
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPUTE-EFFICIENT EVALUATION OF
LLM VOTING ACCURACY

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time scaling methods, such as voting, have emerged as a powerful paradigm
to dramatically improve the performance of large language models (LLMs). Ma-
jority voting is often useful however to estimate the tradeoff between task perfor-
mance (e.g., accuracy) and computational cost, as we vary the size of ensemble
used in voting, denoted M ; or as we vary hyperparameters, such as Temperature,
in pursuit of a more favorable tradeoff. In the literature, evaluating voting accu-
racy performance is done using a purely empirical approach that requires many
LLM evaluations and is highly computationally intensive. In this work we pro-
pose two methods to estimate the voting accuracy of an LLM with substantially
less computational cost than current methods. Using a popular public benchmark
datasets of LLM problems (MATH) we demonstrate that our two estimation ap-
proaches can closely approximate the true ensemble accuracy, with substantially
less computational cost than current methods less computation than a purely em-
pirical approach, especially as the number of votes grows larger.

1 INTRODUCTION

In recent years, large language models (LLM) have garnered tremendous attention due to their im-
pressive capabilities on a wide variety of tasks, and their rapid improvement. Test-time scaling
(Lewkowycz et al. (2022);Wang et al. (2023)) has emerged as a powerful paradigm to dramatically
improve the performance of LLMs without further costly training by intelligently combining LLM
inputs or outputs during inference (i.e., ”test time”). One of the most widely-adopted test-time scal-
ing methods is test-time voting (TTV), wherein (typically) the same LLM is repeatedly given the
same prompt so that it produces a set of M solutions to that prompt, rather than a single solution.
The final answer is then obtained by taking the most frequently-occurring solution (i.e., a plurality
vote), or a solution that appears more than half of the time (i.e., a majority vote). The benefits of
voting accuracy rely upon randomness in the output of the LLM, which is typically introduced by
sampling output tokens from the posterior distribution that is predicted by the LLM. The degree of
randomness in the output is also often mediated by a hyperparameter of the LLM (typically Temper-
ature (Ackley et al. (1985);Bengio et al. (2000);Radford et al. (2019)) or Top p/Nucleus Sampling
(Holtzman et al. (2020)), which adjusts the entropy of the predicted posterior distribution.

Typically the performance benefits of TTV vary in proportion to M , and therefore there is a trade-
off between performance and computational cost. This tradeoff can also be made more, or less,
favorable depending upon factors such as the difficulty of user prompts, and LLM hyperparameter
settings (e.g., Temperature/Top p). In practice therefore, given a representative sample of some pop-
ulation of problems (e.g., calculus problems), it is useful to estimate an LLM’s TTV performance
as a function of M , which can be used to find a suitable tradeoff between performance and compu-
tational cost, or optimize hyperparameters (e.g., Temperature) in pursuit of a more favorable overall
tradeoff.

In the literature, however, evaluating the TTV of an LLM is currently done by applying the LLM
to each prompt M times (for varying settings M), and then applying TTV to the responses in each
case. Typically, in the literature M ∈ [20, 256] (Lewkowycz et al. (2022); Wang et al. (2023);Gem-
ini Team & et al. (2024);Anthropic (2023);Quach et al. (2024);Chen et al. (2024);DeepSeek-AI &
et al. (2025);Lightman et al. (2023);Uesato et al. (2022)), therefore requiring at least that many LLM
evaluations for each test prompt, and many test prompts may be needed to obtain a representative

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

estimate of TTV for a population of prompts (e.g., math problems). This process may also need to
be repeated multiple times for different hyperparameter settings. In practice this approach is prob-
lematic because it requires such a large number of LLM evaluations, and evaluating an LLM just
once is already computationally intensive. This makes it costly or even prohibitive to evaluate the
performance-computation tradeoff of TTV for LLMs, or to optimize their hyperparameters.

Contributions of this Work. In this work we propose two methods to estimate the voting-accuracy
of an LLM with substantially less computational cost than current methods. Our approach relies
upon using a relatively small number, G, of LLM evaluations for each test prompt - we show that
G = 5 is often sufficient - which are used to characterize the probability of sampling correct and
incorrect responses from the LLM. Using this information, we show that one can efficiently estimate
the accuracy of an M -sized test-time ensemble, denoted p∗(M). We propose two approaches: one
based upon a Monte-Carlo estimator, and another approach based upon a Gaussian approximation
assumption. Using a popular public benchmark that is frequently assessed using voting accuracy
(e.g., MATH Hendrycks et al. (2021)), we demonstrate that our two estimation approaches can
closely approximate the true ensemble accuracy, while requiring substantially less computation than
a purely empirical approach, especially as M grows larger. We also investigate key assumptions
upon which our estimators rely, and how our method respond to changes in hyperparameters like
temperature. We release a set of Python-based functions that can be used to implement our methods
in our supplementary material.

