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ABSTRACT

Large language models (LLMs) have shown promise in various domains but face
challenges in chemistry due to limited domain knowledge and computational ca-
pabilities. To address these issues, tool-augmented language agents like Chem-
Crow and Coscientist have been developed. However, their evaluations remain
narrow in scope, leaving an unclear understanding of how these tool-augmented
agents perform across various real-world applications. In this study, we conduct
a comprehensive evaluation to bridge this gap. Specifically, we develop ChemA-
gent, the most capable chemistry agent to date, equipped with 29 tools capable
of handling a wide spectrum of tasks. We then conduct a comprehensive assess-
ment across three datasets, namely SMollnstruct, MMLU-chemistry, and GPQA-
chemistry, which can be categorized into specialized chemistry tasks and general
chemistry questions. Surprisingly, tool-augmented agents do not consistently out-
perform the base LLM without tools, and the impact of tool augmentation is highly
task-dependent: It provides substantial gains in specialized chemistry tasks but po-
tentially hinders performance in general chemistry questions. We further engage
domain experts and conduct error analysis, revealing that errors in general chem-
istry questions primarily occur due to minor inaccuracies at intermediate stages of
the problem-solving process, highlighting the need for further research into bal-
ancing tool use with intrinsic reasoning abilities, to maximize the effectiveness of
language agents in chemistry.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across multiple domains,
showecasing their potential as versatile problem-solving tools. However, when it comes to chemistry,
these models face significant challenges, such as incorrect calculation, lack of domain knowledge,
or their inability to perform certain tasks like reaction prediction (Ramos et al., [2024}; Mirza et al.,
2024). To address this limitation, researchers have proposed LLM-based agents integrated with
specialized tools to tackle a wide range of chemistry-related problems. For example, ChemCrow
(M. Bran et al., [2024)) incorporates 18 tools, ranging from web search to chemical reaction pre-
diction, significantly expanding LLMs’ capabilities in chemistry. Another notable example is Co-
scientist (Boiko et al., 2023)), which integrates control of a cloud lab, enabling LLMs to automate
chemical experiments.

Despite the promise of these tool-augmented LLMs, existing evaluations have been largely qualita-
tive and very limited in scope. For instance, ChemCrow (M. Bran et al., [2024) was assessed using
only 14 self-created specific tasks, and they primarily focuse on synthesis of compounds. Similarly,
Coscientist’s evaluation (Boiko et al.| [2023)) involved merely six tasks. These narrow assessments
leave a significant gap in our understanding of how these tool-augmented agents perform across
diverse chemistry tasks in real-world applications.

In this work, we aim to conduct a comprehensive evaluation of tool-augmented agents across di-
verse chemistry tasks to grasp a deep understanding of the potential and limitations of existing

'Our code and data will be released.
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agents. Towards this end, we make a series of efforts: (1) We introduce ChemAgent, the most capa-
ble chemistry agent to date. It leverages the ReAct framework (Yao et al., |2023), and integrates 29
tools including PubChem and molecular property predictors, as well as many present in ChemCrow
(M. Bran et al., [2024). (2) We compile three datasets that cover different types of chemistry prob-
lems in real world for comprehensive evaluation: SMollnstruct (Yu et al., 2024)), which contains 14
types of specialized molecule-centric tasks; MMLU-chemistry , a subset of the MMLU benchmark
(Hendrycks et all [2021) that contains high school and college exam-like questions; and GPQA-
chemistry, a subset of the GPQA benchamrk (Rein et al., 2023) that contains difficult graduate-level
questions. (3) In order to conduct a meaningful error analysis with actionable insights, we propose
a reasoning-grounding abstraction framework for existing chemistry agents, where reasoning means
to refelct current status and plan for next step, and grounding means to ground the plan into doable
actions in environment. (4) We engage with chemistry experts to conduct error analysis, where we
analyze the error in each sample, so as to understand the places where agents make mistakes.

