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Abstract

Training and inference with large neural models is expensive. However, for many applica-
tion domains, while new tasks and models arise frequently, the underlying documents being
modeled remain mostly unchanged. We study how to decrease computational cost in such
settings through embedding recycling (ER): re-using activations from previous model runs
during training or inference. In contrast to prior work focusing on freezing small classi-
fication heads for fine-tuning which often leads to notable drops in accuracy, we propose
caching an intermediate layer’s output from a pretrained model and fine-tuning the remain-
ing layers for new tasks. We show that our method is effective using either fine-tuning for
the trainable layers, or parameter-efficient adapters. For the best-performing model in our
experiments, DeBERTa-v2 XL with adapters, we find that our method provides a 100%
speedup during training and an 87-91% speedup for inference, and has negligible impacts
on accuracy averaged across eight tasks spanning text classification and entity recognition
in the scientific domain and general-domain question answering. Further, in experiments
with SciBERT, BERT-base, and RoBERTa-large, we show a 100% speedup during training
and a 55-86% speedup for inference, at only a 0.19-0.23% reduction in accuracy on average.
Finally, we identify several open challenges and future directions for ER.

1 Introduction

Large pretrained language models form the foundation of modern NLP, and continue to push the state-
of-the-art on a wide range of natural language processing tasks (Devlin et al.| 2019; [Liu et al. [2019b;
Bommasani et al.l |2021). Larger models tend to offer superior accuracies (Kaplan et al., [2020), but also
higher computational costs. The steep computational cost associated with large neural language models
slows down experimentation, increases financial barriers to the technology, and contributes to global climate
change (Strubell et al., [2019; |Dodge et al., [2022).

We explore how to reduce this computational cost using the simple observation that often, the text we wish
to process with a large neural model has already been processed through a model before—and the activations
from previous runs may be re-used to speed up the current one. In many corpora, substantial portions of
the text remain relatively fixed over time (e.g. scientific papers, Wikipedia articles, StackExchange posts,
financial reports, legal records, etc.). Further, a number of models for various tasks are run over this text
(entity recognition, topic classification, relation extraction, summarization, question answering, and so on).
Any one of the runs produces a contextualized embedding of the text; and even without task-specific fine-
tuning, contextualized embeddings produced by pretrained language models are known to capture syntactic
and semantic knowledge about their input texts (Goldberg, |2019; [Wiedemann et al., [2019; Rogers et al.|
2020)), which can be useful for a variety of downstream tasks.

We study embedding recycling (ER), the technique of leveraging activations from previous model runs in
order to improve the accuracy and efficiency of future training and inference. While previous work has
explored a similar approach using frozen encoders (Du et al., [2020]), it focuses on small classification heads
for fine-tuning which lead to drops in accuracy. By contrast, we experiment with a simple layer-recycling
ER method that stores a cache of the activations from an intermediate layer of a pretrained model, and then
starts from those activations when the same input sequence is seen again during fine-tuning or inference.
Layer recycling imposes a small additional time cost the first time a model is run on a text, in order to
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compute and write the cache. Then, all subsequent runs on the text can start from the pretrained cache,
which we show results in substantial increases in throughput for those runs at small or no cost to model
accuracy. This is significant because the number of such subsequent runs can be large in some real-world
applications, including when re-training models many times during development, executing many epochs in
a training run, or performing inference with many different models over the same corpus Du et al. (2020);
Wei et al.| (2022)).

To summarize, we make the following contributions:

e We propose embedding recycling as a method for lowering the computational costs of training and
inference for language models, and explore two layer recycling methods, one that uses standard
fine-tuning and another that uses parameter-efficient adapters.

e In experiments across seven models and eight tasks, we show that layer recycling is generally effective.
For the best-performing model on our tasks, DeBERTa-XL with adapters, we find that layer recycling
matches performance of the original model while providing a 87-91% speedup at inference time, and
a 100% speedup at training time.

e We explore open challenges for embedding recycling and present questions for future work.

2 Related Work

Transformer-based pretrained language models (PLMs) are typically first pretrained over a large text corpus
and then fine-tuned on a downstream task. Recent work analyzing the structures of neural networks has
shown that different layers within transformer models extract different features from textual data. Studies
using canonical correlation analysis have found that the shallower layers tend to converge earlier in training
than the deeper layers (Raghu et all [2017; Morcos et al., 2018]). |Kovaleva et al.| (2019) observed that the
last layers of BERT change the most substantially during fine-tuning, suggesting that earlier layers tend to
extract universal features whereas later layers focus on task-specific modeling.

This tendency of deeper layers to learn task-specific knowledge has led to a variety of work finding that it is
often not necessary to train all the layers of a model. [Lee et al.| (2019)) found that only a fourth of the final
layers in BERT and RoBERTa need to be fine-tuned to achieve 90% of the fully fine-tuned performance.
Other work explored adaptive approaches that vary the number of frozen layers over the course of training,
approaching or exceeding the performance of fully fine-tuned models while substantially speeding up the
training process (Raghu et al.| 2017; [Xiao et al., |2019; [Brock et al. |2017]).

Similar to our work, some prior work on dynamic freezing also employed caching mechanisms to eliminate
the cost of the forward pass for frozen layers (Liu et all 2021 [He et al., [2021)). However, in that work the
dynamic choice of how many layers to freeze means that the cached activations are only useful at training
time and only for a single task; we propose caching embeddings from the pretrained model, which can then
be reused across multiple downstream tasks and applied at inference time as well.