2 RELATED WORK

Most existing research on voting, or TTV, is focused upon developing novel voting methods to
improve the final accuracy of LLMs when applied to a specific task (Lewkowycz et al. (2022);
Wang et al. (2023);Gemini Team & et al. (2024);Anthropic (2023)). Some other works develop new
methods to scale model performance using new voting methods (Chen et al. (2024)), early exiting
procedures (Chen et al. (2024);Quach et al. (2024)), or reinforcement learning ensemble approaches
(Lightman et al. (2023);Uesato et al. (2022)). By contrast, this work proposes a computationally
efficient method to estimate the accuracy of particular TTV scheme - specifically the widely-used
plurality and majority vote methods. The motivation for developing efficient accuracy estimation
methods for TTV has only emerged very recently, due to the success of TTV with LLMs, and the
substantial computational cost of evaluating LLMs. To our knowledge, the only existing approach
used to estimate the accuracy of TTV is the purely empirical discussed in Sec. 1, which is widely
used in the literature (Lewkowycz et al. (2022); Wang et al. (2023);Gemini Team & et al. (2024);An-
thropic (2023);Quach et al. (2024);Chen et al. (2024);DeepSeek-AI & et al. (2025);Lightman et al.
(2023);Uesato et al. (2022)).

3 MOTIVATION & PROBLEM SETTING

Here we describe the motivation and problem of estimating the accuracy of LLMs, and especially
LLM ensembles. To aid the reader’s understanding our methodology we provide a notation table
in Appendix A.

3.1 MOTIVATION

Accuracy and voting accuracy are related but distinct: two models can have the same accuracy yet
very different voting accuracy. Figure 1 illustrates this with a synthetic test set. Panel (a) shows the
per-question success rates (p∗n) for two LLMs. Although the distributions differ, their means—i.e.,
standard accuracy when each question is asked once—are identical. Panel (b) shows the conse-
quence for voting: as we increase samples per question from 1 to 100 and take a majority vote,
LLM 1 converges to a lower voting accuracy than LLM 2. Standard accuracy alone therefore fails
to predict behavior under voting; estimating voting performance requires multiple responses per
prompt.

This distinction has compute implications. Each LLM inference is costly: even small models (e.g.,
Llama 3.2 1B) require ∼ 2.46 TFLOPs per query, while very large models (e.g., Llama 3 405B)
can exceed ∼ 810 TFLOPs per query (Grattafiori (2024)). Repeated sampling for voting can strain

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of Accuracy vs Majority Vote Accuracy using two hypothetical LLMs with
the same accuracy, but very different ensemble accuracies. (a) A histogram of the probability of
returning the correct response for individual questions. (b) A comparison of the same models using
voting-accuracy at different values of M , where M represents the number of responses in the vote
ensemble. p∗n(M) is the accuracy of the LLM on prompt n given M repetitions of prompt n, and
p∗(M) is the overall voting-accuracy of the LLM averaged across all prompts in the test set.

even well-resourced organizations, so methods that estimate voting accuracy with fewer queries are
prudent.

3.2 PROBLEM SETTING

Here we present a rigorous description of plurality voting with LLMs, as well as the current empir-
ical method of evaluating their accuracy. We assume that we have some model (e.g., an LLM, f)
with parameters ϕ that takes a user-provided prompt X ∈ X as input and returns a random sequence
of tokens, Y , and given by

Y = fϕ,t(X,Z) ∼ PY |X (1)

Where, X ∼ PX is a distribution over prompts, Z ∼ PZ represents the randomness of the LLM
even when given a fixed input prompt, which arises due to sampling output tokens from the LLM
(e.g., we sample each output token based upon probabilities produced by the LLM). The distribution
over Y ∈ Y is denoted PY |X . Here the subscript t is some user-provided parameter that influences
the properties of PY |X , such as the “Temperature” parameter that is common in LLMs.