Through comprehensive experiments, we demonstrate that ChemAgent substantially outperforms
ChemCrow on all chemistry problems. However, contrary to expectation, ChemAgent does not
consistently outperform the base LLM without tools, and the impact of tool augmentation is
highly dependent on task characteristics. Specifically, for specialized chemistry tasks involving
professional molecular representations (e.g., SMILES (Weininger, |1988))) and specialized chemical
operations (e.g., compound synthesis, property prediction), augmenting LLMs with task-specific
tools can yield substantial performance gains. Conversely, for general chemistry questions that re-
quire more extensive internal knowledge and reasoning, there often lacks specific tools to address
these needs adequately. In such cases, tool augmentation may potentially impair LLMs’ intrinsic
reasoning abilities and lead to diminished performance. Further manual analysis with domain ex-
perts shows that errors on general chemistry questions primarily occur due to minor inaccuracies
at intermediate stages of the problem-solving process, suggesting the need to improve the intrinsic
reasoning abilities of tool-augmented LLMs.

2 CHEMAGENT

We present ChemAgent, an LLM-based agent
for chemistry tasks. The framework, illustrated (" ChemAgent )
in Figure [T] follows the ReAct paradigm (Yao
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i . Figure 1: The ChemAgent Framework.
To facilitate our subsequent error analysis, we

identify two essential cognitive abilities re-

quired in this framework: (1) Reasoning: This module serves as the core decision-making unit,
responsible for comprehending user queries and tool outputs, assessing current status, and formulat-
ing subsequent steps. (2) Grounding: Based on the “thought” provided by the reasoning module,
this component determines the appropriate tool to execute and its corresponding input. These two
abilities are fundamental to the agent workflow and will be further examined in our error analysis.

To enhance ChemAgent’s capabilities, we have developed an extensive tool set comprising 29 dis-
tinct tools, categorized into general, molecule, and reaction tools. In comparison to ChemCrow
(M. Bran et al.} 2024), our tool set incorporates additional tools such as PubchemSearchQA, which
leverages an LLM to retrieve and extract authorized, comprehensive compound information from
PubChem (Kim et al.} 2019), and MoleculePropertyPredictor tools, which employ neural network-
based models for specific molecular property predictions. We have also improved several tools
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present in ChemCrow. For instance, SMILES2Name has been enhanced by integrating multiple
information sources, resulting in a more robust service. WebSearch has been upgraded with an
LLM-enhanced searching service, providing more comprehensive and organized search results. No-
tably, we introduce the AiExpert tool, an LLM instructed to answer any questions. It is designed to
leverage the LLM’s internal knowledge and address scenarios where other tools cannot handle (e.g.,
for analysis tasks). For a comprehensive overview of the tool set, please refer to Appendix [A]

3 EXPERIMENT

Table 1: Datasets used in our experiments.

Category Dataset # Sample Specific task type
Specialized tasks SMollnstruct 700 molecule-centric tasks
MMLU-Chemistry 70  High school- and college-level questions

General Questions GPQA-Chemistry 93  Graduate-level questions

To thoroughly assess models’ abilities on various aspects of chemistry, we select three distinct
datasets that fall into two categories as listed in Table [l Specialized chemistry tasks focus on
practical, experiment-like tasks involving molecular manipulations, predictions, and representations.
This category includes SMollnstruct (Yu et al., 2024), which contains multiple types of molecule-
centric tasks. General chemistry questions, on the other hand, resemble questions appearing in
exams at different levels and test a wide range of fundamental knowledge and general reasoning in
chemistry. This category includes MMLU-Chemistry, a chemistry subset of the MMLU benchmark
(Hendrycks et al., 2021) that consists of high school and college questions, and GPQA-Chemistry,
the chemistry section of the GPQA-Diamond benchmark (Rein et al.|[2023)) that consists of difficult
graduate-level questions.

