signature (S), its docstring
(D), and its code (C). This aggregation can be represented as R,S,D,C → F , where F represents
the indexed function. The result is encoded into a collection of embeddings and subsequently stored
within a Vector database. As a result, each query to the vector database returns a sorted set of indi-
vidual functions, ordered according to a relevance score. The expected number of relevant functions
is provided as a parameter of the query.

A.1.5 CODE VALIDATION

To ensure the generated code seamlessly integrates with existing reinforcement learning frameworks,
it may be necessary to perform code validation followed by potential code correction. To accomplish
this, we harness the code generation capabilities of Large Language Models (LLMs) to produce a
functional test.

17https://www.github.com

19

Under review as a conference paper at ICLR 2024

We employ a structured prompt, as depicted in Figure 16, comprising the following components: (1)
a header requesting the LLM to generate a functional test, (2) a list of guidelines to shape the test,
and (3) the code for the generated function. An example of such a test is provided in Figure 17.

Figure 16: Prompt requesting the generation of functional test for a reward function.

Figure 17: Generated functional test.

20

Under review as a conference paper at ICLR 2024

A.2 EXPERIMENTS

We evaluate LARG2 on a series of tabletop object manipulation tasks for both GCRL and MTRL
settings. First, we focus on evaluating goal and reward generation without supplemental exam-
ples. Then, we evaluate the benefits of a chain-of-thought mechanism. Experiments leverage the
Franka Move environment available on the IsaacGym repository 18. This environment incorporates
a table, a Franka Emika Panda robot arm 19 which is an open kinematic chain composed with 7DoF,
and n cubes on the table. The dimensions of the table are as follows: 1m x 1m x 0.78m. The robot
arm is placed on the table at (0.5, 0.165, 0.78). There is a griper with two fingers attached at the end
of the arm. Cubes with a 5cm edge are located on the surface of the table. The global origin (0,0,0)
is located on the floor below the table. Each environment description is written using the Python
language.

A.2.1 LARGE LANGUAGE MODELS

In a first experimental setting, several LLMs are evaluated on a first list of 32 tasks: text-davinci-
003 20, code-davinci-002 21 and gpt-3.5-turbo 22 from OpenAI which are evolutions from GPT3
optimized with Reinforcement Learning from Human Feedback Ouyang et al. (2022). StarCoder
from HuggingFace (Li et al., 2023) is also evaluated on the same tasks but it only delivers 12.5%
of valid functions even after the auto-correction step. Frequent issues observed with this model
are related to incorrect variable initialization, missing code and a lack of compliance with provided
guidelines such as illustrated in Figures 18 and 19.

Figure 18: Code generated by gpt-3.5-turbo for the task: Move a cube in the top right corner of the
table.

As a summary, best results, in terms of code generation, are achieved with gpt-3.5-turbo which is
the model used in a first series of experiments reported below.

18https://developer.nvidia.com/isaac-gym
19https://www.franka.de/
20https://platform.openai.com/docs/models/gpt-3
21https://platform.openai.com/docs/models/codex
22https://platform.openai.com/docs/models/gpt-3-5

21

Under review as a conference paper at ICLR 2024

Figure 19: Code generated by StarCoder for the task: Move a cube in the top right corner of the
table. In this example the generated code cannot be applied.

A.2.2 AUTOMATIC GOAL GENERATION FOR THE GCRL EXPERIMENT

In the GCRL experiment, the policy takes as input the position and velocity of each joint of the robot
and the respective pose of the objects composing the scene. The policy triggers joint displacement
in a R7 action space. In addition to the position of the object composing the scene, the policy takes
as input the goal positions. These positions are provided by goal functions generated by LARG2.
The policy is trained beforehand using Proximal Policy Optimization Schulman et al. (2017) with
default Franka Move parameters as defined in table 3.

training parameters values
number of environments 2048
episode length 500
object distance reward scale 0.08
lift bonus reward scale 4.0
goal distance reward scale 1.28
goal bonus reward scale 4.0
action penalty scale 0.01
collision penalty scale 1.28
actor hidden dimension [256, 128, 64]
critic hidden dimension [256, 128, 64]

Table 3: List of parameters used in the Franka Move PPO training loop.