M -Plurality Ensembles. This is a widespread approach to improve the accuracy of LLMs, where
we present some specific prompt X = x to the LLM repeatedly M times and then identify the
output of the LLM that occurs most frequently1. Mathematically, we set X = x and draw M
samples {Ym(x)}Mm=1 ∼ PY |X=x, where PY |X=x denotes the distribution that results from setting
X = x. Note that M is not a random variable. Then we count the number of instances of each
candidate solution

CM (y, x) =

M∑
m=1

1[Ym(x) = y],∀y ∈ Y (2)

The quantity CM (y, x) is a random variable that indicates the number of times that we encounter
output y, given M repeated prompts of our LLM with x. Then the output of the ensemble is the
output that appears most frequently, given by

YM (x) = argmax
y

CM (y, x) (3)

1When scoring LLMs, it is common to create a ”grading” function that identifies analogous LLM output
and treats them as a single candidate solution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Here YM (x) is a random variable representing the single output returned by the M -member plurality
vote from the LLM, given a particular prompt x. Although x, y, and M are not random quantities
there is randomness due to Z from Eq. 1 that generates each individual output in the ensemble.

The Problem: Accuracy Estimation. In this work we consider problems where there is some
member Y ∗(X) ∈ Y that represents the desired output of the LLM, which depends upon the prompt,
X . A widely-used performance metric is accuracy, given by

p∗(M) = (1/M)E∼X,Z [1[YM (X) = Y ∗(X)]] (4)

which is typically measured over some distribution of prompts PX and some scheme for sampling
different LLM outputs when X = x, PZ . The accuracy p∗(M) can also be interpreted as the average
probability of producing the correct response over some population of prompts. To approximate
p∗(M) we can sample prompts {xn}Nn=1 ∼ PX and then sample plurality votes for each prompt
{yk,M (xn)}Kk=1 ∼ PYM |X=xn

. In other words, for each prompt, xn, we create K independent
M -sized ensembles, where yk,M represents the candidate chosen by the kth ensemble. We then
compute the sample accuracy estimator

p̂∗(M) =
1

NK

N∑
n=1

K∑
k=1

1[yk,M (xn) = y∗(xn)] (5)

Although this estimator is widely used in the literature, it is computationally expensive, requiring
NKM calls to an LLM. For simplicity of exposition, our subsequent discussion focuses on estimat-
ing plurality vote accuracy for a single prompt, x, so that N = 1 and we have

p̂∗emp(M) =
1

K

K∑
k=1

1[yk,M (x) = y∗(x)] (6)

We can always recover the sample estimator in Eq. 5 by averaging p̂emp(M) over a representative
sample of prompts.

4 PROPOSED ACCURACY ESTIMATORS

We propose two methods to estimate plurality ensemble accuracy, which each trade-off computa-
tionally efficiency and estimation accuracy (of the LLM’s TTV accuracy) to varying degrees. We
argue that both methods have preferable tradeoffs compared to the empirical estimation (Eq. 6).

4.1 MONTE-CARLO ESTIMATOR, p̂∗mc

Our approach relies on the assumption that, given a fixed input prompt X = x, the output of
LLMs, Y (x), are independent and identically distributed (iid). This condition holds if PZ is iid
and fϕ is deterministic, and both of these conditions are generally satisfied in practice. Given these
assumptions, the output of an LLM can then be treated as a categorical distribution over possible
outcomes, Y (x) ∼ PY |X=x = CAT (p(x)), where p(x) = {py(x)}|Y|

y=1, where each py(x) is the
probability of sampling y ∈ Y , conditioned on prompt x. It then follows that the number of votes
for each candidate solution returned after M prompts (e.g., from a plurality vote) is multinomial,
CM (y, x) ∼ MULTI(p(x),M).

Therefore, if we know p(x) then we can construct a computationally inexpensive Monte-Carlo esti-
mator for p∗(M) by sampling votes cM (x) = {cM (y, x)}y∈Y ∼ MULTI(p(x),M). From here we
can proceed to estimate one sample estimate of p∗(M) using Eq. 3 to obtain a single plurality vote
sample. We can then repeat this process K times and use the collection of samples in Eq. 6. Since
we are sampling from a multinomial distribution rather than from an actual LLM, these operations
are substantially more computationally efficient, however, we need some way to estimate p(x).

Our proposed solution involves drawing a relatively small number of G sample outputs from the
LLM, fϕ,t, with which we can estimate p(x) by counting the votes for each output candidate, c(y, x)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

as shown in Eq. 2, but with G samples instead of M . Crucially though, instead of proceeding to
estimate a plurality vote outcome as before, we use these data instead to obtain a sample estimator
py(x) ≈ p̂y(x) =

1
Gc(y, x). We can then use the Monte-Carlo approach outlined above to estimate

p∗M , and we denote the resulting estimator as p̂∗mc.

