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ABSTRACT

Researchers and practitioners in natural language processing and computational
linguistics frequently observe and analyze the real language usage in large-scale
corpora. For that purpose, they often employ off-the-shelf pattern-matching tools,
such as grep, and keyword-in-context concordancers, which is widely used in
corpus linguistics for gathering examples. Nonetheless, these existing techniques
rely on surface-level string matching, and thus they suffer from the major limita-
tion of not being able to handle orthographic variations and paraphrasing—notable
and common phenomena in any natural language. In addition, existing continu-
ous approaches such as dense vector search tend to be overly coarse, often re-
trieving texts that are unrelated but share similar topics. Given these challenges,
we propose a novel algorithm that achieves soft (or semantic) yet efficient pat-
tern matching by relaxing a surface-level matching with word embeddings. Our
algorithm is highly scalable with respect to the size of the corpus text utilizing
inverted indexes. We have prepared an efficient implementation, and we provide
an accessible web tool. Our experiments demonstrate that the proposed method
(i) can execute searches on billion-scale corpora in less than a second, which is
comparable in speed to surface-level string matching and dense vector search; (ii)
can extract harmful instances that semantically match queries from a large set of
English and Japanese Wikipedia articles; and (iii) can be effectively applied to
corpus-linguistic analyses of Latin, a language with highly diverse inflections.

1 INTRODUCTION

Recent advances in natural language processing (NLP) and corpus linguistics are largely driven by
the availability of massive text corpora (Gao et al., 2020; Biderman et al., 2023b; Raffel et al., 2019;
Van Der Zwaan et al., 2017; Mcgillivray et al., 2020). The field of NLP, driven by the grand goal
of building intelligent chatbots and machine translation systems, has achieved remarkable break-
throughs over the past decade, largely thanks to self-supervised representation learning from vast
corpora (Mikolov et al., 2013; Pennington et al., 2014; Devlin et al., 2019; Radford et al., 2019). No-
table causal language models (LMs), capable of passing high-stakes exams (Katz et al., 2024; Ope-
nAI, 2024; Jung et al., 2023), serving as general-purpose problem solvers (Brown et al., 2020), and
engaging in realistic conversations with beloved characters (De Freitas, 2023; Chen et al., 2024), owe
their foundational abilities to next-token prediction learned from large-scale data (Brown et al., 2020;
Dubey et al., 2024; Riviere et al., 2024). In corpus linguistics (McEnery & Hardie, 2011), compu-
tational linguistics (Jurafsky & Martin, 2024), and digital humanities (Jensen, 2014)—disciplines
aiming to uncover the scientific and computational principles of human language—such vast lin-
guistic resources, consisting of the language use itself, have become more indispensable than ever
in this era of large-scale corpora (Van Der Zwaan et al., 2017; Mcgillivray et al., 2020).

Given this context, the demand for efficient pattern matchers that enable rapid searches across mas-
sive corpora is higher than ever (Liu et al., 2024; Smadja, 1993). For example, when harmful
information, misinformation, or memorized privacy information is generated by a large LM, it is
necessary to identify the corresponding training instances where this information originated (Guo
et al., 2022; Wang et al., 2024c; Ippolito et al., 2023; Biderman et al., 2023a). Another example is
when researchers wish to determine which of two linguistic phenomena of interest is more frequent;
conducting exhaustive searches across the largest available corpora is essential (Biber, 2015) for
this purpose. Notably, many linguistic phenomena—word frequency as a simple example—follow

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Hard pattern matching (e.g., grep) and soft pattern matching (our method). Hard matching
is based on surface-level comparison and does not match if, e.g., a synonym is used; Soft matching
is based on semantic comparison and robust to such variations thanks to word embeddings.

Pattern Theorem 1 John was born in

Hard matching · · · thanks to Theorem 1 · · · · · · John was born in 1345 · · ·
(e.g., grep)

Soft matching · · · thanks to Theorem 1 · · · · · · John was born in 1345 · · ·
(ours) · · · Theorem 3 holds because · · · · · · Edward had died in May 1910 · · ·

· · · By Lemma 5, we may assume · · · · · · Robert was born in England · · ·
· · · Equation 1 describes · · · · · · the Emperor Henry, died in 1125 · · ·

a power-law distribution (Zipf, 1951; Heap, 1980; Kobayashi & Tanaka-Ishii, 2018). Consequently,
only with vast corpora can we observe and analyze the various rare events residing in the long tail,
which constitute the majority of linguistic phenomena.

One of the challenges when working with large corpora is that pattern-matching tools based on string
matching (Hakak et al., 2019), such as grep (Bambenek & Klus, 2009) and ripgrep (Gallant,
2024), or linguist-oriented tools often referred to as KWIC (Anthony, 2013; Culy & Lyding, 2010;
Schweinberger, 2024), primarily rely on surface-level exact matching as their core strategy. Because
natural languages are characterized by their flexibility and richness in how humans can express
similar concepts in different ways (McKeown, 1979; Witteveen & Andrews, 2019; Ganitkevitch
et al., 2013), strictly exact string matching may not meet users’ demands. For example, on top of the
query word in standard spelling, it is often desirable to catch non-standard spellings as well, such as
how r u instead of how are you, which are widespread particularly on the web and in texting (Schulz,
2018). Additionally, it is also desirable to catch different inflected word forms such as sing, sang,
sung, sings, and singing, which differ only in their morphological features and share the same lemma
(base form) (Don, 2014; Embick, 2015). Rule-based exact matching is particularly hard when the
target language is morphologically complex and exhibits irregular inflectional patterns.

To resolve the mismatch between the symbolic nature of existing pattern matchers and the diverse
orthographic and morphological variations inherent in natural language, we have developed a soft
(or semantic) yet efficient pattern matcher (Section 3). The core strategy is based on the simple
idea of softening the matching process from binary {0, 1} values to continuous values, using word
embeddings. By adopting inverted indexes and several other techniques, our tool can enumerate
all softly matching instances in billion-scale corpora in less than a second. Table 1 shows specific
examples of its operation. Our proposed method is capable not only of enumerating exact matches
but also of flexibly listing semantically similar instances, even when their surface forms differ. For
example, given the query “Theorem 1”, the method can retrieve instances such as “Lemma 5”. This
characteristic substantially enhances key tasks in both NLP and corpus linguistics. For instance, it
improves the filtering of harmful texts, and facilitates more efficient example retrieval, particularly
for languages with complex morphological features (Section 4).