We compare our ChemAgent with two types of methods: (1) The first type comprises state-of-
the-art (SoTA) base LLMs, specifically GPT-40 and Claude-3.5-Sonnet, selected for their superior
capabilities in chemistry among existing LLMs. (2) ChemCrow (M. Bran et al.,|2024), a pioneering
chemistry-focused agent equipped with 18 expert-designed tools. For ChemCrow and ChemAgent,
we utilize GPT-40 or Claude-3.5-Sonnet as the backbone language modeﬂ For brevity, we refer to
these foundational models as GPT and Claude, respectively, unless otherwise specified.

In the following subsections, we will first present the overall performance across all the three datasets
(Section[3.1)), and then conduct detailed error analysis in Section

3.1 OVERALL PERFORMANCE

3.1.1 SMOLINSTRUCT

The SMollnstruct dataset comprises 14 specific chemistry tasks, including forward synthesis, name
conversion, and property prediction, etc. (Yu et al.||2024). For evaluation, we randomly select 50
samples from the test set for each task. Following Yu et al.|(2024)), we use the same set of metrics for
the tasks. For reference, we also include SoTA non-LLLM models used in|Yu et al.| (2024) as well as
LlaSMo a fine-tuned Mistral model (Jiang et al., 2023) using SMollnstruct. For SoTA non-LLM
models and LlaSMol, we adopt their own formats of input and output. For all the other models, we
prompt them to think step by step, i.e., using chain-of-thought (CoT), and wrap their final answers
with “<ANSWER>" and “</ANSWER>" to facilitate answer extraction.

The results are presented in Table [2]and Table[3] We can draw some key findings as follows:

The tool-augmented ChemAgent models exhibit substantial improvements over their base
LLM counterparts. Their performance is comparable to, and in many cases surpasses, that of
the SoTA non-LLM models and LIaSMol. This enhancement highlights the critical role of domain-
specific tools in augmenting LLLMs’ capabilities.

2Model versions: gpt -40-2024-08-06 and claude—-3-5-sonnet-20240620.
Shttps://huggingface.co/osunlp/LlaSMol-Mistral—-7B
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Table 2: The results on SMolInstruct for name conversion and property prediction tasks. The metrics
are adopted from |Yu et al.[(2024]), and all the metrics except RMSE are in percentage.

NC PP
Model I2F 12S S2F S21 ESOL Lipo BBBP Clintox HIV SIDER
EM EM  Valid EM EM RMSE| RMSE| Acc Acc Acc Acc

SoTA non-LLM models 96.0 68.0 100.0 100.0 540 0.808 0.527 88.0 90.0 94.0 70.0

GPT-40 12.0 0.0 66.0 8.0 0.0 1.315 1.264 70.0 36.0 86.0 44.0
Claude-3.5-Sonnet 4.0 10.0 70.0 4.0 2.0 1.443 1.267 78.0 50.0 88.0 62.0
LlaSMol 92.0 60.0 96.0 96.0 34.0 1.062 1.164 82.0 98.0 94.0 T74.0
ChemCrow (GPT) 18.0 10.0 18.0 88.0 2.0 4.376 2.061 46.0 62.0 74.0 36.0
ChemCrow (Claude) 16.0 14.0 18.0 42.0 2.0 2.025 1.179 60.0 34.0 92.0 32.0
ChemAgent (GPT) 100.0 64.0 100.0 100.0 70.0 0.812 0.529 90.0 82.0 94.0 70.0

ChemAgent (Claude) 100.0 68.0 100.0 100.0 70.0 1.131 0.531 90.0 58.0 92.0 68.0

Table 3: The results on SMollnstruct for task MC, MG, FS, and RS. All the metrics are adopted
from|Yu et al.| (2024), and all except METEOR are in percentage.