Other recent studies have sought to improve model inference speed by skipping computations in later layers.
Sajjad et al.| (2020) found that for some tasks and PLMs, up to half of the layers can be removed from the
model to obtain a 98-100% speedup at the cost of a 1-3% drop in task performance. |Kumar et al| (2019)
considered approximate caching to skip the deeper layers for inputs that produce similar intermediate layer
representations. Early exit strategies have also been proposed, which allow the model to dynamically decide
when to skip later layers (Cambazoglu et al.,[2010; Xin et al., 2020)). In contrast, embedding recycling focuses
on eliminating computation of earlier layers rather than later ones, which makes it potentially possible to
combine embedding recycling with early exiting.

SkipBERT (Wang et al.| 2022)) combined early exiting with an approach in which cached n-gram embeddings
(tri-grams in practice) were used to approximate the intermediate activations of new inputs. However,
SkipBERT only measures latency (with a batch size of 1), targeting the use case where individual new
inputs need to be processed quickly. In embedding recycling, we focus on the case where an entire cached
corpus needs to be processed at once, making throughput more important than small-batch latency. In
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addition, SkipBERT’s approach is only evaluated on BERT-base and only on sentence-level tasks, whereas
we demonstrate the generality of embedding recycling across 8 models and 3 task types.

Precomputing text representations to speed up future processing on the same data is commonly done when
creating fixed-size document-level embeddings for use on document-level tasks (Conneau et al.l |2017; |[Cohan
et al., [2020); in contrast, we study contextualized token-level embeddings that can be used for tasks such as
named entity recognition (NER) and question answering. ReadOnce Transformers (Lin et al., 2021)) do con-
sider multi-task variable-length document representations, but do so in the context of "representation+text"
style tasks such as question answering, where a cached document representation is paired with a query text
at inference time (such as a question or prompt); the approach is pretrained with question answering data
and evaluated on QA and summarization, rather than tasks such as text classification or NER where the
entire input can be cached.

Du et al.| (2020) propose a similar high-level idea to ours in that they do cache general-purpose token-level
model representations, trained in a multi-task setting; however, the approach in that work only applies a
small MLP to the stored representations and reports a meaningful drop in accuracy (greater than 2% on
average) compared to fully fine-tuned models. We find that reusing the later layer parameters of a pretrained
transformer in addition to the cached activations of prior layers enables us to often essentially match fully
fine-tuned model accuracy on average, while decreasing computational cost. As noted in our experiments, if
we instead use small MLPs from a frozen pretrained encoder, we see large drops in accuracy on our tasks.

Wei et al.| (2022) combine the practices of freezing shallow layers and knowledge distillation to create a multi-
task model. However, they use a two stage process where 12— N deep layers are fine-tuned for each individual
task keeping N frozen layers. This is followed by distillation of the N layers for further computational gains.
We take advantage of the parameter efficient adapter modules (Houlsby et al.,[2019), and replace this process
with a single step of fine-tuning a frozen base model that has adapters attached only to the deeper layers.

Our work also has connections to work on memory- and retrieval-augmented language modeling. Prior
work on using memory (e.g., Grave et al.| (2016); Dai et al.| (2019); Rae & Razavi (2020); Wu et al.| (2022))
generally focuses on modeling long range context and caching representations of older history in a sequence,
while work on retrieval (e.g., (Guu et alJ [2020} [Karpukhin et all [2020)) focuses on fetching text from a
knowledge base or corpus to serve as additional context. In both cases, the aim is to use representations of
additional text (from earlier in a document or from a knowledge base) to improve modeling of new inputs.
In contrast, our work focuses on caching the representations of an entire sequence to speed up computation
for new tasks.

3 Methods

In the transformer architecture (Vaswani et all, 2017)), an input sequence x of length S and dimension d
is transformed with a function F : R>*% — R5*? defined by the composition of N transformer layers
FM  FN) as follows:

F'(z) = LN(FF'( 2/) + 2') (1)

x’ =LN (MH"(x) + a:) (2)

where LN is a layer normalization (Ba et al. |2016)), FF is a feed forward network, and MH is the self-attention
layer that consists of multiple heads and contextualizes the input sequence vector. The output of each layer
is used as input to the next layer.

W = FU) 3)

Our approach is to cache the output representations h* € R%*? at a certain layer k and reuse them for
fine-tuning on a new given task. We refer to this process of caching and reusing the output representations
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Figure 1: Overview of the embedding recycling approach. In the figure, the K-th layer activations are
saved for future fine-tuning on downstream tasks, skipping redundant computations of earlier layers in the
transformer model.

of a layer as layer recycling. This enables us to reduce the size of the transformer model from N layers to
N — k layers, reducing the computational cost during fine-tuning and inference.

Note that the key requirement of layer recycling is that we first need to process the entire data with the
transformer model and cache the representations, so that we could later reuse these representations many
times during fine-tuning and inference on new tasks. We experiment with two types of layer recycling
approaches as explained next.

We start with a pretrained transformer F' (e.g., BERT) consisting of FOF® - FO) Jayers. We run
the transformer over a corpus C and cache the output representations of layer k for each instance c in C, i.e.,
h’g€c. The same transformer model is then used for fine-tuning on new tasks, however, instead of fine-tuning
all the layers, we only fine-tune the parameters of the latter N —k layers F*+D  F(N) We can either train
all of the weights in these layers (we refer to these as reduced models), or only train adapter modules added on
the layers (discussed below). In either case, for the instance ¢ in the dataset C we simply retrieve and use the
previously cached representation hlgec as input to layer F(**1) This avoids the extra computation through

layers F(U ..., F(*) but adds a small cost for retrieving the representation from storage (see [subsection 5.3
for efficiency analysis).