The contributions of our study are summarized as follows.

• We developed a soft (or semantic) pattern-matching algorithm—a relaxation of the exact
string matching—using word embeddings (Section 3). By leveraging inverted indexing,
we achieved high scalability (Sections 2.1, 2.3 and 3.3). For instance, the running time
for searching over an English corpus with 3.4B words was less than 0.1 seconds without
GPUs.

• We developed an easy-to-use web demo to facilitate interaction with the soft matching algo-
rithm.1 This demo is particularly beneficial for NLP researchers and developers who want
to analyze LMs in a data-driven manner, as well as for language learners and humanities
researchers who are conducting language analysis on large corpora from the perspectives
of corpus linguistics and digital humanities (Section 4.1)

1 Anonymized URL: http://54.238.189.64/. Also see Footnote 4.
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• For quantitative evaluation, we verified that our method achieves complete enumeration in
less than a second on billion-scale corpora, which are commonly used in training large LMs
(Section 4.2). This performance is comparable in speed to dense vector search; moreover,
our method enables the retrieval of examples closely aligned with specific queries, rather
than just broad topical similarities.

• We conducted qualitative evaluations in specific scenarios to verify the usefulness of the
proposed method in both the fields of NLP and corpus linguistics. In experiments assuming
the training of LMs on large-scale corpora, we provided search examples for identifying
and removing harmful instances contained within the corpus (Section 4.2). In experiments
assuming the analysis of classical Western languages by linguists, we chose Latin—a lan-
guage with highly complex inflections—as an example. We demonstrated that a corpus
search with our tool can flexibly extract morphologically and semantically similar usage
examples from the corpus (Section 4.3).

2 RELATED WORK

The procedures for finding sentences (or lines, documents) that match a given pattern (query) are
prevalent across nearly all areas of computer science and data science, making it difficult to enu-
merate all related research. In this section, we review particularly relevant work in NLP and com-
putational linguistics, which are the primary focus of this study, as well as in the closely related
areas of string matching. Beyond the fields discussed here, we believe many other domains, such as
information retrieval, time series analysis, and semantic web, also have connections to this research.

2.1 NATURAL LANGUAGE PROCESSING AND CORPUS SEARCH

The significant progress in NLP over the past decade is largely attributed to deep-learning–based
self-supervised representation learning (Mikolov et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2017; Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020; Dubey et al., 2024). The
vast raw corpora without label annotations serve as the source of such models’ capabilities (Gao
et al., 2020; Biderman et al., 2023b; Raffel et al., 2019), and, therefore, these corpora are continu-
ally referenced and analyzed for model improvement and evaluation (Biderman et al., 2023b). For
instance, as LMs can memorize and elicit facts written in training corpora, they are reported to gen-
erate text containing privacy-related information (Huang et al., 2022; Li et al., 2023; Lukas et al.,
2023) or content that could be used for terrorism or violence (Gehman et al., 2020; Schick et al.,
2021; Kumar et al., 2023). In this context, Ippolito et al. (2023) work on filtering out verbatim
memorization, requiring searches accross large-scale training corpora.2 N -gram substring pattern
matchers, as representative tools for corpus search in NLP, have been particularly well-developed
even before the advent of deep learning (Sekine, 2008; Sekine & Dalwani, 2010). In terms of data
structures, inverted indexes (Sekine & Dalwani, 2010; Rogozinski & Kuc, 2016), and suffix arrays
including their variants (Sekine & Dalwani, 2010; Yamamoto & Church, 2001; Liu et al., 2024;
Burrows et al., 1994; Ferragina & Manzini, 2005; Langmead et al., 2009) are typically employed.
Our algorithm is based on inverted indexes due to its algorithmic requirements, which we discuss
in Section 3. Here, regardless of which data structure is used, it is important to note that existing
n-gram matching techniques assume exact surface-level matching, making it extremely challenging
to search and enumerate all relevant sentences while handling the complex characteristics of natural
language, such as paraphrasing, orthographic variation, and inflection. Dense vector search (Khat-
tab & Zaharia, 2020; Karpukhin et al., 2020; Izacard et al., 2022; Wang et al., 2024a) has recently
gained widespread popularity as the foundational technology for retrieval-augmented generation
(RAG) (Lewis et al., 2020; Khandelwal et al., 2020; Guu et al., 2020; Izacard et al., 2024). Dense
vector search is highly compatible with approximate nearest neighbor search (Malkov & Yashunin,
2020; Jégou et al., 2011), and it offers a significant advantage in reducing the issue of hallucina-
tion (Ayala & Bechard, 2024; Gao et al., 2023) in scenarios requiring factual knowledge. However,
dense vector search is a relatively “coarse” method, primarily used to retrieve documents that are
topically similar (e.g., everything related to the U.S. presidential election), making it less suitable
for the cases that require more specific n-gram level queries.

2 Measuring influence of training corpus is also an important theme (Koh & Liang, 2017; Pruthi et al., 2020;
Chen et al., 2021; Isonuma & Titov, 2024), but their application to vast corpora remains highly challenging.
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2.2 CORPUS LINGUISTICS AND CORPUS SEARCH

Corpus linguistics is a subfield of linguistics that utilizes corpora to study language based on ex-
amples of ‘real-life’ language use (McEnery & Wilson, 2001). Digital humanities, a closely related
field, is an interdisciplinary domain that aims to advance humanities through the application of data
and information science. In digital humanities as well, quantitative analysis of texts using corpora
is also actively pursued (Jensen, 2014). Corpora consist of collections of texts or spoken language
data (Van Der Zwaan et al., 2017; Mcgillivray et al., 2020), offering real-world examples of how
language is used in various contexts. In most settings, an ideal corpus is large in size to ensure
the statistical reliability of certain linguistic phenomena and to cover a broader range of language
use, including rare occurrences such as low-frequency words (Ha et al., 2009; Coole et al., 2020).
Search tools (Hockey & Martin, 1987; TEI Consortium, 2023) are an indispensable element of
corpus linguistics because they enable the identification of linguistic patterns, such as word frequen-
cies, collocations, and syntactic structures. Traditional search methods commonly used in corpus
linguistics include exact matching and its extension with regular expressions (Jurafsky & Martin,
2024). However, given the nature of natural languages—with their morphological complexity and
unlimited paraphrases and synonyms with varying surface forms—rule-based search methods face
extreme difficulties in exhaustively enumerating instances that closely match a given query.