MC MG FS RS
METEOR EM FTS Valid EM FTS Valid EM FTS Valid
SoTA non-LLM models 0.539 32.0 757 96.0 78.0 91.7 100.0 42.0 80.5 100.0

Model

GPT-40 0.152 10.0  57.5 84.0 12.0 46.3 84.0 0.0 36.0 84.0
Claude-3.5-Sonnet 0.211 12.0 675 90.0 22.0 60.9 98.0 0.0 457 90.0
LlaSMol 0.426 22.0 67.0 98.0 56.0 834 100.0 26.0 70.3 100.0
ChemCrow (GPT) 0.195 34.0 799 68.0 72.0 92.5 92.0 8.0 49.0 74.0
ChemCrow (Claude) 0.255 40.0 81.0 86.0 70.0 90.5 92.0 22.0 0.0 90.0
ChemAgent (GPT) 0.510 28.0 76.8 90.0 78.0 921 98.0 42.0 78.0 98.0
ChemAgent (Claude) 0.443 44.0 83.5 100.0 80.0 92.2 100.0 42.0 78.6 100.0

While Claude-3.5-Sonnet generally outperforms GPT-4o0, their performance as ChemAgent
backbones is comparable. This parity in performance can be attributed to the nature of the SMolIn-
struct tasks, which primarily require effective tool utilization rather than extensive knowledge or
complex reasoning abilities inherent to the LLMs themselves. Despite differences in tool-use pref-
erences, which lead to varying performance in some tasks, both models demonstrate proficiency as
“tool users,” effectively leveraging the provided resources to address the given problems.

In comparison to ChemCrow, the existing chemistry-oriented agent equipped with various
tools, ChemAgent demonstrates superior performance. Our analysis suggests that this perfor-
mance disparity may be attributed to ChemCrow’s limited tool set and the potential lack of ro-
bustness in its tool implementations. For instance, ChemCrow’s apparent deficiency in molecular
property prediction tools and its limited web search capabilities seem to hinder its performance in
property prediction tasks. Conversely, ChemAgent’s more comprehensive and robust tool set ap-
pears to provide a more holistic information source for LLMs to leverage effectively.

3.1.2 MMLU-CHEMISTRY

To effectively and efficiently evaluate the models, we build MMLU-Chemistry, a subset of 70
chemistry question samples derived from the widely-used MMLU dataset (Hendrycks et al., [2021).
Specifically, to increase the difficulty and differentiation of the questions, while avoiding erroneous
samples presented in the original MMLU, we select samples that appear in both MMLU-Pro (Wang
et al.l [2024) and MMLU-Redux (Gema et al.| |[2024). These two datasets are verified versions of
MMLU, and MMLU-Pro has extended the answer options from 4 to 10 to introduce more chal-
lenges. When the gold standard answers from both sources match, we utilize the 10 options from
MMLU-Pro. In cases of discrepancies, we manually review and correct any potential issues. To
reduce the cost of evaluation, we eliminated samples where all models performed correctly in our
preliminary experiments. This results in a final set of 70 questions, divided evenly between 35 high
school-level and 35 college-level questions.

To understand the effect of few-shot learning, we introduce a 5-shot setting in comparison with 0-
shot for the base LLMs and ChemAgent. The questions of the in-context examples are originally
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from MMLU’s and MMLU-Pro’s development set, and we manually construct CoT solutions for
the base LLMs and tool-using step-wise solutions for ChemAgent. The order of the examples is
randomized for each test sample. All the models are prompted to generate a CoT solution and close
the solution with “the answer is ...” to facilitate the answer extraction. To mitigate randomness, we
run each sample 3 times and report the average accuracy.

Table 4: Accuracy on MMLU-Chemistry.