Advantages and potential limitations. Although the monte-carlo approach still requires obtaining
samples from an LLM, we anticipate that generally G << KM evaluations required by the widely-
used empirical estimator in Eq. 6. For example, whereas M grows in proportion to the size of the
plurality ensemble, G will generally remain fixed, giving it better scaling properties. Furthermore,
sampling from a Multinomial is orders of magnitude faster than evaluating an LLM, and therefore
we can run a very large number of plurality vote simulations (i.e., K in Eq. 6) in real time at very
little computational cost.

Because Monte-Carlo will allow for a very large K, it is likely to converge to a highly accurate
solution of p∗M , assuming our estimate of p(x) is accurate. However, because our estimate of p(x)
will always be imperfect, Monte-Carlo will also converge to an imperfect solution. One goal of our
numerical experiments will be to estimate this error. Also, in principle the space of LLM outputs
will be much larger than the number of LLM samples we collect: i.e., |Y| ≫ |G|. Therefore, with
just G samples, we will not encounter most possible LLM outputs in Y , but in practical scenarios
most of these outcomes will have negligible probabilities, and crucially, only a few outputs (often
including the correct solution) will occupy most of the probability mass, so that G can be quite
small. As we show in our experiments, for most scenarios, G = 5 is suitable for estimating p∗(M)
for any size of M .

4.2 ANALYTICAL ESTIMATOR, p̂∗ana

Here we develop an analytical estimator for p∗(M) as well, so that we can estimate it for any value
of M using a closed-form expression. We begin by observing that p∗(M) can be expressed as the
probability that there are more votes for the true solution than for every other unique candidate
solution returned by the LLM. Mathematically we can express this as

p∗(M) = Pr[∩y∈Y\y∗ [CM (y∗, x) > CM (y, x)]] (7)

However, each CM (y, x) is a random variable sampled from a shared Multinomial distribution and,
to our knowledge, there is no known analytical expression for this quantity. We propose to overcome
this limitation by approximating each CM (y, x) in Eq. 7 as independent and normally distributed
with their own mean and variance. Indeed, based on the central limit theorem (Yates & Goodman
(2014)), when CM (y, x) is sufficiently large, it can be approximated as a normal distribution, which
we denote VM (y, x), with mean, µ(y), and variance, σ2(y) given by

µ(y) = Mpy(x), and σ2(y) = Mpy(x)(1− py(x)) (8)
where as earlier, py(x) is the probability of sampling outcome y from the LLM. Therefore, like the
Monte-Carlo estimator, this approach requires an estimate of these probabilities, and again we use
G samples to estimate each py(x) for the Normal approximation.

Using the Normal approximation we can treat each random variable as independent and we can
replace the conjunction in Eq. 7 with a product, given by

p̂∗ana(M) =
∏

y∈Y\y∗

Pr[VM (y∗, x) > VM (y, x)] (9)

where we have replaced CM (y, x) with its normal approximation VM (y, x). Each term in the prod-
uct in Eq. 9 is now an inequality between two independent normal random variables, which has a
well-known analytic expression, given by

Pr[VM (y∗, x) > VM (y, x)] = Φ

(
µ(y∗)− µ(y)√
σ2(y∗) + σ2(y)

)
(10)

Advantages and potential limitations. In similar fashion to the Monte-Carlo estimator, the analyti-
cal approach here uses a sample estimator for the probabilities of each LLM output, py(x), given a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Comparison of Approximation Method Performance for GPT-4o Mini on the MATH
dataset. M represents the number of responses in the TTV ensemble, and p∗(M) is the overall
TTV accuracy of the LLM averaged across all prompts in the test set.

specific prompt. However, whereas the Monte-Carlo approach relies on these probabilities to sam-
ple plurality vote outcomes, the approach here uses them in a closed-form approximation to p∗(M),
which requires substantially less computation. However, this approach relies upon a Normal approx-
imation which may introduce varying degrees of error in the final estimate of p∗(M). The Normal
approximation works best when there are relatively few non-zero CM (y, x) values, and they are
relatively large, so that the central limit theorem leads to a good Normal Approximation.