2.3 STRING MATCHING

From an algorithmic point of view, our method is closely related to string matching algo-
rithms (Hakak et al., 2019). In what follows, we briefly give an algorithmic comparison with some of
them and elucidate their relationship to ours. Offline string matching algorithms process the corpus
text to build an index that accelerates future searches, a technique widely applied in search engines
and information retrieval systems such as Elasticsearch (Rogozinski & Kuc, 2016) and Apache
Lucene (Grand et al., 2020). Inverted indexing is a well-known approach in this domain (Zobel &
Moffat, 2006), and our method serves as a soft generalization of a string matching algorithm based
on inverted indexing. Online string matching algorithms do not rely on preprocessing and handle
the corpus text on the fly. Efficient algorithms include, e.g., the Knuth-Morris-Pratt, Karp-Rabin,
and Boyer-Moore algorithms (Knuth et al., 1977; Karp & Rabin, 1987; Boyer & Moore, 1977).
While widely used in tools such as grep, online string matching is also a basis of runtime verifica-
tion (Bartocci et al., 2018), where system’s execution data is monitored. Although it is, in theory,
possible to relax these algorithms with word embeddings, the number of soft word comparisons in
such a relaxation would be linear in the size of the corpus text. In contrast, our algorithm requires
only constant soft word comparisons in the size of the corpus text thanks to indexing. See Sec-
tion 3.3 for the complexity analysis. Approximate string matching (or fuzzy matching) allows
flexible matching, typically using edit distance to accommodate noisy or incomplete data (Navarro,
2001). Tools like agrep (Wu & Manber, 1992b;a) perform online matching that tolerates mis-
matches. Indexing-based algorithms are also proposed for approximate string matching (Boytsov,
2011). As a relaxation of exact string matching, approximate string matching is orthogonal to ours:
approximate string matching focuses on relaxing surface-level comparison (e.g., for typos), while
our approach focuses on semantic-level similarity based on word embeddings (e.g., for synonyms).

3 OUR ALGORITHM FOR SOFT PATTERN MATCHING

3.1 OVERVIEW

Key aspect of design: Hard vs. Soft. One key aspect we considered in designing the algorithm
for soft pattern matching is hard computation vs. soft computation. Hard (or exact) pattern matching
(such as grep) can process large texts blazingly fast. This is because hard matching requires only
“hard computation”, e.g., bitwise comparison, which is highly efficient. Soft pattern matching, on
the other hand, involves “soft computation”, e.g., cosine similarity of two vectors. Since such soft
computation involves many floating-point arithmetic operations over high-dimensional vectors, it is
typically much slower than hard computation. For instance, just taking the cosine similarity of a
pair of word embeddings can be as expensive as thousands of simple bitwise operations.

4
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Corpus text When a jazz pianist plays funk with a blues singer · · ·

Ia

Ijazz

Iblues

Inverted index

(a) Preprocessing: Build the inverted index of the corpus text.

Pattern p = the jazz musician

Word
embeddings

the
a

this

where
when

with
jazz

blues

funk

plays
play musician

pianist

singer

Soft pattern S = {the, a, this, · · · } {jazz, blues, funk, · · · } {musician, singer, pianist, · · · }

(b) Matching Step 1: Soften the pattern into the soft pattern.

ĨjazzSjazz

{
}

Ijazzjazz,

Ibluesblues,

Ifunkfunk,

..
...
.

(c) Matching Step 2-1: Get the soft inverted index.

Ĩthe

Ĩjazz

Ĩmusician

Soft matches

Hit!

a jazz pianist

Hit!

a blues singer
M

· · ·
(d) Matching Step 2-2: Find the soft matches.

Figure 1: Illustration of our algorithm for soft pattern matching.

Overview of our algorithm. With this in mind, we designed the algorithm for soft pattern match-
ing, which is precise and efficient. Our algorithm is illustrated in Figure 1. Our key idea is to run soft
computation only over the vocabulary, not over the whole text as a naive algorithm would do. More
specifically, our algorithm works in the following two steps: For each query, (Step 1) it first per-
forms soft computation over the vocabulary, softening the pattern into the soft pattern S1S2 · · · Sn

(Fig. 1b); (Step 2) then it performs hard computation that finds the exact positions in the corpus text
that match the soft pattern (Figs. 1c and 1d). Here, the soft pattern S1S2 · · · Sn is the key data in
play. It consists of the set of vocabulary words that softly match each word of the pattern in terms of
word embeddings. The amount of soft computation (Step 1) is small, given that the vocabulary size
is typically much smaller than the size of the corpus text. The amount of hard computation (Step 2)
is also quite small, because it only handles filtered positions, not the whole corpus text.

3.2 DETAILS

Problem formulation. First, we formulate the soft pattern-matching problem by simply relaxing
the classical hard (or exact) pattern-matching problem (Hakak et al., 2019) as follows:

The soft pattern-matching problem.
INPUT: The corpus text t = t1t2 · · · tN ∈ V∗, the pattern p = p1p2 · · · pn ∈ V∗, and the
threshold α ∈ (0, 1]

OUTPUT: The set of soft match positions M with respect to the soft equivalence ≈α, i.e.,
the set M =

{
i ∈ {1, . . . , N}

∣∣ ∀ k ∈ {1, . . . , n}. pk ≈α ti+k−1

}
We define here the soft equivalence v ≈α v′ between words as v ≈α v′

△⇐⇒ cos(E(v), E(v′)) ≥
α, to capture the similarity in terms of word embeddings E. Here, we let V = {v1, v2, . . . , vL} be
the vocabulary and write E(v) ∈ RD for the word embedding of a word v ∈ V . Also, we write
cos(e, e′) for the cosine similarity cos(e, e′) ≜ e·e′

∥e∥∥e′∥ of word embeddings e, e′ ∈ RD.
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Algorithm 1: Our soft pattern-matching algorithm.

