
Uncertainty Awareness of Large Language Models Under Code
Distribution Shifts: A Benchmark Study

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have been001
widely applied in programming language anal-002
ysis to enhance human productivity. Yet, their003
reliability can be compromised by various code004
distribution shifts, leading to inconsistent out-005
puts. While probabilistic methods are known to006
mitigate such impact through uncertainty cal-007
ibration and estimation, their efficacy in the008
language domain remains underexplored com-009
pared to their application in image-based tasks.010
In this work, we first introduce a large-scale011
benchmark dataset, incorporating three realis-012
tic patterns of code distribution shifts at vary-013
ing intensities. Then we thoroughly investi-014
gate state-of-the-art probabilistic methods ap-015
plied to LLMs using these shifted code snip-016
pets. We observe that these methods generally017
improve the uncertainty awareness of LLMs,018
with increased calibration quality and higher019
uncertainty estimation (UE) precision. How-020
ever, our study also reveals varied performance021
dynamics across different criteria (e.g., calibra-022
tion error vs misclassification detection) and023
the trade-off between efficacy and efficiency,024
highlighting necessary methodological selec-025
tion tailored to specific contexts.026

1 Introduction027

Large language models (LLMs) have achieved im-028

pressive performance in code generation and analy-029

sis (Rozière et al., 2023). On the other side, current030

LLMs that are fine-tuned for specific tasks typically031

assume the test dataset is independently and identi-032

cally distributed (i.i.d. or in-distribution) with the033

training dataset (Snoek et al., 2019). This makes034

the reliability of such models for generalization a035

challenge, as real-world scenarios often come with036

distribution shifts (also referred to as data drifts),037

such as codebase updates stemming from changes038

in library versions, or new developers’ contribution,039

leading to discrepancies in test dataset distribution040

and consequently, a degradation in the quality of041

map <string, int > m{{"a", 1}, {"b", 2}};
// map with for loop (before C++14)
for (iter = m.begin(); iter != m.end();
iter++) {

// main body ... }

Source Program

Example of C program

In
te

ns
ify

in
g

Sh
ift

A B C D’ E’ : token replacement (timeline)

A B’ C’ D E

A B C’ D’ E

: token replacement (project)

: token replacement (author)

map <string, int > m{{"x", 1},
{"y", 2}};
// map with while loop
int pointer = 0;
while (pointer < m.end()){

// main body ...
pointer++ }

map <string, float > m{{"x", 9.2},
{"y", 7.7}};
// map with for loop
for (iter = m.begin(); iter !=
m.end(); iter++) {

// main body ... }

Different Projects

map <string, int > m{{"a", 1},
{"b", 2}};
// map with for loop (after C++14)
for (auto iter: m){

// main body ... }

map <string, int > m{{"a", 1},
{"b", 2}};
// map with for loop (after C++14)
for (auto iter = m.begin(); iter !=
m.end(); iter++){

// main body ... }

Different Timelines

map <string, int > m{{"a", 1},
{"b", 2}};
// map with while loop
int iter = 0;
while (iter < m.end()){

// main body ...
iter++ }

Different Authors

map <string, double > m{{"x1",
5.3333333}, {"x2", 7.4999999}};
// map with for loop (reversed)
for (j = m.end(); j != m.begin(); j--)
{

// main body ... }

Figure 1: Three real-world code distribution shifts:
TIMELINE SHIFT, PROJECT SHIFT, and AUTHOR SHIFT,
on C++ snippets of for loops.

generated code by the models. 042

Addressing this challenge requires an under- 043

standing of the uncertainty awareness of LLMs. 044

On the one hand, previous works show that deep 045

models tend to be overconfident in their predictions 046

despite low quality (Zablotskaia et al., 2023; Xu 047

et al., 2022), particularly with shifted inputs. This 048

issue, known as miscalibration, highlights the dis- 049

parity between a model’s predictive confidence and 050

its actual accuracy. Uncertainty calibration, there- 051

fore, emerges as a critical solution to improve pre- 052

diction quality under distribution shifts. Despite its 053

significance, such a notion has not received much 054

attention in the code generation literature. Uncer- 055

tainty estimation (UE), however, is also vital even 056

post-calibration, as mistakes are inevitable and it 057

aids in assessing the reliability of model predic- 058

tions, guiding decision-making on whether to ac- 059

cept or abstain from specific predictions (Vazhent- 060

sev et al., 2022). UE methodologies include detect- 061

ing error-prone instances, i.e., misclassification de- 062

tection, and identifying out-of-distribution (OOD) 063

instances (van Amersfoort et al., 2020), etc. 064

To investigate the uncertainty awareness of 065

LLMs in the context of code distribution shifts, 066

we define three prevalent shift patterns that cover 067

1

most real-world evolution scenarios (Dilhara et al.,068

2023): code changes due to library or API up-069

dates across TIMELINE SHIFT, code changes result-070

ing from PROJECT SHIFT that fulfill similar func-071

tions, code changes derived from AUTHOR SHIFT,072

as shown in Figure 1. Unlike previous works in073

the language domain that only explore shift pat-074

terns (Nie et al., 2022; Hu et al., 2023), we further075

introduce a series of fine-grained shift intensities.076

This allows for a more dynamic investigation of the077

performance of different methods under varying078

degrees of shifts, as underscored by Snoek et al.079

(2019). We create a benchmark dataset by extract-080

ing and synthesizing Java code snippets from open-081

source projects, aligning them with each identified082

shift pattern and respective intensities.083

Leveraging this benchmark, we present the first084

comprehensive study1 of relative effectiveness of085

cutting-edge probabilistic methods in improving086

LLM’s prediction quality. Specifically, we exam-087

ine both classic approaches such as Monte Carlo088

dropout (Gal and Ghahramani, 2016), deep ensem-089

ble (Lakshminarayanan et al., 2017), and more re-090

cent techniques such as adversarial mutation (Wang091

et al., 2019), dissector (Wang et al., 2020). Our find-092

ings reveal interesting dynamic patterns of efficacy.093

For instance, adversarial method, though excels094

in identifying out-of-distribution (OOD) examples,095

falls short in precisely predicting misclassifications;096

ensemble method is more robust against severe097

shifts compared to the post-hoc calibration (Guo098

et al., 2017). Additionally, we uncover a trade-099

off between calibration efficacy and efficiency for100

these methods, e.g., DE incurs a 50-fold increase in101

latency compared to the deterministic baseline, un-102

derscoring the importance of selecting appropriate103

methods under specific task requirements.104

Our contributions are:105
• We develop a large-scale dataset incorporat-106

ing three realistic code distribution shifts with107

varying intensities and an OOD pattern.108

• We adapt various probabilistic methods to109

the LLM setup and conduct an extensive110

benchmark study of their resultant uncertainty111

awareness in the distribution shift context.112

• We demonstrate that while probabilistic meth-113

ods generally mitigate the adverse effect of114

distributional shifts on LLM performance,115

their efficacy varies from specific task, model,116

and evaluation context, notably entailing a117

compromise in computation efficiency.118
1Our code and data will be released after the review period.

2 Related Work 119

Code Distribution Shifts Recent studies have ex- 120

plored distribution shifts and evaluation methods to 121

assess the reliability of deep models. For instance, 122

semantic-preserving code transformations (Rabin 123

et al., 2021) present various shifts, ranging from 124

common refactoring like variable renaming to more 125

intrusive operations such as loop exchange. Nie 126

et al. (2022) evaluate the impacts of cross-project 127

and time-segmented shifts on code summarization 128

performance. Hu et al. (2023) assess the robust- 129

ness of code analysis models under five shifts, in- 130

cluding task, programmer, time-stamp, token, and 131

concrete syntax tree. These evaluation strategies re- 132

semble our defined shifts, e.g., time-segmented and 133

time-stamp function similarly to TIMELINE SHIFT. 134

However, some of these shifts, such as concrete 135

syntax tree, are synthetic and unrealistic compared 136

to our shift patterns that accommodate real-world 137

evolution scenarios. Also, our fine-grained shift 138

intensities allow a more thorough understanding of 139

the impacts of varying shift scales. 140

Uncertainty Calibration Uncertainty is a nat- 141

ural aspect of predictive models, and modeling 142

it properly can be crucial for reliable decision- 143

making. In recent years, research efforts have been 144

directed towards quantifying uncertainty in deep 145

learning (DL) models (Tran et al., 2022; Vazhent- 146

sev et al., 2022), which can be broadly classi- 147

fied into two categories: aleatoric and epistemic. 148

Psaros et al. (2023) introduce several aleatoric 149

uncertainty methods, such as Vanilla (Hendrycks 150

and Gimpel, 2017) and Temperature Scaling (Guo 151

et al., 2017). It also thoroughly explores epistemic 152

uncertainty techniques, including both Bayesian 153

Neural Networks (BNNs) like Laplace approxima- 154

tion (MacKay, 1992), variational inference (Blun- 155

dell et al., 2015), dropout-based methods (Gal and 156

Ghahramani, 2016; Kingma et al., 2015), and non- 157

Bayesian methods such as ensembles (Lakshmi- 158

narayanan et al., 2017), SWAG (Maddox et al., 159

2019), and SNGP (Liu et al., 2020). This research 160

lays the theoretical ground for our choice of uncer- 161

tainty methods. Hu et al. (2023) alternatively ap- 162

plies uncertainty techniques, such as ODIN (Liang 163

et al., 2018) and Mahalanobis (Lee et al., 2018), to 164

detect OOD examples. While it contributes signif- 165

icantly to the field, our study goes beyond identi- 166

fying OOD datasets and offers a practical method 167

for mitigating shift impacts via abstaining from 168

low-quality predictions. 169

2

Train / Dev Shift1 Shift2 Shift3
T

IM
E

L
IN

E Snippet size 12.66 / 12.64 12.58 12.62 12.71
Snippets 388,577 / 98,830 466,759 535,314 548,453
Vocab 17,858 17,874 17,849 17,862
KL↑ 0.0 0.15 0.26 0.32
Cosine↓ 0.0 0.96 0.94 0.91

P
R

O
JE

C
T

Snippet size 11.83 / 11.88 15.56 14.79 13.56
Snippets 172,591 / 41,216 106,607 100,279 116,714
Vocab 16,977 15,833 14,797 15,212
KL↑ 0.0 1.54 1.85 1.99
Cosine↓ 0.0 0.87 0.79 0.74

A
U

T
H

O
R

Snippet size 16.08 / 15.28 15.85 14.61 15.32
Snippets 197,096 / 42,569 118,987 86,013 84,250
Vocab 16,118 16,180 16,834 16,566
KL↑ 0.0 0.12 0.35 0.66
Cosine↓ 0.0 0.91 0.87 0.81

Table 1: Statistics of the three datasets with intensifying
shifts (shift1 → shift3): TIMELINE SHIFT, PROJECT
SHIFT, and AUTHOR SHIFT. Snippet size is the average
number of lines in each snippet.

