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Abstract

Class-Incremental Learning aims to update a
deep classifier to learn new categories while
maintaining or improving its accuracy on pre-
viously observed classes. Common methods to
prevent forgetting previously learned classes in-
clude regularizing the neural network updates
and storing exemplars in memory, which come
with hyperparameters such as the learning rate,
regularization strength, or the number of ex-
emplars. However, these hyperparameters are
usually only tuned at the start and then kept
fixed throughout the learning sessions, ignor-
ing the fact that newly encountered tasks may
have varying levels of novelty or difficulty. This
study investigates the necessity of hyperparam-
eter ‘adaptivity’ in Class-Incremental Learning:
the ability to dynamically adjust hyperparam-
eters such as the learning rate, regularization
strength, and memory size according to the
properties of the new task at hand. We pro-
pose AdaCL, a Bayesian Optimization-based ap-
proach to automatically and efficiently determine
the optimal values for those parameters with
each learning task. We show that adapting hy-
perpararmeters on each new task leads to im-
provement in accuracy, forgetting and memory.
Code is available at https://github.com/
ElifCerenGokYildirim/AdaCL.

1 Introduction

This paper focuses on Class-Incremental Learning of
deep neural network representations (Masana et al., 2020;
De Lange et al., 2021). Unlike standard batch learning,
which requires access to data from all categories simultane-
ously, Class-Incremental Learning can update a pre-trained
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Figure 1: Comparison of fixed vs. adaptive continual learn-
ing (AdaCL). In this work, we hypothesize that different
tasks may require different settings and explore the poten-
tial of tuning learning rate (η), regularization strength (λ)
and memory size per task (m), allowing to learn adaptively.

deep classifier with new categories by expanding the clas-
sifier layer with new output nodes for new classes. This
leads to more efficient learning and avoids the need to store
task identities which often are not available in real-world
scenarios.

While Class-Incremental Learning enables expanding a
classifier without requiring task identities, it often results in
catastrophic forgetting. This occurs when the deep learner
sacrifices accuracy on previously seen classes to learn new
ones. Three major approaches have been explored to ad-
dress this issue: regularization, replay and architecture
adaptation. Regularization prevents abrupt shifts in the
neural network weights while learning new classes (Kirk-
patrick et al., 2017; Li and Hoiem, 2017). Replay stores
a few exemplars per class in memory and replays them
during new learning increments (Lopez-Paz and Ranzato,
2017). Architecture-based approaches build network struc-
tures by either expanding the existing network (Rusu et al.,
2016; Yan et al., 2021) or by partially isolating network pa-
rameters to retain past class information (Liu et al., 2021a;
Kang et al., 2022; Dekhovich et al., 2023). Although these
methods improve the performance, they always use a fixed
learning rate, regularization magnitude, and pre-defined
memory size throughout the learning process, which is
likely suboptimal.

This paper addresses the issue of dynamically adjusting
how much to regularize or store in memory for each new
task. We explore whether adaptation is necessary for opti-
mal performance, treating the learning rate, regularization
magnitude, and memory size as latent variables that should
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be adjusted based on the current state of the learner and
the complexity of the task (see Figure 1). We use Bayesian
Optimization to efficiently discover the best hyperparame-
ters per task. Our experiments on CIFAR-100 and MiniIm-
ageNet demonstrate that adapting these parameters to the
tasks results in significant improvements and give us new
insight into how to adapt to various new tasks. In summary,
this paper makes the following contributions:

I. In this paper, for the first time, we raise the important
issue of adaptive hyperparameter selection in class-
incremental learning.

II. We propose to predict the learning rate, regularization
magnitude, and memory size conditioned on the state
of the deep learner and the current learning task via
Bayesian Optimization.

III. Through large-scale experiments on well-established
benchmarks, we show that learning adaptively yields
significant performance and efficiency improvements,
both increasing accuracy and reducing forgetting.