Given : The corpus text t = t1 t2 · · · tN and its inverted index Iv ⊆ {1, . . . , N} over each vocabulary
word v ∈ V such that i ∈ Iv if and only if v = ti.

Input : The phrase pattern p = p1p2 · · · pn and the threshold α ∈ (0, 1].
Output : The set of soft match positions M ⊆ {1, . . . , N}, such that i ∈M holds if and only if

pk ≈α ti+k−1 holds over any k = 1, . . . , n.

// Step 1: Soften the pattern p1p2 · · · pn into the soft pattern S1S2 · · · Sn

1 for k ← 1 . . . n do
2 Sk ← ∅
3 for v ∈ V do
4 if v ≈α pk then Sk ← Sk ∪ {v}
// Step 2-1: Get the soft inverted index Ĩk by relaxing I with Sk

5 for k ← 1 . . . n do
6 Ĩk ← ∅
7 for v ∈ Sk do Ĩk ← Ĩk ∪ Iv

// Step 2-2: Get the complete matching M by aggregating Ĩk
8 M ← Ĩ1

9 for k ← 2 . . . n do M ← M ∩
{
i− (k − 1)

∣∣ i ∈ Ĩk
}

10 return M

Preprocessing. Before processing queries, our algorithm preprocesses the whole corpus text to
compute the inverted index I (Fig. 1a), following a standard technique in search engine index-
ing (Zobel & Moffat, 2006). The inverted index I maps each vocabulary word v ∈ V to the set of
positions Iv ⊆ {1, . . . , N} that represents the occurences of the word v in the corpus text t, that is,
the set Iv =

{
i ∈ {1, . . . , N}

∣∣ v = ti
}

.

Our algorithm. Algorithm 1 and Figures 1b to 1d outline our algorithm for soft pattern matching.
Our algorithm works in the following two steps:

1. For each query, it performs soft computation over the vocabulary, softening the pattern
p1p2 · · · pn into the soft pattern S1S2 · · · Sn (lines 1 to 4 in Algorithm 1, Figure 1b). Here,
Sk is the set of vocabulary words that softly matches each word pk of the pattern in terms
of the soft equivalence ≈α, i.e., Sk =

{
v ∈ V

∣∣ v ≈α pk
}

.
2. Then, it performs hard computation that computes the exact set of positions M in the

corpus text that matches the soft pattern S1S2 · · · Sn by the following two sub-steps:

2-1. Compute the soft inverted index Ĩ , which maps each pattern word pk to the union
Ĩk =

⋃
v∈Sk

Iv of the exact inverted index I over Sk (lines 5 to 7, Fig. 1c). The
set Ĩk agrees with the set of positions that softly match the pattern word pk, i.e.,
Ĩk =

{
i ∈ {1, . . . , N}

∣∣ ti ≈α pk
}

.
2-2. Output the set of soft matches M by computing the shifting intersection M =⋂n

k=1

{
i − (k − 1)

∣∣ i ∈ Ĩk
}

over the soft inverted index Ĩ (lines 8 to 9,
Fig. 1d). The resulting set precisely agrees with the expected set, i.e., M =

{
i ∈

{1, . . . , N}
∣∣ ∀ k ∈ {1, . . . , n}. pk ≈α ti+k−1

}
.

We perform soft pattern matching using the index I . First, for each word pk in p, we construct the
set Ĩk indicating the positions of the words in t matching pk (lines 1 to 4): we compare each word
v ∈ V in the vocabulary with pk (line 4); we add Iv to Ĩk if we have v ≈α pk (line 7). Then, we
construct the result M by aggregating each Ĩk considering the position k of pk in p.

Inverted index vs. Suffix array. Our algorithm uses an inverted index rather than a suffix ar-
ray (Ferragina & Manzini, 2005), which is crucial. A suffix array manages exact sequences of char-
acters (or tokens) in the corpus text, for which softening patterns cannot be performed efficiently. In
contrast, entries of an inverted index Iv just have the occurrences of each word type v and can be
relaxed for soft matching simply by merging the sets, as illustrated in Fig. 1c.
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3.3 FORMAL ANALYSIS

How efficient is our algorithm? To answer this with theoretical guarantees, we analyze the time and
space complexity of the algorithm. Overall, the high-level observation is that the corpus text size N
affects the time and space required for preprocessing and soft matching only linearly.

Preprocessing. The time complexity for constructing the inverted index I is O(L×N), consisting
of L×N exact word comparisons, since each vocabulary word v ∈ V is compared with each word
ti in the corpus text t. Notably, the constant factor here is typically very low, as only bitwise
comparison is required. The total space required to store the inverted index I is only O(N + L),
by simply storing the list of positions (of space O(|Iv|)) for each vocabulary word v ∈ V . This
is because each position i ∈ {1, 2, . . . , N} in the text t occurs exactly once in I and hence N =∑

v∈V |Iv|. The space complexity is also O(N + L), since no extra space is required.

Soft matching. Step 1 for softening the pattern takes O(n× L) in time, where the dominant part
is n × L soft word comparisons (taking the cosine similarity of word embeddings) between each
pattern word pk and each vocabulary word v ∈ V (line 4). The space complexity is O(

∑n
k=1|Sk|).

Notably, the time and the space for Step 1 are independent of the corpus text size N . Step 2 for
finding the set of soft matches takes O(K) in time and space, where K is the total size of the soft
inverted index K ≜

∑n
k=1|Ĩk| (or roughly the total number of ‘candidate’ positions for matches).

Remarkably, this is only linear to the corpus text size N .

4 EMPIRICAL EVALUATION

We address the following research questions in the experiments:

RQ1: Does SoftMatcha scale to a billion-scale corpus, which is the typical size of training
corpus for large causal LMs? (Section 4.2)

RQ2: Does SoftMatcha perform as expected in typical scenarios in NLP and corpus linguis-
tics? (Sections 4.2 and 4.3)

4.1 IMPLEMENTATION

We implemented the algorithm in Section 3 as a tool named SoftMatcha.3 Our implementation
adopts the following designs for efficiency. Firstly, we design our inverted index using a sparse
matrix in a compressed sparse row (CSR) format to reduce memory consumption and enable efficient
access to the index for each word, i.e., Iv . The index I is represented by a one-dimensional array,
with the positions of each word contiguously allocated in memory. Secondly, we compile some
time-consuming operations to native code using NUMBA (Lam et al., 2015). Specifically, line 4 in
Algorithm 1 calculates word embedding similarities over n × L times, i.e., the time complexity is
O(n × L ×D), where D is the dimension of each word embedding. To speed up this calculation,
we leverage the vectorized instruction set (SIMD) for parallel processing. In addition, finding the
intersection of two large sets in line 9 in Algorithm 1 is computationally expensive. We employ
just-in-time (JIT) compilation and parallel loops for efficient comparisons of elements. To ensure
reproducibility, we included all the source code as supplementary material. Also, upon acceptance
of this paper, we will release our source code on GitHub and an installable package on PyPI.