Model High school College Overall
GPT-40 (0-shot) 88.6 72.4 80.5
GPT-40 (5-shot) 85.7 72.4 79.0
Claude-3.5-Sonnet (0-shot) 83.8 69.5 76.7
Claude-3.5-Sonnet (5-shot) 83.8 73.3 78.6
ChemCrow (GPT, 0-shot) 47.6 39.0 43.3
ChemCrow (Claude, 0-shot) 69.5 67.6 68.6
ChemAgent (GPT, 0-shot) 80.0 57.1 68.6
ChemAgent (GPT, 5-shot) 87.6 63.8 75.7
ChemAgent (Claude, 0-shot) 73.3 66.7 70.0
ChemAgent (Claude, 5-shot) 86.7 79.0 82.9

From the results presented in Table 4] we can draw several key observations:

Contrary to expectations, the ChemAgent models frequently underperforms their base LLM
counterparts across multiple configurations. Specifically, while ChemAgent achieves the highest
overall performance in one specific configuration (Claude, 5-shot), it demonstrates inferior perfor-
mance compared to the base LLMs in all other configurations. Notably, there exists a substantial
performance gap (11.9%) between GPT-40 and the GPT-based ChemAgent in the 0-shot condition.
This trend persists across both high school and college subsets, and is also observed with ChemCrow,
suggesting a consistent pattern rather than an isolated occurrence. This observation challenges the
intuitive assumption that tool augmentation would invariably enhance the capabilities of base LLMs
by providing additional valuable information. It also contradicts the expectation that an agent system
could default to raw LLM capabilities when tools offer no advantage. Our empirical evidence indi-
cates that this is not uniformly the case, highlighting the requirement of more attention on building
tool-augmented agents on certain applications.

Comparing 0-shot and 5-shot performance, the addition of examples (5-shot) yields minimal
improvement for base LLMs but results in significant enhancement for ChemAgent. This
disparity may be attributed to the extensive pre-training of base LLMs on general chemistry ques-
tions, potentially rendering additional examples redundant for task comprehension. Conversely, for
ChemAgent, the step-wise demonstration examples appear to effectively guide the LLMs in reason-
ing and tool utilization, thereby optimizing the problem-solving process. This finding suggests that
incorporating examples can be a valuable strategy for enhancing the performance of agent systems.

3.1.3 GPQA-CHEMISTRY

GPQA (Rein et al. [2023) is a challenging dataset
that consists of graduate-level questions, requiring
advanced knowledge and complex reasoning. We

. . . GPT-4 40.5
use GPQA-Chemistry, the chemistry questions from Condesss °
. . aude-3.5-Sonnet 52.3
the expert-verified GPQA-Diamond subset to eval-
N g e . . . . ChemCrow (GPT) 27.5

uate models’ abilities in solving difficult chemistry

. . . . . . ChemCrow (Claude) 35.2
questions. This contains 93 multi-choice questions,

. . . . ChemAgent (GPT) 33.8
ranging from general chemistry to organic and in-

ChemAgent (Claude) 45.9

organic chemistry. All the evaluated models were
prompted to generate CoT solutions and close their
output with “the answer is ...” to facilitate answer  Figure 2: Accuracy on GPQA-Chemistry.
extraction. We report the average accuracy across 3

runs. The results in Figure 2]can draw some findings:
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Agent models consistently underperform their base LLLM counterparts. This observation holds
true for both ChemAgent and ChemCrow, corroborating the results observed in MMLU-Chemistry.
These findings suggest that when addressing general chemistry questions, such as those presented in
MMLU-Chemistry and GPQA-Chemistry, tool-augmented LLMs may be less effective than unaug-
mented LLMs. Researchers and practitioners should carefully consider specific application scenar-
ios before implementing tool augmentation for LLMs in this domain.

Claude-based models demonstrate consistently superior performance compared to their GPT-
based counterparts across both base LLMs and agent configurations. This performance dis-
parity suggests that Claude-3.5-Sonnet may possess more comprehensive chemistry knowledge and
exhibit enhanced reasoning capabilities relative to GPT-4o.