2 Related Work

Class-Incremental Learning. Class-Incremental Learn-
ing updates a deep classifier with sequentially arriving data,
usually with mutually exclusive categories (Masana et al.,
2020; De Lange et al., 2021; Wang et al., 2023; Zhou et al.,
2023; Kilickaya et al., 2023). However, when novel data
arrives, previous training data becomes unavailable, lead-
ing to catastrophic forgetting. To mitigate this, researchers
have developed three main approaches: (i) regularization-
based methods, which stabilize important parameters or
distill previous knowledge into the model (Kirkpatrick
et al., 2017; Zenke et al., 2017; Lee et al., 2017; Li and
Hoiem, 2017; Chaudhry et al., 2018a; Zhou et al., 2021b;
Zhu et al., 2021), (ii) replay-based methods, which usu-
ally benefit from regularization-based methods and store
a subset of training data to rehearse during learning (Re-
buffi et al., 2017; Chaudhry et al., 2018b; Wu et al., 2019;
Aljundi et al., 2019; Ostapenko et al., 2019; Xiang et al.,
2019; Zhao et al., 2020; Liu et al., 2021b; Petit et al., 2023)
and (iii) architecture-based methods redesign network ar-
chitectures by extending the network (Rusu et al., 2016;
Yan et al., 2021; Zhu et al., 2022) or freezing network
parameters partially to preserve old class knowledge (Liu
et al., 2021a; Kang et al., 2022; Dekhovich et al., 2023).

However, current studies assume a constant amount of reg-
ularization and memory size per task throughout learn-
ing sessions, which is unnatural since learning unfamil-
iar objects requires more plasticity than learning familiar
ones (Cha and Cho, 2024). To address this issue, we pro-
pose an adaptive method in which the regularization mag-

nitude, learning rate and memory size are automatically
tuned within each incremental learning step.

Hyperparameter Optimization. Hyperparameter Opti-
mization (HPO) aims to optimize the hyperparameters of
a given deep learning model, including the learning rate,
layer size, or balance of different loss functions. In this
paper, our focus is on balancing the contribution of a stan-
dard cross-entropy and regularization loss, learning rate as
well as memory size per task if applicable. To tackle the
HPO problem, complex techniques such as bi-level opti-
mization (Franceschi et al., 2018) or gradient-based opti-
mization (Baydin et al., 2018) have been proposed. Bi-level
optimizers alternate between optimizing neural network
weights and tuning the hyper-parameters, while gradient-
based methods treat all network weights as hyperparame-
ters to be updated.

Several recent studies (Chaudhry et al., 2019; De Lange
et al., 2021; Liu et al., 2023) share our core motivation by
investigating the impact of hyperparameter optimization in
subsequent tasks. De Lange et al. (2021) adopt a two-stage
strategy: First, they fine-tune the current task to identify
the optimal learning rate with a grid search for maximum
plasticity and peak accuracy. Second, they introduce a new
thresholding hyperparameter to naively balance the plastic-
ity and stability trade-off: starting with a high regulariza-
tion strength and decaying it when the performance of the
current task is below the defined threshold. However, this
approach follows a very naive search since they basically
apply two consecutive grid searches to decide the optimal
value. Moreover, they focus on a Task-Incremental setup
and do not consider the memory size in their search space.

Chaudhry et al. (2019) tunes the hyperparameters for the
first T tasks with a grid search and then uses the best-found
values in the remaining tasks. However, it assumes that the
initial few tasks are representative enough for the rest of
the tasks which may not be realistic in most of the cases.
Again, they worked on the Task-Incremental scenario and
did not consider the memory size in their search space.

Liu et al. (2023) uses reinforcement learning in a Class-
Incremental scenario to adaptively find the best hyperpa-
rameter values while learning the tasks. They hold a valida-
tion set, similar to our study, to estimate rewards by finding
the best set of hyperparameters. However, its search space
is limited to learning rate, regularization strength, and the
type of classifier.