3.1 Adapters

In addition to the standard layer recycling, we evaluate whether combining layer recycling with Adapter
modules (Houlsby et al.l 2019) can improve performance as compared to fully fine-tuned models. Adapters
are typically used to improve the parameter efficiency of finetuning and mitigate the storage costs of large
language models. They also enable more sample-efficient fine-tuning and can result in improved fine-tuning
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performance (Karimi Mahabadi et al.| [2022). Therefore, we investigate whether Adapters can also yield
accuracy improvements when used in combination with layer recycling.

Adapter modules contain a down-projection, an up-projection, and a residual connection module: h <«
h+(f (AW gown)W,yp). The adapters are separately inserted after the MH and the FF layers in the transformer
architecture . Further, Riicklé et al.| (2021) experiment with dropping adapters from the lower
transformer layers to provide inference time speedup. In our experiments, adapters are added to the latter
half of transformer layers in the reduced transformer models. Particularly, as in the reduced models discussed
earlier, with adapters the pretrained original transformer F first caches the intermediate activations hfec
for each input in a selected corpus at layer k. Then the first k layers are removed from the transformer.
During fine-tuning, the cached representations are fed as input to the later N — k layers of the transformer,
which consist of the frozen transformer layers plus trainable adapter parameters. Thus, we fine-tune only
the additional 6-8% parameters introduced by the adapters. We refer to learning adapters on all layers as
the full adapter setting and the layer recycling version as the reduced adapter setting.

4 Experimental Setup

We now present our experiments evaluating whether recycled embeddings can be paired with reduced large
language models to maintain accuracy while improving training and inference speed. We explore the effec-
tiveness of embedding recycling across a variety of different tasks, datasets, and transformer models.

4.1 Models

Our full-size models include the encoder transformers BERT, SciBERT (Beltagy et al., 2019), RoBERTa
(Liu et al.l [2019Db), and DeBERTa (He et al., |2020]). We also experiment with the encoder-decoder T5 model
(Raffel et al., [2019). We selected these architectures since they are widely-used pretrained transformers
across a variety of tasks in different domains. We experiment with multiple sizes of these models, including
distilled (Sanh et al., [2019; Wang et al., [2020; 2021)), base, and large variants, to gauge the effectiveness of
recycled embeddings with an increase in the network size.

To investigate the effectiveness of layer recycling, we test several reduced models in which we use caching to
reduce 50% of the layers (e.g., caching layer 12 in RoBERTa-large and layer 6 in BERT—base)B We compare
each reduced model to its fully fine-tuned counterpart across the text classification, NER, and QA tasks.
The hardware details and hyperparameters for our models are specified in

4.2 Datasets

For our experiments, we focus on three core NLP tasks: text classification, named-entity recognition (NER),
and extractive question-answering (QA). Scientific papers, due to their immutable nature, are an especially
appropriate target for embedding recycling, so we focus much of our evaluation on the scientific domain.
For text classification, we selected Chemprot (Kringelum et al.l |2016)), SciCite (Cohan et al.l |2019)), and
SciERC (Luan et al.| [2018)). For NER, we used BC5CDR (Li et all|2016), JNLPBA (Collier & Kim) [2004),
and NCBI-Disease (Dogan et al., 2014). For QA, we chose the TriviaQA (Joshi et al., 2017) and SQuAD
(Rajpurkar et al., [2016]) datasets.

5 Results

5.1 Standard Fine-tuning

The results for standard fine-tuning of either full or reduced models are shown in For the text
classification and NER tasks, the reduced BERT-sized and larger models perform similarly to their fine-
tuned counterparts on average, and substantially outperform the distilled models. The reduced distilled

IWe note that for the encoder-decoder model T5, we consider caching only the middle layer of the encoder, which means
that the speedups for this model will be smaller than (approximately half of) that of the other models we evaluate. We also

consider 25% and 75% reduced models in
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RoBERTa DeBERTa T5 MiniLM MiniLM
Sci)BERT DistilBERT
Large (Sci) V2 XL Large L6-H768  L6-H384

Task Rdc Full Rdec Full Rdec Full Rdec Full Rde Full Rdec Full Rde Full
ChemProt 84.3 839 84.0 84.0 86.8 &86.7 84.6 84.1 783 793 769 746 &80.3 79.1
SciCite 85.0 855 86.6 86.0 852 844 86.3 849 845 84.6 837 828 84.1 84.0
SciERC-Rel 80.2 804 76.7 79.8 799 80.2 774 80.2 748 782 721 689 749 729
Classification Avg. 83.2 83.3 824 83.3 84.0 83.8 828 83.1 79.2 80.7 77.6 754 79.8 787
bchedr 90.0 904 90.7 91.3 91.3 91.8 90.7 899 878 875 859 883 883 887
JNLPBA 79.4 787 788 79.0 785 782 79.6 80.0 773 769 740 772 786 78.5
NCBI-disease 93.0 93.2 934 929 93.3 934 92.8 93.5 91.1 921 899 91.7 90.5 91.3
NER Avg. 87.5 874 87.7 87.7 87.7 87.8 87.7 87.8 854 85.5 83.3 857 858 86.2
TriviaQA 782 79.8 674 69.1 80.6 81.8 774 782 722 73.8 69.2 71.0 64.7 66.8
SQuAD 91.8 93.6 875 885 945 946 93.7 939 850 87.0 89.0 89.6 848 854
QA Avg. 85.0 86.7 775 788 875 88.2 855 85.9 786 80.4 79.1 80.3 748 76.1

