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ABSTRACT

Researchers and practitioners in natural language processing and computational
linguistics frequently observe and analyze the real language usage in large-scale
corpora. For that purpose, they often employ off-the-shelf pattern-matching tools,
such as grep, and keyword-in-context concordancers, which is widely used in
corpus linguistics for gathering examples. Nonetheless, these existing techniques
rely on surface-level string matching, and thus they suffer from the major limita-
tion of not being able to handle orthographic variations and paraphrasing—notable
and common phenomena in any natural language. In addition, existing continu-
ous approaches such as dense vector search tend to be overly coarse, often re-
trieving texts that are unrelated but share similar topics. Given these challenges,
we propose a novel algorithm that achieves soft (or semantic) yet efficient pat-
tern matching by relaxing a surface-level matching with word embeddings. Our
algorithm is highly scalable with respect to the size of the corpus text utilizing
inverted indexes. We have prepared an efficient implementation, and we provide
an accessible web tool. Our experiments demonstrate that the proposed method
(i) can execute searches on billion-scale corpora in less than a second, which is
comparable in speed to surface-level string matching and dense vector search; (ii)
can extract harmful instances that semantically match queries from a large set of
English and Japanese Wikipedia articles; and (iii) can be effectively applied to
corpus-linguistic analyses of Latin, a language with highly diverse inflections.

1 INTRODUCTION

Recent advances in natural language processing (NLP) and corpus linguistics are largely driven by
the availability of massive text corpora (Gao et al., 2020; Biderman et al., 2023b; Raffel et al.,
2019; Van Der Zwaan et al., 2017; Mcgillivray et al., 2020). The field of NLP, driven by the
grand goal of building intelligent chatbots and machine translation systems, has achieved remark-
able breakthroughs over the past decade, largely thanks to self-supervised representation learning
from vast corpora (Mikolov et al., 2013; Pennington et al., 2014; Devlin et al., 2019a; Radford et al.,
2019). Notable causal language models (LMs), capable of passing high-stakes exams (Katz et al.,
2024; OpenAI, 2024; Jung et al., 2023), serving as general-purpose problem solvers (Brown et al.,
2020), and engaging in realistic conversations with beloved characters (De Freitas, 2023; Chen et al.,
2024), owe their foundational abilities to next-token prediction learned from large-scale data (Brown
et al., 2020; Dubey et al., 2024; Riviere et al., 2024). In corpus linguistics (McEnery & Hardie,
2011), computational linguistics (Jurafsky & Martin, 2024), and digital humanities (Jensen, 2014)—
disciplines aiming to uncover the scientific and computational principles of human language—such
vast linguistic resources, consisting of the language use itself, have become more indispensable than
ever in this era of large-scale corpora (Van Der Zwaan et al., 2017; Mcgillivray et al., 2020).
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Table 1: Hard pattern matching (e.g., grep) and soft pattern matching (our method). Hard matching
is based on surface-level comparison and does not match if, e.g., a synonym is used; Soft matching
is based on semantic comparison and robust to such variations thanks to word embeddings.

Pattern Theorem 1 John was born in

Hard matching · · · thanks to Theorem 1 · · · · · · John was born in 1345 · · ·
(e.g., grep)

Soft matching · · · thanks to Theorem 1 · · · · · · John was born in 1345 · · ·
(ours) · · · Theorem 3 holds because · · · · · · Edward had died in May 1910 · · ·

· · · By Lemma 5, we may assume · · · · · · Robert was born in England · · ·
· · · Equation 1 describes · · · · · · the Emperor Henry, died in 1125 · · ·

Given this context, the demand for efficient pattern matchers that enable rapid searches across mas-
sive corpora is higher than ever (Liu et al., 2024; Smadja, 1993). For example, when harmful
information, misinformation, or memorized privacy information is generated by a large LM, it is
necessary to identify the corresponding training instances where this information originated (Guo
et al., 2022; Wang et al., 2024c; Ippolito et al., 2023; Biderman et al., 2023a). Another example is
when researchers wish to determine which of two linguistic phenomena of interest is more frequent;
conducting exhaustive searches across the largest available corpora is essential (Biber, 2015) for
this purpose. Notably, many linguistic phenomena—word frequency as a simple example—follow
a power-law distribution (Zipf, 1951; Heap, 1980; Kobayashi & Tanaka-Ishii, 2018). Consequently,
only with vast corpora can we observe and analyze the various rare events residing in the long tail,
which constitute the majority of linguistic phenomena.

One of the challenges when working with large corpora is that pattern-matching tools based on string
matching (Hakak et al., 2019), such as grep (Bambenek & Klus, 2009) and ripgrep (Gallant,
2024), or linguist-oriented tools often referred to as KWIC (Anthony, 2013; Culy & Lyding, 2010;
Schweinberger, 2024), primarily rely on surface-level exact matching as their core strategy. Because
natural languages are characterized by their flexibility and richness in how humans can express
similar concepts in different ways (McKeown, 1979; Witteveen & Andrews, 2019; Ganitkevitch
et al., 2013), strictly exact string matching may not meet users’ demands. For example, on top of the
query word in standard spelling, it is often desirable to catch non-standard spellings as well, such as
how r u instead of how are you, which are widespread particularly on the web and in texting (Schulz,
2018). Additionally, it is also desirable to catch different inflected word forms such as sing, sang,
sung, sings, and singing, which differ only in their morphological features and share the same lemma
(base form) (Don, 2014; Embick, 2015). Rule-based exact matching is particularly hard when the
target language is morphologically complex and exhibits irregular inflectional patterns.

To resolve the mismatch between the symbolic nature of existing pattern matchers and the diverse
orthographic and morphological variations inherent in natural language, we have developed a soft
(or semantic) yet efficient pattern matcher (Section 3). The core strategy is based on the simple
idea of softening the matching process from binary {0, 1} values to continuous values, using word
embeddings. By adopting inverted indexes and several other techniques, our tool can enumerate
all softly matching instances in billion-scale corpora in less than a second. Table 1 shows specific
examples of its operation. Our proposed method is capable not only of enumerating exact matches
but also of flexibly listing semantically similar instances, even when their surface forms differ. For
example, given the query “Theorem 1”, the method can retrieve instances such as “Lemma 5”. This
characteristic substantially enhances key tasks in both NLP and corpus linguistics. For instance, it
improves the filtering of harmful texts, and facilitates more efficient example retrieval, particularly
for languages with complex morphological features (Section 4).

The contributions of our study are summarized as follows.