In this work, we propose Bayesian Optimization (Snoek
et al., 2012) with Tree Parzen Estimators due to its effec-
tiveness over multiple hyperparameters. We evaluate the
generality of our approach by dynamically tuning the learn-
ing rate, regularization strength, and memory size across a
stream of tasks.



Elif Ceren Gok Yildirim, Murat Onur Yildirim, Mert Kilickaya, Joaquin Vanschoren

3 Method

Overview. Class-incremental learning involves updating a
neural network with new classes as it comes in. Specif-
ically, the learner receives a sequence of learning tasks
T1:t = (T1, T2, ..., Tt), each with a corresponding dataset
DT = (xi,t, yi,t)

nt consisting of nt instances per task.
Each input pair xi,t, yi,t ∈ Xt ×Yt is sampled from an un-
known distribution where xi,t is the sample and yi,t is the
corresponding label. It’s important to note that the learning
tasks are mutually exclusive, i.e., Yt−1 ∩ Yt = ∅. When a
new learning task arrives, the deep convolutional network
is optimized to embed the input instance into the classifier
space fΘ : Xt → Yt, where Θ represents the parameters of
the learner.

The incremental learner has two goals: to effectively learn
the current task (plasticity) while retaining performance on
all previous tasks (stability). This can be accomplished
by optimizing the following function where CE(·) repre-
sents the Cross-Entropy used in classification, and Reg(·)
is a regularization term that penalizes abrupt changes in the
neural network weights (Li and Hoiem, 2017; Kirkpatrick
et al., 2017; Rebuffi et al., 2017; Zhao et al., 2020):

L = CE(f(xi,t), yi,t) + λ ·Reg(Θ) (1)

3.1 Base Models for AdaCL

AdaCL can be combined with many base incremental
learners. We experimented with four popular, well-
established techniques: EWC (Kirkpatrick et al., 2017),
LwF (Li and Hoiem, 2017) iCaRL (Rebuffi et al., 2017)
and WA (Zhao et al., 2020). We select baselines that com-
plement each other and serve as strong baselines within the
field of incremental learning (Table 1).

Table 1: Selected models to evaluate the impact of adaptiv-
ity in Class-Incremental Learning.

method prior-
based

distillation-
based

exemplar
collection

classifier
correction

EWC ✓
LwF ✓

iCaRL ✓ ✓
WA ✓ ✓ ✓

EWC. Elastic Weight Consolidation (Kirkpatrick et al.,
2017) is a weighted regularization approach. The authors
argue that not all weights contribute equally to learning
a new task and estimate the importance of each weight
in minimizing the classification loss for the current task:
Reg(Θ) = ||F(Θ − Θ′)||, where Θ′ is the model weights
from the previous learning step, F is the Fisher matrix of
the same size as the weight matrices Θ, re-weighting the
contributions of each weight to stabilize the important neu-
rons per task.

LwF. Learning-without-Forgetting (Li and Hoiem, 2017)
is a knowledge-distillation approach where the teacher
branch is the model from the previous task, and the student
branch is the current model. The aim is to match the activa-
tions of the teacher and student branches, either at the fea-
ture or logit level. Formally, LwF minimizes the following
objective where f ′ is the model from the previous learning
step, and KL(p1, p2) is the KL-divergence between two
probability distributions p1 and p2:

Reg(Θ) = KL(f(xi,t), f
′(xi,t)) (2)

iCaRL. The Incremental Classifier and Representation
Learning (Rebuffi et al., 2017) leverages a hybrid approach
that involves two main components: exemplar-based mem-
ory which is carefully selected to maintain representation
and a regularization. The exemplar-based memory mod-
ule retains a subset of exemplar samples from previous
tasks, representing important instances that encapsulate the
learned knowledge. By utilizing exemplars, iCaRL ensures
the model’s ability to recognize and classify past instances
while discriminating between learned and new classes. The
distillation loss as in Eq. 2 used for regularization, enables
knowledge distillation from previous models to guide the
learning process for new tasks. This distillation process al-
lows the model to align logits of new classes with already
learned classes to mitigate catastrophic forgetting.