We assess our approach across an initial set of 32 tasks, consisting of 27 tasks that involve a single
object and 5 tasks that encompass three objects. Tasks labeled d17 to d27 are characterized by
objectives defined in relation to the initial positions of the objects. In such cases, the goal function’s
signature naturally incorporates the initial positions of the cubes comprising the scene.

Figure 20 illustrates the workflow for generating prompts that transform task descriptions into goal
function generation. This process includes an auto-correction step and the subsequent creation of
a functional test. In this experiment, we refrain from using supplemental functions to enhance the
prompt with additional context.

Figure 21 illustrates the results produced with 10 runs of 3 different goal functions generated out of 3
different manipulation tasks. In all cases, the resulting poses are well aligned with task requirements
while exploring the range of valid positions allowed by a non deterministic task definition.

22

Under review as a conference paper at ICLR 2024

Table 4 provides the list of all tasks used in our experiment and report the compliance of generated
goals with task descriptions.

ID Task Generated Pose validity
d01 Move a cube to the top right corner of the table. ✓
d02 Move a cube to the top left corner of the table. ✓
d03 Move a cube to the bottom right corner of the table. ✓
d04 Move a cube to the bottom left corner of the table. ✓
d05 Lift the cube 15cm above the table. ✓
d06 Rotate a cube upside-down. ✓
d07 Take to cube and move it to the left side of the table. -
d08 Take to cube and move it to the right edge of the table. ✓
d09 Take to cube and raise it at 20 cm to the far side of the table. ✓
d10 Take the cube and move it closer to the robotic arm. ✓
d11 Pick up the cube and move it away from the robotic arm. ✓
d12 Take the cube and move it very close to the robotic arm. -
d13 Push the cube off the limits of the table. ✓
d14 Bring the cube closer to the robot arm. ✓
d15 Move the cube to one corner of the table. ✓
d16 Place the cube anywhere on the diagonal of the table running

from the top right corner to the bottom left corner.
✓

d17 Lift the cube 15cm above the table and 10 cm to the right. ✓
d18 Lift the cube 20cm above the table and 15 cm ahead. ✓
d19 Lift the cube 20cm above the table and 15 cm backward. ✓
d20 Push a cube 10cm to the right and 10cm ahead. ✓
d21 Push a cube 10cm to the right and 10cm backward. ✓
d22 Push a cube 10cm to the left and 10cm ahead. ✓
d23 Push a cube 10cm to the left and 10cm backward ✓
d24 Grab a cube and move it a bit to the left. ✓
d25 Grab a cube and lift it a bit and move it a bit ahead. ✓
d26 Move the cube at 20cm to the left of its initial position. ✓
d27 Move the cube 20cm above its current position. ✓
d28 Move one cube to the left side of the table, another one to the

right side of the table, and put the last cube at the center of the
table.

✓

d29 Move the three cubes so they are 10 cm close to one another. ✓
d30 Move the three cubes on the table so that at the end they form a

right-angled triangle.
✓

d31 Move the three cubes on the table so that at the end they form
an isosceles triangle.

✓

d32 Reposition the three cubes on the table such that they create a
square, with the table’s center serving as one of the square’s
corners.

✓

Table 4: List of the 32 manipulation tasks evaluated with LARG2. Tasks d17 to d27 involve ob-
jectives relative to the object’s initial position. Tasks d28 to d32 address 3 object manipulation
problems and therefore 3 goals. Localisation compliance with task definition is reported.

Figure 22 displays the success rates for our set of 32 manipulation tasks. When examining unsuc-
cessful experiments, a frequent source of error can be traced back to insufficient contextual infor-
mation and constraints within the task definition.

As potential future directions to tackle this issue, two options can be mentioned: firstly, enhancing
the prompt with more constraints, and secondly, opting for a more capable Large Language Model
(LLM) with respect to code generation capabilities.

Interestingly, this experiment underscores the reasoning capabilities of the Large Language Model
(LLM), as depicted in Figure 23. In this specific task, the requirement is to lift a cube to a height of
15cm above the table. Remarkably, the generated goal function demonstrates the ability to correctly
calculate the target position by adding the table’s height to the specified 15cm.