3.2 ERROR ANALYSIS

To take a closer look at how ChemAgent made mistakes and understand more about the reasons, we
selected SMollnstruct and MMLU-Chemistry as the representative from each of their categories, and
conducted manual error analysis. For each samples where the models failed on, we manually check
the error, and based on which module made the error, we classify them into three types. Specifically:

* Reasoning error: Errors made by the “reasoning” module, where the agent incorrectly assesses
the current situation or formulates an incorrect plan for subsequent steps. For example, misunder-
standing the tool output, or proposing an erroneous method.

* Grounding error: Errors occurring during tool invocation, such as calling a wrong tool not ex-
pected in the “thought”, using an incorrect input format, or providing erroneous input to a tool.

* Tool error: Errors originating in the environment (the tools in this study), where tools fail to
execute or return incorrect/inaccurate information.

3.2.1 SMOLINSTRUCT

9 95.1% 9
100.0% b 90.0% g1 o
90.0% 80.0%
80.0% 70.0%
70.0% Reason{ng error (2.0%) 60.0% Reasoning error (2.6%)
60.0% Grounding error (1.0%) 50.0% Grounding error (0.0%)
50.0% Tool error (97.1%) .07 Tool error (97.4%)
40.0%
40.0%
30.0% 30.0%
20.0% 20.0% 15.8%
10.0% 2.0% 2.0% 1.0% 10.0% 2.6%
0.0% 0.0%
wrong tool inconsistent inappropriate wrong input ‘o"‘ o ®Q"'
output tool outputs reasoning format < & &
(a) ChemAgent (GPT) on 102 error cases. (b) ChemAgent (Claude) on 114 error cases.

Figure 3: The error analysis on SMollnstruct.

We printed out all the samples where ChemAgent made wrong predictions, and manually checked
errors for which leaded to the final failure. This involved 102 samples for ChemAgent (GPT) and
114 samples for ChemAgent (Claude), where each sample has 1 error. The result is presented in
Figure[3] We can draw the following findings:

We manually analyzed all samples where ChemAgent made incorrect predictions. This analysis
encompassed 102 samples for ChemAgent (GPT) and 114 samples for ChemAgent (Claude), with
each sample containing one error. The results are presented in Figure [3] from which we can draw
the following conclusions:

For both models, tool errors account for over 97 % of all errors, highlighting the critical role of
tools as essential information sources in these specialized chemistry tasks. This finding under-
scores the importance of enhancing tool robustness and accuracy. In cases where neural networks
serve as tools (e.g., BBBPPredictor, AiExpert) and are inherently subject to imperfect accuracy (as is
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prevalent in ChemAgent), it would be beneficial to implement a mechanism that acknowledges po-
tential tool inaccuracies and prompts LLMs to seek alternative methods for information acquisition
or verification.

An intriguing observation is the occurrence of errors due to inconsistent outputs from multiple
tools, particularly prominent in the Claude-based model. Upon closer examination, this phe-
nomenon is predominantly observed in the Property Prediction-ClinTox (PP-ClinTox) task, where
the agent is required to assess molecular toxicity. In these instances, Claude attempted to verify
its answer using different tools but encountered information inconsistencies. For example, in some
cases, ToxicityPredictor indicated that a molecule was toxic, while WebSearch suggested otherwise,
and the LLM chose the incorrect option without employing additional methods for confirmation. the
need for improved conflict resolution strategies to better handle inconsistent tool outputs in complex
chemistry tasks.

3.2.2 MMLU-CHEMISTRY

30.0% 25.0%
25.0% 18.8% Reasoning error (68.8%)

20.0% 15.6% Grounding error (6.2%)
15.0% Tool error (25.0%)
9.4% 9.4%
10.0% 6.3% 6.3%
5.0% 3.1% 3.1% 3.1%

0.0%
wrong tool faulty wrong domain misunderstand. wrong formula info neglect wrong unit algebra error  wrong final incomplete
output assumption reasoning conversion answer tool input

Figure 4: Error analysis of ChemAgent (Claude) on MMLU-Chemistry, calculated on 32 error cases.