5 EXPERIMENTS

We constructed experiments to analyze three key aspects of our methodology:

1. Close approximation to empirical results, section 5.1.
2. Our approximations result in an substantial reduction in required compute and processing

time (e.g., they are efficient), section 5.2.
3. Verify key assumptions, section 5.3. Here we verify key assumptions (namely that only a

few outputs will occupy most of the probability mass, so that G can be quite small)

We evaluated our methods on a standard LLM benchmark that is routinely used in voting-accuracy
studies: MATH (Hendrycks et al. (2021)). We tested two models: a commercial model, GPT-
4o-mini (gpt-4o-mini-2024-07-18) (OpenAI (2024)), and an open-source models, LLaMA-3.2 1B
(Instruct BF16) (Grattafiori (2024)). We accessed GPT-4o-mini via OpenAI’s Python API.

Our experiments used prompting practices common in related litterature—specifically, zero-shot
chain-of-thought (Kojima et al. (2022); Wei et al. (2022)). We did not study few-shot or other
prompts because (1) they are not necessary to assess our methodology, (2) API costs for large-scale
runs on state-of-the-art models are non-trivial, and (3) the compute required for extensive prompt
sweeps is likewise non-trivial.

For our open source model we used a 10% sample of the test set, since full-set evaluation is unnec-
essary. This is because our goal is to inform developers about expected estimation ability on a set of
problems—not to establish a competitive baseline—so a representative sample suffices. Moreover,
each prompt was queried 50 times per model, making full-set runs prohibitively resource intensive.

We examine the performance characteristics of our two accuracy estimators (p̂ana and p̂mc) for
LLM ensembles of sizes M ∈ [10, 100]. We choose this range because it is representative of what
is generally used in practice, and sufficiently large to demonstrate the efficacy of our methods. To
evaluate the accuracy of our two accuracy estimators, we need the ”true” accuracy of our LLMs for
our testing dataset for each setting of M . In practice however we can only approximate the true
accuracy of an LLM ensemble. Obtaining a high quality accuracy estimate using existing empirical
methods is highly computationally costly: potentially requiring predictions from several instantiated
M -sized ensembles for each question. In principle, our proposed monte-carlo estimator, p̂mc is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method Time TFLOPS
(Compute hours)

Empirical 1351.1 1,230,000.0
Monte-Carlo 1.25 0.0003
Gaussian 0.017 0.000003

Table 1: Time & Compute Comparison of Methods for Llama 3.2 1B Instruct BF16 on the MATH
Benchmark. Empirical results use G = 100; Monte-Carlo Plurality-vote results use G = 10,
M = 100, K = 100; Gaussian Plurality-Vote use G = 10, M = 100.

highly accurate as long as G and K are sufficiently large. Therefore, we obtain ground truth accuracy
for each problem in our dataset by drawing G = 50 to 100 (depending on the specific experiment)
samples from the LLM, and then running K = 1000 monte-carlo simulations to estimate accuracy.
We do this for N = 500 or 5000 prompts in our test dataset, resulting in ground truth accuracy
estimates for N = 500 or 5000 problems, and for all values of M ∈ [10, 100].

5.1 APPROXIMATION OF EMPIRICAL RESULTS HAVE LOW ERROR

To evaluate the precision of our methods we evaluated N = 5000 prompts 100 times each (e.g.,
G = 100) from the MATH dataset using a commercial class model, ChatGPT 4o-mini. We accessed
this model via OpenAI’s python based API, and used it’s default hyperparameter settings (namely
temperature = 1.0).

Our experiments indicate that our plurality-vote estimation methods approximate empirical
plurality-votes with very low error using very limited sample sizes. This is shown in figure 2,
where both our Monte-Carlo and analytical estimator are able to approximate the truth with ∼ 1%
error when only using G = 5. In Figure 2 M was varied from 1 to 100, showing that our meth-
ods completely characterize this plurality-vote performance with minimal compute. Furthermore, in
Figure 2 we see that increasing M beyond 5 samples has little value (in Figure 2, and that the lines
for a plurality vote using M = 10 and M = 100 nearly overlap). This indicates that our method
can precisely and efficiently approximate the maximum performance that can be obtained from a
language model through response ensembling.

5.2 APPROXIMATION OF EMPIRICAL RESULTS ARE EFFICIENT

Our results, shown in table 1, indicate that using our methods can save a substantial amount of time
(several orders of magnitude) and compute when evaluating a model’s TTV accuracy on a dataset.