3 Dataset Configuration170

3.1 Motivation of Our Study171

Previous works (Kojima et al., 2022) have demon-172

strated the impressive zero-shot capability of LLMs173

on reasoning tasks, yet we observe these models174

still fall short in complex tasks like code analysis175

(see results in Table 12), necessitating fine-tuning176

or further refinements for improved reliability. For177

example, consider a scenario where an LLM is fine-178

tuned on source-code of a project P . Over time, P179

undergoes various changes such as file modifica-180

tions and version updates, transforming to a new181

version P ′. Evaluating the model performance on182

P ′ is crucial to assess its reliability under distri-183

bution shifts across timelines (TIMELINE SHIFT),184

potentially saving training resources. Addition-185

ally, it’s also crucial to determine if the model can186

be directly used for a different project with simi-187

lar functionalities (PROJECT SHIFT). Furthermore,188

code contributions from new developers, who pos-189

sess distinct coding styles, introduce variability in190

coding patterns (AUTHOR SHIFT). These three real-191

world, commonly occurring code shifts define the192

focus of this project.193

3.2 Benchmark Code Datasets194

To represent the three code shift patterns, we in-195

vestigate seven open-source Java projects collected196

from the Java-small benchmark2: elasticsearch,197

gradle, presto, wildfly, hadoop, hibernate-orm, and198

spring-framework. They are language software for199

2https://s3.amazonaws.com/code2seq/datasets/
java-small.tar.gz

!!

!"

!#
!$

project 1 project 2 project 3

…

project n-1 project ntimeline

Training Validation Dev Shift1 Shift2 Shift3

Figure 2: TIMELINE SHIFT where all the n projects are
evaluated chronologically.

project 1 project 2 project 3

…

project i project j

Training Validation Dev Shift1 Shift2 Shift3

…

project n

…

Figure 3: PROJECT SHIFT with cross-project splits.

distributed computing and are studied by existing 200

code analysis literature (Alon et al., 2019a,b). We 201

extract Java files from each project as raw code 202

snippets3 and use Abstract Syntax Trees (ASTs) 203

for tokenization. To enable a more fine-grained 204

study, we create three levels of shift intensities 205

(intensified from shift1 to shift3) for each shift pat- 206

tern. The intensities are measured in two criteria: 207

1) Kullback–Leibler (KL) divergence between the 208

token histogram distribution of each shifted set and 209

dev set, and 2) cosine similarity between the code 210

embeddings of each shifted set and dev set. The 211

dataset statistics are shown in Table 1. 212

• Timeline Shift As shown in Figure 2, we con- 213

sider four different release timelines, i.e., τ0, τ1, 214

τ2, τ3, and collect Java files written by the same 215

set of authors across times. Specifically, for each 216

timeline, we check the commit histories of all 217

projects and collect data from their correspond- 218

ing release versions. 219

• Project Shift As shown in Figure 3, we calculate 220

the KL divergence between each pair of the seven 221

projects, and select the top-4 projects, namely 222

hibernate-orm, presto, spring-framework, wild- 223

fly, whose token distributions have least average 224

divergence with others, as the training (and dev) 225

set. The remaining three sets with increasing KL 226

scores, namely hadoop, gradle, and elasticsearch 227

are treated as shift1, shift2, and shift3 datasets. 228

• Author Shift As shown in Figure 4, we split Java 229

files into four groups. Although multiple pro- 230

3We define a code snippet as a single, complete function
extracted from Java source code. Each function, including its
signature and body, is treated as an independent unit of code.

3

https://s3.amazonaws.com/code2seq/datasets/java-small.tar.gz
https://s3.amazonaws.com/code2seq/datasets/java-small.tar.gz

project 1 project 2 project 3

…

project n-1 project n

Training Validation Dev Shift1 Shift2 Shift3

… … … … …

Figure 4: AUTHOR SHIFT with cross-author splits.
Each color represents a unique author.

grammers may have contributed to these files, we231

organize them based on the primary contributor,232

creating a semblance of author uniqueness within233

each group. In this way, the AUTHOR SHIFT im-234

plicitly exists in our setup, as each group repre-235

sents the work of a distinct set of programmers.236

Given the considerable size of the project and the237

presence of hundreds of contributors, we select238

four authors who have made the most significant239

number of commits throughout the project histo-240

ries. The Java files committed by these authors241

are selected to form the datasets.242

4 Experiments243

4.1 Experiment Setup244

Probabilistic methods have been applied to improve245

the reliability of LLMs. In this study, we focus246

on the state-of-the-art CodeLlama (Rozière et al.,247

2023), and defer results on other models, such as248

Code2Vec (Alon et al., 2019b), CodeBERT (Feng249

et al., 2020), CodeGPT (Lu et al., 2021), to Ap-250

pendix C. Their implementation details are de-251

scribed in Appendix A.2. We evaluate the effect252

of following methods on mitigating distribution253

shifts, and detail their computation and theoretical254

analyses in Appendix B:255

• Vanilla Baseline Our deterministic base model256

is CodeLlama-7B. The UE is measured as the257

maximum softmax probability (also referred to258

as winning score (WS) (Hendrycks and Gimpel,259

2017)) across the softmax space.260

• Temperature Scaling (TS) Guo et al. (2017)261

propose a post-hoc calibration that learns a scalar262

parameter Tts > 0 based on the validation set263

Dval and align models’ softmax probability more264

closely with the actual accuracy. TS “softens” the265

vanilla logit lc with Tts to obtain a new predictive266

distribution p(y = c|x) = el
c/Tts∑

k el
k/Tts

. Since TS267

does not change the maximum of the softmax268

function, the class prediction remains unchanged.269

The UE is measured as the Shannon entropy of 270

the new predictive distribution. 271

• Monte-Carlo Dropout (MCD) Gal and Ghahra- 272

mani (2016) introduce a Bayesian method that 273

estimates inner-model epistemic uncertainty us- 274

ing the Monte-Carlo average of Tmcd dropout 275

samples, which are generated using the same 276

architecture but with different random seeds at 277

dropout layers. We define calibrated outputs as 278

the average of the Tmcd dropout samples. Follow- 279

ing Vazhentsev et al. (2022), we consider three 280

UE techniques: sampled winning score (SWS), 281

probability variance (PV) (Gal et al., 2017; Smith 282

and Gal, 2018), and Bayesian active learning by 283

disagreement (BALD) (Houlsby et al., 2011). 284

• Deep Ensemble (DE) Lakshminarayanan et al. 285

(2017) measure the cross-model epistemic uncer- 286

tainty by training Tde independent vanilla models 287

and averages all. We use the same model archi- 288

tecture but different initial seeds. We quantify 289

uncertainty via the same UE methods as MCD. 290

• Mutation Testing (MT) Wang et al. (2019) pro- 291

pose an adversarial method that measures the 292

sensitivity of input to model mutation operations, 293

effectively quantifying uncertainty regarding how 294

close it is to the decision boundary. For a given 295

model, MT first obtains a set of mutated mod- 296

els through mutation operators, such as Gaussian 297

Fuzzing (GF), and Weight Shuffling (WS), then 298

calibrates predictive distribution as the average 299

softmax over all mutated models. The UE is 300

defined as the label change rate (LCR). 301

• Dissector (DS) Wang et al. (2020) train a classifi- 302

cation layer (snapshot) Sl after each intermediate 303

layer l using linear regression and estimates un- 304

certainty by assuming a correctly classified input 305

should induce increasing confidence across the 306

hidden layers. We compute the average softmax 307

over the resultant snapshots as calibrated outputs. 308

The UE measures how uniquely the final predic- 309

tion is supported by each snapshot, i.e., snapshot- 310

profile-validity (SPV), whose weight parameters 311

are formulated in three growth patterns: linear, 312

logarithmic (log), and exponential (exp). 313

To evaluate the performance of these methods, 314

we consider two most-studied code analysis tasks 315

(their preprocessing and evaluation details are de- 316

scribed in Appendix A.1): 317

• Code Completion (CC) We consider token-level 318

CC (Kim et al., 2021), which is analogous to lan- 319

guage modeling of code generation. Specifically, 320

4

Pattern Method Code Completion Code Summarization

Dev Shift1 Shift2 Shift3 Avg↑ Avg Rank↓ Dev Shift1 Shift2 Shift3 Avg↑ Avg Rank↓

TIMELINE

Base / TS 71.97 71.84 69.25 68.46 70.38 4.75 48.04 47.82 46.98 46.89 47.43 5.00
MCD 72.94 72.68 71.38 70.40 71.85 1.25 48.83 48.57 47.87 47.38 48.16 2.50
DE 72.60 71.74 71.30 70.64 71.57 2.25 49.58 49.54 48.66 48.63 49.10 1.00
MT 72.02 71.84 69.28 68.47 70.40 3.5 48.20 47.95 47.14 47.24 47.63 4.00
DS 72.92 71.31 69.50 67.51 70.31 3.25 48.30 48.42 48.27 47.51 48.13 2.50

PROJECT

Base / TS 68.05 65.76 65.46 64.76 66.01 4.75 53.64 52.86 48.63 46.84 50.49 4.50
MCD 69.79 65.81 65.60 64.82 66.51 2.50 54.53 54.13 49.12 47.24 51.26 1.75
DE 70.18 67.79 66.71 65.70 67.60 1.00 54.46 53.44 49.91 48.80 51.65 1.50
MT 68.14 65.77 65.54 64.96 66.10 3.00 54.12 53.02 48.65 47.99 50.95 3.00
DS 68.98 65.79 65.36 64.70 66.21 3.75 53.46 52.79 48.89 47.02 50.54 4.25

AUTHOR

Base / TS 73.69 72.97 72.77 71.43 72.72 4.75 50.94 49.32 48.13 44.50 48.22 4.00
MCD 74.27 73.95 72.84 71.52 73.15 2.00 51.87 50.29 48.30 46.82 49.32 2.25
DE 75.07 74.71 73.23 72.55 73.89 1.00 51.17 49.99 48.74 46.23 49.03 2.25
MT 73.75 73.11 73.08 71.49 72.86 3.25 50.95 49.37 48.14 45.54 48.50 3.50
DS 73.63 72.99 72.64 71.55 72.70 4.00 51.02 49.43 48.24 46.07 48.69 3.00

Table 2: F-1 scores and ranking of different methods for CodeLlama across in-distribution and shifted datasets.
Results for other models are shown in Table 13. All methods consistently produce lower F-1 under intensifying
shifts. Probabilistic methods (except TS) outperform the vanilla baseline.