• We developed a soft (or semantic) pattern-matching algorithm—a relaxation of the exact
string matching—using word embeddings (Section 3). By leveraging inverted indexing, we
achieved high scalability (Sections 2.1, 2.3 and 3.3).1

1 GitHub: https://github.com/softmatcha/softmatcha
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• We developed an easy-to-use web demo to facilitate interaction with the soft matching algo-
rithm.2 This demo is particularly beneficial for NLP researchers and developers who want
to analyze LMs in a data-driven manner, as well as for language learners and humanities
researchers who are conducting language analysis on large corpora from the perspectives
of corpus linguistics and digital humanities (Section 4.1)

• For quantitative evaluation, we verified that our method achieves complete enumeration
in less than a second on billion-scale corpora, which are commonly used in training large
LMs (Section 4.2). For instance, the running time for searching over an English corpus
with 3.4B words was less than 0.1 seconds without GPUs. This performance is comparable
in speed to dense vector search; moreover, our method enables the retrieval of examples
closely aligned with specific queries, rather than just broad topical similarities.

• We conducted qualitative evaluations in specific scenarios to verify the usefulness of the
proposed method in both the fields of NLP and corpus linguistics. In experiments assuming
the training of LMs on large-scale corpora, we provided search examples for identifying
and removing harmful instances contained within the corpus (Section 4.2). In experiments
assuming the analysis of classical Western languages by linguists, we chose Latin—a lan-
guage with highly complex inflections—as an example. We demonstrated that a corpus
search with our tool can flexibly extract morphologically and semantically similar usage
examples from the corpus (Section 4.3).

2 RELATED WORK

The procedures for finding sentences (or lines, documents) that match a given pattern (query) are
prevalent across nearly all areas of computer science and data science, making it difficult to enu-
merate all related research. In this section, we review particularly relevant work in NLP and com-
putational linguistics, which are the primary focus of this study, as well as in the closely related
areas of string matching. Beyond the fields discussed here, we believe many other domains, such as
information retrieval, time series analysis, and semantic web, also have connections to this research.

2.1 NATURAL LANGUAGE PROCESSING AND CORPUS SEARCH

The significant progress in NLP over the past decade is largely attributed to deep-learning–based
self-supervised representation learning (Mikolov et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2017; Devlin et al., 2019a; Radford et al., 2019; Brown et al., 2020; Dubey et al., 2024). The
vast raw corpora without label annotations serve as the source of such models’ capabilities (Gao
et al., 2020; Biderman et al., 2023b; Raffel et al., 2019), and, therefore, these corpora are continu-
ally referenced and analyzed for model improvement and evaluation (Biderman et al., 2023b). For
instance, as LMs can memorize and elicit facts written in training corpora, they are reported to gen-
erate text containing privacy-related information (Huang et al., 2022; Li et al., 2023; Lukas et al.,
2023) or content that could be used for terrorism or violence (Gehman et al., 2020; Schick et al.,
2021; Kumar et al., 2023). In this context, Ippolito et al. (2023) work on filtering out verbatim
memorization, requiring searches accross large-scale training corpora.3 N -gram substring pattern
matchers, as representative tools for corpus search in NLP, have been particularly well-developed
even before the advent of deep learning (Sekine, 2008; Sekine & Dalwani, 2010). In terms of data
structures, inverted indexes (Sekine & Dalwani, 2010; Rogozinski & Kuc, 2016), and suffix arrays
including their variants (Sekine & Dalwani, 2010; Yamamoto & Church, 2001; Liu et al., 2024;
Burrows et al., 1994; Ferragina & Manzini, 2005; Langmead et al., 2009) are typically employed.
Our algorithm is based on inverted indexes due to its algorithmic requirements, which we discuss
in Section 3. Here, regardless of which data structure is used, it is important to note that existing
n-gram matching techniques assume exact surface-level matching, making it extremely challenging
to search and enumerate all relevant sentences while handling the complex characteristics of natural
language, such as paraphrasing, orthographic variation, and inflection. Dense vector search (Khat-
tab & Zaharia, 2020; Karpukhin et al., 2020; Izacard et al., 2022; Wang et al., 2024a) has recently
gained widespread popularity as the foundational technology for retrieval-augmented generation

2 Demo: https://softmatcha.github.io. The screenshot of the demo is presented in Appendix C.
3 Measuring influence of training corpus is also an important theme (Koh & Liang, 2017; Pruthi et al., 2020;

Chen et al., 2021; Isonuma & Titov, 2024), but their application to vast corpora remains highly challenging.
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(RAG) (Lewis et al., 2020; Khandelwal et al., 2020; Guu et al., 2020; Izacard et al., 2024). Dense
vector search is highly compatible with approximate nearest neighbor search (Malkov & Yashunin,
2020; Jégou et al., 2011), and it offers a significant advantage in reducing the issue of hallucina-
tion (Ayala & Bechard, 2024; Gao et al., 2023) in scenarios requiring factual knowledge. However,
dense vector search is a relatively “coarse” method, primarily used to retrieve documents that are
topically similar, making it less suitable for the cases that require more specific n-gram level queries.

2.2 CORPUS LINGUISTICS AND CORPUS SEARCH

Corpus linguistics is a subfield of linguistics that utilizes corpora to study language based on ex-
amples of ‘real-life’ language use (McEnery & Wilson, 2001). Digital humanities, a closely related
field, is an interdisciplinary domain that aims to advance humanities through the application of data
and information science. In digital humanities as well, quantitative analysis of texts using corpora
is also actively pursued (Jensen, 2014). Corpora consist of collections of texts or spoken language
data (Van Der Zwaan et al., 2017; Mcgillivray et al., 2020), offering real-world examples of how
language is used in various contexts. In most settings, an ideal corpus is large in size to ensure
the statistical reliability of certain linguistic phenomena and to cover a broader range of language
use, including rare occurrences such as low-frequency words (Ha et al., 2009; Coole et al., 2020).
Search tools (Hockey & Martin, 1987; TEI Consortium, 2023) are an indispensable element of
corpus linguistics because they enable the identification of linguistic patterns, such as word frequen-
cies, collocations, and syntactic structures. Traditional search methods commonly used in corpus
linguistics include exact matching and its extension with regular expressions (Jurafsky & Martin,
2024). However, given the nature of natural languages—with their morphological complexity and
unlimited paraphrases and synonyms with varying surface forms—rule-based search methods face
extreme difficulties in exhaustively enumerating instances that closely match a given query.