WA. Maintaining Discrimination and Fairness in Class In-
cremental Learning (Zhao et al., 2020) is a method that
consists of two phases: maintaining discrimination and
maintaining fairness. The first phase is similar to the pre-
viously established method (Rebuffi et al., 2017). Their
study demonstrates that knowledge distillation is not suf-
ficient by itself to prevent the model to treat old classes
and new classes fairly since there is a high tendency to-
wards new classes in the classifier layer to minimize the
Eq 2. Therefore, the second stage named Weight Aligning
(WA) focuses on maintaining fairness to correct this classi-
fier bias towards new classes. WA showed that it treats all
classes fairly, and significantly improves the overall perfor-
mance.

3.2 Constancy Assumption in Class Incremental
Learning

The scalar parameter λ balances the contribution of the
classification and regularization loss functions. A large
value of λ ensures minimal weight updates, which can sac-
rifice learning on the current task. Conversely, a small λ
yields good performance on the current task but may sac-
rifice performance on previous tasks, exacerbating catas-
trophic forgetting. Similarly, requirement for a fixed or
predetermined memory size per task may not always be op-
timal, as it depends on the new task and its relationship to
previous tasks. Specifically,where the new task is highly
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similar to previous tasks, it is possible to retain past knowl-
edge by storing only a small number of representative sam-
ples. Conversely, when the new task is significantly dis-
tinct, it is reasonable to store a larger number of examples
in memory to prevent catastrophic forgetting while learn-
ing new tasks. However, as a common practice, important
hyperparameters such as learning rate (η), regularization
strength (λ), and memory size (m) are set to a fixed or
pre-defined scalar value throughout all incremental learn-
ing sessions with t ∈ T1:t; such that ηt = ηt−1, λt = λt−1

or λt =
t∗c

(t∗c)+c where c is the number of classes per task.
Similarly, mt = mt−1 or mt = M

t where M is the pre-
defined total memory size.

We hypothesize that the assumption of constant or pre-
defined learning rate, regularization strength, and exem-
plar size per task is suboptimal for building accurate life-
long learning machines. Our reasoning is two-fold:

Low Plasticity and High Stability. The incremental
learner may encounter a novel object that is highly famil-
iar with the previously learned tasks. For example, it may
encounter the category dog after observing many other an-
imal categories, such as cat, cow, bird. In this case, the
learner does not need to store many exemplars from pre-
vious tasks or to be too plastic, as it can quickly transfer
knowledge from the previous tasks where it is similar to
the human learning process and referred to low road trans-
fer (Perkins and Salomon, 1992). Hence, no drastic updates
to the learned filters are necessary.

High Plasticity and Low Stability. Conversely, the learner
may encounter a novel object that is highly unfamiliar with
the previous tasks. For example, it may encounter the cat-
egory car after observing many other animal categories,
such as cat, cow, bird. In this case, the learner would re-
quire replaying more exemplars from previous tasks to pre-
serve old knowledge and high plasticity to learn about the
novel object with never-before-seen parts, such as wheels.

3.3 AdaCL: Adaptive Continual Learning

AdaCL aims to optimize the regularization magnitude λ
and memory size m as a function of model performance
over a set of incremental tasks, conditioned on the cur-
rent learning task and all previous tasks. We define η(t) =
η1, η2, . . . , ηt−1, ηt, and λ(t) = λ1, λ2, . . . , λt−1, λt, and
m(t) = m1,m2, . . . ,mt−1,mt where ηt, λt and mt are
predicted by minimizing the following optimization prob-
lem:

arg min
η,λ,m

L(Θ;Vt) = arg min
η,λ,m

|Vt|∑
i=1

[CE(f(xi,t; Θ), yi,t) (3)