we randomly mask a token in each code snippet321

as the missing part and feed the preceding con-322

text to LLMs. We evaluate the top-k sub-token323

F-1 of the predicted masked tokens.324

• Code Summarization (CS) We focus on method325

name prediction (Alon et al., 2019a; Jain et al.,326

2021) which aims to describe names for code327

bodies (functions, classes, etc.). It is a challeng-328

ing yet vital part of readable and maintainable329

code (Nie et al., 2022). We evaluate the top-k330

sub-token F-1 of the predicted names.331

4.2 Uncertainty Calibration Quality332

Prediction Performance We first compare the333

post-calibration prediction accuracy of various334

methods, by extending standard training, valida-335

tion, and testing (dev) protocols to evaluations on336

shifted datasets. As shown in Table 2, we observe a337

correlation between performance degradation and338

shift intensity, e.g., TIMELINE SHIFT incurs a mi-339

nor reduction in F-1 compared to the other shift340

patterns. Despite the decline of calibration qual-341

ity due to intensifying shifts, probabilistic meth-342

ods consistently mitigate this effect, as evidenced343

by improved F-1 relative to the baseline (and TS)344

across shifted datasets. Notably, DE and MCD345

achieve superior F-1 scores. Other probabilistic346

methods also show promising results: MT, whose347

combined predictions can be viewed as another en-348

semble technique, shows a lesser F-1 drop across349

shifted datasets. Interestingly, AUTHOR SHIFT has350

less impact on CC than CS. This suggests differ-351

ent programmers’ design and implementation logic352

plays little role when decision-making largely re-353

lies on code syntax, such as predicting the next 354

token based on common programming language 355

grammars and rules. Additionally, we observe a 356

more apparent calibration effect on smaller mod- 357

els (see Table 13), e.g., DE achieves an over 10% 358

F-1 gain over the baseline for Code2Vec in CS, 359

highlighting a challenge in calibrating LLMs. 360

Expected Calibration Error (ECE)↓ We mea- 361

sure the difference in expectation between confi- 362

dence and accuracy using the ECE metric (Naeini 363

et al., 2015) to evaluate how well the estimated 364

model probabilities have been calibrated: 365

ECE =
K∑
k=1

|Bk|
n

|conf(Bk)− acc(Bk)| (1) 366

Here we group n sample predictions into K interval 367

bins and define Bk as the set of indices of exam- 368

ples whose prediction confidence lies in the kth bin 369

Bk = (k−1
K , k

K], where its accuracy and confidence 370

are defined as acc(Bk) =
1

|Bk|
∑

i∈Bk
1(ŷi = yi) 371

and conf(Bk) =
1

|Bk|
∑

i∈Bk
p̂i. In code analysis, 372

ŷi is the predicted token, and p̂i is the correspond- 373

ing probability. As shown in Figure 5, probabilistic 374

methods consistently outperform the deterministic 375

baseline. Among them, TS, MCD, and MT better 376

diminish the ECE, suggesting they facilitate main- 377

taining competitive model prediction quality under 378

distribution shifts. DE exhibits slightly improved 379

ECE quality over the baseline, while DS falls short 380

in reducing the calibration errors. 381

Rank Correlation with Quality Score↑ We 382

evaluate how Spearman’s rank correlation between 383

calibrated probabilities and accuracy changes with 384

5

Code Completion Code Summarization
0
2
4
6
8

10
12
14
16

EC
E

(%
)

Code Completion Code Summarization
0
8

16
24
32
40
48
56
64
72

Sp
ea

rm
an

 (%
)

In-Dist.:
Shift 2:

Base
Base

TS
TS

MCD
MCD

DE
DE

MT
MT

DS
DS

Shift 1:
Shift 3:

Base
Base

TS
TS

MCD
MCD

DE
DE

MT
MT

DS
DS

Figure 5: ECE↓ and Spearman’s Rank Correlation↑ of different methods for CodeLlama. Results for other models
are shown in Figure 13. Error bars indicate variations across the three shift patterns.

intensifying shifts. As shown in Figure 5, we ob-385

serve a general trend demonstrating the calibration386

of probabilistic methods increases the correlation387

under distribution shifts. MCD and TS exhibit su-388

perior calibration capacity with higher correlation389

scores, while MT demonstrates limitations in im-390

proving correlation over the baseline.391

4.3 Uncertainty Estimation (UE) Precision392

To comprehensively assess the quality of UE meth-393

ods, We consider three widely-applied metrics:394

• Area Under the ROC curve (AUC)↑ Hendrycks395

and Gimpel (2017) suggest evaluating the quality396

of UE using AUC. It is interpreted as the proba-397

bility that a misclassified example has a greater398

uncertainty score than a correctly classified one.399

• Area Under the Precision-Recall curve400

(AUPR)↑ To better handle the situation when401

the positive class and negative class have greatly402

differing base rates, AUPR is also suggested to403

evaluate the quality of UE. The PR curve plots404

the relationship between precision and recall.405

• Brier↓ Brier (1950) measure the mean squared406

error of the uncertainty scores assigned to each407

sample and the actual outcome.408

Misclassification Detection In this experiment,409

we evaluate how the uncertainty scores u ∈ [0, 1] of410

different UE techniques correlate with the mistakes411

ē = 1(yi ̸= ŷi) of LLMs under distribution shifts.412

An effective UE method should produce higher413

scores for mistakes. Figure 6 presents the misclas-414

sification detection performance of different UE415

methods across all three shift patterns. We observe416

a general trend of decreasing UE quality as shift417

intensity grows, as evidenced by lower AUC and418

Brier scores for all methods in the shift3 set. Proba- 419

bilistic methods generally outperform the baseline, 420

cautioning the significance of calibration. Among 421

them, DS achieves the highest AUC and rather low 422

Brier scores under distribution shifts, suggesting 423

that cross-layer consistency largely determines the 424

reliability of model predictions. Ensemble method 425

(DE) not only shows promising results but also 426

shows relative robustness against intensifying shifts 427

by reducing the model variance. Whereas adversar- 428

ial method (MT) produces even lower quality than 429

the baseline in misclassification detection. This 430

indicates that the adversarial assumption may not 431

necessarily apply to model mistake detection and 432

cause false alarms. Furthermore, MT is more sen- 433

sitive to different shift patterns, as evidenced by 434

larger error bars in all three metrics. 435

Selective Prediction Selective prediction refers 436

to selectively predicting high-quality outputs while 437

rejecting the low-quality outputs (Ren et al., 2023). 438

It measures how effective and efficient a UE 439

method can improve the performance by allowing 440

a model to abstain from predicting highly uncertain 441

instances, assuming an effective method indicates 442

high uncertainty for low-quality outputs. As shown 443

in Figure 7, at a given abstention rate τ , we fil- 444

ter out the lowest τ -fraction uncertain examples 445

based on the UE scores and compute the average 446

F-1 score of the remaining examples. We observe 447

that all probabilistic methods improve the quality 448

of CodeLlama to a large extent, especially in the 449

shift3 set. Similar to misclassification detection, 450

DE and DS are more efficient: they achieve higher 451

F-1 by rejecting the same proportion of code exam- 452

ples. MT slightly improves over the baseline, while 453

6

In-Distribution Shift 1 Shift 2 Shift 375

80

85

90

95

AU
C

(%
)

In-Distribution Shift 1 Shift 2 Shift 3
Shift Intensity

0

5

10

15

20

Br
ie

r (
%

)
Base-WS TS-Entropy MCD-SWS MCD-PV MCD-BALD DE-SWS DE-PV DE-BALD MT-GF MT-WS DS-Linear DS-Log DS-Exp

Figure 6: AUC↑ and Brier↓ results for detecting CodeLlama mistakes using different methods with corresponding
UE techniques in CC under intensifying shifts. Error bars indicate variations across the three shift patterns. Results
in CS and AUPR↑ results in both tasks are demonstrated in Figure 8 and Figure 9.

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

65

70

75

80

85

90

95

100
In-Distribution

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

65

70

75

80

85

90

95

100
Shift 1

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

65

70

75

80

85

90

95

100
Shift 2

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

65

70

75

80

85

90

95

100
Shift 3

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

Figure 7: F-1 vs. Abstention curve for different uncertainty methods in CC under distribution shifts. For each
method, we report one corresponding UE result. Each line is the average F-1 score over the three shift patterns.
Results in CS and remaining UE results are shown in Figure 10 and Figure 11.

TS is prone to degradation under larger shifts, as454

evidenced by the smaller highest F-1 scores.455

OOD Detection Besides the three shift patterns,456

we further evaluate the UE quality under a more457

severe shift: projects that are designed for differ-458

ent programming paradigms (PARADIGM SHIFT).459

We consider two real-world projects, BigCloneE-460

val4 (in-distribution) and Ruoyiplus5 (OOD). The461

former is a Java language tool for analyzing code462

clone detection, while the latter is a J2EE devel-463

opment system for backend management. We ex-464

tract Java files from both projects as raw snippets.465

Statistics of the processed dataset are detailed in466

Appendix A.3. Table 3 summarizes the OOD de-467

tection precision for CodeLlama of various UE468

methods. Interestingly, MT consistently outper-469

forms others in detecting OOD code examples,470

with higher AUC, AUPR, and lower Brier scores.471

This suggests its adversarial assumption effectively472

applies to severely shifted inputs when considering473

their distance to the model’s decision boundary. DS474

also achieves top-rank results, showing the sensi-475

4https://github.com/jeffsvajlenko/BigCloneEval
5https://github.com/kongshanxuelin/ruoyiplus

Method UE Code Completion Code Summarization

AUC↑ AUPR↑ Brier↓ Rank↓ AUC↑ AUPR↑ Brier↓ Rank↓

Base WS 69.99 78.18 23.78 8.67 59.63 69.47 22.67 10.67

TS Entropy 70.68 78.56 25.31 9.00 60.18 70.30 25.84 11.67

MCD SWS 69.25 81.71 20.34 4.67 64.84 72.80 24.27 9.00
MCD PV 73.12 77.08 31.96 10.67 65.06 74.25 22.13 6.67
MCD BALD 72.62 77.34 30.76 10.33 67.79 71.81 24.03 7.67

DE SWS 66.53 79.94 24.34 8.33 63.97 78.94 25.78 9.00
DE PV 63.78 79.41 25.83 10.67 62.45 80.81 28.01 9.00
DE BALD 64.29 79.55 25.36 9.67 61.92 79.30 26.33 9.67

MT GF 77.24 80.69 19.28 2.67 75.38 83.42 17.81 1.33
MT WS 78.25 81.33 17.50 1.33 73.80 85.65 19.49 1.67

DS Linear 73.63 79.41 20.44 6.00 68.62 79.27 21.35 4.33
DS Log 73.79 80.83 23.96 4.67 66.73 80.39 22.73 6.00
DS Exp 74.89 80.26 21.37 4.33 67.46 81.08 22.16 4.33

Table 3: AUC↑, AUPR↑, Brier↓ and average rankings
of different UE methods for OOD detection.

tivity of snapshot validity to distribution shifts. 476

5 Further Analysis 477

5.1 Calibration Quality in OOD Samples 478

We further evaluate the calibration quality of prob- 479

abilistic methods in handling OOD examples, as 480

shown in Table 4. We observe a clear drop in qual- 481

ity, e.g., lower F-1 scores, of all methods, com- 482

pared to the results from shifted datasets in Table 2. 483

This demonstrates the challenge of severe shifts for 484

uncertainty calibration. Interestingly, TS, despite 485

7

https://github.com/jeffsvajlenko/BigCloneEval
https://github.com/kongshanxuelin/ruoyiplus