2.3 STRING MATCHING

From an algorithmic point of view, our method is closely related to string matching algo-
rithms (Hakak et al., 2019). In what follows, we briefly give an algorithmic comparison with
some of them and elucidate their relationship to ours. Offline string matching algorithms pro-
cess the corpus text to build an index that accelerates future searches, a technique widely applied in
search engines and information retrieval systems such as Elasticsearch (Rogozinski & Kuc, 2016)
and Apache Lucene (Grand et al., 2020). Inverted indexing is a well-known approach in this do-
main (Zobel & Moffat, 2006), and our method serves as a soft generalization of a string matching
algorithm based on inverted indexing. Online string matching algorithms do not rely on prepro-
cessing and handle the corpus text on the fly. Efficient algorithms include the Knuth-Morris-Pratt,
Karp-Rabin, and Boyer-Moore algorithms (Knuth et al., 1977; Karp & Rabin, 1987; Boyer & Moore,
1977). While widely used in tools such as grep, online string matching is also a basis of runtime
verification (Bartocci et al., 2018), where system’s execution data is monitored. Although it is pos-
sible to relax these algorithms with word embeddings, the number of soft word comparisons in
such a relaxation would be linear in the size of the corpus. In contrast, our algorithm requires only
constant soft word comparisons, thanks to indexing. See Section 3.3 for the complexity analysis.
Approximate string matching allows flexible matching, typically using edit distance to accommo-
date noisy or incomplete data (Navarro, 2001). Tools like agrep (Wu & Manber, 1992b;a) perform
online matching that tolerates mismatches. Indexing-based algorithms are also proposed for approx-
imate string matching (Boytsov, 2011). As a relaxation of exact string matching, approximate string
matching is orthogonal to ours: approximate string matching focuses on relaxing surface-level com-
parison, while our approach focuses on semantic-level similarity based on word embeddings. For
example, morphologically irregular forms such as “person” and “people”, only differing in plurality,
will likely be missed in approximate string matching, while our methods are able to catch them.

3 OUR ALGORITHM FOR SOFT PATTERN MATCHING

3.1 OVERVIEW

Key aspect of design: Hard vs. Soft. One key aspect we considered in designing the algorithm
for soft pattern matching is hard computation vs. soft computation. Hard (or exact) pattern matching
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Corpus text When a jazz pianist plays funk with a blues singer · · ·

Ia

Ijazz

Iblues

Inverted index

(a) Preprocessing: Build the inverted index of the corpus text.

Pattern p = the jazz musician

Word
embeddings

the
a

this

where
when

with
jazz

blues

funk

plays
play musician

pianist

singer

Soft pattern S = {the, a, this, · · · } {jazz, blues, funk, · · · } {musician, singer, pianist, · · · }

(b) Matching Step 1: Soften the pattern into the soft pattern.

ĨjazzSjazz

{
}

Ijazzjazz,

Ibluesblues,

Ifunkfunk,

..
...
.

(c) Matching Step 2-1: Get the soft inverted index.

Ĩthe

Ĩjazz

Ĩmusician

Soft matches

Hit!

a jazz pianist

Hit!

a blues singer
M

· · ·
(d) Matching Step 2-2: Find the soft matches.

Figure 1: Illustration of our algorithm for soft pattern matching.

(such as grep) can process large texts blazingly fast. This is because hard matching requires only
“hard computation”, e.g., bitwise comparison, which is highly efficient. Soft pattern matching, on
the other hand, involves “soft computation”, e.g., cosine similarity of two vectors. Since such soft
computation involves many floating-point arithmetic operations over high-dimensional vectors, it is
typically much slower than hard computation. For instance, just taking the cosine similarity of a
pair of word embeddings can be as expensive as thousands of simple bitwise operations.

Overview of our algorithm. With this in mind, we designed the algorithm for soft pattern match-
ing, which is precise and efficient. Our algorithm is illustrated in Figure 1. Our key idea is to run soft
computation only over the vocabulary, not over the whole text as a naive algorithm would do. More
specifically, our algorithm works in the following two steps: For each query, (Step 1) it first per-
forms soft computation over the vocabulary, softening the pattern into the soft pattern S1S2 · · · Sn

(Fig. 1b); (Step 2) then it performs hard computation that finds the exact positions in the corpus text
that match the soft pattern (Figs. 1c and 1d). Here, the soft pattern S1S2 · · · Sn is the key data in
play. It consists of the set of vocabulary words that softly match each word of the pattern in terms of
word embeddings. The amount of soft computation (Step 1) is small, given that the vocabulary size
is typically much smaller than the size of the corpus text. The amount of hard computation (Step 2)
is also quite small, because it only handles filtered positions, not the whole corpus text.

3.2 DETAILS

Problem formulation. First, we formulate the soft pattern-matching problem by simply relaxing
the classical hard (or exact) pattern-matching problem (Hakak et al., 2019) as follows:
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Algorithm 1: Our soft pattern-matching algorithm.

Given : The corpus text t = t1 t2 · · · tN and its inverted index Iv ⊆ {1, . . . , N} over each vocabulary
word v ∈ V such that i ∈ Iv if and only if v = ti.

Input : The phrase pattern p = p1p2 · · · pn and the threshold α ∈ (0, 1].
Output : The set of soft match positions M ⊆ {1, . . . , N}, such that i ∈M holds if and only if

pk ≈α ti+k−1 holds over any k = 1, . . . , n.

// Step 1: Soften the pattern p1p2 · · · pn into the soft pattern S1S2 · · · Sn

1 for k ← 1 . . . n do
2 Sk ← ∅
3 for v ∈ V do
4 if v ≈α pk then Sk ← Sk ∪ {v}
// Step 2-1: Get the soft inverted index Ĩk by relaxing I with Sk

5 for k ← 1 . . . n do
6 Ĩk ← ∅
7 for v ∈ Sk do Ĩk ← Ĩk ∪ Iv

// Step 2-2: Get the complete matching M by aggregating Ĩk
8 M ← Ĩ1

9 for k ← 2 . . . n do M ← M ∩
{
i− (k − 1)

∣∣ i ∈ Ĩk
}

10 return M

The soft pattern-matching problem.
INPUT: The corpus text t = t1t2 · · · tN ∈ V∗, the pattern p = p1p2 · · · pn ∈ V∗, and the
threshold α ∈ (0, 1]

OUTPUT: The set of soft match positions M with respect to the soft equivalence ≈α, i.e.,
the set M =

{
i ∈ {1, . . . , N}

∣∣ ∀ k ∈ {1, . . . , n}. pk ≈α ti+k−1

}
We define here the soft equivalence v ≈α v′ between words as v ≈α v′

△⇐⇒ cos(E(v), E(v′)) ≥
α, to capture the similarity in terms of word embeddings E. Here, we let V = {v1, v2, . . . , vL} be
the vocabulary and write E(v) ∈ RD for the word embedding of a word v ∈ V . Also, we write
cos(e, e′) for the cosine similarity cos(e, e′) ≜ e·e′

∥e∥∥e′∥ of word embeddings e, e′ ∈ RD.