We provide a demo environment4 for users to explore the capabilities of our method and experience
how diverse and linguistically natural the search results are and how quickly results can be obtained.
The corpora used in experiments in Sections 4.2 and 4.3 are available. To prevent excessive output,
for English and Japanese, only subsets of the corpora have been incorporated. Furthermore, search
results are presented in smaller batches—to improve usability—with additional results available
upon request, rather than all at once.

3 The word Matcha means powdered green tea in Japanese and is here a pun for ‘matcher’. Matcha softo in
Japanese means soft-serve ice cream of green tea flavor.

4 Anonymized URL: http://54.238.189.64/. The screenshot of the demo is presented in Fig. 3, Appendix C.
Upon acceptance, we will release the demo on the web publicly in conjunction with the source code.
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Table 2: Running time (sec) of indexing and search in
the English and Japanese Wikipedia articles. JIT com-
pilation only affects the search speed.

En (3.4B words) Ja (1.1B words)

Indexing Search Indexing Search

Exact matching 685.8 0.005 242.5 0.022
SoftMatcha 685.8 0.098 242.5 0.055

— JIT compile 685.8 0.107 242.5 0.082
Dense vector search 1036.5 0.389 320.4 0.283
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Figure 2: Running time on subsampled
English Wikipedia corpora of varying
sizes.

4.2 CASE STUDY IN NATURAL LANGUAGE PROCESSING — BILLION-SCALE CORPUS SEARCH

In this section, we simulate scenarios where NLP researchers use SoftMatcha on billion-scale
English and Japanese corpora. We focus on two types of evaluations: (i) quantitative evaluation —
we assess the running time using large data comparable in size to those used for training standard
large LMs; and (ii) qualitative evaluation — we examine the tool’s effectiveness in detecting toxic
instances within large LM training corpora.

Why English and Japanese? English is the dominant language in modern NLP and accounts for
the largest portion of training data for large LMs (Brown et al., 2020; Chowdhery et al., 2022; Tou-
vron et al., 2023). In contrast, Japanese presents a typologically distinct language, with orthographic
and structural features that differ significantly from English, such as: (i) character types (alphabetic
vs. hiragana, katakana, and kanji); (ii) syntax (SVO vs. SOV, head-initial vs. head-final); and (iii)
word segmentation (space-separated vs. no word separation) (Haspelmath et al., 2005). Further-
more, the substantial size of Japanese corpora5 makes it suitable for testing the scalability of our
approach.

Setup. Corpora: we utilized the LLM-jp corpus v2.0 (LLM-jp et al., 2024), which con-
tains organized collections of Wikipedia articles in both English (3.4B words) and Japanese
(1.1B words). Word embeddings: we used GloVe glove-wiki-gigaword-300 (Penning-
ton et al., 2014) with a threshold α = 0.55 for the English word embeddings, and fastText
facebook/fasttext-ja-vectors (Grave et al., 2018) with a threshold α = 0.50 for the
Japanese word embeddings. Baseline methods: we compared the search results of SoftMatcha
with those of exact matching, i.e., pattern matching with a standard inverted index, and dense vec-
tor search using intfloat/multilingual-e5-large model (Wang et al., 2024b). In dense
vector search, we encoded each training instance in the corpus and built the graph-based index
using hierarchical navigable small worlds (HNSW) (Malkov & Yashunin, 2020) FAISS implemen-
tation (Douze et al., 2024) for the approximate nearest neighbor search. Computational envi-
ronment: we measured the running time on 152 core CPUs (Intel® Xeon® Platinum 8368 CPU
@ 2.40GHz) and a 226 GiB main memory for the exact matching and SoftMatcha, and on 8
NVIDIA A100 GPUs for the dense vector search.

Running time. We measured the indexing time and search time in both the English and Japanese
Wikipedia articles. Table 2 demonstrates that SoftMatcha is faster than dense vector search
in both indexing and search time and takes the same indexing time as exact matching. Next, we
investigated the relationship between the search speed and the corpus size. We constructed subsets
of the English Wikipedia, whose sizes are {10−3, 10−2, 10−1} times that of the original corpus
of 3.4B tokens, by randomly sampling from the original corpus, and measured the search time with
each subset. Figure 2 shows the results. We observed that the search time increased only sublinearly,
not linearly, with respect to the increase in corpus size. We thus confirmed that our algorithm works
effectively for billion-scale corpus searches.

5 Japanese ranks fifth in the number of Wikipedia entries, while all the other languages in the top 10 use an
alphabetic writing system (Wikipedia, 2024).
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Table 3: Results of billion-scale corpus search in the English and Japanese Wikipedia articles.

Exact matching SoftMatcha Dense vector search

Query: “homemade bombs” in English Wikipedia (3.4B words)
# Hits 107 1,473 n/a (depends on the top-k)
Match examples homemade bombs homemade bombs Article: Survival Under Atomic Attack

home-made grenades Article: Mark 24 nuclear bomb
homemade missiles Article: List of common misconceptions

Query: “手製爆弾 (homemade bombs)” in Japanese Wikipedia (1.1B words)
# Hits 27 42 n/a (depends on the top-k)
Match examples 手製爆弾 手製爆弾 Article: 花火 (fireworks)

(homemade bombs) (homemade bombs)

手製手榴弾 Article: 手持ち花火 (consumer fireworks)
(home-made grenades)

Search results. Table 3 shows the results of the billion-scale corpus search. We queried “home-
made bombs” in the English Wikipedia corpus and “手製爆弾 (homemade bombs)” in the Japanese
Wikipedia corpus. In the dense vector search, we selected some retrieved examples from the top-10
search results. The table demonstrates that our SoftMatcha extends the exact matching. Note that
the results of exact matching are a subset of the results of SoftMatcha. In Japanese, the dense
vector search retrieved an article of “花火” (fireworks), which does not contain the contents related
to the query. In contrast, SoftMatcha lists all contents that have the query pattern or its similar
pattern. In addition, while dense vector search allows semantic similarity search, it cannot identify
where the query pattern is located in a text. To summarize, a text that exactly contains the query
pattern is not always retrieved in dense vector search, i.e., the recall is not always 100%, while exact
matching and SoftMatcha can return all texts that contain the query pattern, and SoftMatcha
also enables matching of semantically similar patterns.