Table 1: Test scores of reduced (Rdc) models on the text classification, NER, and QA tasks. Bold indicates
the best average score between the reduced and fully fine-tuned (Full) versions of each model. Each score
represents the average macro F-1 score of 10 runs for RoOBERTa, BERT, and the distilled models. The F-1
score averages for DeBERTa and T5 were gathered from 5 runs. The standard errors for each score are
shown in corresponding tables in For the ChemProt dataset, we report the micro F-1 scores
instead, following past work (Beltagy et al., [2019). The reduced BERT-sized models generally offer similar
performance to their full counterparts (scoring within 0.2% when averaged across RoOBERTa and SciBERT
for the six tasks), and substantially outperform the distilled models. For the QA datasets, we use BERT
while we use SciBERT for the text classification and NER datasets since it outperforms BERT on these
datasets (Beltagy et al., [2019). The reduced models yield a small accuracy drop for QA tasks.

models also perform well on those tasks compared to the distilled originals, on average, although there is
more variance across models and tasks compared to BERT-sized models. We validate our fully fine-tuned
baselines by comparing our results with prior work (Beltagy et all [2019), finding that our scores land within
1.33% on average and typically score above the previous baselines.

For QA tasks, we found that fully fine-tuning works somewhat better than reduced configurations across all
the explored models . Generally, reduced configurations typically lag by 1 to 2 points in F-1 score.
One possible hypothesis is that the QA datasets are generally much larger than the datasets we used for
other tasks (100k-150k examples vs 4k-20k examples for text classification and NER); however, in additional
experiments we found that subsampling the QA training sets to 5% of their original size only increased the
gap, suggesting that dataset size does not explain the failure of reduced models on this task. We also validate
our fully fine-tuned baselines for QA tasks by comparing our results with prior work (Yasunaga et al.| [2022)),
finding that our scores land within 0.42% on average.

Additionally, we explored using lightweight multi-layer perceptrons (MLPs) as classifier heads, given their
success in previous work. While |Du et al.| (2020) paired multi-task encoders with 2-layer MLPs, we paired
frozen pretrained transformer models with 2-layer MLPs and found that they underperformed trainable
layers dramatically, by 26% on average across the text classification and NER tasks.

5.2 Adapters

Our results for reduced adapter models are shown in[Table 2 We see that in general, for all the models except
for Th-Large, the adapter-based approaches are superior to standard fine-tuning on our tasks. Further, layer
recycling remains effective with adapters. Compared to the full adapter baseline, the reduced adapters for
RoBERTa-Large, BERT, and SciBERT models only show a 0.15-0.17% reduction in accuracy. Additionally,
compared to the fully fine-tuned baseline, these reduced adapters models have a 0.19-0.23% reduction in



Under review as submission to TMLR

RoBERTa , DeBERT: T5
Large (Sci)BERT V2 XL Large
Rdc + Rdc + Rdc + Rdc +
Task Half fg“t Full  Half AF(;lHt Full  Half /;F;llt Full  Half AFC‘;Ht Full
Adpt P Adpt P Adpt P Adpt P
ChemProt 841 852 839 842 849 840 87.2 865 867 843 849 84.1
SciCite 824 829 855 855 846 86.0 846 85.0 844 853 845 84.9
SciERC-Rel 85.7 859 80.4  86.0 855 798 829 821 802 762 756 80.2
Classification Avg.  84.1 84.7 83.3  85.2 850 833 84.9 846 838 819 817 83.1
besedr 90.0  90.6 90.4  90.0 90.9 91.3  90.7 91.1 918  79.9 857 89.9
JNLPBA 791 792 787 798 783 790 793 79.0 782 788 795 80.0
NCBI-discase 928 931 932 931 930 92.9 933 935 934 921 925 93.5
NER Avg. 873 87.6 87.4  87.6 874 87.7 878 87.9 878 836 859 87.8
TriviaQA 785 798 79.8 674 689 691 8.6 82.3 818 T7.0 775 782
SQuAD 935 934 93.6 87.9 87.9 885 947 939 946  90.6 91.0 93.9
QA Avg. 860 866 86.7 716 784 78.8 881 881 88.2 838 843 85.9

Table 2: Test scores of reduced adapter (Rdc + Half Adpt) models on the text classification, NER, and QA
tasks. Bold indicates the best average score between the reduced adapter, full adapter (Full Adpt), and
fully fine-tuned (Full) versions of each model. Each score represents the average macro F-1 score of 10 runs
for RoBERTa, BERT, and the distilled models. The F-1 score averages for DeBERTa and T5 were gathered
from 5 runs. The standard errors for each score are shown in corresponding tables in For the
ChemProt dataset, we report the micro F-1 scores instead, following past work (Beltagy et al., 2019). For
the QA datasets, we use BERT while we use SciBERT for the text classification and NER datasets since it
outperforms BERT on these datasets (Beltagy et al.l 2019)).

accuracy. Likewise, in contrast to the full fine-tuning results above, QA accuracy for the top-performing
DeBERTa adapter model remains unchanged on average after layer recycling, with the reduced adapter
model performing better on one QA task and worse on the otherE|

5.3 Efficiency Analysis

To estimate the real-world benefit of recycling embeddings for different tasks, we provide a minimal PyTorch
implementation of embedding recyclingﬂ This implementation and the following results correspond to both
the standard layer recycling approach and the adapter-based layer recycling approach since they follow par-
allel processes for gradient descent during training and computations during inference, despite the additional
6-8% of parameters added by the trainable adapters. To show that training times do not differ substantially,
we also measured the training time the transformer models take to converge to their optimal weights. We
found both approaches take approximately the same training time to complete training .