Preprocessing. Before processing queries, our algorithm preprocesses the whole corpus text to
compute the inverted index I (Fig. 1a), following a standard technique in search engine index-
ing (Zobel & Moffat, 2006). The inverted index I maps each vocabulary word v ∈ V to the set of
positions Iv ⊆ {1, . . . , N} that represents the occurences of the word v in the corpus text t, that is,
the set Iv =

{
i ∈ {1, . . . , N}

∣∣ v = ti
}

.

Our algorithm. Algorithm 1 and Figures 1b to 1d outline our algorithm for soft pattern matching.
Our algorithm works in the following two steps:

1. For each query, it performs soft computation over the vocabulary, softening the pattern
p1p2 · · · pn into the soft pattern S1S2 · · · Sn (lines 1 to 4 in Algorithm 1, Figure 1b). Here,
Sk is the set of vocabulary words that softly matches each word pk of the pattern in terms
of the soft equivalence ≈α, i.e., Sk =

{
v ∈ V

∣∣ v ≈α pk
}

.

2. Then, it performs hard computation that computes the exact set of positions M in the
corpus text that matches the soft pattern S1S2 · · · Sn by the following two sub-steps:

2-1. Compute the soft inverted index Ĩ , which maps each pattern word pk to the union
Ĩk =

⋃
v∈Sk

Iv of the exact inverted index I over Sk (lines 5 to 7, Fig. 1c). The
set Ĩk agrees with the set of positions that softly match the pattern word pk, i.e.,
Ĩk =

{
i ∈ {1, . . . , N}

∣∣ ti ≈α pk
}

.
2-2. Output the set of soft matches M by computing the shifting intersection M =⋂n

k=1

{
i − (k − 1)

∣∣ i ∈ Ĩk
}

over the soft inverted index Ĩ (lines 8 to 9,
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Fig. 1d). The resulting set precisely agrees with the expected set, i.e., M =
{
i ∈

{1, . . . , N}
∣∣ ∀ k ∈ {1, . . . , n}. pk ≈α ti+k−1

}
.

We perform soft pattern matching using the index I . First, for each word pk in p, we construct the
set Ĩk indicating the positions of the words in t matching pk (lines 1 to 4): we compare each word
v ∈ V in the vocabulary with pk (line 4); we add Iv to Ĩk if we have v ≈α pk (line 7). Then, we
construct the result M by aggregating each Ĩk considering the position k of pk in p.

Inverted index vs. Suffix array. Our algorithm uses an inverted index rather than a suffix ar-
ray (Yamamoto & Church, 2001), which is crucial. A suffix array manages exact sequences of char-
acters (or tokens) in the corpus text, for which softening patterns cannot be performed efficiently. In
contrast, entries of an inverted index Iv just have the occurrences of each word type v and can be
relaxed for soft matching simply by merging the sets, as illustrated in Fig. 1c.

3.3 FORMAL ANALYSIS

How efficient is our algorithm? To answer this with theoretical guarantees, we analyze the time and
space complexity of the algorithm. Overall, the high-level observation is that the corpus text size N
affects the time and space required for preprocessing and soft matching only linearly.

Preprocessing. The time complexity for constructing the inverted index I is O(L×N), consisting
of L×N exact word comparisons, since each vocabulary word v ∈ V is compared with each word
ti in the corpus text t. Notably, the constant factor here is typically very low, as only bitwise
comparison is required. The total space required to store the inverted index I is only O(N + L),
by simply storing the list of positions (of space O(|Iv|)) for each vocabulary word v ∈ V . This
is because each position i ∈ {1, 2, . . . , N} in the text t occurs exactly once in I and hence N =∑

v∈V |Iv|. The space complexity is also O(N + L), since no extra space is required.

Soft matching. Step 1 for softening the pattern takes O(n× L) in time, where the dominant part
is n × L soft word comparisons (taking the cosine similarity of word embeddings) between each
pattern word pk and each vocabulary word v ∈ V (line 4). The space complexity is O(

∑n
k=1|Sk|).

Notably, the time and the space for Step 1 are independent of the corpus text size N . Step 2 for
finding the set of soft matches takes O(K) in time and space, where K is the total size of the soft
inverted index K ≜

∑n
k=1|Ĩk| (or roughly the total number of ‘candidate’ positions for matches).

Remarkably, this is only linear to the corpus text size N .

4 EMPIRICAL EVALUATION

We address the following research questions in the experiments:

RQ1: Does SoftMatcha scale to a billion-scale corpus, which is the typical size of training
corpus for large causal LMs? (Section 4.2)

RQ2: Does SoftMatcha perform as expected in typical scenarios in NLP and corpus linguis-
tics? (Sections 4.2 and 4.3)

4.1 IMPLEMENTATION

We implemented the algorithm in Section 3 as a tool named SoftMatcha.4 Our implementation
adopts the following designs for efficiency. Firstly, we design our inverted index using a sparse
matrix in a compressed sparse row (CSR) format to reduce memory consumption and enable efficient
access to the index for each word, i.e., Iv . The index I is represented by a one-dimensional array,
with the positions of each word contiguously allocated in memory. Secondly, we compile some
time-consuming operations to native code using NUMBA (Lam et al., 2015). Specifically, line 4 in
Algorithm 1 calculates word embedding similarities over n × L times, i.e., the time complexity is

4 The word Matcha means powdered green tea in Japanese and is here a pun for ‘matcher’. Matcha softo in
Japanese means soft-serve ice cream of green tea flavor.
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O(n × L ×D), where D is the dimension of each word embedding. To speed up this calculation,
we leverage the vectorized instruction set (SIMD) for parallel processing. In addition, finding the
intersection of two large sets in line 9 in Algorithm 1 is computationally expensive. We employ
just-in-time (JIT) compilation and parallel loops for efficient comparisons of elements. To ensure
reproducibility, we release our source code on GitHub (Footnote 1) and the package on PyPI5.

We provide a demo environment (Footnote 2) for users to explore the capabilities of our method
and experience how diverse and linguistically natural the search results are and how quickly results
can be obtained. The corpora used in experiments in Sections 4.2 and 4.3 are available. To prevent
excessive output, for English and Japanese, only subsets of the corpora have been incorporated.
Furthermore, search results are presented in smaller batches—to improve usability—with additional
results available upon request, rather than all at once.

4.2 CASE STUDY IN NATURAL LANGUAGE PROCESSING — BILLION-SCALE CORPUS SEARCH

In this section, we simulate scenarios where NLP researchers use SoftMatcha on billion-scale
English and Japanese corpora. We focus on two types of evaluations: (i) quantitative evaluation —
we assess the running time using large data comparable in size to those used for training standard
large LMs; and (ii) qualitative evaluation — we examine the tool’s effectiveness in detecting toxic
instances within large LM training corpora.