As a summary, LARG2 allows to generate code for goal prediction according to textual task de-
scriptions. In some cases, the generated code do not properly fits with user specifications but our
experiment demonstrates that a feedback loop with additional guidelines can fix the problem.

23

Under review as a conference paper at ICLR 2024

Figure 20: Prompts illustrating the 3 steps involved in the generation of a valid goal positioning
function: 1) request to generate a function according to specific environment parameters, 2) auto-
correction, 3) final validation. The highlighted section in red contains the error message generated
at the execution phase.

24

Under review as a conference paper at ICLR 2024

Figure 21: Example of goal positions generated by our method for 3 different tasks requesting targets
to be located on the right, left, and above the table.

Figure 22: Success rate for GCRL manipulation tasks. Blue reflects 1 object manipulation for
absolute pose whereas grey reflects relative object pose. Green relates to 3 object manipulation
tasks.

Figure 23: Arithmetic capabilities of the LLM for Task d05. The comment highlighted in yellow so
as the related code is generated by the LLM.

25

Under review as a conference paper at ICLR 2024

A.2.3 AUTOMATIC REWARD GENERATION FOR THE MTRL EXPERIMENT

Our second experiment evaluates LARG2 capabilities to address MTRL settings. For task encoding,
we use the Google T5-small language model Raffel et al.. We use the [CLS] token embedding com-
puted by the encoder stack of the model which is defined in R512. We concatenate this embedding
with the state information of our manipulation environment defined in R7 and feed it into a fully
connected layer stack used as policy. This policy is composed of three layers using respectively,
{512, 128, 64} hidden dimensions.

In our experiment, we train an MTRL settings using Proximal Policy Optimization (PPO) Schulman
et al. (2017) with default Franka Move parameters using reward functions generated by LARG2over
9 tasks listed in Table 5. These tasks address one object manipulation on a tabletop. We leverage
the LLM capabilities to paraphrase these tasks to produce the evaluation set. Paraphrases include
task translation as the Google T5 model is trained for downstream tasks such as machine translation.
Figure 25 illustrates the application of Task m04 submitted as a text based command in Korean
language (”큐브를 테이블 중앙으로부터 20cm 위로 옮겨주세요”) to a policy trained in
MTRL.

ID Task
m01 Push the cube to the far right of the table.
m02 Move a cube to the top left corner of the table.
m03 Take the cube and put it close to the robot arm.
m04 Move a cube at 20cm above the center of the table.
m05 Move a cube at 15 cm above the table.
m06 Take the cube and put it on the diagonal of the table.
m07 Push the cube at 20cm ahead of its current position.
m08 Move the cube to the center of the table.
m09 Grab the cube and move it forward to the left.

Table 5: List of task used in the MTRL settings.

Figure 24 provides success rates obtained for the 9 tasks used in the MTRL experiment. It illus-
trates LARG2 capabilities to generate valid reward functions to train and execute MTRL policies
conditioned by textual task definitions.

Figure 24: Success rate evaluations of MTRL
over automatic reward generation.

Figure 25: Example of multi-lingual capabili-
ties for robot manipulation. In our simulation
tasks are submitted using different languages in-
cluding English, Arabic and Korean. This figure
illustrate task m04 translated in Korean.

26

Under review as a conference paper at ICLR 2024

A.2.4 INFLUENCE OF SUPPLEMENTAL EXAMPLES FOR GENERATED GOAL RELEVANCE

Here, we evaluate the benefits of supplemental examples added to the main prompt on the relevance
of generated goals. For this purpose, we design two experiments. The first experiment uses examples
generated by a large language model, in others words , retrieved from the parametric space. The
second experiment uses a search and retrieval mechanism leveraging an external code base.

Leveraging the parametric space memory of a LLM

For this experiment, we extract support functions from the parametric space of Large Language
Models, leveraging their ability to generate code based on textual queries. In other words, we query
the LLM itself to generate support functions.

We use three different queries to generate supplemental functions to be added to our main prompt
where each example relates to a different function.:

• ”Create a function to draw a bounding box within min max coordinates.”
• ”Create a function to test if an object is located within a bounding box.”
• ”Create a function to position randomly an object inside a given bounding box.”