To evaluate the efficiency of our method we evaluated N = 500 prompts 50 times each (e.g.,
G = 50) from the MATH data set using an open source model (Llama 3.2 1B Instruct BF16 using
default hyperparameter settings, and temperature=1.0). We ran this model on a single NVIDIA
RTX-TITAN with 24GB of VRAM using the Huggingface Python transformer pipeline.

To conduct this efficiency experiment we calculated the average amount of time needed to generate
a response to 1 prompt. This average turned out to be 9.728 seconds, and we used this average to
determine how long it would take to complete a full plurality vote experiment of the MATH dataset
like those commonly found in the literature. Specifically, in table 1 we show how long it would
take to evaluate all N = 5000 MATH dataset questions G = 100 times each empirically. In table
1 we compare this to our approximation methods with G = 10, M = 100, and K = 100 for our
Monte-Carlo method. Our approximation methods were run on a MSI GL65 Leopard with a Intel
Core i7 10th Generation CPU in Python.

We also provide a rough assessment of the amount of compute that will be used by each method
under the same conditions. Our empirical compute estimate was generated according to Kaplan
et al. (2020) and Grattafiori (2024) which detail the number of FLOPS used to provide a response to
a prompt. Notably, in our estimates LLama 3.2 1B Instruct BF16 uses 2.46 TFLOPS to respond to a
prompt. We used OpenAI’s GPT-o3 model to estimate the number of FLOPS our Monte-Carlo and
analytical estimator code used.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Probability Mass Function and Entropy Analysis for GPT-4o-Mini on the MATH dataset.
p̂y,n is the estimated probability of observing candidate y for prompt n. p̂∗n is the estimated proba-
bility of observing the correct candidate on prompt n.

Figure 4: The Effect of Temperature on Answer Candidates PMF Distribution for Llama 3.2 1B
Instruct on the MATH Dataset

5.3 FURTHER ANALYSIS

Verification of Key Assumption. Our plurality-vote methodologies assume the majority of the
probability mass for any particular prompt are concentrated in a small set of answer candidates. In
figure 3 we present analysis of GPT-4o-mini (Temperature = 1.0) on the MATH dataset where we
draw M = 100 samples of N = 5000 prompts, and we show that on average this assumption holds.

In our analysis we assumed that: the full set of candidates for each prompt has 100 members (e.g.,
p(x) has 100 entries), and that if we did not actually observe 100 different answer candidates for any
particular prompt that many of the candidates had such a small rate of occurrence that it was accept-
able to say that CM=100(y, x) = 0. Given these assumptions, figure 3 shows that for GPT-4o-mini
responses to the MATH dataset, on average the probability mass is almost completely concentrated
in 10 candidates or less, and that on average 95% of the probability is concentrated in 5 candidates.
Figure 3 also shows that this holds even for the questions that the model finds difficult (e.g., where
p̂∗n ≤ 0.25). Additionally, figure 3 shows that the entropy of each prompt is low, further indicating
that our central limit theorem assumption holds.

Effects of Temperature on our Methods. To explore the effects of temperature on our methodology
we used the Llama 3.2 1B Instruct model and the MATH dataset (we used an open source model
for these experiments to help control cost). Due to the generation time per prompt iteration (average
9.78 seconds, when running the model on an NVIDIA RTX Titan) we only used 500 of the 5000
total prompts (e.g. N = 500), and we conducted M = 50 iterations of each prompt. Our sample
of the original 5000 questions was stratified across the different topics and problem difficulty levels
specified in the original data set.

Our temperature experiments indicate what we expect to see with respect to the candidates generated
by a LLM as temperature changes: as temperature increases the number of candidates that the
model generates also increases (at temperature=0.0, there is only one candidate, and as temperature
increases more candidates arise), and the distribution of the probability mass becomes more uniform
(shown in figure 4). Subplot b of figure 4 shows that as temperature increases, each candidate’s share

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: The Effect of Temperature on Approximation Error for Llama 3.2 1B Instruct on the
MATH Dataset. p̂y,n is the estimated probability of observing candidate y for prompt n.

of the probability mass begins to approach the amount we would expect in a uniform distribution
(e.g., 0.02).

In figure 5 we show that our methods’ ability to approximate the ground truth still holds as temper-
ature increases. We see that, as we would expect, our methods perfectly approximate the ground
truth when temperature=0.0 (because there is only one answer variety), and that for all temperature
settings our maximum approximation error is ∼ 7% when M ≥ 5. Notably we show this approx-
imation error can be reduced to ≤ 5% by setting G = 10. We hypothesize that the approximation
error is lower for model’s with temperature ≥ 2.0 in these experiments because the model has
such a low probability of answering of observing the correct candidate (on average ≤ 0.15 for both
the temperature = 2.0 and temperature = 8.0 models).