Why English and Japanese? English is the dominant language in modern NLP and accounts for
the largest portion of training data for large LMs (Brown et al., 2020; Chowdhery et al., 2022; Tou-
vron et al., 2023). In contrast, Japanese presents a typologically distinct language, with orthographic
and structural features that differ significantly from English, such as: (i) character types (alphabetic
vs. hiragana, katakana, and kanji); (ii) syntax (SVO vs. SOV, head-initial vs. head-final); and (iii)
word segmentation (space-separated vs. no word separation) (Haspelmath et al., 2005). Further-
more, the substantial size of Japanese corpora (Wikipedia, 2024) makes it suitable for testing the
scalability of our approach.

Setup. Corpora: we utilized the LLM-jp corpus v2.0 (LLM-jp et al., 2024), which con-
tains organized collections of Wikipedia articles in both English (3.4B words) and Japanese
(1.1B words). Word embeddings: we used GloVe glove-wiki-gigaword-300 (Penning-
ton et al., 2014) with a threshold α = 0.55 for the English word embeddings, and fastText
facebook/fasttext-ja-vectors (Grave et al., 2018) with a threshold α = 0.50 for the
Japanese word embeddings. Baseline methods: we compared the search results of SoftMatcha
with those of exact matching, i.e., pattern matching with a standard inverted index, and dense vector
search using intfloat/multilingual-e5-largemodel (Wang et al., 2024b). In dense vec-
tor search, we encoded each training instance6 in the corpus and built the graph-based index using
hierarchical navigable small worlds (HNSW) (Malkov & Yashunin, 2020) with the FAISS imple-
mentation (Douze et al., 2024) for the approximate nearest neighbor search. In HNSW, the number
of edges was 32, the efConstruction was set to 40, and efSearch was configured as 16 (Malkov &
Yashunin, 2020). We prepended the prefix “passage: ” to each instance and “query: ” to each query,
following Wang et al. (2024b), and truncated any instances that exceeded 512 tokens. The text
embeddings were calculated by averaging the contextualized token embeddings. Computational
environment: we measured the running time on 152 core CPUs (Intel® Xeon® Platinum 8368 CPU
@ 2.40GHz) and a 226 GiB main memory for the exact matching and SoftMatcha, and on 8
NVIDIA A100 GPUs for the dense vector search.

Running time. We measured the indexing time and search time in both the English and Japanese
Wikipedia articles. Table 2 demonstrates that SoftMatcha is faster than dense vector search
in both indexing and search time and takes the same indexing time as exact matching. Next, we
investigated the relationship between the search speed and the corpus size. We constructed subsets
of the English Wikipedia, whose sizes are {10−3, 10−2, 10−1} times that of the original corpus
of 3.4B tokens, by randomly sampling from the original corpus, and measured the search time with
each subset. Figure 2 shows the results. We observed that the search time increased only sublinearly,

5 PyPI: https://pypi.org/project/softmatcha
6A training instance of LLM is a chunk of texts, which may consist of multiple sentences.

8

https://pypi.org/project/softmatcha


Published as a conference paper at ICLR 2025

Table 2: Running time (sec) of indexing and search in
the English and Japanese Wikipedia articles.

En (3.4B words) Ja (1.1B words)

Indexing Search Indexing Search

Exact matching 685.8 0.005 242.5 0.022
SoftMatcha 685.8 0.098 242.5 0.055
Dense vector search 1036.5 0.389 320.4 0.283
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Figure 2: Running time on subsampled
English Wikipedia corpora.

Table 3: Results of billion-scale corpus search in the English and Japanese Wikipedia articles.

Exact matching SoftMatcha Dense vector search

Query: “homemade bombs” (2 tokens) in English Wikipedia (3.4B words)
# Hits 107 1,473 n/a (depends on the top-k)
Match examples homemade bombs homemade bombs Article: Survival Under Atomic Attack

home-made grenades Article: Mark 24 nuclear bomb
homemade missiles Article: List of common misconceptions

Query: “手製爆弾 (homemade bombs)” (2 tokens) in Japanese Wikipedia (1.1B words)
# Hits 27 42 n/a (depends on the top-k)
Match examples 手製爆弾 手製爆弾 Article: 花火 (fireworks)

(homemade bombs) (homemade bombs)

手製手榴弾 Article: 手持ち花火 (consumer fireworks)
(home-made grenades)

not linearly, with respect to the increase in corpus size. We thus confirmed that our algorithm works
effectively for billion-scale corpus searches.

Search results. Table 3 shows the results of the billion-scale corpus search. We queried “home-
made bombs” in the English Wikipedia corpus and “手製爆弾 (homemade bombs)” in the Japanese
Wikipedia corpus. In the dense vector search, we selected some retrieved examples from the top-10
search results. The table demonstrates that our SoftMatcha extends the exact matching. Note that
the results of exact matching are a subset of the results of SoftMatcha. In Japanese, the dense
vector search retrieved an article of “花火” (fireworks), which does not contain the contents related
to the query. In contrast, SoftMatcha lists all contents that have the query pattern or its similar
pattern. In addition, while dense vector search allows semantic similarity search, it cannot identify
where the query pattern is located in a text. To summarize, a text that exactly contains the query
pattern is not always retrieved in dense vector search, i.e., the recall is not always 100%, while exact
matching and SoftMatcha can return all texts that contain the query pattern, and SoftMatcha
also enables matching of semantically similar patterns.

4.3 CASE STUDY IN CORPUS LINGUISTICS — RETRIEVING LATIN EXAMPLES

Why Latin? Latin is a morphologically complex fusional language where a lemma (dictionary
form) may exhibit numerous different word forms depending on the morphological features (e.g.,
voice, mood, tense, aspect, person, and number for verbals; gender, number, and case for nominals)
that the word bears. For example, a transitive verb may conjugate to more than 100 different finite
verb forms. This morphological complexity makes it harder to search through a corpus by exact
matching. Furthermore, due to Latin’s philological significance and the vast body of accumulated
literature, there has been a persistent demand for advanced search tools to facilitate corpus analysis
(Bamman & Smith, 2012). For these reasons, Latin is a suitable touchstone to test the utility of our
proposed soft pattern matcher, particularly for humanities researchers and language learners.
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Table 4: Latin match examples by SoftMatcha with queries factus est ‘he/it was
done/finished/made’ and equus est ‘it is a horse’. The top row of an interlinear gloss represents
words (and the cosine similarity between the matched word and its corresponding query word), the
middle row their morphological analysis, and the bottom row the free translation. Morphological
matches are highlighted in pink, semantics matches in blue, and exact matches in green.