We evaluated the impact of recycling embeddings on four different architectures and two different hardware
platforms. For models, we considered two efficient transformer models (Two 6-layer MiniLMv2 (Wang et al.
2020; 2021)) models with embeddings of size 384 and 768), a base model (BERTp,s; uncased, 12 layers and
768 dimensional embeddings), and a large model (BERT pqr uncased) with 24 layers and embeddings of
size 1024. Intuitively, we expect larger models with more layers to benefit more from embedding recycling.
For platforms, we ran our proof-of-concept implementation on an AWS cloud instancdﬂ equipped with an
NVIDIA A10G accelerator, and on a NVIDIA A6000 within an on-premise Serverﬂ The former contains fewer

2We omit experiments with distilled models, as we found adapters to be ineffective on those models even without embedding
recycling, scoring 19.4% worse on average than full fine-tuning for text classification and NER.

3Code and documentation available in supplementary material.

4g5.2xlarge instance with 8 cores and 32 GB of RAM.

5Intel-based system with 128 cores and 512 GB of RAM.
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Inference Time (ms/batch) Avg. F1
. ] Speedup .
Model Baseline (NR) Recycling Loss using
FP32 Cache FP16 Cache NR vs FP32 NR vs FP16 Recycling

NVIDIA A10G

MiniL.M3g4 183 £ 1 154 £ 22 123 £ 2 +21% +67% -0.2
MiniLLM7¢s 325 £ 1 201 £ 11 195 £ 4 +56% +66% -0.4
BERTBase 647 £ 1 351 £1 343 £ 5 +84% +88% -0.3
BERT Larcr 1943 £ 1 1066 £ 12 1004 £ 4 +86% +93% -0.2
DeBERTaxtarce 1914 + 2 1010 £+ 10 985 £ 8 +89% +94% -0.1
NVIDIA A6000
MiniLLM3g4 123 £ 1 105 £ 5 100 £ 2 +18% +23% -0.2
MiniLM7es 208 £1 161 £ 8 150 + 4 +29% +38% -0.4
BERTgase 416 £ 1 269 £ 6 245 £ 2 +55% +59% -0.3
BERT arcr 1235 £ 1 662 £+ 10 643 £+ 10 +86% +92% -0.2
DeBERTaxvarae 1430 £ 2 77T £ 6 758 £ 4 +84% +89% -0.1

Table 3: Average inference runtime comparison (in ms per batch, + stdev over 7 runs) between vanilla
encoders and models that cache embeddings on disk. We assume the cache is precomputed (see
tion 5.3)). For all runs, cache the middle layer of the encoder; thus, maximum speedup is 100%. Overall,
the larger the model, the higher the speedup from re-using representations. Further, accelerators with fewer
execution units (A10G) benefit more from recycling embeddings. Finally, using half precision for embedding
caching improves speed up across the board, while halving storage size. We also found that half-precision
has a negligible effect on Fl-scores at inference if you originally train the models using full-precision. In the
rightmost column, we included the average F1 loss from using embedding recycling across our tasks.

execution units (72 vs 84), fewer tensor cores (288 vs 336), slower memory (600 vs 768 GB/s), and slower
boost clock (1800 MHz vs 1695 MHz). However, it is much more efficient, being rated at 150W (compare with
A6000’s 300W power target). Therefore, the NVIDIA A10G accelerator presents a more realistic platform
for embedding recycling, since it is more suitable for cost-efficient large-scale model deployments. Both
machines are equipped with PCle NVMe drives, which we use to cache embeddings to recycle.

shows the results of caching embeddings to recycle on disk. Because inference time varies across
tasks depending on dataset properties, such as length of sequences and number of samples, we control our
experiments by simulating a sequence classification task on QASPER (Dasigi et al., 2021)), which includes the
full-text of over a thousand academic manuscriptsﬁ Further, we run all models with a fixed batch size of
128 and maximum sequence length of 512; for all models, we reduce exactly half of their layers by recycling,
which results in a maximum theoretical speed-up of 100%. A run over the corpus consists of 335 batches,
and we average results over seven runs. Overall, we found that in practice all models benefit from embedding
recycling, achieving an average speedup ranging from 18 to 86%. Unsurprisingly, larger models benefit more
from recycling than smaller ones; this is due to the fact that loading embeddings cached on disk adds a
small latency penalty to a model run, which is more noticeable in the case of smaller models. For example,
we achieve an 84% speedup when running BERTg,s; with embedding recycling on an A10G GPU, which
is roughly equivalent to the latency of a MINILMy7gs model without recycling (351 vs 325 ms per batch on
average); this result would us allow to run more accurate models while maintaining the efficiency of shallower
architectures.