To elucidate the error patterns on the general chemistry questions, we conducted a manual analysis of
error cases with a domain expert. Our study involves 28 samples where ChemAgent (GPT, 0-shot)
failed to provide correct answers. The chemistry expert was invited to meticulously examine the
discrepancies between ChemAgent’s responses and those of GPT-40 and list the errors. The results
of this analysis are presented in Figure [d] from which we can draw several significant observations:

Unlike the SMollInstruct dataset where tool errors predominate, the MMLU-Chemistry
dataset reveals a higher proportion of reasoning errors, accounting for nearly 70%. This shift
can be attributed to the nature of MMLU tasks, which typically demand broader knowledge and
more intricate chemical reasoning while relying less on external tools.

The observed reasoning errors tend to manifest as minor inaccuracies at various interme-
diate stages of the problem-solving process. Among the 7 reasoning errors in Figure ] none
resulted from an incorrect overall method. Instead, they arose from small mistakes during execu-
tion. For instance, “faulty assumptions” occurred when the model applied inapplicable conditions,
while “wrong domain reasoning” resulted from incorrect logical reasoning steps. This behavior re-
sembles that of a student who understands the overall concept but makes careless mistakes under
exam conditions. Compared to raw LLMs, the tool-augmented agent seems to be more prone to
such errors.

Although less prevalent than in the SMolInstruct dataset, tool errors remain a significant
portion of the observed errors. This persistence underscores the ongoing need for refinement and
enhancement of the tools integrated into the ChemAgent system.

4 RELATED WORK

Recent advancements in large language models (LLMs) have led to the development of sophisti-
cated Al agents capable of assisting in various aspects of chemical research. These agents, such as
ChemCrow (M. Bran et al., 2024) and Coscientist (Boiko et al., [2023)), have demonstrated the abil-
ity to automate routine chemical tasks and accelerate molecular discovery. ChemCrow, for instance,
integrates LLMs with common chemical tools to perform a wide range of chemistry-related tasks,
consistently outperforming GPT-4 in accuracy. Similarly, Coscientist exemplifies the integration of
semi-autonomous robots in planning and executing chemical reactions with minimal human inter-
vention. Other notable agents include Chemist-X (Chen et al., 2024), which focuses on designing
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chemical reactions to achieve specific molecules, and ProtAgent (Ghafarollahi & Buehler, 2024), a
multi-agent system designed to automate and optimize protein design.

In the realm of experimental planning, several agents have been developed to bridge the gap between
virtual assistants and physical laboratory environments. CALMS (CHERUKARA et al} [2024) en-
hances laboratory efficiency by operating instruments and managing complex experiments through
conversational LLMs. BioPlanner (O’Donoghue et al.| |2023)) improves experimental efficiency by
creating pseudocode representations of procedures, while CRISPR-GPT (Huang et al.| 2024)) as-
sists in designing gene editing experiments iteratively with constant human feedback. LLM-RDF
(Ruan et al., 2024]) takes this a step further by automating every step of the synthesis workflow, from
literature search to product purification.

Cheminformatics tasks have also been significantly impacted by LLM-based agents. CACTUS (Mc-
Naughton et al., 2024)) automates the application of multiple cheminformatics tools while maintain-
ing human oversight in molecular discovery. ChatMOF (Kang & Kim| 2023) focuses on predicting
and generating Metal-Organic Frameworks, integrating MOF databases with its predictor module.
IBM ChemChat augments LLMs with common APIs and Python packages used in cheminformatics
research, facilitating tasks such as de novo drug design and property prediction. These advancements
collectively demonstrate the transformative potential of Al agents in chemical research, streamlining
processes, enhancing efficiency, and accelerating scientific discovery.

5 CONCLUSION

In this paper, we conducted a comprehensive evaluation of tool-augmented language agents for
chemistry problem-solving. Our study introduced ChemAgent, an advanced agent leveraging 29
specialized tools, and assessed its performance across diverse chemistry tasks using three datasets:
SMollnstruct, MMLU-Chemistry, and GPQA-Chemistry.