Query
factus est
do.PASS.PF.PTCP-M.NOM.SG be.IND.PRS.3SG
‘he/it is done/finished/made’

Matches
0.56 0.56
facta sunt
do.PASS.PF.PTCP-N.NOM.PL be.IND.PRS.3PL
‘they are done’ or ‘they are facts’

0.53 0.58
mortuus esset
die.ACT.PF.PTCP-M.NOM.SG be.SUB.IMPF.3SG
‘he/it was dead’

0.65 0.65
creatus erat
create.PASS.PF.PTCP-M.NOM.SG be.IND.IMPF.3SG
‘he/it was created’

Query
equus est
horse.M.NOM.SG be.IND.PRS.3SG
‘it is a horse’

Matches
0.48 1.00
bos est
cow.F.NOM.SG be.IND.PRS.3SG
‘it is a cow.’

0.44 0.63
currus fuit
chariot.M.NOM.SG be.IND.PF.3SG
‘it was a chariot’

0.49 0.58
Minotaurus esset
Minotaur.M.NOM.SG be.SUB.IMPF.3SG
‘it would be the Minotaur’

Setup. Corpora: we used two corpora: one from the Perseus Project (Crane, 2023)
(5M tokens) and the Augustinian Sermon Parallelism (ASP) Dataset (Bothwell et al.,
2023) (0.1M tokens). Word embeddings: we used the pre-trained fastText embeddings
facebook/fasttext-la-vectors (Grave et al., 2018).

Search results. Table 4 shows the returned matches with the queries factus est (‘it/he is done’ or
‘it/he is made’) and equus est (‘it is a horse’). It is evident that SoftMatcha effectively links the
queries to semantically similar words, as seen in mortuus ‘dead’ and creatus ‘created’ matched with
the query factus ‘done, finished, made’, and bos ‘cow’, currus ‘chariot’, and Minotaurus ‘Minotaur’
with equus ‘horse’. Interestingly, the tool is also able to catch different word forms with different
morphological features while sharing the same lemma, which are highlighted in pink. For example,
although the Latin copula verb in the query est ‘is’ exhibits highly irregular conjugation patterns, the
matches successfully include their inflected forms such as sunt, esset, erat, and fuit. Furthermore,
the matches mortuus and creatus are not only semantically similar to the query word factus but also
have morphological features in common (perfect, participle, masculine, nominative, and singular).

5 CONCLUSION

In this paper, we propose a new pattern-matching algorithm that can flexibly handle the orthographic
diversity of natural languages while also performing efficiently on large-scale corpora. Our algo-
rithm, combining word embeddings and inverted indexing, achieves inference speed independent
of corpus size. We have also developed and released a simple-to-use web demo for researchers
and practitioners. For quantitative evaluation, we confirm that the developed tool can enumerate
all search results within one second on billion-scale corpora, a typical scenario in training large
LMs. For qualitative evaluation, we assess the tool in typical scenarios in NLP (detecting harmful
examples from large-scale Japanese and English Wikipedia corpora) and computational linguistics
(example retrieval from Latin, a language with highly diverse inflections), observing that our method
can retrieve semantically similar examples that hard pattern matchers would miss.
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URL https://arxiv.org/abs/2401.08281.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah

13

http://arxiv.org/abs/2204.02311
https://commoncrawl.org/
https://commoncrawl.org/
https://aclanthology.org/2020.lrec-1.383.pdf
https://aclanthology.org/2020.lrec-1.383.pdf
https://blog.character.ai/character-ai/
https://blog.character.ai/character-ai/
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://arxiv.org/abs/2401.08281


Published as a conference paper at ICLR 2025

Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
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A OTHER EXAMPLES OF SOFT MATCHES IN LATIN

Table 5 shows several additional examples of Latin soft matches by SoftMatcha.

B LIST OF GLOSSING ABBREVIATIONS

Table 6 lists the glossing abbreviations used in this paper.

C WEB INTERFACE

Figures 3 to 5 shows screenshots of our demo tool.
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Table 5: Additional examples of soft matches in Latin and their scores returned by SoftMatcha.
The top row of an interlinear gloss represents words (and the cosine similarity between the word and
its corresponding query word), the middle row their morphological analysis, and the bottom row
the free translation. Morphological matches are highlighted in pink, semantic matches in blue, and
exact matches in green.

Query
non potest
not can.IND.PRS.3SG
‘he/she/it cannot’

Matches
1.00 0.59
non possit
not can.SUB.PRS.3SG
‘he/she/it cannot’

0.53 0.52
nec posse
nor can.INF.PRS
‘not to be able’

Query
homo sapiens
human.M.NOM.SG wise.M.NOM.SG
‘a wise human’

Matches
1.00 0.39
homo honestus
human.M.NOM.SG noble-M.NOM.SG
‘an honorable human’

0.47 0.40
vir sincerus
man.M.NOM.SG pure-M.NOM.SG
‘a pure man’

Query7

post meridiem
after noon.M.ACC.SG
‘after noon’

Matches
0.68 1.00
ante meridiem
before noon.M.ACC.SG
‘before noon’

0.51 0.52
contra septentrionem
against Ursa.Major.F.ACC.SG
‘against Ursa Major’, i.e., ‘facing north’

Query8

bellum gallicum
war.N-NOM.SG gallic-N.NOM.SG
‘the Gallic war’

Matches
1.00 0.44
bellum etruscum
war.N-NOM.SG Etruscan-N.NOM.SG
‘the Etruscan war’

0.49 0.45
contra Caesarem
against Caesar.M-ACC.SG
‘against Caesar’

Query9

quo vadis
where go.IND.PRS.2SG
‘where do you go’

Matches
0.42 1.00
ibi vadis
there go.IND.PRS.2SG
‘you go there’

0.50 0.48
autem vocaris
but summon-PASS.IND.PRS.2SG
‘but you are summoned’

Query10

quod erat demonstrandum
which be.IND.IMPF.3SG show.GER-N.NOM.SG
‘which was to be shown’

Matches
0.46 1.00 0.41
haec erat forma
this.F.NOM.SG be.IND.IMPF.3SG form.F.NOM.SG
‘this was the form’

1.00 0.54 0.47
quod postea accipiamus
which afterwards accept.ACT.SUB.PRS.1PL
‘which we shall accept later’
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Table 6: List of the gloss abbreviations used in this paper.