4.3 CASE STUDY IN CORPUS LINGUISTICS — RETRIEVING LATIN EXAMPLES

Why Latin? Latin is a morphologically complex fusional language where a lemma (dictionary
form) may exhibit numerous different word forms depending on the morphological features (e.g.,
voice, mood, tense, aspect, person, and number for verbals; gender, number, and case for nominals)
that the word bears. For example, a transitive verb may conjugate to more than 100 different finite
verb forms. This morphological complexity makes it harder to search through a corpus by exact
matching. Furthermore, due to Latin’s philological significance and the vast body of accumulated
literature, there has been a persistent demand for advanced search tools to facilitate corpus analysis
(Bamman & Smith, 2012). For these reasons, Latin is a suitable touchstone to test the utility of our
proposed soft pattern matcher, particularly for humanities researchers and language learners.

Setup. Corpora: we used two corpora: one from the Perseus Project (Crane, 2023)
(5M tokens) and the Augustinian Sermon Parallelism (ASP) Dataset (Bothwell et al.,
2023) (0.1M tokens). Word embeddings: we used the pre-trained fastText embeddings
facebook/fasttext-la-vectors (Grave et al., 2018).

Search results. Table 4 shows the returned matches with the queries factus est (‘it/he is done’ or
‘it/he is made’) and equus est (‘it is a horse’). It is evident that SoftMatcha effectively links the
queries to semantically similar words, as seen in mortuus ‘dead’ and creatus ‘created’ matched with
the query factus ‘done, finished, made’, and bos ‘cow’, currus ‘chariot’, and Minotaurus ‘Minotaur’
with equus ‘horse’. Interestingly, the tool is also able to catch different word forms with different
morphological features while sharing the same lemma, which are highlighted in pink. For example,
although the Latin copula verb in the query est ‘is’ exhibits highly irregular conjugation patterns, the
matches successfully include their inflected forms such as sunt, esset, erat, and fuit. Furthermore,
the matches mortuus and creatus are not only semantically similar to the query word factus but also
have morphological features in common (perfect, participle, masculine, nominative, and singular).
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Table 4: Latin match examples by SoftMatcha with queries factus est ‘he/it was
done/finished/made’ and equus est ‘it is a horse’. The top row of an interlinear gloss represents
words, the middle row their morphological analysis, and the bottom row the free translation. Mor-
phological matches are highlighted in pink, semantics matches in blue, and exact matches in green.
The numbers in parentheses represent the cosine similarities between the query words and their cor-
responding matched words in the embedding space.

Query: factus est
fact-us est
do.PASS.PF.PTCP-M.NOM.SG be.IND.PRS.3SG
‘he/it is done/finished/made’

Match: facta sunt (0.56, 0.56)
fact-a sunt
do.PASS.PF.PTCP-N.NOM.PL be.IND.PRS.3PL
‘they are done’ or ‘they are facts’

Match: mortuus esset (0.53, 0.58)
mortu-us esset
die.ACT.PF.PTCP-M.NOM.SG be.SUB.IMPF.3SG
‘he/it was dead’

Match: creatus erat (0.65, 0.65)
creat-us erat
create.PASS.PF.PTCP-M.NOM.SG be.IND.IMPF.3SG
‘he/it was created’

Query: equus est
equus est
horse.M.NOM.SG be.IND.PRS.3SG
‘it is a horse’

Match: bos est (0.48, 1.00)
bos est
cow.F.NOM.SG be.IND.PRS.3SG
‘it is a cow.’
Match: currus fuit (0.44, 0.63)
currus fuit
chariot.M.NOM.SG be.IND.PF.3SG
‘it was a chariot’
Match: Minotaurus esset (0.49, 0.58)
Minotaurus esset
Minotaur.M.NOM.SG be.SUB.IMPF.3SG
‘it would be the Minotaur’

5 CONCLUSION

In this paper, we propose a new pattern-matching algorithm that can flexibly handle the orthographic
diversity of natural languages while also performing efficiently on large-scale corpora. Our algo-
rithm, combining word embeddings and inverted indexing, achieves inference speed independent
of corpus size. We have also developed and released a simple-to-use web demo for researchers
and practitioners. For quantitative evaluation, we confirm that the developed tool can enumerate
all search results within one second on billion-scale corpora, a typical scenario in training large
LMs. For qualitative evaluation, we assess the tool in typical scenarios in NLP (detecting harmful
examples from large-scale Japanese and English Wikipedia corpora) and computational linguistics
(example retrieval from Latin, a language with highly diverse inflections), observing that our method
can retrieve semantically similar examples that hard pattern matchers would miss.
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ETHICS STATEMENT

The corpora used for training large LMs, composed of web corpora, including Common Crawl
(Common Crawl, 2024) and digitized book data such as (Zhu et al., 2015), can be said to encompass
a substantial portion of humanity’s linguistic knowledge. Inevitably, these corpora include a signifi-
cant amount of ethically problematic content. This includes personal information (Subramani et al.,
2023), as well as information that could be “beneficial” for violence and terrorism (or in more con-
ventional terms, harmful information) (Albalak et al., 2024). Moreover, as these corpora continue to
grow exponentially and our languages possess numerous paraphrases, comprehensively identifying
such harmful learning resources is far from a simple task. Our research aims to substantially simplify
this crucial activity for human ethics: identifying harmful learning instances within vast linguistic
resources Section 4.2. We hope that, by leveraging our tool, NLP researchers and developers will
contribute to providing LLMs as a safe and reliable social infrastructure.