6 LIMITATIONS

Here we only explore how model behavior changes, and how well our methods approximate model
behavior, as a function of temperature, and not top p or other LLM hyperparameters. Our experi-
ments include extreme sizes of LLMs (small, and large) but no mid-sized models due to compute
limitations. Our experiments include only one common benchmark dataset, again due to compute
and budget limitations, but we believe that in spite of this the general principle we have demonstrated
(model performance at larger TTV ensemble sizes can be precisely estimated using a smaller ensem-
ble) holds. We do not develop methods to estimate the performance of newer ensembling methods
like filter-vote (Chen et al. (2024)) or other reinforcement learning practices (Lightman et al. (2023);
Uesato et al. (2022)). If these new methods gain similar traction to majority has, developing compute
efficient evaluation methods will be a prudent avenue of research.

7 CONCLUSION

Language models are increasingly assessed using a voting approach, but this methodology is ex-
tremely computationally intensive. We presented several performance estimation methods that char-
acter maximum possible LLM performance using voting approaches, and showed that the assump-
tions necessary for these methods hold under the standard use case conditions. Furthermore, we
showed that our methods are efficient and precise because they have very low error, and require
very limited time and compute. Our research shows that our methods can precisely approximate the
results of a large empirical evaluation (100 trials per prompt) using a comparatively small sample
size (5− 10 samples per prompt), resulting in a reduction of test time hours and compute TFLOPS
by 8 to 11 orders of magnitude.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for
boltzmann machines. Cognitive Science, 9(1):147–169, 1985. ISSN 0364-0213. doi: https:
//doi.org/10.1016/S0364-0213(85)80012-4. URL https://www.sciencedirect.com/
science/article/pii/S0364021385800124.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2023. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.
In T. Leen, T. Dietterich, and V. Tresp (eds.), Advances in Neural Information Processing Sys-
tems, volume 13. MIT Press, 2000. URL https://proceedings.neurips.cc/paper_
files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf.

L. Chen, J. Q. Davis, B. Hanin, P. Bailis, I. Stoica, M. Zaharia, and J. Zou. Are more llm calls all
you need? towards the scaling properties of compound ai systems. In Proceedings of the Thirty-
eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024. URL
https://openreview.net/forum?id=m5106RRLgx.

Co DeepSeek-AI and et al. Deepseek-v3 technical report, 2025. URL https://arxiv.org/
abs/2412.19437.

Google Gemini Team and et al. Gemini: A family of highly capable multimodal models, 2024. URL
https://arxiv.org/abs/2312.11805.

Aaron et al. Grattafiori. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large lan-
guage models are zero-shot reasoners. NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. Ope-
nAI Blog, July 2024. URL https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/. Published July
18, 2024.

10

https://www.sciencedirect.com/science/article/pii/S0364021385800124
https://www.sciencedirect.com/science/article/pii/S0364021385800124
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://openreview.net/forum?id=m5106RRLgx
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=IFXTZERXdM7
https://arxiv.org/abs/2305.20050
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S. Jaakkola, and Regina
Barzilay. Conformal language modeling. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=pzUhfQ74c5.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. Technical report, OpenAI,
2019. URL https://cdn.openai.com/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf. Technical report.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Roy D. Yates and David J. Goodman. Probability and Stochastic Processes: A Friendly Introduction
for Electrical and Computer Engineers. John Wiley & Sons, Inc., 3rd edition, 2014.

11

https://openreview.net/forum?id=pzUhfQ74c5
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2203.11171

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A NOTATION

Table 2: Notation Table

Notation Description

f Large language model (LLM) like GPT-4o-mini, LLaMa-3.2 3B Instruct,
Gemma-3-1b-it, etc.

t LLM hyperparameter that influences the entropy (e.g., Temperature)

ϕ Parameters of a LLM

N , n The number of problems in a language model test set; indexed by n.
Note, this is not a random variable, it is specified.

M , m The number of queries in an input ensemble, M ; indexed by m. Note,
this is not a random variable, it is specified.

K, k The number of sample sets draw to produce an estimate; indexed by k.
Note, this is not a random variable, it is specified.

G, g A sample draw of queries used to estimate model performance with M ,
or KM queries; indexed by g. We expect that G < M , and G << KM .
Note, this is not a random variable, it is specified.