Gloss Meaning

1, 2, 3 1st, 2nd, 3rd person, respectively
ACC accusative
ACT active voice
F feminine (gender)
FUT future
GER gerundive
IMPF imperfective
IND indicative mood
M masculinie (gender)
N neuter (gender)
NOM nominative case
PASS passive voice
PF perfective
PL plural
PRS present tense
PTCP participle
SG singular
SUB subjunctive mood

Examples

theorem 1 march 1, 2016 John was born in 海鮮丼 ⾔語の普遍性 フランスでは factus est equus est

bellum Gallicum

Results Hits: 7738

Search Time: 0.317 sec

In 2015 , Fey created and produced the television comedy Unbreakable Kimmy Schmidt with fellow 30 Rock-alumnus Robert

Carlock . The series stars Ellie Kemper as the titular character who escapes from a doomsday cult and moves to New York . It

also stars Fey 's former co-star Jane Krakowski , as well as Tituss Burgess ( who had previously appeared in four 30 Rock

episodes ) and Carol Kane . Although it was originally produced for NBC , it was eventually sold to Netflix and immediately

renewed for a second season . The show premiered on March 6 , 2015 to critical acclaim .
1.00  0.81 1.00  0.67 

On July 16 , 2015 , the series was nominated for seven Primetime Emmy Awards , including Outstanding Comedy Series .
0.91  0.60 1.00  0.67 

Fey herself was nominated both as the creator / executive producer of the series and for Outstanding Guest Actress in a

Comedy Series for her guest performance as Marcia , a bumbling prosecutor in reference to Marcia Clark .

In 2015 , it was announced Fey would be the narrator for the Disney Nature film Monkey Kingdom , which was released in

theaters on April 17 , 2015 . She then re-teamed with Poehler , starring in the 2015 comedy film Sisters as the title
0.93  0.56 1.00  0.67 

characters , and received positive reviews for her role . In 2016 , Fey starred in the biographical war comedy-drama Whiskey

Tango Foxtrot , based on the memoir The Taliban Shuffle : Strange Days in Afghanistan and Pakistan , to positive reviews .

The album was completed on November 2013 , and a bonus disc was also made for the album , containing the leftover

material from the main album as well as songs from Ghost 2 , the unreleased compilation of leftover tracks from Ghost .

Originally in 2012 , Townsend stated that this album will be the sixth and the last album in the Devin Townsend Project series

, but he ultimately confirmed that Casualties of Cool is its own project . Townsend also started a crowdfunding campaign

through PledgeMusic to support the release of the album . The funding quickly reached its goal , and all additional funds

were put directly to Townsend 's upcoming projects . Casualties of Cool was released on May 14 , 2014 . The album was re-
0.64  0.58 1.00  0.74 

March 1 , 2016 Search

wikitext103 (0.1B) | glove-wiki-gigaword-300

Threshold: 0.5

Figure 3: The screenshot of our demo. Given the query “March 1, 2016”, it returns lines including
softly-matched patterns such as “July 16, 2015.”

D EFFECTS OF VARYING THRESHOLDS ON SEARCH TIME AND RESULTS

We inspected the relationship between the value of α , search time, and the number of matched
entries for the query “homemade bomb”. We varied the threshold parameter, i.e., α from

7p.m.
8book by Caesar (1882)
9Bible, John 13:36

10Q.E.D.
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Examples

theorem 1 march 1, 2016 John was born in 海鮮丼 ⾔語の普遍性 フランスでは factus est equus est

bellum Gallicum

Results Hits: 7

Search Time: 0.132 sec

Since A-K-L is a straight line , parallel to BD , then rectangle BDLK has twice the area of triangle ABD because they share the

base BD and have the same altitude BK , i.e. , a line normal to their common base , connecting the parallel lines BD and AL . ( le
0

mma 2 )
.66  0.93 

Surface diffusion kinetics can be thought of in terms of adatoms residing at adsorption sites on a 2D lattice , moving between

adjacent ( nearest-neighbor ) adsorption sites by a jumping process . The jump rate is characterized by an attempt frequency

and a thermodynamic factor that dictates the probability of an attempt resulting in a successful jump . The attempt frequency

ν is typically taken to be simply the vibrational frequency of the adatom , while the thermodynamic factor is a Boltzmann factor

dependent on temperature and Ediff , the potential energy barrier to diffusion . Equation 1  describes the relationship :
0.51  1.00 

Where ν and Ediff are as described above , Γ is the jump or hopping rate , T is temperature , and kB is the Boltzmann constant .

Ediff must be smaller than the energy of desorption for diffusion to occur , otherwise desorption processes would dominate .

Importantly , equation 1  tells us how very strongly the jump rate varies with temperature . The manner in which diffusion takes
0.51  1.00 

place is dependent on the relationship between Ediff and kBT as is given in the thermodynamic factor : when Ediff < kBT the

thermodynamic factor approaches unity and Ediff ceases to be a meaningful barrier to diffusion . This case , known as mobile

diffusion , is relatively uncommon and has only been observed in a few systems . For the phenomena described throughout

this article , it is assumed that Ediff > > kBT and therefore Γ < < ν . In the case of Fickian diffusion it is possible to extract both

the ν and Ediff from an Arrhenius plot of the logarithm of the diffusion coefficient , D , versus 1 / T. For cases where more than

one diffusion mechanism is present ( see below ) , there may be more than one Ediff such that the relative distribution between

the different processes would change with temperature .

Theorem 1 Search

wikitext103 (0.1B) | glove-wiki-gigaword-300

Threshold: 0.5

Figure 4: The screenshot of our demo. Given the query “Theorem 1”, it returns lines including
softly-matched patterns such as “lemma 2.”

Examples

theorem 1 march 1, 2016 John was born in 海鮮丼 ⾔語の普遍性 フランスでは factus est equus est

bellum Gallicum

Results Hits: 102

Search Time: 0.373 sec

John was the youngest of the four sons of Erard II , Count of Brienne , and Agnes of Montfaucon . He seemed " exceedingly old

... about 80 " to the 14-year-old George Akropolites in 1231 ; if Akropolites ' estimate was correct , John was born around 1150

. However , no other 13th-century authors described John as an old man . His father referred to John 's brothers as " children "

in 1177 and mentioned the tutor of John 's oldest brother , Walter III , in 1184 ; this suggests that John 's brothers were born in

the late 1160s . Modern historians agree that John was born after 1168 , probably during the 1170s .
1.00  1.00  1.00  0.58 

In 1952 Goffman married Angelica Choate ; in 1953 , their son Thomas was born .  Angelica suffered from mental illness and
0.58  1.00  1.00  0.63 

committed suicide in 1964 . Outside his academic career , Goffman was known for his interest , and relative success , in the

stock market and in gambling . At one point , in pursuit of his hobbies and ethnographic studies , he became a pit boss at a Las

Vegas casino .