We note that in our inference-time speedup measurements, we assume that the cache is already precomputed.
This corresponds to our target setting in which new tasks and models are executed over the same text that
has been processed previously. Because the cost to write the cache to disk is approximately equal to a single
inference pass over the corpus, if we perform ¢ total inference passes for different models/tasks given the
same precomputed cache, the total amortized speedup will be approximately H% of the values we report in

6Because the bulk of computation for a transformer model is done in its encoder and not in the task-specific heads, inference
time is similar regardless of whether the model is used for sequence classification, tagging, or question answering.
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Training (ms/batch, amortized over 6 epochs) Speedup
Model No Model Saving + Only NRvs Fvs NRuvs
Recycling (NR) Frozen (F) Recycling (SR) Recycling (R) SR SR R

NVIDIA A10G

MiniLM3s4 51 £ 1 30£1 32+6 25 £ 4 +59%  -T% +104%
MiniL.M7¢s 90 £ 4 56 £ 1 50 £ 4 45 £ 3 +80% +12% +100%
BERTBase 173 £ 2 112 £ 1 90 £+ 4 87 £ 3 +92%  +24% +99%
BERT 1 srae 347 £ 1 246 £ 1 181 + 2 176 £ 2 +92% +36% +97%
DeBERTaxrarce 380 £ 2 286 £ 1 199 £ 1 194 £ 1 +91% +44% +96%
NVIDIA A6000
MinilLM3s4 41 +1 24 +£1 26 £ 5 22+ 3 +55% 8%  +81%
MiniLLM7¢s 61 £ 1 38+1 40 £5 34+3 +52% 5%  +82%
BERTgase 117 £ 1 78 £ 1 60 £ 3 58 £ 2 +94% +30% +102%
BERT Larce 326 + 2 212+ 1 167 £ 2 161 £ 1 +96% +26% +103%
DeBERTaxLarce 359 £ 2 250 £ 1 184 £ 1 178 £ 1 +95% +35% +102%

Table 4: Average training runtime comparison (in ms per batch, + stdev over 7 runs) between vanilla
encoders and models that cache embeddings on disk. For all runs, we cache the middle layer of the encoder;
thus, theoretical speedup is 100%. Time per batch is amortized over 6 epochs (2,000 steps), the lowest
number to convergence over all datasets (c.r.f. Table . We present results in four settings: no recycling
(NR), freezing % of the layers during training (F), 1 training epoch during which embeddings are saved
to disk followed by 5 epochs where recycling is enabled (SR), and 6 epochs where embeddings are already
saved (R). Overall, we found that embedding recycling speeds up training even when embeddings need to
be cached to disk during the first pass. Compared to freezing, saving and recycling improves training time
for all but MiniLM models (F vs SR).

Thus, as the number of inference passes to be run increases, the total amoritized speedup including
the cost to write the cache will approach the values reported in the table.

also includes results when storing embeddings using half precision (that is, cache embeddings in
FP16 rather FP32). When using half precision, we observed improvements for all models and hardware,
ranging from +8% to +46%. Storing cached embeddings in FP16 has virtually no impact on performance,
as it changes predicted scores by typically 1072 — 10~ across all tasks evaluated in this work.

We also note that less capable hardware benefits more from caching embeddings. For example, BERTp s
achieves a speedup of 84% on an A10G GPU, while on A6000, the speedup is a more modest 55%. This
is an expected result: fewer and slower execution cores/accelerator memory impact overall model latency.
Further, we note that, despite the smaller relative gains, the more powerful GPU is always faster in absolute
terms compared with the less capable one.

It is important to note that these gaps from maximum achievable speedup are only observed when perform-
ing inference; for training, we observe almost perfect speed-up for all models and hardware configurations
barring MiniLM models on the machine equipped with a A6000 GPU (“NR vs R” column in . For
example, BERT,g; requires 17.38 + 1.32 ms/batc}ﬂ without recycling, compared to 8.67 & 2.18 ms/batch
when recycling. Even when considering the additional time to cache embeddings to disk during the first pass,
embedding recycling still achieves close to optimum speedup on all models except MiniLLMs, where its gains
hover between 52% and 82% (“NR vs SR” column in [Table 4). When training for just 6 epochs (or roughly
2,000 steps), recycling embeddings is faster than simply freezing half of the parameters for all models but
MiniLM (“F vs SR” column in ; this is due to the relatively higher cost of caching layers to disk
in case of smaller models. In these cases, we empirically found that recycling achieves faster training time
than freezing after 12 epochs or 4,000 training steps; since smaller models typically require more epochs to
converge, we conclude that recycling is generally preferable to partially freezing a model during training,.

"When training, we use a batch size of 16
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We also benchmarked the storage requirements of recycling embeddings. For a sequence of 512 tokens and
a hidden model dimension of 768, caching embeddings requires 1.6 MB. In practical terms, this translates
to 15.5 MB per paper in QASPER (papers are, on average 4,884 WordPiece tokens in length). Besides
the storage needs, NVMe disks, while fast, introduce additional latency compared to RAM. For example,
BERT g achieves an average latency of 351 =1 ms/batch when caching on disk (84% speedup), compared
to just 334 £ 1 ms/batch when using memory (94% speedup). To reduce the impact of this latency penalty,
our implementation supports pre-fetching of future embeddings: when processing a sequence of inputs, such
as sentences in a manuscript, it loads embeddings for tokens ahead of the sequence inference is currently
being run on. This optimization reduces the time accelerators wait for data to be available for inference;
for example, in the case of BERTp,g on A10G, disabling pre-fetching raised inference inference time to
374+ 1 ms/batch (vs 351+ 1 ms/batch with pre-fetching). Therefore in this section, all results are reported
with prefetching enabled.