REPRODUCIBILITY STATEMENT

Our source code is attached to the submission form. We will make the source code available on
GitHub. For SoftMatcha, we will also relase an installable package on PyPI upon acceptance. In
all experiments, we used open datasets. Further details on the embeddings, corpora, computational
environment, and protocols used in experiments are explained in Section 4.

REFERENCES

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A Survey on Data Selection for Language Models.
arXiv [cs.CL], 26 February 2024. URL http://arxiv.org/abs/2402.16827.

Laurence Anthony. A critical look at software tools in corpus linguistics. Linguistic Research, 30
(2):141–161, 2013.

Orlando Ayala and Patrice Bechard. Reducing hallucination in structured outputs via retrieval-
augmented generation. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 6: Indus-
try Track), pp. 228–238, Stroudsburg, PA, USA, 2024. Association for Computational Linguistics.
URL https://aclanthology.org/2024.naacl-industry.19.pdf.

John Bambenek and Agnieszka Klus. Grep Pocket Reference: A Quick Pocket Reference for a Utility
Every UNIX User Needs. O’Reilly Media, 2009.

David Bamman and David Smith. Extracting two thousand years of latin from a million book library.
J. Comput. Cult. Herit., 5(1), April 2012. ISSN 1556-4673. doi: 10.1145/2160165.2160167. URL
https://doi.org/10.1145/2160165.2160167.

Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime verifi-
cation. In Lectures on Runtime Verification, volume 10457 of Lecture Notes in Computer Science,
pp. 1–33. Springer, 2018.

Douglas Biber. Corpus-Based and Corpus-Driven Analyses of Language Variation and Use. In The
Oxford Handbook of Linguistic Analysis. Oxford Academic, 2nd edition, 2015. doi: 10.1093/
oxfordhb/9780199677078.013.0008.

Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raff. Emergent and Predictable Memorization in Large Language
Models, 2023a. URL https://arxiv.org/abs/2304.11158.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
language models across training and scaling. arXiv [cs.CL], 3 April 2023b. URL http:
//arxiv.org/abs/2304.01373.

11

http://arxiv.org/abs/2402.16827
https://aclanthology.org/2024.naacl-industry.19.pdf
https://doi.org/10.1145/2160165.2160167
https://arxiv.org/abs/2304.11158
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. Trans. Assoc. Comput. Linguist., 5:135–146, December 2017. URL
https://aclanthology.org/Q17-1010.pdf.

Stephen Bothwell, Justin DeBenedetto, Theresa Crnkovich, Hildegund Müller, and David Chiang.
Introducing Rhetorical Parallelism Detection: A New Task with Datasets, Metrics, and Base-
lines. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 5007–5039, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.305. URL
https://aclanthology.org/2023.emnlp-main.305.

Robert S. Boyer and J Strother Moore. A Fast String Searching Algorithm. Commun. ACM, 20
(10):762–772, 1977. doi: 10.1145/359842.359859. URL https://doi.org/10.1145/
359842.359859.

Leonid Boytsov. Indexing methods for approximate dictionary searching: Comparative analysis.
ACM J. Exp. Algorithmics, 16(1), 2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are
Few-Shot Learners. Advances in Neural Information Processing Systems, 33:1877–1901,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Michael Burrows, D J Wheeler D I G I T A L, Robert W. Taylor, David J. Wheeler, and David
Wheeler. A block-sorting lossless data compression algorithm. 1994. URL https://api.
semanticscholar.org/CorpusID:2167441.

Julius Caesar. Commentarii de bello gallico. With explanatory notes, lexicon, maps, indexes, etc.
Eldredge & Brother, Philadelphia, 1882.

Yi-Pei Chen, Noriki Nishida, Hideki Nakayama, and Yuji Matsumoto. Recent Trends in Person-
alized Dialogue Generation: A Review of Datasets, Methodologies, and Evaluations. In Pro-
ceedings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), pp. 13650–13665, 2024. URL https:
//aclanthology.org/2024.lrec-main.1192.pdf.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. HyDRA: Hypergra-
dient Data Relevance Analysis for Interpreting Deep Neural Networks. Proc. Conf. AAAI Ar-
tif. Intell., 35(8):7081–7089, 18 May 2021. URL https://cdn.aaai.org/ojs/16871/
16871-13-20365-1-2-20210518.pdf.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling with Pathways.
arXiv [cs.CL], 5 April 2022. URL http://arxiv.org/abs/2204.02311.

Common Crawl. Common Crawl - Open Repository of Web Crawl Data, 2024. URL https:
//commoncrawl.org/.

12

https://aclanthology.org/Q17-1010.pdf
https://aclanthology.org/2023.emnlp-main.305
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:2167441
https://api.semanticscholar.org/CorpusID:2167441
https://aclanthology.org/2024.lrec-main.1192.pdf
https://aclanthology.org/2024.lrec-main.1192.pdf
https://cdn.aaai.org/ojs/16871/16871-13-20365-1-2-20210518.pdf
https://cdn.aaai.org/ojs/16871/16871-13-20365-1-2-20210518.pdf
http://arxiv.org/abs/2204.02311
https://commoncrawl.org/
https://commoncrawl.org/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Matthew Coole, Paul Rayson, and John Mariani. LexiDB: Patterns & Methods for Corpus Linguis-
tic Database Management. In Proceedings of the Twelfth Language Resources and Evaluation
Conference, pp. 3128–3135, 2020. URL https://aclanthology.org/2020.lrec-1.
383.pdf.

Gregory Crane. The Perseus Digital Library and the future of libraries. International Journal on
Digital Libraries, 2023. doi: 10.1007/s00799-022-00333-2.

Chris Culy and Verena Lyding. Double Tree: An Advanced KWIC Visualization for Expert Users.
In 2010 14th International Conference Information Visualisation, pp. 98–103, 2010. doi: 10.
1109/IV.2010.24.

Daniel De Freitas. Announcing our Series A and our new AI model, C1.2. https://blog.
character.ai/character-ai/, 23 March 2023. Accessed: 2024-10-1.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics, pp.
4171–4186, Stroudsburg, PA, USA, 2019. Association for Computational Linguistics. URL
https://aclanthology.org/N19-1423.pdf.