Here, Vt is a randomly selected class-balanced subset of
the current task and previous tasks that guide the model’s
adaptation with careful consideration of both new and pre-
vious tasks’ characteristics and prevents bias over certain

Algorithm 1 AdaCL: Adaptive Continual Learning
Require:

θt−1 ▷ model from previous task
Xt ▷ dataset from new task
Mt−1 = m1, . . . ,mt−2,mt−1 ▷ memory from old tasks
Vt−1 = v1, . . . , vt−2, vt−1 ▷ val. set from tasks seen so far
ηspace ▷ search space for learning rate
λspace ▷ search space for regularization
mspace ▷ search space for memory
configs, epochs ▷ # of configurations and epochs

1: Vt = Vt−1 ∪ vt ← Xt

2: for c = 1, . . . , configs do
3: ηt ← ηspace ▷ η for new task
4: λt ← λspace ▷ λ for new task
5: Mt : mt ← mspace ▷ memory with a size of mt

6: D = Xt ∪Mt−1 ∪Mt ▷ concat new data and memory
7: for e = 1, . . . , epochs do
8: Train Eq. 1 with θt−1 and D
9: Evaluate Eq. 3 with Vt

10: end for
11: end for
12: return θt, Vt, η

∗
t , λ

∗
t ,M

∗
t ▷ new model with optimal

learning rate, regularization strength and memory size

classes. L(Θ;Vt) is the loss function where the learning
rate η, the regularization coefficient λ, and memory size
per task m is determined by solving the optimization prob-
lem. Our adaptive approach, AdaCL (Algorithm 1), starts
after the first task since it is just a standard batch learning.

In the following tasks, it retains the model θt−1 trained on
the previous task, receives current task data Xt, and creates
a validation set Vt. Then, training data D is constructed
and trained with Eq. 1 after the configuration for ηt, λt

and mt is selected by Bayesian Optimization (see Section
3.4). After each epoch, the selected configuration is eval-
uated on the validation set Vt with Eq. 3. Subsequently,
this process is repeated until reaching the total number of
configurations. The optimal learning rate η∗t , lambda λ∗

t ,
and memory size per task m∗

t are determined based on the
validation performance.

This approach allows us to automatically adjust the learn-
ing rate, regularization strength, and memory size per task
according to the specific learning task based on the given
loss function which lets the model find the degree of diffi-
culty itself, avoiding the unrealistic assumption of a fixed
learning rate, regularization strength, and memory size
throughout the learning process.

3.4 Bayesian Optimization via Parzen Estimator

We optimize the objective function using multivariate tree-
structured parzen estimators (TPE) (Bergstra et al., 2011).
TPE builds a conditional probability tree that maps hyper-
parameters to their respective model performances. Then it
can be used to guide a search algorithm to find the optimal
set of hyperparameters for the given model. In this study,
TPE is utilized as a search algorithm where it searches
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within the provided range for learning rate, regularization
strength, and memory size per task and then searches for
the best value by evaluating across accumulated validation
set which consists of previous and new tasks throughout in-
cremental learning sessions. We use Optuna (Akiba et al.,
2019) for TPE implementation.

4 Experimental Protocol

In this section, we describe our experimental setup,
present our findings and results, and provide an abla-
tion study. Datasets. In this paper, we experiment
with CIFAR100 (Krizhevsky et al., 2009) and MiniIma-
geNet (Vinyals et al., 2016). Each dataset exhibits objects
from 100 different categories. We train all the models with
10 tasks, with 10 classes within each learning task on both
CIFAR100 and MiniImageNet. Both datasets have 5000
training, and 1000 testing color images per learning task,
each with 32 × 32 and 64 × 64 resolution for CIFAR100
and MiniImageNet respectively.

Metrics. We resort to the standard metrics for evaluation,
accuracy (ACC) which measures the final accuracy aver-
aged over all tasks, and backward transfer (BWT) which
measures the average accuracy change of each task after
learning new tasks:

ACC =
1

T

∑T

i=1
AT,i (4)

BWT =
1

T − 1

∑T−1

i=1
(AT,i −Ai,i) (5)

where AT,i represents the testing accuracy of task T after
learning task i.