Method Code Completion Code Summarization

F-1↑ ECE↓ Corr↑ Rank↓ F-1↑ ECE↓ Corr↑ Rank↓

Base 55.48 17.95 55.68 4.83 29.99 34.11 14.54 5.83
TS 55.48 18.73 58.33 4.33 29.99 29.67 21.88 5.16
MCD 57.18 17.95 58.96 2.16 33.32 24.83 30.72 2.00
DE 58.79 16.32 58.33 1.83 35.15 12.69 33.38 1.00
MT 56.86 14.29 55.68 3.50 30.12 25.48 22.66 3.67
DS 57.04 23.11 56.04 4.33 30.19 28.47 27.40 3.33

Table 4: Calibration performance of different methods
for CodeLlama in handling OOD code examples.

showing a top calibration performance in milder486

shifts, does not maintain such an edge in this se-487

vere case. This suggests that post-hoc calibration488

using the validation set can hardly be effective on489

severely shifted instances. Ensemble and Bayesian490

methods, however, emerge as the most reliable tech-491

niques in highly uncertain environments.492

5.2 Empirical Findings493

Method Calibration UE Score↑
F-1 ECE Corr MD SP OOD

Base ✗ ✗ ✗ ✗ ✗ ✗ 0.0
TS ✗ ✓✓ ✓✓ ✓ ✓ ✗ 6
MCD ✓✓ ✓✓ ✓✓ ✓ ✓ ✗ 8
DE ✓✓ ✓ ✓ ✓✓ ✓✓ ✗ 8
MT ✓ ✓✓ ✗ ✗ ✓ ✓✓ 6
DS ✓ ✗ ✓ ✓✓ ✓✓ ✓ 7

Table 5: Overall comparison of studied methods. MD,
SP are abbreviations of misclassification detection and
selective prediction. ✓✓ denotes top-ranked, ✓ presents
above-baseline, and ✗ means equal/below-baseline.

Table 5 summarizes the overall performance of494

studied methods concerning their calibration abil-495

ity and UE quality. 1) For calibration ability, we496

observe that MCD achieves the best performance497

with top-ranked F-1 and calibration quality. Other498

methods also show promising results: DE is better499

at predicting F-1, while MT and TS exhibit better500

calibration quality. DS, in contrast, falls short in501

calibrating LLMs under distribution shifts. 2) For502

UE quality, however, we see DS produces the over-503

all best results, with top-ranked low-quality output504

detection precision (i.e., detecting mistakes and ab-505

staining) and distribution sensitivity (i.e., detecting506

OOD samples). Other probabilistic methods also507

improve UE quality compared to the baseline: DE508

is superior in misclassification detection and se-509

lective prediction, while MT is more sensitive to510

distribution shifts in OOD detection. This perfor-511

mance gap between different criteria suggests the512

hypotheses of certain methods fit in only specific513

scenarios with loss of generalizability.514

Method Calibration UE Total↓ (Relative) Snippet↓

Base 0.0 65 65 (×1) 0.27
TS 69 75 144 (×2) 0.61
MCD* 5973 157.83 6130.83 (×94) 25.85
DE* 3162 87.39 3249.39 (×50) 13.50
MT* 7917 132.26 8049.94 (×124) 33.94
DS* 135 71.39 206.39 (×3) 0.87

Table 6: Overhead (s) for different methods. Per snippet
(×10−3s) is the instance-level overhead. For method*
containing multiple UE results, we report the average
number as they cost similar overhead.

5.3 Efficiency Analysis 515

Table 6 compares the overhead of different meth- 516

ods, where the calibration overhead of DE is the 517

averaged per epoch overhead for fine-tuning Tde 518

independent CodeLlama models. The hardware 519

setting is detailed in Appendix A.4. We observe a 520

general trade-off between efficacy and efficiency: 521

methods requiring sophisticated calibration such as 522

MCD, DE, generally produce promising results but 523

cost larger overhead. Their practical overhead may 524

even inflate: the complexity of DS is proportional 525

to the number of hidden layers used for training 526

snapshots. In time-sensitive tasks such as online 527

code generation, TS or vanilla baseline may be 528

preferred for selective prediction, especially when 529

deploying computation-intensive models. 530

6 Conclusion 531

LLMs are prone to performance degradation under 532

various code distribution shifts. This study iden- 533

tifies three real-world code distribution shift pat- 534

terns that adversely affect LLMs’ prediction quality. 535

We investigate five cutting-edge probabilistic meth- 536

ods, focusing on both their calibration capabilities 537

and uncertainty estimation (UE) efficacy in these 538

shifting contexts. Our findings reveal that these 539

methods generally alleviate the adverse effect of 540

distribution variations, leading to improved accu- 541

racy and low-quality output detection precision. 542

Our analyses also uncover performance variation 543

across different evaluation criteria and various shift 544

intensities, due to limited application scenarios of 545

method hypotheses. For instance, adversarial as- 546

sumption (MT) aligns well with severe OOD in- 547

stances but little with misclassified ones; ensemble 548

method is more robust against severe shifts com- 549

pared to post-hoc calibration. We further highlight 550

a general trade-off between efficacy and efficiency, 551

cautioning the importance of choosing appropriate 552

methods under specific circumstances. 553

8

Limitations554

This study investigates the uncertainty awareness555

of LLMs under various code distribution shifts, us-556

ing advanced probabilistic methods. While our557

benchmark datasets mainly focus on the Java pro-558

gramming language, the scope of real-world code559

distribution shifts covers a variety of other lan-560

guages, such as Python and C++. Our methodolo-561

gies for dataset creation and experimental designs562

hold the potential for broad applicability across563

these diverse programming contexts. Furthermore,564

our current research regards code analysis tasks as565

token-level classification (although token-level CC566

is analogous to language modeling). In our future567

work, we aim to extend our evaluation to genera-568

tive tasks, such as comment generation and code569

search, to lead to more comprehensive understand-570

ing of LLMs’ capabilities. However, these gener-571

ative tasks typically demand human annotations572

when creating shifted datasets (e.g., comments that573

include time-sensitive information may need hu-574

man calibrations). This requirement underscores575

the need for more automated approaches to address576

distribution shifts in the future.577

References578

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.579
2019a. code2seq: Generating sequences from struc-580
tured representations of code. In 7th International581
Conference on Learning Representations, ICLR 2019,582
New Orleans, LA, USA, May 6-9, 2019. OpenRe-583
view.net.584

Uri Alon, Meital Zilberstein, Omer Levy, and Eran585
Yahav. 2019b. code2vec: learning distributed rep-586
resentations of code. Proc. ACM Program. Lang.,587
3(POPL):40:1–40:29.588

Charles Blundell, Julien Cornebise, Koray589
Kavukcuoglu, and Daan Wierstra. 2015. Weight590
uncertainty in neural network. In Proceedings of the591
32nd International Conference on Machine Learning,592
ICML 2015, Lille, France, 6-11 July 2015, volume 37593
of JMLR Workshop and Conference Proceedings,594
pages 1613–1622. JMLR.org.595

Glenn W Brier. 1950. Verification of forecasts ex-596
pressed in terms of probability. Monthly weather597
review, 78(1):1–3.598

Malinda Dilhara, Danny Dig, and Ameya Ketkar. 2023.599
PYEVOLVE: automating frequent code changes in600
python ML systems. In 45th IEEE/ACM Interna-601
tional Conference on Software Engineering, ICSE602
2023, Melbourne, Australia, May 14-20, 2023, pages603
995–1007. IEEE.604

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 605
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 606
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 607
BERT: A pre-trained model for programming and 608
natural languages. In Findings of the Association 609
for Computational Linguistics: EMNLP 2020, pages 610
1536–1547, Online. Association for Computational 611
Linguistics. 612

Yarin Gal and Zoubin Ghahramani. 2016. Dropout 613
as a bayesian approximation: Representing model 614
uncertainty in deep learning. In Proceedings of the 615
33nd International Conference on Machine Learning, 616
ICML 2016, New York City, NY, USA, June 19-24, 617
2016, volume 48 of JMLR Workshop and Conference 618
Proceedings, pages 1050–1059. JMLR.org. 619

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017. 620
Deep Bayesian active learning with image data. In 621
Proceedings of the 34th International Conference 622
on Machine Learning, volume 70 of Proceedings 623
of Machine Learning Research, pages 1183–1192. 624
PMLR. 625

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein- 626
berger. 2017. On calibration of modern neural net- 627
works. In Proceedings of the 34th International Con- 628
ference on Machine Learning, ICML 2017, Sydney, 629
NSW, Australia, 6-11 August 2017, volume 70 of 630
Proceedings of Machine Learning Research, pages 631
1321–1330. PMLR. 632

Dan Hendrycks and Kevin Gimpel. 2017. A baseline 633
for detecting misclassified and out-of-distribution ex- 634
amples in neural networks. In 5th International Con- 635
ference on Learning Representations, ICLR 2017, 636
Toulon, France, April 24-26, 2017, Conference Track 637
Proceedings. OpenReview.net. 638

Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, 639
and Máté Lengyel. 2011. Bayesian active learning 640
for classification and preference learning. CoRR, 641
abs/1112.5745. 642

Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, 643
Mike Papadakis, Lei Ma, and Yves Le Traon. 2023. 644
Codes: Towards code model generalization under 645
distribution shift. In 45th IEEE/ACM International 646
Conference on Software Engineering: New Ideas and 647
Emerging Results, NIER@ICSE, Melbourne, Aus- 648
tralia, May 14-20, 2023, pages 1–6. IEEE. 649

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, 650
Joseph Gonzalez, and Ion Stoica. 2021. Contrastive 651
code representation learning. In Proceedings of the 652
2021 Conference on Empirical Methods in Natural 653
Language Processing, pages 5954–5971, Online and 654
Punta Cana, Dominican Republic. Association for 655
Computational Linguistics. 656

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish 657
Chandra. 2021. Code prediction by feeding trees 658
to transformers. In 43rd IEEE/ACM International 659
Conference on Software Engineering, ICSE 2021, 660
Madrid, Spain, 22-30 May 2021, pages 150–162. 661
IEEE. 662