In this evaluation, we use three LLMs: GPT4 (GPT) 23, Hyper Clova X (HCX) 24, and StarCoder
(SC)25. These models are used in the LARG2 pipeline either in a straightforward manner without
supplemental examples in the prompt, or with retrieved functions (RF) provided as examples.

Task GPT GPT+RF HCX HCX+RF SC SC+RF
Move a cube in the top right corner of the table. 0.8 0.75 1 0.25 0 0
Lift the cube 15cm above the table. 0.8 0.9 0.8 0 0 0
Take the cube and move it to the left side of the table. 1 0.75 1 0.5 0.25 0
Take the cube and move it closer to the robotic arm. 0.4 0.5 0 1 0 0
Move the cube 20cm to the left of its initial position. 0.5 0.75 0.5 0 0 0

Table 6: Performance comparison between three LLMs: GPT4 (GPT), HyperClovaX (HCX), and
StarCoder (SC).

Inspired by the results presented in table 6 which highlight a positive impact of supplemental exam-
ples using the GPT4 model, we then use this model to test a search and retrieval approach from an
external code base.

Search and retrieval from an external: code repository

To assess the ability to automatically retrieve pertinent examples from code repositories using auto-
mated queries, we start by indexing and storing these repositories within a vector database.

In our experiment, we use The Stack 26 as a code base. The Stack contains over 6TB of permissively-
licensed source code files covering 358 programming languages build as part of the BigCode project
27 from repositories like those available in GithHub 28.

For the sake of performance, we filter this dataset, retaining only Python files from repositories
related to robot learning for manipulation tasks. We use text-based information found in markdown
files associated with each repository for this filtering process.

Once filtered, we index and store this dataset in a vector database. In our experiment, we use
ChromaDB 29. Repository descriptions, comments and function names are encoded using Sentence-
Transformer 30. This encoding served a dual purpose: to create the embedding vector used to retrieve
relevant functions and to encode queries. This indexed dataset serves as our external memory for
retrieving examples to enrich the primary prompt in LARG2 .

23https://openai.com/gpt-4
24https://clova.ai/hyperclova
25https://huggingface.co/blog/starcoder
26https://huggingface.co/datasets/bigcode/the-stack
27https://www.bigcode-project.org/
28https://github.com/
29https://www.trychroma.com/
30https://www.sbert.net/

27

Under review as a conference paper at ICLR 2024

To assess the effectiveness of the search and retrieval process, we examine the impact of two pa-
rameters: the number of examples provided as support functions and the alignment, or lack thereof,
between the names of these functions and the name of the expected function. Table 7 presents a list
of the combinations explored in our experiment. Specifically, we include from one to three functions
as examples. Furthermore, we either select the function with the highest relevance score or conduct
a random draw from the top four functions. Lastly, we experiment with modifying the support func-
tion names to match the expected name of function. This particular modification is inspired by an
observation provided in Wang et al. (2023a), which underscores the importance of name coherence
within the Chain-of-Thought mechanism.

Prompt Id Prompt Content
I 2 Use the 2 top-ranked functions. Function names are not modified.
I 3 Use the 3 top-ranked functions. Function names are not modified.
I b Top-ranked function. Its name is not modified.
I r A random function among the top 4 without considering the best one. The name is not modified.
L LARG2 without supplemental functions.

M 2 Same as I 2 but function names are modified to match the targeted function signature.
M 3 Same as I 3 but function names are modified to match the targeted function signature
M b Same as I b but function names are modified to match the targeted function signature
M r Same as I r but function names are modified to match the targeted function signature

Table 7: Description of the diverse retrieved examples added the LARG2prompt to request code
generation.

Table 8 compares the validity of generated goal poses with respect to textual task descriptions.