Baselines. EWC, LwF, iCARL, and WA are our direct
baselines since we use them as base models in AdaCL.
We also compare our common baseline results with OMDP
(Liu et al., 2023). Finally, we select one recent memory-
free approach FeTrIL (Petit et al., 2023), and one recent
memory-based method PODNet (Douillard et al., 2020) to
provide more comprehensive insights.

Implementation Details. We employ adaptive hyperpa-
rameter optimization on the methods discussed in section
3.2, and compare them with their fixed (original) versions.
For the fixed versions, we use the default η, λ and m as
defined in PYCIL (Zhou et al., 2021a).

We use ResNet-32 as the backbone (He et al., 2016). We set
the number of epochs to 100 but use the Successive Halv-
ing (Li et al., 2018) scheduler for a more efficient search.
We use SGD optimizer with momentum parameter set to
0.9 and weight decay 5e−4 for the first task and 2e−4 for
the rest of the tasks. The batch size is set to 128. We run ex-
periments on three different seeds and report their average.
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Figure 2: Accuracy after each task on CIFAR100. AdaCL
significantly boosts the performance on regularization-
based methods and improves the efficiency by storing fewer
exemplars on memory-based methods while yielding on
par performance.
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Figure 3: Accuracy after each task on MiniImageNet. The
results align with the observations on CIFAR100.

We store a small subset of the validation data from each
incremental learning step to evaluate the search algorithm.
The search space for the learning rate and the maximum
memory size per class within a task is set to [0.05, 0.1]
and 50 respectively. The search space for λ is determined
based on the ablation experiments and details are given in
Appendix A.1.

5 Experimental Results

The Effect of Adaptivity. We investigate the efficacy of
our adaptive method compared to traditional fixed hyper-
parameter approaches across the CIFAR100 and MiniIma-
geNet datasets. Our results highlight significant advance-
ments of our adaptive approach AdaCL, particularly no-
table in regularization-centric techniques like EWC and
LwF as illustrated in Figure 2 and Figure 3.
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Table 2: Performance comparison of various methods on the CIFAR100 and MiniImageNet datasets in terms of ACC,
BWT, and memory size. Baseline methods such as EWC and LwF do not utilize memory. Our proposed methods, denoted
with (ours), demonstrate better or competitive performance across both datasets while using less memory.

CIFAR100 MiniImageNet
Method ACC (%) BWT (%) Memory Size ACC (%) BWT (%) Memory Size
PODNet 39.47 ± 1.39 -24.14 ± 5.49 4500 43.49 ± 0.31 -10.84 ± 10.83 4500
OMDP 46.94 ± 2.11 -28.34 ± 1.28 4500 46.15 ± 0.55 -25.54 ± 4.18 4500
FeTrIL 27.56 ± 1.50 -18.92 ± 5.70 - 24.46 ± 1.60 -15.84 ± 0.73 -
EWC 15.26 ± 1.37 -63.96 ± 3.21 - 13.30 ± 0.38 -60.64 ± 3.11 -
Ada-EWC (ours) 21.06 ± 1.37 -13.28 ± 3.09 - 20.31 ± 0.39 -11.86 ± 2.32 -
LwF 21.74 ± 0.73 -48.88 ± 12.43 - 20.97 ± 0.19 -50.06 ± 9.59 -
Ada-LwF (ours) 29.41 ± 0.65 -22.34 ± 4.18 - 30.33 ± 1.65 -28.71 ± 6.44 -
iCaRL 46.13 ± 1.35 -28.84 ± 5.06 4500 45.83 ± 1.43 -27.33 ± 5.54 4500
Ada-iCaRL (ours) 46.44 ± 2.50 -28.62 ± 2.85 4125 46.10 ± 2.26 -28.77 ± 4.26 3950
WA 50.84 ± 2.37 -17.23 ± 1.51 4500 51.96 ± 0.74 -22.46 ± 1.67 4500
Ada-WA (ours) 50.87 ± 3.19 -20.49 ± 2.88 4085 51.85 ± 1.12 -24.22 ± 4.41 4050
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(c) WA memory size
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(d) iCaRL regularization strength
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1 2 3 4 5 6 7 8 9 10
Tasks