∗ The truth/correct-output indicator

X The input space of all possible valid prompts that can be given to the
model.

X A random variable representing a random draw from the input space

x, xn A specific prompt. xn specifies the index of the specific prompt in the
dataset

{xn}Nn=1 The dataset of specific prompts used to evaluate the model

PX The probability distribution of the random variable X . This specifies
how likely each x ∈ X is.

Ỹ The space of all latent/raw outputs — possibly logits, token sequences,
internal states, etc.

Y Set of possible final outputs (e.g., strings, labels)

Ỹ Random variable of latent output from LLM

Y The final, observable output random variable — what the user or
evaluator actually sees.

y, yn A specific output from the model, yn specifies the index of the specific
prompt in the input dataset that resulted in yn

YM A random variable representing M draws from a LLM f for each input

YM (x) random variable representing the single output returned by the
M-member plurality vote from the LLM,given prompt x

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

. . . continued from previous page
Notation Description

{Ym(x)}Mm=1 A set of M LLM responses to input prompt x

Ym The m-th draw of random variable YM

PY |X=x The distribution of {Ym(x)}Mm=1 given X = x

CM (y, x) The count of occurrences for candidate y in response to input x,
given M repeated prompts (e.g., an M member plurality)

c(y, x) The count of occurrences for candidate y in response to input x

cM (x) The count of occurrences for each candidate in response to input x,
given an M repeated prompts

MULTI(p(x), M) The multinomial distribution of votes for each candidate stemming from
input x (e.g., CM (y, x) ∼ MULTI(p(x), M))

CAT (p(x)) The categorical distribution of possible outcomes stemming from
input x (e.g., Y (x) ∼ CAT (p(x)))

Y ∗(X) The desired, or correct, output of the LLM given input X

y∗ The specific correct output of the LLM

PỸ ,X The distribution of latent outputs, Ỹ , given input X

PY,X The distribution of final outputs, Y , given input X

h Surjective ”onto” mapping function from Ỹ → Y , e.g. Y = h(Ỹ)

Z Represents the randomness of the model even when given a fixed input
prompt, which arises due to sampling output tokens from the model

PZ The distribution of the internal randomness of the model

p∗n(M), p̂∗n(M) The probability of observing the truth candidate (and it’s estimate) for
prompt n given M trials. The estimated probability of of observing the
truth candidate prompt xn given M trials.

p∗(M), p̂∗(M) The accuracy (and it’s estimate) of the LLM given M repeated queries of
each prompt (e.g., the Test-Time-Voting (TTV) accuracy of the model,
or the average probability of producing the correct response over some
population of prompts).

p̂∗emp(M) The empirical estimate of p∗(M)

p̂∗mc(M) The Monte-Carlo estimate of p∗(M)

p̂∗ana(M) The analytical (e.g., Gaussian) estimate of p∗(M)

p(x) A vector containing the probability of observing each candidate in
response to input x, e.g.,
{py(x)}|Y|

y=1

py(x) The probability of observing candidate y for prompt x

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

. . . continued from previous page
Notation Description

VM (y, x) The number of ’votes’ for candidate y given input prompt x is repeated
over M queries.

µ(y) Mean votes for candidate y for prompt x (e.g., mean of r.v. VM (y, x))

σ2(y) Variance in votes for candidate y for prompt x (e.g., variance of
r.v. VM (y, x)).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B CODE

The python code for our approximation functions is included as .py in our supplementary material.

C SYNTHETIC EXAMPLE DETAILS

The synthetic example we present in Section 2.1 was specifically designed to show that two datasets
can have the same accuracy but different ensemble accuracy. To construct this example we randomly
generated one data distribution of 10000 p∗n values between 0 and 1 with a fixed standard deviation
of 0.1, and mean of 0.717. We then generated a second data distribution of another 10000 p∗n values
between 0 and 1 with a fixed standard deviation of 0.35, and mean of 0.717. For each of these two
distributions, we then generated py for four additional candidates

D LLM USAGE

We used a LLM, GPT-4o, to assist in retrieval and discovery of related works.

15

	Introduction
	Related Work
	Motivation & Problem Setting
	Motivation
	Problem Setting

	Proposed Accuracy Estimators
	Monte-Carlo Estimator, mc*
	Analytical Estimator, ana*

	Experiments
	Approximation of Empirical Results have low Error
	Approximation of Empirical Results are Efficient
	Further Analysis

	Limitations
	Conclusion
	Notation
	Code
	Synthetic Example Details
	LLM Usage