9

https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
http://proceedings.mlr.press/v37/blundell15.html
http://proceedings.mlr.press/v37/blundell15.html
http://proceedings.mlr.press/v37/blundell15.html
https://doi.org/10.1109/ICSE48619.2023.00091
https://doi.org/10.1109/ICSE48619.2023.00091
https://doi.org/10.1109/ICSE48619.2023.00091
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v70/gal17a.html
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
http://arxiv.org/abs/1112.5745
http://arxiv.org/abs/1112.5745
http://arxiv.org/abs/1112.5745
https://doi.org/10.1109/ICSE-NIER58687.2023.00007
https://doi.org/10.1109/ICSE-NIER58687.2023.00007
https://doi.org/10.1109/ICSE-NIER58687.2023.00007
https://doi.org/10.18653/v1/2021.emnlp-main.482
https://doi.org/10.18653/v1/2021.emnlp-main.482
https://doi.org/10.18653/v1/2021.emnlp-main.482
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.1109/ICSE43902.2021.00026
https://doi.org/10.1109/ICSE43902.2021.00026

Diederik P. Kingma, Tim Salimans, and Max Welling.663
2015. Variational dropout and the local reparame-664
terization trick. In Advances in Neural Information665
Processing Systems 28: Annual Conference on Neu-666
ral Information Processing Systems 2015, December667
7-12, 2015, Montreal, Quebec, Canada, pages 2575–668
2583.669

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-670
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-671
guage models are zero-shot reasoners. In NeurIPS.672

Balaji Lakshminarayanan, Alexander Pritzel, and673
Charles Blundell. 2017. Simple and scalable pre-674
dictive uncertainty estimation using deep ensembles.675
In Advances in Neural Information Processing Sys-676
tems 30: Annual Conference on Neural Information677
Processing Systems 2017, December 4-9, 2017, Long678
Beach, CA, USA, pages 6402–6413.679

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.680
2018. A simple unified framework for detecting out-681
of-distribution samples and adversarial attacks. In682
Advances in Neural Information Processing Systems683
31: Annual Conference on Neural Information Pro-684
cessing Systems 2018, NeurIPS 2018, December 3-8,685
2018, Montréal, Canada, pages 7167–7177.686

Yufei Li, Xiao Yu, Yanchi Liu, Haifeng Chen, and Cong687
Liu. 2023. Uncertainty-aware bootstrap learning for688
joint extraction on distantly-supervised data. In Pro-689
ceedings of the 61st Annual Meeting of the Associa-690
tion for Computational Linguistics (Volume 2: Short691
Papers), pages 1349–1358, Toronto, Canada. Associ-692
ation for Computational Linguistics.693

Shiyu Liang, Yixuan Li, and R. Srikant. 2018. En-694
hancing the reliability of out-of-distribution image695
detection in neural networks. In 6th International696
Conference on Learning Representations, ICLR 2018,697
Vancouver, BC, Canada, April 30 - May 3, 2018, Con-698
ference Track Proceedings. OpenReview.net.699

Jeremiah Z. Liu, Zi Lin, Shreyas Padhy, Dustin Tran,700
Tania Bedrax-Weiss, and Balaji Lakshminarayanan.701
2020. Simple and principled uncertainty estimation702
with deterministic deep learning via distance aware-703
ness. In Advances in Neural Information Processing704
Systems 33: Annual Conference on Neural Informa-705
tion Processing Systems 2020, NeurIPS 2020, De-706
cember 6-12, 2020, virtual.707

Ilya Loshchilov and Frank Hutter. 2019. Decoupled708
weight decay regularization. In 7th International709
Conference on Learning Representations, ICLR 2019,710
New Orleans, LA, USA, May 6-9, 2019. OpenRe-711
view.net.712

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey713
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,714
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-715
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-716
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-717
daresan, Shao Kun Deng, Shengyu Fu, and Shujie718
Liu. 2021. Codexglue: A machine learning bench-719
mark dataset for code understanding and generation.720

In Proceedings of the Neural Information Process- 721
ing Systems Track on Datasets and Benchmarks 1, 722
NeurIPS Datasets and Benchmarks 2021, December 723
2021, virtual. 724

David JC MacKay. 1992. Bayesian interpolation. Neu- 725
ral computation, 4(3):415–447. 726

Wesley J. Maddox, Pavel Izmailov, Timur Garipov, 727
Dmitry P. Vetrov, and Andrew Gordon Wilson. 2019. 728
A simple baseline for bayesian uncertainty in deep 729
learning. In Advances in Neural Information Pro- 730
cessing Systems 32: Annual Conference on Neural 731
Information Processing Systems 2019, NeurIPS 2019, 732
December 8-14, 2019, Vancouver, BC, Canada, pages 733
13132–13143. 734

George A Miller. 1995. Wordnet: a lexical database for 735
english. Communications of the ACM, 38(11):39–41. 736

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos 737
Hauskrecht. 2015. Obtaining well calibrated prob- 738
abilities using bayesian binning. In Proceedings of 739
the Twenty-Ninth AAAI Conference on Artificial In- 740
telligence, January 25-30, 2015, Austin, Texas, USA, 741
pages 2901–2907. AAAI Press. 742

Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Ray Mooney, 743
and Milos Gligoric. 2022. Impact of evaluation 744
methodologies on code summarization. In Proceed- 745
ings of the 60th Annual Meeting of the Association 746
for Computational Linguistics (Volume 1: Long Pa- 747
pers), pages 4936–4960, Dublin, Ireland. Association 748
for Computational Linguistics. 749

Apostolos F. Psaros, Xuhui Meng, Zongren Zou, Ling 750
Guo, and George Em Karniadakis. 2023. Uncertainty 751
quantification in scientific machine learning: Meth- 752
ods, metrics, and comparisons. J. Comput. Phys., 753
477:111902. 754

Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun 755
Yu, Lingxiao Jiang, and Mohammad Amin Alipour. 756
2021. On the generalizability of neural program 757
models with respect to semantic-preserving program 758
transformations. Information and Software Technol- 759
ogy, 135:106552. 760

Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mo- 761
hammad Saleh, Balaji Lakshminarayanan, and Pe- 762
ter J. Liu. 2023. Out-of-distribution detection and 763
selective generation for conditional language models. 764
In The Eleventh International Conference on Learn- 765
ing Representations, ICLR 2023, Kigali, Rwanda, 766
May 1-5, 2023. OpenReview.net. 767

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 768
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 769
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom 770
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man- 771
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, 772
Wenhan Xiong, Alexandre Défossez, Jade Copet, 773
Faisal Azhar, Hugo Touvron, Louis Martin, Nico- 774
las Usunier, Thomas Scialom, and Gabriel Synnaeve. 775
2023. Code llama: Open foundation models for code. 776
CoRR, abs/2308.12950. 777

10

https://proceedings.neurips.cc/paper/2015/hash/bc7316929fe1545bf0b98d114ee3ecb8-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/bc7316929fe1545bf0b98d114ee3ecb8-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/bc7316929fe1545bf0b98d114ee3ecb8-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://doi.org/10.18653/v1/2023.acl-short.116
https://doi.org/10.18653/v1/2023.acl-short.116
https://doi.org/10.18653/v1/2023.acl-short.116
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://proceedings.neurips.cc/paper/2020/hash/543e83748234f7cbab21aa0ade66565f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/543e83748234f7cbab21aa0ade66565f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/543e83748234f7cbab21aa0ade66565f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/543e83748234f7cbab21aa0ade66565f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/543e83748234f7cbab21aa0ade66565f-Abstract.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://proceedings.neurips.cc/paper/2019/hash/118921efba23fc329e6560b27861f0c2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/118921efba23fc329e6560b27861f0c2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/118921efba23fc329e6560b27861f0c2-Abstract.html
https://doi.org/10.1609/AAAI.V29I1.9602
https://doi.org/10.1609/AAAI.V29I1.9602
https://doi.org/10.1609/AAAI.V29I1.9602
https://doi.org/10.18653/v1/2022.acl-long.339
https://doi.org/10.18653/v1/2022.acl-long.339
https://doi.org/10.18653/v1/2022.acl-long.339
https://doi.org/10.1016/j.jcp.2022.111902
https://doi.org/10.1016/j.jcp.2022.111902
https://doi.org/10.1016/j.jcp.2022.111902
https://doi.org/10.1016/j.jcp.2022.111902
https://doi.org/10.1016/j.jcp.2022.111902
https://openreview.net/pdf?id=kJUS5nD0vPB
https://openreview.net/pdf?id=kJUS5nD0vPB
https://openreview.net/pdf?id=kJUS5nD0vPB
https://doi.org/10.48550/ARXIV.2308.12950

Lewis Smith and Yarin Gal. 2018. Understanding mea-778
sures of uncertainty for adversarial example detec-779
tion. In Proceedings of the Thirty-Fourth Conference780
on Uncertainty in Artificial Intelligence, UAI 2018,781
Monterey, California, USA, August 6-10, 2018, pages782
560–569. AUAI Press.783

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji784
Lakshminarayanan, Sebastian Nowozin, D. Sculley,785
Joshua V. Dillon, Jie Ren, and Zachary Nado. 2019.786
Can you trust your model’s uncertainty? evaluating787
predictive uncertainty under dataset shift. In Ad-788
vances in Neural Information Processing Systems 32:789
Annual Conference on Neural Information Process-790
ing Systems 2019, NeurIPS 2019, December 8-14,791
2019, Vancouver, BC, Canada, pages 13969–13980.792

Dustin Tran, Jeremiah Z. Liu, Michael W. Dusen-793
berry, Du Phan, Mark Collier, Jie Ren, Kehang Han,794
Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim795
G. J. Rudner, Karan Singhal, Zachary Nado, Joost796
van Amersfoort, Andreas Kirsch, Rodolphe Jenat-797
ton, Nithum Thain, Honglin Yuan, Kelly Buchanan,798
Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahra-799
mani, Jasper Snoek, and Balaji Lakshminarayanan.800
2022. Plex: Towards reliability using pretrained large801
model extensions. CoRR, abs/2207.07411.802

Joost van Amersfoort, Lewis Smith, Yee Whye Teh,803
and Yarin Gal. 2020. Uncertainty estimation using804
a single deep deterministic neural network. In Pro-805
ceedings of the 37th International Conference on806
Machine Learning, ICML 2020, 13-18 July 2020, Vir-807
tual Event, volume 119 of Proceedings of Machine808
Learning Research, pages 9690–9700. PMLR.809

Artem Vazhentsev, Gleb Kuzmin, Artem Shelmanov,810
Akim Tsvigun, Evgenii Tsymbalov, Kirill Fedyanin,811
Maxim Panov, Alexander Panchenko, Gleb Gusev,812
Mikhail Burtsev, Manvel Avetisian, and Leonid813
Zhukov. 2022. Uncertainty estimation of transformer814
predictions for misclassification detection. In Pro-815
ceedings of the 60th Annual Meeting of the Associa-816
tion for Computational Linguistics (Volume 1: Long817
Papers), pages 8237–8252, Dublin, Ireland. Associa-818
tion for Computational Linguistics.819

Hongjun Wang and Yisen Wang. 2022. Self-ensemble820
adversarial training for improved robustness. In The821
Tenth International Conference on Learning Repre-822
sentations, ICLR 2022, Virtual Event, April 25-29,823
2022. OpenReview.net.824

Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma,825
and Jian Lu. 2020. Dissector: input validation for826
deep learning applications by crossing-layer dissec-827
tion. In ICSE ’20: 42nd International Conference on828
Software Engineering, Seoul, South Korea, 27 June -829
19 July, 2020, pages 727–738. ACM.830

Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang,831
and Peixin Zhang. 2019. Adversarial sample detec-832
tion for deep neural network through model mutation833

testing. In Proceedings of the 41st International Con- 834
ference on Software Engineering, ICSE 2019, Mon- 835
treal, QC, Canada, May 25-31, 2019, pages 1245– 836
1256. IEEE / ACM. 837

Shusheng Xu, Xingxing Zhang, Yi Wu, and Furu Wei. 838
2022. Sequence level contrastive learning for text 839
summarization. In Thirty-Sixth AAAI Conference 840
on Artificial Intelligence, AAAI 2022, Thirty-Fourth 841
Conference on Innovative Applications of Artificial 842
Intelligence, IAAI 2022, The Twelveth Symposium 843
on Educational Advances in Artificial Intelligence, 844
EAAI 2022 Virtual Event, February 22 - March 1, 845
2022, pages 11556–11565. AAAI Press. 846

Polina Zablotskaia, Du Phan, Joshua Maynez, Shashi 847
Narayan, Jie Ren, and Jeremiah Liu. 2023. On un- 848
certainty calibration and selective generation in prob- 849
abilistic neural summarization: A benchmark study. 850
In Findings of the Association for Computational Lin- 851
guistics: EMNLP 2023, pages 2980–2992, Singapore. 852
Association for Computational Linguistics. 853

A Settings 854

A.1 Preprocessing and Evaluation 855

Preprocessing Each Java file is converted into a 856

string for tokenization and preprocessing. We nor- 857

malize uncommon literals for better user experi- 858

ence. As suggested by (Lu et al., 2021), we don’t 859

require models to identify literals such as names, 860

IP address, phone numbers or numeric literals, and 861

thus normalize them by pre-defined special tokens. 862

Considering that frequently-used literals may con- 863

tain useful information, e.g., “__main__” or “utf- 864

8”, we preserve the 200 most frequent string and 865

30 most frequent numeric literals. These literals 866

will be normalized by tokens in “<STR_LIT:utf- 867

8>” format, while uncommon literals are replaced 868

by <STR_LIT> or <NUM_LIT>. We add <s> and 869

</s> to indicate the start and the end of one snippet 870

of code, and <MASK> one token for prediction in 871

each snippet line. 872

Code Completion CC aims to predict next code 873

token given context of previous tokens, is a one of 874

the most widely used features in software develop- 875

ment through IDEs. An effective code completion 876

tool could improve software developers’ productiv- 877

ity. We evaluate each model in terms of sequence 878

classification by top-k sub-token F-1 score follow- 879

ing (Lu et al., 2021), which is analogous to lan- 880

guage modeling. For instance, consider the func- 881

tion “count|lines” with k = 2. We tokenize it into 882

sub-tokens: “count” and “lines”, using a Llama pre- 883

trained tokenizer. Then we query WordNet (Miller, 884

1995) to obtain the top-2 synonyms for each sub- 885

token: “tally”, “total” (for “count”), and “rows”, 886

11

http://auai.org/uai2018/proceedings/papers/207.pdf
http://auai.org/uai2018/proceedings/papers/207.pdf
http://auai.org/uai2018/proceedings/papers/207.pdf
http://auai.org/uai2018/proceedings/papers/207.pdf
http://auai.org/uai2018/proceedings/papers/207.pdf
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://doi.org/10.48550/ARXIV.2207.07411
https://doi.org/10.48550/ARXIV.2207.07411
https://doi.org/10.48550/ARXIV.2207.07411
http://proceedings.mlr.press/v119/van-amersfoort20a.html
http://proceedings.mlr.press/v119/van-amersfoort20a.html
http://proceedings.mlr.press/v119/van-amersfoort20a.html
https://doi.org/10.18653/v1/2022.acl-long.566
https://doi.org/10.18653/v1/2022.acl-long.566
https://doi.org/10.18653/v1/2022.acl-long.566
https://openreview.net/forum?id=oU3aTsmeRQV
https://openreview.net/forum?id=oU3aTsmeRQV
https://openreview.net/forum?id=oU3aTsmeRQV
https://doi.org/10.1145/3377811.3380379
https://doi.org/10.1145/3377811.3380379
https://doi.org/10.1145/3377811.3380379
https://doi.org/10.1145/3377811.3380379
https://doi.org/10.1145/3377811.3380379
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1609/AAAI.V36I10.21409
https://doi.org/10.1609/AAAI.V36I10.21409
https://doi.org/10.1609/AAAI.V36I10.21409
https://doi.org/10.18653/v1/2023.findings-emnlp.197
https://doi.org/10.18653/v1/2023.findings-emnlp.197
https://doi.org/10.18653/v1/2023.findings-emnlp.197
https://doi.org/10.18653/v1/2023.findings-emnlp.197
https://doi.org/10.18653/v1/2023.findings-emnlp.197

“stripes” (for “lines”). Combinations of synonyms887

like “lines|tally” and “count|rows” are treated as ex-888

act matches. Partial matches like “count” implies889

full precision but low recall, while extra matches890

like “count|blank|lines” suggests full recall but low891

precision. Out-of-vocabulary (OOV) sub-tokens892

are treated as false negatives, which reduces the893

recall performance.894

Code Summarization Existing studies regard-895

ing CS consists of two main tasks: comment gen-896

eration and method name prediction. In this work,897

we focus on MNP, which aims to predict method898

names based on the context provided by code snip-899

pets. Similar to CC, function names are also com-900

posed of sub-tokens which implies non-unique901

ground truths, and we evaluate the top-2 sub-token902

F-1 score of the predicted method names.903

A.2 Models Setup904

We use the Hugging Face pre-trained model905

codellama/CodeLlama-7b-hf. Besides CodeL-906

lama, we also investigate three relatively smaller907

models that are popular in solving code analy-908

sis tasks: Code2Vec (Alon et al., 2019b), Code-909

BERT (Feng et al., 2020), and CodeGPT (Lu910

et al., 2021). Their sizes and configuration are911

shown in Table 7. For CodeBERT and CodeGPT,912

we use their Hugging Face pre-trained mod-913

els: microsoft/codebert-base, microsoft/CodeGPT-914

small-java-adaptedGPT2. The training hyperpa-915

rameters of each model are tuned using grid search.916

We fine-tune each model for 100 epochs, with a917

learning rate of 2e-5 and weight decay of 1e-4, us-918

ing the AdamW optimizer (Loshchilov and Hutter,919

2019). The training batch size is 8. For Code2Vec,920

we select the hidden dimension based on the vali-921

dation accuracy. For each experiment, we run the922

model 5 times and report the average numbers as923

the evaluation results. Below are pre-defined list924

from which we select hyperparameter values:925

Learning rate: [5e-6, 7e-9e-6, 1e-5, 2e-5, 5e-5,926

7e-5, 1e-4, 2e-4, 5e-4];927

Number of epochs: {n ∈ N|15 ≤ n ≤ 150};928

Batch size: [2, 4, 6, 8, 10, 12, 14, 16];929

Weight decay: [0, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1];930

Hidden dim.: [32, 64, 128, 256, 512, 1024].931

A.3 Datasets932

Timeline Shift The four timelines we chose for933

training/dev, shift1, shift2, and shift3 are June 2020,934

December 2020, July 2021, and January 2022.935

OOD Both BigCloneEval and Ruoyiplus are rel- 936

atively large datasets, and we extracted 15,000 Java 937

files in both projects. We randomly select 2,000 938

/ 500 Java files from BigCloneEval as the train- 939

ing/dev datasets, and 500 Java files from Ruoyiplus 940

as the OOD test set. Table 8 shows their statistics 941

after preprocessing, where we see a much more se- 942

vere shift compared to the previous three according 943

to the higher KL and lower cosine scores. 944

A.4 Hardware 945

All of our experiments, including the fine-tuning 946

of LLMs, uncertainty calibration, and evaluation, 947

are conducted on an NVIDIA A6000 Ada Server, 948

as shown in Table 9. 949

B Probabilistic Methods 950

In this section, we illustrate the additional details 951

for the probabilistic methods, providing a compre- 952

hensive understanding of their characteristics and 953

how their properties may facilitate LLM calibra- 954

tion. For Monte-Carlo Dropout, Deep Ensemble, 955

Mutation Testing, and Dissector, the essential idea 956

is to get an approximation of the predictive poste- 957

rior of a model by averaging the probabilities from 958

several independent models (also referred to the 959

committee size). 960

Vanilla Baseline Vanilla logits (after softmax) 961

are directly used as predictive probabilities without 962

calibration. The UE method is winning score: 963

uws(x) = 1−max
c∈C

p(y = c|x) = 1−max
c∈C

pct (2) 964

The time complexity is O(B), where B is the 965

complexity of the base model, e.g., CodeLlama. 966

Temperature Scaling TS is a post-hoc calibra- 967

tion method based on a hold-out validation set. It 968

works effectively on in-distribution sets but can 969

be prone to degradation under distribution shifts, 970

as shown by our study. We tune the parame- 971

ter Tts using a validation set, by minimizing the 972

negative log-likelihood (NLL) loss between the 973

scaled logits and labels with the LBFGS optimizer 974

for 50 training epochs. The time complexity is 975

O(1) + O(B) = O(B). The UE method is Shan- 976

non entropy over the new predictive distribution: 977

uentropy = −
C∑
c=1

el
c/Tts∑

k e
lk/Tts

log

(
el

c/Tts∑
k e

lk/Tts

)
(3) 978

12

Model Hidden Dim. Attention Heads Layers Parameters

Code2Vec (Alon et al., 2019b) 256 0 6 14,519,554
CodeBERT (Feng et al., 2020) 768 12 12 135,917,634
CodeGPT (Lu et al., 2021) 768 12 12 135,699,456
CodeLlama (Rozière et al., 2023) 4096 32 32 6,667,448,320

Table 7: Model size and configuration in our experiments.

BigCloneEval Ruoyiplus

Paradigm Language tool J2EE platform
Snippet size 10.74/10.73 9.01
Snippets 15,652/3,896 3,768
KL↑ 0.0 3.44
Cosine↓ 0.0 0.68
Vocab 13,828 11,704

Table 8: Statistics of the BigCloneEval (in-distribution)
and Ruoyiplus (OOD) datasets.