0

10

20

30

40

50
M

em
or

y 
siz

e

CIFAR100
MiniImageNet

(f) iCaRL memory size

Figure 4: Adaptive modifications in regularization strength, learning rate, and memory allocation. The selected hyperpa-
rameters diversely change across task sequences, datasets, and methods and indicate the necessity of adaptivity in CL.

For example, we find 8% and 10% increase in accuracy
while 26% and 21% improvement in backward transfer on
CIFAR100 and MiniImagenet respectively with LwF by
adjusting the regularization strength and learning rate.

In memory-centric methods, we find that they show greater
resilience to the changes in hyperparameters. Storing suf-
ficient exemplars aids the model in capturing the distribu-
tion of different tasks simultaneously, thereby reducing the
reliance on hyperparameter optimization. Despite minor
differences, we consistently observe similar accuracy and
backward transfer, as seen in Table 2.

Comparison with Recent Baselines. We include results
from recent baselines PODNet and FeTrIL to provide com-
prehensive insights. An intriguing finding is that the ini-
tial performance of fixed LwF is outperformed by the re-

cent FeTrIL method, but when we tune LwF, it outperforms
FeTrIL by 2% and 6% on CIFAR100 and MiniImageNet,
respectively. Furthermore, we compare AdaCL with an-
other HPO-based method OMDP, on iCaRL, our only com-
mon baseline. Our performance closely aligns with OMDP
but a key advantage of our adaptive approach is that it does
so while using less memory.

Memory Allocation. We investigate the memory alloca-
tion of iCaRL and WA by specifically tuning the memory
size for these methods. We observe that in our adaptive ap-
proach we were able to attain similar results while utilizing
less memory compared to those obtained from fixed ver-
sions as given in Table 2. This is due to AdaCL capability
to choose exemplars from both decision boundaries and the
center (Figure 5), highlighting how the adaptive approach
can achieve comparable results.
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Figure 5: t-SNE plots of selected exemplars. Ada-WA selects exemplars from boundaries and center. This way, it is able
to achieve on-par performance with less memory. The final task is omitted from the visualization, since memory selection
is not necessary for it.

Exploring Hyperparameter Dynamics. We observe the
selected hyperparameters throughout the process of contin-
ual learning and reveal intriguing dynamics in the adjust-
ment of regularization strength, learning rate, and memory
size across tasks. This observation highlights the crucial
role of adaptability in continual learners, allowing them to
adapt dynamically to the changing demands of each task.

For example, Figure 4 presents the chosen hyperparameters
for WA and iCaRL, illustrating the subtle adjustments made
throughout the learning. Please refer to Appendix A.2 for
other methods.

5.1 Ablation Study

In Table 3, we provide a comprehensive analysis of
how different hyperparameters interact with model perfor-
mance. Our findings reveal that the performance of the
model is intricately linked to the interplay of various hy-
perparameters. While optimizing solely the learning rate
and regularization strength yields the highest accuracy, we
also incorporate with memory size to enhance memory al-
location efficiency.

Our comprehensive hyperparameter optimization strategy
showcases an enhancement in memory efficiency by min-
imizing the amount of stored exemplars while maintain-
ing on-par accuracy. This insight underscores the impor-
tance of not only optimizing individual hyperparameters

but also understanding their collective impact on model
performance, particularly in scenarios where resource con-
straints necessitate efficient memory allocation in practical
applications.