Task L I b I r I 2 I 3 M b M r M 2 M 3
Move a cube in the top right corner of the table. 0.75 0.7 0.9 0.9 0.4 0.5 0.9 0.9 0.25
Lift the cube 15cm above the table. 1.0 1.0 0.8 0.9 0.8 0.0 1.0 1.0 1.0
Take the cube and move it to the left side of the table. 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.6 1.0
Take the cube and move it closer to the robotic arm. 0.5 0.6 0.6 0.4 0.3 0.3 0.7 0.3 0.7
Lift the cube 20cm above the table and 15 cm ahead. 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Push a cube 10cm to the right and 10cm backward. 0.2 0.5 0.2 0.2 0.5 0.6 0.5 0.5 0.5
Grab a cube and lift it a bit and move it a bit ahead. 1.0 0.5 0.7 0.8 0.7 0.7 0.7 0.8 0.9
Move the cube at 20cm to the left of its initial position. 0.5 0.6 0.7 0.8 0.9 0.7 0.5 0.5 0.5
Move one cube to the left side of the table, another one to the right side of the table,
and put the last cube at the center of the table.

0.9 0.7 0.8 0.5 0.4 1.0 0.6 0.7 0.7

Move the three cubes so they are 10 cm close to one another. 0.9 1.0 1.0 0.3 0.2 1.0 1.0 0.2 0.2
Move the three cubes on the table so that at the end they form a right-angled triangle. 1.0 1.0 0.9 0.2 0.1 1.0 1.0 0.3 0.2
Reposition the three cubes on the table such that they create a square, with the
table’s center serving as one of the square’s corners.

0.8 0.2 0.9 0.2 0.1 0.8 0.9 0.9 0.8

Table 8: Evaluation of LARG2performance for goal pose generation according to various configu-
rations of the code example part of the prompt.

This experiment showcases two key aspects: the ability of LARG2 to generate goals that align
with the requirements outlined in task descriptions, and the impact of including supplementary code
samples on the precision of the generated functions. Moreover, it underscores that the naming of
functions has a minimal effect on performance.

28

Under review as a conference paper at ICLR 2024

A.3 EXAMPLES OF GOAL FUNCTIONS GENERATED BY LARG2

Figure 26: Task d08: Take to cube and move it to the right edge of the table

Figure 27: Task d12: Take the cube and move it very close to the robotic arm.

Figure 28: Task d15: Move the cube to one corner of the table.

29

Under review as a conference paper at ICLR 2024

Figure 29: Task d16: Place the cube anywhere on the diagonal of the table running from the top
right corner to the bottom left corner.

Figure 30: Task d17: Lift the cube 15cm above the table and 10 cm to the right.

Figure 31: Task d19: Lift the cube 20cm above the table and 15 cm backward.

30

Under review as a conference paper at ICLR 2024

Figure 32: Task d26: Move the cube at 20cm to the left of its initial position.

Figure 33: Task 29: Rearrange three cubes in such a way that the distance between each of them is
10 centimeters.

31

Under review as a conference paper at ICLR 2024

Figure 34: Task d30: Move the three cubes on the table so at the end they form a right-angled
triangle with one corner at the center of the table.

32

Under review as a conference paper at ICLR 2024

A.4 EXAMPLES OF TASK DEPENDANT REWARD FUNCTIONS GENERATED BY LARG2

Figure 35: Task m02: Move a cube to the top left corner of the table.

33

Under review as a conference paper at ICLR 2024

Figure 36: Task m04: Move a cube at 20cm above the center of the table.

34

	Introduction
	Preliminaries: reinforcement learning for robotic manipulation
	Related work
	Challenges of reward definition and shaping
	Large Language models for control
	Improving generation with Chain of Thought
	Concurrent work

	LARG2 , Language-based Automatic Reward and Goal Generation
	Elements of the prompt
	Generating goal and reward functions
	Automatic generation of goals for GCRL applications
	Automatic generation of reward functions for MTRL applications
	Task-encoding and Policy

	Code validation and auto-correction

	Experiments
	Chain-of-Thought for code generation
	LARG2 for Goal-Conditioned Reinforcement Learning
	LARG2 for Multi Task Reinforcement Learning

	Limitations and future works
	Conclusion
	Appendix
	Method
	Prerequisites
	Generation of goal poses for GCRL
	Generation of reward function for MTRL
	Search and Retrieval for supplementary examples
	Code validation

	Experiments
	Large Language Models
	Automatic goal generation for the GCRL experiment
	Automatic reward generation for the MTRL experiment
	Influence of supplemental examples for generated goal relevance

	Examples of goal functions generated by LARG2
	Examples of task dependant reward functions generated by LARG2