6 Discussion

6.1 Cross-model Embedding Reuse

RoBERTa-Large .. BERT + . .
+ MiniLM Le-H76s “HWLM L6-H768 o, ippry  DISHIBERT
Chemprot Micro F-1 78.9 (0.3) 79.3 (0.3) 77.8 (0.4) 79.1 (0.5)
Macro F-1 52.2 (0.2) 52.6 (0.4) 51.2 (0.5) 52.6 (0.3)
SciCite Micro F-1 85.2 (0.3) 86.0 (0.2) 85.7 (0.1) 85.5 (0.1)
Macro F-1 83.8 (0.3) 84.6 (0.2) 84.2 (0.1) 84.0 (0.1)
SGiERC-Rel  Micro F-1 85.1 (0.4) 86.3 (0.2) 83.8 (0.2) 83.5 (0.4)
Macro F-1 76.2 (0.8) 78.2 (0.6) 73.6 (0.6) 72.9 (0.7)
Text Classification 76.9 7.8 76.0 76.3

Average Score

Table 5: Cross-Model Recycling Results for RoOBERTa+MiniLM-L6H768 and BERT+DistilBERT configura-
tions. Bold indicates the best average score between the cross-model recycling and fully finetuned versions
of each model. Each score represents the average score of 10 runs, with the standard errors for each score in
parentheses.

The experiments in focus on caching activations from a pretrained model and then re-using those
for fine-tuning and inference with the same model. An alternative potential use-case of ER involves caching
activations from a more expensive, larger model once and re-using those downstream within a cheaper model
multiple times. Here, the goal is not to improve efficiency of the downstream model, but instead to improve
its accuracy by introducing the helpful contextual embedding signal from the larger model. However, as we
will show, a straightforward implementation of this strategy did not offer improvements in our experiments.

We experiment with reusing precomputed embeddings from one source model F' in a consumer model F’
that has a different transformer architecture but the same tokenization vocabulary. During the caching step
for the source model, the activations of the final transformer layer h?’ec are stored for each input c of the
selected corpus C. During the fine-tuning phase of the consumer model F”, these stored activations are
transformed through a learned 2-layer MLP and added to the input embeddings of F”.

Using our text classification tasks, we tried two frameworks for pairing large language model embeddings
with compact models. In our first framework, we use a frozen RoBERTa model as our source model and
a MiniLM-6L-H768 model as our consumer model. In our second framework, we use a frozen BERT-base
model as our source model and a DistilBERT model as our consumer model. We use a ReLLU activation in
the 2-layer MLP. In our testing, we also explored using a single linear layer rather than an MLP but found
an MLP achieved better performance on the development sets for the text classification tasks. The results of
our experiments are shown in[Table 5} Overall, the larger model’s contextual representations do not improve
the smaller model’s accuracy; in fact adding them decreases the average F1 score by 0.3-0.9 points.

10
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6.2 GLUE Results

DeBERTa V2 XL
Rdc +

Half il(;ll : Rdc Full
Adpt P
CoLA 70.9 71.3 70.8 71.2
SST-2 96.9 97.1 97.1 974
Single
Sentence Avg. 83.9 84.2 84.0 84.3
MRPC 93.9 94.0 934 939
STS-B 92.4 92.7 925 928

Similarity and

Paraphrase Avg. 93.2 93.4 93.0 93.4

MNLI 91.6 92.0 91.0 914
QNLI 95.0 95.1 94.1 9438
NLI Avg. 93.3 93.6 92.6 93.1

Table 6: Test scores of reduced (Rdc) and reduced adapter (Rdc + Half Adpt) models on the GLUE tasks
for DeBERTa V2 XL. Bold indicates the best average score between the reduced and fully fine-tuned (Full)
versions for both the standard and adapter-based configurations. Each score represents the average macro
F-1 score of 5 runs. Our results for MNLI correspond to MNLI-matched. For MRPC, MNLI, and QNLI, we
report the macro F1 scores. For CoLA, we report the Matthews correlation coefficient (MCC). For SST-2,
we report the accuracy. For STS-B, we report the Pearson’s correlation coefficient.

For our best-performing model DeBERTa v2 XL, we also provide further experiments on datasets from
the GLUE benchmark (Wang et al.l 2018)), to allow easier comparison against speedup techniques from
previous work. In this revision we present preliminary results on the CoLA, SST-2, MRPC, STS-B, MNLI,
and QNLI tasks from GLUE. For our experiments, we tried both our standard reduced models and our
reduced adapter models. We found that embedding recycling was successful across the GLUE tasks, with a
small loss in F1 scores in return for a significant increase in both training and inference time as outlined in
[Table 3land [Table 4 We note that due to the high computational cost of these experiments, we take existing
hyperparameter settings from previous work that worked well for the full models, and also use these for
reduced models. Further hyperparameter optimization of the reduced models might improve performance.