Our findings reveal that while ChemAgent substantially outperforms ChemCrow and demonstrates
significant improvements on specialized tasks, it does not consistently surpass the base LLMs with-
out tools. The impact of tool augmentation is highly dependent on task characteristics. For tasks
requiring specialized molecular operations, tool integration yields notable performance gains. How-
ever, for general chemistry questions necessitating extensive reasoning and domain knowledge, tool
augmentation may hinder performance.

The error analysis highlights that tool errors predominate in specialized tasks, whereas reasoning
errors are more frequent in general chemistry questions. This suggests the need for robust tool
implementations and enhanced reasoning capabilities.

Overall, our research underscores the potential and limitations of tool-augmented LLMs in chem-
istry, emphasizing the importance of task-specific tool selection and integration strategies. Future
work should focus on improving tool accuracy and developing mechanisms to balance tool use with
intrinsic reasoning abilities to maximize the effectiveness of language agents in chemistry.
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A TooL SET OF CHEMAGENT

The current tool set contains 29 distinct tools, which can be categorized in to general tools, molecule
tools, and reaction tools, based on their functions. New tools can be easily added for any applications
and tasks.

General tools: Provide broad information retrieval, web searching, and computational.

AiExpert: A general-purpose Al expert capable of answering a wide range of questions when
other specialized tools are insufficient.

PubchemSearchQA: Searches and retrieves molecule/compound information from PubChem, a
comprehensive database of chemical molecules and their activities.

PythonREPL: Executes Python commands and allows for package installation.

WebSearch: Searches the internet for both general and domain-specific information, providing
concise summaries of relevant content.

WikipediaSearch: Searches Wikipedia and provides summaries of related content.

Molecule tools: Offer various analyses, predictions, and conversions related to chemical compounds
and their properties.

BBBPPredictor: Predicts the probability of a compound penetrating the blood-brain barrier.
CanonicalizeSMILES: Converts SMILES representation to its canonical form.
CompareSMILES: Determines if two molecule SMILES representations are identical.
CountMolAtoms: Counts the number and types of atoms in a molecule.
FunctionalGroups: Identifies functional groups present in a molecule.

GetMoleculePrice: Retrieves the cheapest available price for a purchasable molecule.
HIVInhibitorPredictor: Predicts the probability of a compound inhibiting HIV replication.
IUPAC2SMILES: Converts [IUPAC names to SMILES representation.

LogDPredictor: Predicts the octanol/water distribution coefficient (logD) at pH 7.4.
MolSimilarity: Computes the Tanimoto similarity between two molecules.
MoleculeCaptioner: Generates a textual description of a molecule using neural networks.

MoleculeGenerator: Creates SMILES representations based on molecular descriptions using neu-
ral networks.

Name2SMILES: Converts common molecule names to SMILES representation.
PatentCheck: Verifies if a molecule is patented.

SELFIES2SMILES: Converts SELFIES representation to SMILES representation.
SMILES2Formula: Derives the molecular formula from SMILES representation.
SMILES2IUPAC: Converts SMILES representation to [IUPAC name.
SMILES2SELFIES: Converts SMILES representation to SELFIES representation.
SMILES2Weight: Calculates the molecular weight from SMILES representation.

SideEffectPredictor: Predicts the probabilities of a compound causing various side effects across
20 different categories.

SolubilityPredictor: Predicts the log solubility of a compound in mol/L.
ToxicityPredictor: Predicts the probability of a compound being toxic.

Reaction tools: Predict products of chemical reactions and suggest potential reactants for synthe-
sizing given products.

ForwardSynthesis: Predicts the products of a chemical reaction based on given reactants and
reagents.

Retrosynthesis: Conducts single-step retrosynthesis, suggesting potential reactants to synthesize
a given product.
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