It is a sign of Edward 's high regard for Lancaster that he would bestow such extensive privileges on him . The two men were

second cousins through their great-grandfather Henry III and practically coeval ( Edward was born in 1312 ) , so it is natural to
0.54  1.00  1.00  1.00 

assume that a strong sense of camaraderie existed between them . Another factor that might have influenced the king 's

decision was the fact that Henry had no male heir , so the grant was made for the Earl 's lifetime only , and not intended to be

hereditary .

In 1883 , Leno met Sarah Lydia Reynolds ( 1866 – 1942 ) , a young dancer and comedy singer from Birmingham , while both

were appearing at King Ohmy 's Circus of Varieties , Rochdale . The daughter of a stage carpenter , Lydia , as she was known

professionally , was already an accomplished actress as a teenager : of her performance in Sinbad the Sailor in 1881 , one critic

wrote that she " played Zorlida very well for a young artiste . She is well known at this theatre and with proper training will

John was born in Search

wikitext103 (0.1B) | glove-wiki-gigaword-300

Threshold: 0.51

Figure 5: The screenshot of our demo. Given the query “John was born in,” it returns lines including
softly-matched patterns such as “Edward was born in.”

{0.1, 0.2, . . . , 1.0}, in the English Wikipedia search. The search time and the number of matched
entries for each α are shown in Table 7. As you can see, both the search time and the number of
matched entries vary significantly depending on the threshold. The results of α ≤ 0.2 are note-
worthy. From the result, we can observe that the search time of the tool is too long to be used for
real-time use if the alpha is set below 0.2. However, we remark that the threshold as low as 0.2 is not
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Table 7: The search time (seconds) and the number of matched entries for each α.

α seconds # of hits

0.1 1213.503 504,955,515
0.2 55.854 19,899,652
0.3 1.105 183,202
0.4 0.258 34,766
0.5 0.079 1,839
0.6 0.025 381
0.7 0.028 259
0.8 0.027 259
0.9 0.028 107
1.0 0.005 107

chosen in practice since the search result includes too many nonsensical phrases. For example, the
results for α = 0.2 included “mixing test” and “authentic scale”, which are not related to the query.

E ADDITIONAL DISCUSSIONS

E.1 OUT-OF-VOCABULARY PROBLEM

Our current implementation does not handle out-of-vocabulary (OOV) words; it ignores unknown
words. Handling OOV words appropriately is deferred to future work. We plan to (1) use fasttext to
fallback unknown words to character embeddings and (2) extend our algorithm to handle subword
units to deal with the OOV problem.

E.2 STATIC EMBEDDINGS VS. DYNAMIC EMBEDDINGS

We used static embeddings for all experiments, but dynamic embeddings could also be used.

The simple one is to use the embedding layer of contextualized models such as BERT (Devlin et al.,
2019b), taking an approach like WordLlama (Miller, 2024). We conducted a follow-up experiment
using the embedding layer of BERT11 for the search in the English Wikipedia with a threshold
of α = 0.6. From the experiment, our SoftMatcha with the embedding layer of BERT newly
retrieved “makeshift bomb” and “improvised bomb” etc. with a query of “homemade bombs”. It
took less than one second, just as fast as when using the GloVe embedding. These new matches
may seem a bit counterintuitive, but they suggest that we can possibly obtain deep semantic matches
using more dynamic embeddings.

The other more radical one is to actually use contextualized token embeddings instead of mere words
for the search keys. Although the contextualized embeddings can be arbitrary real vectors and are
not suitable for indexing as is, we can approximate them to a finite number of embeddings by vector
quantization or other methods to apply our algorithm. The context information of the query can be
strengthened by adding some extra phrases before and after the query.

E.3 OMISSION, INSERTION, AND SWAPPING

The current SoftMatcha does not treat word omission and insertion, e.g., “the jazz musician”
does not match “a fantastic jazz musician”. That said, omission and insertion could be handled by
modifying Step 2-2 (technically, how to take intersections in line 9, Algorithm 1) using wildcards.
Wildcards can skip matching at any position, and is easy to implement by just adjusting the shift
width of Step 2-2 in Algorithm 1. This extension allows us to represent various similar patterns with
a single simple query.

In addition, it is possible to extend the algorithm to allow the flexible order of words in the query by
considering every permutation of the query pattern. This can be quite efficient, because only Step

11google-bert/bert-base-uncased
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Table 8: The results of the information retrieval task on the TREC-COVID dataset.

Method P@20 R@1000 NDCG@20

BM25 39.5 22.2 34.6
Soft-BM25 (α = 0.55) 41.5 23.5 36.3

2-2 (Find the soft matches) needs to be repeated and typically the pattern length is not too large
(technically, dynamic programming can be used here to achieve even better performance).

F EFFECTIVENESS OF SOFTMATCHA IN THE INFORMATION TASK

We conducted experiments to apply our method to information retrieval.

Soft-BM25 The well-known and strong baseline, BM25 (Robertson & Zaragoza, 2009), calculates
relevance scores between a query and a document using term frequency (TF) and inverse document
frequency (IDF), which involve counting occurrences of words or n-grams.

We implemented a soft version of BM25 (soft-BM25). For calculating the soft term frequency in
a document, we compute the pattern-level score by multiplying the matching scores of each word
in a query pattern, and then sum up for each pattern occurrence. Similarly, soft inverse document
frequency is calculated by counting documents that softly contain the given query patterns. Then,
we calculated the soft-BM25 score based on the most standard Lucene implementation.

To examine the effectiveness of soft matching on the information retrieval task, we compared the
threshold parameter α between 1.0 and 0.55. α = 1.0 means “not performing any semantic relax-
ation”, making it equivalent to standard BM25. In contrast, α = 0.55 allows for semantic relaxation
of query pattern counting using our method, serving as a means to verify the effectiveness of the
proposed method in information retrieval.

Benchmark dataset We used TREC-COVID dataset (Roberts et al., 2021), which is a part of
Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023). This dataset consists of
171k documents and 50 queries (= instances). Notably, the original dataset comprised only queries
formatted as natural language questions that are not suitable for queries of BM25 and soft-BM25;
thus, we prepared the pattern queries for this experiment. Specifically, we manually transformed the
natural language question, e.g., “how does the coronavirus respond to changes in the weather” to the
queries for BM25 and soft-BM25, e.g., [“coronavirus”, “response to weather”, “weather change”,
“coronavirus response to weather changes”].

Evaluation metrics We evaluated the retrieval performance on the precision@20 (P@20), re-
call@1000 (R@1000), NDCG@20 following the previous work (Bendersky et al., 2020).

Results The experimental results are demonstrated in Table 8. The table shows that soft matching
achieved better performance compared with exact matching in the information retrieval task.

To summarize this experiment, we confirmed that our SoftMatcha is effective not only in full-text
search but also in the information retrieval task, which ranks relevant texts.
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