Jan Don. Morphological theory and the morphology of English. Edinburgh University Press, 2014.
doi: 10.1515/9780748645145.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
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Table 5: Additional examples of soft matches in Latin and their scores returned by SoftMatcha.
The top row of an interlinear gloss represents words, the middle row their morphological analysis,
and the bottom row the free translation. Morphological matches are highlighted in pink, semantic
matches in blue, and exact matches in green. The scores in parentheses represent the cosine similar-
ities between queries and their match.

Query: bellum gallicum (book by Caesar (1882))
bell-um gallic-um
war.N-NOM.SG gallic-N.NOM.SG
‘the Gallic war’

Match: bellum etruscum (1.00, 0.44)
bell-um etrusc-um
war.N-NOM.SG Etruscan-N.NOM.SG
‘the Etruscan war’

Match: contra Caesarem (0.49, 0.45)
contra Caesar-em
against Caesar.M-ACC.SG
‘against Caesar’

Query: quo vadis (Bible, John 13:36)
quo vadis
where go.IND.PRS.2SG
‘where do you go’

Match: ibi vadis (0.42, 1.00)
ibi vadis
there go.IND.PRS.2SG
‘you go there’

Match: autem vocaris (0.50, 0.48)
autem voc-aris
but summon-PASS.IND.PRS.2SG
‘but you are summoned’

Query: quod erat demonstrandum (Q.E.D.)
quod erat demonstrand-um
which be.IND.IMPF.3SG show.GER-N.NOM.SG
‘which was to be shown’

Match: haec erat forma (0.46, 1.00, 0.41)
haec erat forma
this.F.NOM.SG be.IND.IMPF.3SG form.F.NOM.SG
‘this was the form’

Match: quod postea accipiamus (1.00, 0.54, 0.47)
quod postea accipiamus
which afterwards accept.ACT.SUB.PRS.1PL
‘which we shall accept later’

Query: non potest
non potest
not can.IND.PRS.3SG
‘he/she/it cannot’

Match: non possit (1.00, 0.59)
non possit
not can.SUB.PRS.3SG
‘he/she/it cannot’

Match: nec posse (0.53, 0.52)
nec posse
nor can.INF.PRS
‘not to be able’

Query: homo sapiens
homo sapiens
human.M.NOM.SG wise.M.NOM.SG
‘a wise human’

Match: homo honestus (1.00, 0.39)
homo honest-us
human.M.NOM.SG noble-M.NOM.SG
‘an honorable human’

Match: vir sincerus (0.47, 0.40)
vir sincer-us
man.M.NOM.SG pure-M.NOM.SG
‘a pure man’

Query: post meridiem (p.m.)
after meridiem
after noon.M.ACC.SG
‘after noon’

Match: ante meridiem (0.68, 1.00)
ante meridiem
before noon.M.ACC.SG
‘before noon’

Match: contra septentrionem (0.51, 0.52)
contra septentrionem
against Ursa.Major-F.ACC.SG
‘against Ursa Major’ (i.e., ‘facing north’)

A OTHER EXAMPLES OF SOFT MATCHES IN LATIN

Table 5 shows several additional examples of Latin soft matches by SoftMatcha.

B LIST OF GLOSSING ABBREVIATIONS

Table 6 lists the glossing abbreviations used in this paper.
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Table 6: List of the gloss abbreviations used in this paper.

Gloss Meaning

1, 2, 3 1st, 2nd, 3rd person, respectively
ACC accusative
ACT active voice
F feminine (gender)
FUT future
GER gerundive
IMPF imperfective
IND indicative mood
M masculinie (gender)
N neuter (gender)
NOM nominative case
PASS passive voice
PF perfective
PL plural
PRS present tense
PTCP participle
SG singular
SUB subjunctive mood

Examples

theorem 1 march 1, 2016 John was born in 海鮮丼 言語の普遍性 フランスでは factus est equus est

bellum Gallicum

Results Hits: 7738

Search Time: 0.317 sec

In 2015 , Fey created and produced the television comedy Unbreakable Kimmy Schmidt with fellow 30 Rock-alumnus Robert

Carlock . The series stars Ellie Kemper as the titular character who escapes from a doomsday cult and moves to New York . It

also stars Fey 's former co-star Jane Krakowski , as well as Tituss Burgess ( who had previously appeared in four 30 Rock

episodes ) and Carol Kane . Although it was originally produced for NBC , it was eventually sold to Netflix and immediately

renewed for a second season . The show premiered on March 6 , 2015 to critical acclaim .
1.00  0.81 1.00  0.67 

On July 16 , 2015 , the series was nominated for seven Primetime Emmy Awards , including Outstanding Comedy Series .
0.91  0.60 1.00  0.67 

Fey herself was nominated both as the creator / executive producer of the series and for Outstanding Guest Actress in a

Comedy Series for her guest performance as Marcia , a bumbling prosecutor in reference to Marcia Clark .

In 2015 , it was announced Fey would be the narrator for the Disney Nature film Monkey Kingdom , which was released in

theaters on April 17 , 2015 . She then re-teamed with Poehler , starring in the 2015 comedy film Sisters as the title
0.93  0.56 1.00  0.67 

characters , and received positive reviews for her role . In 2016 , Fey starred in the biographical war comedy-drama Whiskey

Tango Foxtrot , based on the memoir The Taliban Shuffle : Strange Days in Afghanistan and Pakistan , to positive reviews .

The album was completed on November 2013 , and a bonus disc was also made for the album , containing the leftover

material from the main album as well as songs from Ghost 2 , the unreleased compilation of leftover tracks from Ghost .

Originally in 2012 , Townsend stated that this album will be the sixth and the last album in the Devin Townsend Project series

, but he ultimately confirmed that Casualties of Cool is its own project . Townsend also started a crowdfunding campaign

through PledgeMusic to support the release of the album . The funding quickly reached its goal , and all additional funds

were put directly to Townsend 's upcoming projects . Casualties of Cool was released on May 14 , 2014 . The album was re-
0.64  0.58 1.00  0.74 

March 1 , 2016 Search

wikitext103 (0.1B) | glove-wiki-gigaword-300

Threshold: 0.5

Figure 3: The screenshot of our demo. Given the query “Match 1, 2016”, it returns lines including
softly-matched patterns such as “July 16, 2015.”

C WEB INTERFACE

Figure 3 shows a screenshot of our demo tool.
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