Table 3: The findings of our ablation study on the WA
method, where different hyperparameters were tuned si-
multaneously and individually on CIFAR100 dataset. Tun-
ing all hyperparameters simultaneously results in a negligi-
ble decrease in ACC but yields improvements in memory.

Regularization Learning Memory ACC Stored Memory
Strength Rate Size (%) Size

- - - 53.48 4500
✓ - - 54.00 4500
- ✓ - 53.65 4500
- - ✓ 51.02 3350
✓ ✓ - 54.24 4500
✓ - ✓ 51.73 3350
- ✓ ✓ 51.40 3750
✓ ✓ ✓ 53.16 4250

Finally, in Table 4, we investigate the impact of employing
random memory selection as an alternative to herding un-
der the WA method. Although there is a slight tendency to
decrease in both incremental accuracy and forgetting, we
found that the adoption of random memory selection leads
to an insignificant change in accuracy and forgetting.
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Table 4: An investigation into the WA method when using
random and herding as the memory selection strategies on
CIFAR100 dataset. Findings indicate that random memory
selection produces similar results to herding.

Method selector ACC (%) BWT (%)

WA herding 50.84 ± 2.37 -17.23 ± 1.51

Ada-WA herding 50.87 ± 3.19 -20.49 ± 2.88

WA random 49.95 ± 2.72 -17.59 ± 2.22

Ada-WA random 49.96 ± 2.55 -21.51 ± 1.28

6 Conclusion

This study introduces the idea of adaptive hyperparame-
ter tuning for Class-Incremental Learning. These hyper-
parameters are treated as tunable variables that can be ad-
justed for an each new task according to the learner’s cur-
rent condition and the complexity of the task. Leveraging
the sample-efficiency of Bayesian Optimization, the pa-
per presents a methodology to predict the optimal values
for these hyperparameters in each learning task. By con-
ducting experiments on well-established benchmarks, the
study showcases the remarkable enhancements in perfor-
mance achieved through adaptive learning, resulting in im-
proved accuracy, diminished forgetting, and less memory.
Potential avenues for future investigation could involve the
reduction of hyperparameter tuning costs (e.g. via warm-
starting) and the exploration of alternative methods for con-
structing or optimizing the validation set.

To sum up, our study leads the way in introducing the
concept of adaptive hyperparameter optimization in Class-
Incremental Learning, with a mindful consideration of the
limitations we’ve recognized. As the field further advances,
we anticipate that these insights will shape the evolution of
advanced continual learning approaches, empowering deep
neural networks to adapt to streams of real-world tasks.
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A Appendix

A.1 Search Space Range

In this section, we present the findings of our search space
ablation study conducted to determine the optimal range
of regularization strength. Our analysis revealed that reg-
ularization strengths within the interval of [1, 100] yielded
optimal performance for LwF, thus it is used in our main
experiments. Similarly, for EWC the optimal regulariza-
tion strength falls within the range of [1, 50000] and is em-
ployed in our main experiments.

Table 5: Ablation of the search space for regularization hy-
perparameter on EWC and LwF methods. The search space
intervals were determined based on achieving optimal ac-
curacy results. Best results are highlighted in bold.

Search Space [1,1000] [1,25000] [1,50000] [1,10000]
EWC 9.17 22.02 22.39 21.09
Search Space [1,10] [1,25] [1,50] [1,100]
LwF 23.99 25.49 26.73 28.9

A.2 Hyperparameter Dynamics

In this section, we present an overview of the selected hy-
perparameters for the EWC and LWF methods. Our anal-
ysis highlights that our adaptive approach allows all mod-
els to flexibly adjust their hyperparameters across different
tasks as illustrated in Figure 6 and 7. This flexibility plays a
role in improving the performance of the models over time
by adaptively adjusting hyperparameters.
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Figure 6: Adaptive adjustments in (a) regularization
strength and (b) learning rate for EWC across various task
sequences and datasets.
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Figure 7: LwF’s (a) regularization strength and (b) learn-
ing rate change dynamically across different task sequences
and datasets.