Monte-Carlo Dropout MCD is a Bayesian979

technique leveraging dropout regularization during980

training inference. By sampling multiple predic-981

tions, MCD measures how inner-model parameters982

align with the data distribution and thus the con-983

fidence in its predictions. We set the number of984

dropout samples Tmcd as 10 and the dropout rate985

as 0.1. The time complexity is O(B × Tmcd). The986

three UE methods are formulated as:987

usws = 1− 1

Tmcd

Tmcd∑
t=1

max
c∈C

pct (4)988

upv =
1

C

C∑
c=1

(
1

Tmcd

Tmcd∑
t=1

(pct − pct)
2

)
(5)989

ubald =
1

Tmcd

∑
t,c

pct log p
c
t −

1

C

C∑
c=1

pct log p
c
t (6)990

Deep Ensemble DE is a non-Bayesian method991

that trains several independent deterministic mod-992

els, with each capturing different features of the993

data and output more precise and robust predic-994

tions when combined. Its uncertainty captures the995

cross-model parametric uncertainty. Our study also996

proves its robustness in both top-ranked calibration997

ability and uncertainty estimation precision. We998

train Tde = 5 deterministic CodeLlama models and999

averages all. In the original work, each model is1000

trained with different architectures or subsets or1001

training data. We focus on CodeLlama and apply 1002

self-ensemble (Wang and Wang, 2022) in our exper- 1003

iments, which has been shown helpful for boosting 1004

LLM performance (Li et al., 2023). The time com- 1005

plexity is O(B × Tde). The three UE methods are 1006

the same as MCD but across ensemble models. 1007

Mutation Testing MT assumes adversarial in- 1008

puts are closer to the model decision boundary and 1009

thus more sensitive to the model mutation oper- 1010

ations. (Wang et al., 2019) propose four DNN 1011

model mutation operators, GF, WS, NS, and NAI, 1012

as shown in Table 10. For each operator, we mu- 1013

tate 100 times to obtain a series of mutated models 1014

M = {f ′
i |1 ≤ i ≤ 100} where |M| = 100. In 1015

other words, the calibrated predictive distribution 1016

and UE results are obtained from the 100 mutated 1017

models. To save space, we only report the UE re- 1018

sults of MT-GF and MT-WS in the paper, as the 1019

other two techniques produce similar patterns. The 1020

time complexity is O(B + |M| × F), where F 1021

is the complexity of each mutation operation. As 1022

|M| is typically large and F is related to the size of 1023

deep models, the calibration overhead of MT can 1024

be extremely large in practice. The UE method is 1025

the label change rate (LCR) between the original 1026

output and mutated model outputs: 1027

ulcr(x) =
| {f ′

i(x) ∈ M|f ′
i(x) ̸= f(x)} |

|M|
(7) 1028

Dissector DS assumes a correctly classified in- 1029

puts should have an increasing intermediate consis- 1030

tency across hidden layers, and is thus effective in 1031

misclassification detection. We select the 1st, 3rd, 1032

5th, 7th, and 9th transformer layers of LLMs to 1033

train the corresponding snapshots. Each snapshot 1034

is a linear layer trained using stochastic gradient de- 1035

scent (SGD) with cross-entropy loss for 10 epochs. 1036

Suppose the original model f predicts x as label ŷ, 1037

the snapshot validity (SV) score first measures how 1038

ŷ is uniquely supported by the probability vector 1039

in this snapshot. If ŷ is aligned with the highest 1040

probability, Dissector measures uniqueness as how 1041

much ŷ’s associated probability pŷSl
exceeds the 1042

13

CPU Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
CPU Cores 32
GPU NVIDIA RTX 6000 Ada Generation
GPU Memory 50 GB

Table 9: Hardware configuration in the experiments.

Mutation Operator Level Description

Gaussian Fuzzing (GF) Weight Fuzz weights of LLMs by Gaussian Distribution
Weight Shuffling (WS) Neuron Shuffle selected weights with ratio 25%
Neuron Switch (NS) Neuron Switch two neurons within each layer of LLMs
Neuron Activation Inverse (NAI) Neuron Deactivate the status of a neuron with ratio 25%

Table 10: Model mutation operators in Mutation Testing (MT).

Grow Type Formula Reduced Formula Number of Parameters

Linear α = ax+ l

{
α = x
α = wx+ 1

2 → 1

Logarithmic α = a logb(lx+ k1) + k2

α = lnx
α = w lnx+ 1
α = w ln(βx+ 1) + 1

5 → 2

Exponential α = aelx+b1 + b2

{
α = eβx

α = weβx + 1
4 → 2

Table 11: Parameter reduction for modeling weights in Dissector.

Pattern Code Completion Code Summarization

Dev Shift1 Shift2 Shift3 Dev Shift1 Shift2 Shift3

TIMELINE 0.44 0.55 0.46 0.43 0.03 0.06 0.06 0.09
PROJECT 0.44 0.21 0.69 0.35 0.08 0.08 0.02 0.08
AUTHOR 0.57 0.94 0.82 1.15 0.21 0.19 0.16 0.15

Pattern Dev OOD Dev OOD

PARADIGM 0.41 0.0 0.08 0.12

Table 12: Zero-shot F-1 scores (×10−2) of CodeLlama across all the shifted and OOD datasets.

In-Distribution Shift 1 Shift 2 Shift 30

20

40

60

80

AU
C

(%
)

In-Distribution Shift 1 Shift 2 Shift 3
Shift Intensity

0

10

20

30

Br
ie

r (
%

)

Base-WS TS-Entropy MCD-SWS MCD-PV MCD-BALD DE-SWS DE-PV DE-BALD MT-GF MT-WS DS-Linear DS-Log DS-Exp

Figure 8: AUC↑ and Brier↓ results for detecting CodeLlama mistakes using different methods in CS under
intensifying shifts. Error bars indicate variations across the three shift patterns.

14

second highest probability p
c(2)
Sl

(with label c(2)).1043

Otherwise, Dissector measures how much the ac-1044

tual highest probability p
c(1)
Sl

(with label c(1)) ex-1045

ceeds that of ŷ:1046

SV(ŷ, Sl) =

pŷSl

pŷSl
+p

c(2)
Sl

, ŷ = argmax
c

pcSl

1−
p
c(1)
Sl

pŷSl
+p

c(1)
Sl

, otherwise

(8)1047

The SV score is in range [0, 1], with a larger1048

value indicating more uniquely the current snap-1049

shot supports the final prediction result ŷ. The UE1050

method is profile validity (PV), i.e., the normalized1051

sum of SV scores across layers:1052

uspv =

∑
l∈L αl · SVl(ŷ, Sl)∑

l∈L αl
(9)1053

Here L is the set of hidden layers for training1054

snapshots and αl is the associated weight for the1055

lth layer. Table 11 lists general formulas for com-1056

puting weight α values regarding the three growth1057

types, based on the DS assumption that a within-1058

input should have increasing confidence across the1059

intermediate layers of a model. To reduce parame-1060

ters, (Wang et al., 2020) also reduce these formulas1061

with one (w) or two (w and β) parameters only.1062

The time complexity is O(B + |L| ×W), where1063

L is the set of hidden layers used for training snap-1064

shots, and W is the complexity of each snapshot1065

submodel.1066

C Additional Results1067

Zero-Shot Performance Table 12 presents the1068

zero-shot performance of CodeLlama in two pop-1069

ular code analysis tasks. We observe a noticeable1070

challenge: the model produces nearly zero F-1 in1071

all datasets. This suggests current capabilities of1072

CodeLlama in zero-shot settings, especially when1073

deployed for solving complex tasks, are still in-1074

adequate, underscoring further fine-tuning in real-1075

world code analysis applications.1076

Misclassification Detection Figure 8 shows the1077

AUC and Brier results of misclassification detec-1078

tion for different methods in CS. We observe a1079

similar pattern as in CC: DS is superior in validat-1080

ing low-quality predictions or mistakes. Figure 91081

presents the AUPR results of misclassification de-1082

tection under the three shifted datasets. Consis-1083

tent with the AUC and Brier performance, we also1084

observe a degradation of quality of UE methods1085

under distribution shifts, as evidenced by lower 1086

AUPR on the shift3 set. Probabilistic methods gen- 1087

erally improve the awareness of the mistakes over 1088

the vanilla baseline. DE, MCD, and DS achieve 1089

promising AUPR results. Interestingly, post-hoc 1090

calibration (TS) is prone to degradation under in- 1091

tensifying shifts. 1092

Selective Prediction Figure 10 demonstrates the 1093

selective prediction results in CS. We observe prob- 1094

abilistic methods generally lead to higher F-1 per- 1095

formance with the same rejection rate compared to 1096

the vanilla baseline. Among them, DE and DS still 1097

achieve higher efficiency. However, compared to 1098

the results in CC, the highest F-1 is much smaller 1099

and cannot reach nearly 100%. This is because 1100

the prediction quality of the vanilla model in CS is 1101

much lower than in CC, causing the UE a bit more 1102

challenge. Figure 11 illustrates the selective pre- 1103

diction results of the remaining UE methods. We 1104

observe different UE techniques that correspond 1105

to the same probabilistic method produce similar 1106

results. DE and DS are efficient in achieving the 1107

same prediction quality with a lower abstention 1108

rate. Figure 12 demonstrates the abstention pre- 1109

diction performance for both in-distribution and 1110

OOD examples. We observe a more severe degra- 1111

dation of efficiency. Among them, DE and DS 1112

still achieve higher F-1 scores in the OOD dataset, 1113

while the MT is relatively less effective compared 1114

to other probabilistic methods. This again suggests 1115

its UE assumption is sensitive to severe shifts but 1116

less relevant to the reliability of model predictions. 1117

Calibration Quality for Different Models In 1118

addition to CodeLlama, we further evaluate the cal- 1119

ibration performance for Code2Vec, CodeBERT, 1120

and CodeGPT. Table 13 summarizes their F-1 1121

scores across the three shifted datasets. Similar 1122

to results from CodeLlama, probabilistic meth- 1123

ods consistently outperform the vanilla baseline, 1124

among which DE exhibits particularly notable im- 1125

provements. We observe a general decline in F-1 1126

relative to CodeLlama, with the smaller Code2Vec 1127

model experiencing a significant reduction (approx- 1128

imately 20% in CC and 15% in CS). This bias high- 1129

lights the varied capabilities of these models in pro- 1130

cessing code instances. Interestingly, we observe 1131

that the calibration effect of probabilistic methods 1132

is more apparent for the small Code2Vec model, 1133

e.g., DE increases the F-1 score of Code2Vec from 1134

29.33% to 40.29% in CS for the shift3 dataset. This 1135

suggests that powerful models may challenge the 1136

calibration effect. Figure 13 displays the ECE and 1137

15

(a
)C

C

In-Distribution Shift 1 Shift 2 Shift 3
Shift Intensity

70

75

80

85

90

95
AU

PR
 (%

)
Base-WS TS-Entropy MCD-SWS MCD-PV MCD-BALD DE-SWS DE-PV DE-BALD MT-GF MT-WS DS-Linear DS-Log DS-Exp

(b
)C

S

In-Distribution Shift 1 Shift 2 Shift 3
Shift Intensity

0

20

40

60

80

AU
PR

 (%
)

Figure 9: AUPR↑ results for detecting CodeLlama mistakes using different methods in (a) CC and (b) CS, with
intensity shifts. Error bars indicate AUPR variations across the three shift patterns.

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

50

55

60

65

70

75

80
In-Distribution

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

45

50

55

60

65

70

75

80
Shift 1

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

50

55

60

65

70

75

80
Shift 2

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

45

50

55

60

65

Shift 3
Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

Figure 10: F-1 vs. Abstention curve for CodeLlama using different methods in CS, with intensifying shifts. Each
line is the average F-1 score over the three shift patterns.

(a
)C

C

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

70

75

80

85

90

95

100
In-Distribution

MCD-PV
MCD-BALD
DE-PV
DE-BALD
MT-WS
DS-Log
DS-Exp

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

70

75

80

85

90

95

100
Shift 1

MCD-PV
MCD-BALD
DE-PV
DE-BALD
MT-WS
DS-Log
DS-Exp

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

65

70

75

80

85

90

95

100
Shift 2

MCD-PV
MCD-BALD
DE-PV
DE-BALD
MT-WS
DS-Log
DS-Exp

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

70

75

80

85

90

95

100
Shift 3

MCD-PV
MCD-BALD
DE-PV
DE-BALD
MT-WS
DS-Log
DS-Exp

(b
)C

S

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

50

55

60

65

70

75

80
In-Distribution

MCD-SWS
MCD-SWS
DE-SWS
DE-SWS
MT-GF
DS-Linear
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

50

55

60

65

70

75
Shift 1

MCD-SWS
MCD-SWS
DE-SWS
DE-SWS
MT-GF
DS-Linear
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

45

50

55

60

65

70

75

Shift 2
MCD-SWS
MCD-SWS
DE-SWS
DE-SWS
MT-GF
DS-Linear
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

40

45

50

55

60

65
Shift 3

MCD-SWS
MCD-SWS
DE-SWS
DE-SWS
MT-GF
DS-Linear
DS-Linear

Figure 11: F-1 vs. Abstention curve for CodeLlama in (a) CC and (b) CS, using the remaining methods, with
intensifying shifts. Each line is the average F-1 score over the three shift patterns.

16

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

70

75

80

85

90

95

100
In-Distribution

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

60

70

80

90

100
OOD

Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

(a) CC

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

40

50

60

70

80

90

In-Distribution
Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

0.0 0.2 0.4 0.6 0.8 1.0
Abstention rate

30

40

50

60

70

OOD
Base-WS
TS-Entropy
MCD-SWS
DE-SWS
MT-GF
DS-Linear

(b) CS

Figure 12: F-1 vs. Abstention curve for CodeLlama in (a) CC and (b) CS, using different methods in handling both
in-distribution and OOD code samples.

Pattern Model Method Code Completion Code Summarization

Dev Shift1 Shift2 Shift3 Avg↑ Rank↓ Dev Shift1 Shift2 Shift3 Avg↑ Rank↓

TIMELINE Code2Vec Base / TS 45.00 44.28 43.80 42.15 43.81 5.00 30.80 30.69 30.51 30.37 30.59 4.75
MCD 48.77 48.00 47.15 46.28 47.55 2.75 36.11 36.04 35.68 34.79 35.66 2.00
DE 49.66 49.86 48.60 47.54 48.92 1.00 39.17 39.11 38.75 38.74 38.66 1.00
MT 48.80 48.06 47.15 46.30 47.58 2.25 33.51 33.47 33.50 32.94 33.36 3.00
DS 48.02 47.25 46.41 46.28 46.99 4.00 31.49 31.03 31.00 29.56 30.77 4.25

CodeBERT Base / TS 67.62 64.87 64.74 64.94 65.64 4.25 45.60 45.39 44.88 44.12 44.99 4.75
MCD 67.80 65.03 64.82 64.99 65.66 2.75 49.39 47.63 47.12 46.56 47.68 1.75
DE 69.75 67.50 67.21 67.18 67.91 1.00 51.21 48.58 46.37 45.28 47.86 1.75
MT 67.63 65.01 64.89 64.79 65.58 3.50 45.80 45.39 44.90 44.13 45.06 4.25
DS 68.61 66.53 64.74 64.25 66.03 3.50 48.85 48.84 48.26 47.55 47.13 2.50

CodeGPT Base / TS 70.03 66.84 66.72 66.66 67.56 5.00 48.85 48.83 48.23 47.59 48.38 4.50
MCD 71.99 68.89 68.55 68.70 69.53 2.25 51.84 50.81 49.19 48.63 50.12 2.00
DE 71.90 69.11 68.86 68.73 69.65 1.75 53.13 53.06 52.31 51.79 52.57 1.00
MT 70.11 66.91 66.88 66.75 67.66 4.00 48.86 48.85 48.23 47.59 48.38 4.50
DS 72.01 67.95 68.22 68.87 69.26 2.00 49.66 49.61 48.93 48.26 49.11 3.00

PROJECT Code2Vec Base / TS 46.43 46.27 45.14 42.11 44.99 5.00 34.61 32.58 30.04 26.53 30.94 5.00
MCD 48.00 47.41 45.77 44.76 46.49 2.50 42.64 40.55 39.82 37.02 40.01 2.00
DE 48.78 48.10 45.28 43.27 46.36 2.00 46.87 45.55 40.84 32.31 41.39 1.75
MT 48.00 47.47 45.86 43.02 46.09 2.75 37.21 34.14 33.44 32.48 34.32 3.75
DS 48.49 47.63 45.62 42.29 46.01 2.75 43.64 39.82 38.34 36.89 39.67 2.50

CodeBERT Base / TS 64.97 62.62 59.89 57.13 61.15 5.00 43.58 41.88 41.48 36.94 40.97 4.75
MCD 67.41 66.70 65.89 64.13 66.03 1.75 49.88 48.94 47.71 46.18 48.18 2.00
DE 67.62 65.88 63.12 60.23 64.96 2.75 50.96 48.95 47.08 45.59 48.15 2.00
MT 65.08 63.12 60.15 57.55 61.47 4.00 44.52 43.58 41.89 36.91 41.73 4.25
DS 69.49 66.94 67.75 63.98 66.54 1.50 52.40 49.33 46.87 44.45 48.26 2.00

CodeGPT Base / TS 67.60 66.83 63.75 61.25 64.86 4.00 51.69 48.89 47.28 45.54 48.35 3.25
MCD 67.88 67.72 64.66 62.17 65.61 2.00 51.69 48.89 47.28 46.53 48.60 3.50
DE 70.12 69.23 66.21 63.97 67.38 1.00 53.28 51.68 48.44 47.59 50.25 1.00
MT 60.37 58.91 58.12 57.05 58.61 5.00 51.82 48.97 47.02 46.08 48.47 3.00
DS 67.66 67.38 64.01 61.80 65.21 3.00 51.69 48.89 47.42 45.54 48.39 4.25

AUTHOR Code2Vec Base / TS 51.20 50.21 49.95 48.68 50.01 5.00 39.65 37.13 36.60 29.33 35.68 5.00
MCD 59.64 59.17 58.14 54.90 57.96 3.25 44.24 42.43 41.46 34.10 40.56 3.00
DE 60.28 59.85 58.74 55.56 58.60 1.25 50.29 49.93 49.05 40.29 47.39 1.00
MT 59.68 59.20 58.21 54.95 58.01 2.25 41.52 39.74 38.93 31.47 37.92 4.00
DS 59.18 57.14 56.19 55.98 57.12 3.25 44.83 44.50 44.08 36.11 42.38 2.00

CodeBERT Base / TS 72.40 72.11 71.37 69.27 71.29 4.00 48.57 46.00 45.26 41.98 45.45 4.50
MCD 72.52 72.14 71.37 69.41 72.36 3.00 49.41 46.91 46.19 42.46 47.74 2.00
DE 74.25 73.93 73.19 71.50 73.22 2.00 53.27 48.33 46.22 42.72 47.64 2.50
MT 72.40 72.11 71.37 69.27 71.29 5.00 48.72 46.31 45.26 41.98 45.57 4.50
DS 75.24 74.41 74.42 73.40 74.37 1.00 50.71 49.39 48.15 44.69 48.24 1.50

CodeGPT Base / TS 75.28 74.87 74.03 72.24 74.10 5.00 50.31 47.49 47.62 42.62 47.01 5.00
MCD 75.29 74.93 74.15 72.40 76.44 1.50 49.89 48.73 47.46 43.58 48.92 2.25
DE 76.62 76.13 75.21 73.86 75.46 3.00 56.55 53.92 53.68 48.94 53.27 1.00
MT 75.31 74.96 74.04 72.28 74.15 4.00 50.67 47.94 47.78 43.10 47.37 4.00
DS 77.44 76.90 76.52 75.15 76.50 1.50 50.98 49.43 48.27 44.74 48.36 2.75

Table 13: F-1 scores and ranking of different methods for Code2Vec, CodeBERT, and CodeGPT, across the three
shift patterns. All methods consistently produce lower F-1 under intensifying shifts. Probabilistic methods (except
TS) outperform the vanilla baseline.

17

(a
)C

od
e2

V
ec

Code Completion Code Summarization
0
2
4
6
8

10
12
14
16
18

EC
E

(%
)

Code Completion Code Summarization
0

10
20
30
40
50
60
70
80

Sp
ea

rm
an

 (%
)

In-Dist.:
Shift 2:

Base
Base

TS
TS

MCD
MCD

DE
DE

MT
MT

DS
DS

Shift 1:
Shift 3:

Base
Base

TS
TS

MCD
MCD

DE
DE

MT
MT

DS
DS

(b
)C

od
eB

E
R

T

Code Completion Code Summarization
0
3
6
9

12
15
18
21
24
27

EC
E

(%
)

Code Completion Code Summarization
0

10
20
30
40
50
60
70
80

Sp
ea

rm
an

 (%
)

(c
)C

od
eG

PT

Code Completion Code Summarization
0
3
6
9

12
15
18
21
24

EC
E

(%
)

Code Completion Code Summarization
0

10
20
30
40
50
60
70
80

Sp
ea

rm
an

 (%
)

Figure 13: ECE↓ and Spearman’s Rank Correlation↑ for (a) Code2Vec, (b) CodeBERT, and (c) CodeGPT of
different methods in handling both in-distribution and shifted code examples. Error bars indicate variations across
the three shift patterns.

18

rank correlation of probabilistic methods across the1138

three models. Consistent with the CodeLlama find-1139

ings, TS and MCD excel in lower ECE and higher1140

correlation scores.1141

19

	Introduction
	Related Work
	Dataset Configuration
	Motivation of Our Study
	Benchmark Code Datasets

	Experiments
	Experiment Setup
	Uncertainty Calibration Quality
	Uncertainty Estimation (UE) Precision

	Further Analysis
	Calibration Quality in OOD Samples
	Empirical Findings
	Efficiency Analysis

	Conclusion
	Settings
	Preprocessing and Evaluation
	Models Setup
	Datasets
	Hardware

	Probabilistic Methods
	Additional Results