6.3 Directions for Future Work

Our experiments raise several questions that could be answered in future studies, and embedding recycling
contains a much larger space of potential techniques than those we investigate here. Future work could
proceed along various lines, including:

e QOur layer recycling strategy is a straightforward ER approach, but previous work has suggested that
weighted pooling across layers can perform better compared to any single layer in many cases (Liu
et al., 2019a}; |Du et al., |2020). Recycling pooled activations may offer improved results. What is the
best way to capture and store the syntactic and semantic knowledge encoded in the activations of a
model for later recycling?

e Our experiments show that the right recycling approach may be task-specific and model-specific.
For example, with standard fine-tuning as shown in caching layer 12 in RoBERTa-large is
most effective for NER and text classification, whereas it is not effective for QA (but layer 6 performs
much better). Which embeddings to retrieve and recycle for a task, and the right architecture (e.g.
number of layers) to use when consuming the recycled embeddings, represents a large decision space.
Methods that can help practitioners automatically choose among public or private shared embedding

11
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sets and associated model designs, given their task and objectives for accuracy and computational
cost, may be important to make ER an effective practical tool.

o We present results with encoder-only and encoder-decoder models, on classification tasks. Determin-
ing the approach is effective for generative tasks and autoregressive models is an important question
for future work.

e Other than recycling, a variety of other inference-speedup techniques exist for large neural models.
While we show that ER can be effective when coupled with distillation, whether other techniques
like quantization and early exiting remain effective in combination with ER is an open question.

e We focus on the setting where the exact same text, at the length of a full document, is being reused
for multiple tasks. In practice, we may often perform a task on text that is similar to but not exactly
the same as one for which we have cached embeddings (e.g., a Wikipedia page that has been revised).
Further, even a completely new document will have similarities and overlapped spans with previously
processed ones. Studying ER in these settings, e.g. through a combination of layer recycling and the
SkipBERT approach which can apply to unseen passages via cached n-grams (Wang et al., |2022)), is
an area of future work.

e Finally, our techniques for cross-model embedding reuse were not effective in our experiments. How-
ever, using rich contextualized embeddings from a large model to help power many smaller down-
stream task models is an important setting for ER, since it provides a powerful way to amortize the
expense of running a large model. Developing and evaluating new approaches for this setting is an
important item for future work.

7 Conclusion

We have presented embedding recycling, a general technique for reusing previous activations of neural lan-
guage models to improve the efficiency of future training and inference. We show how a simple technique of
caching a layer of activations in a pretrained model is effective. We validate our approach in experiments
across eight tasks and seven model architectures. We find that recycling typically has small or no impacts
to accuracy on average, but does yield substantial throughput increases demonstrated through a careful
efficiency analysis. We also discuss several open challenges for future work.
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A Experimental Setup and Additional Results

A.1 Fine-tuning Transformer Models

The candidate transformer models are fine-tuned using configurations suggested by Devlin et al.[(2019), Ding
et al| (2022) and |[Houlsby et al.|(2019). For text classification, we feed the final hidden state of the [CLS]
token into a linear classification layer. For NER and QA, we feed the final hidden states of each token into
a linear classification layer with a softmax output.

For all of the models, we apply a dropout of 0.1 to the transformer outputs and optimize for cross entropy
loss using Adam (Kingma & Bay, 2015). We employ a batch size of 32 across all tasks. We fine-tune
using early stopping with a patience of 10, using a validation set for calculating loss for each epoch. We
use a linear warmup followed by linear decay for training (Howard & Ruder, |2018)), testing the following
learning rate options: le-3, 2e-3, le-4, 2e-4, le-5, 2e-5, 5e-5, and 5e-6. For the text classification and NER
datasets, we select the best performing learning rate for each transformer model on the development set
and report the corresponding test results. For the QA datasets, we select the best performing learning rate
for each transformer model on the training set and report the corresponding results on the validation set.
Additionally, for the adapter modules used in certain model configurations, we test bottleneck dimensions
as part of our hyperparameter search: 24, 64, and 256.

A.2 Adapter-based Models

Here, we used frozen RoBERTa-Large (Liu et al., 2019b)), SciBERT (Beltagy et al.,[2019), and BERT models
but added adapter modules (Houlsby et al., 2019) only on the latter half of the transformer layers. Only the
adapters and the linear classifier attached to the model output were fine-tuned for the text classification,
NER, and QA tasks.

We found that the best hyperparameter configuration was generally a bottleneck dimension of 256 and a

learning rate of either le-4 or 2e-4.

A.3 Software and Hardware

For implementation, we use the v4.19 version of the Transformers library (Wolf et al., [2019), the v0.4 version
of the OpenDelta library (Ding et al.l [2022), and the v1.11 version of the Pytorch library (Paszke et al.,
2019). We conduct our experiments using NVIDIA RTX A6000 GPUs and NVIDIA A10G GPUs with
CUDA v11.5.
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RoBERTa-Large

Reduced + Full 6 Layers 12 Layers 18 Layers Fully
Half Adpt Adapters Reduced Reduced Reduced Finetuned
ChemProt Micro F-1 84.1 (0.4) 85.2 (0.3) 84.2 (0.3) 84.3 (0.2) 82.0 (0.2) 83.9(0.3)
Macro F-1  60.8 (0.7) 57.5 (0.7) 56.4 (0.4) 56.5(0.3) 54.5(0.5) 56.5 (0.4)
SciCite Micro F-1 85.2 (0.3) 85.6 (0.5) 86.2 (0.2) 86.2 (0.2) 86.2(0.2) 86.8 (0.2)
Macro F-1 82.4 (0.4) 82.9 (0.6) 84.9 (0.2) 85.0 (0.2) 85.0(0.2) 85.5 (0.2)
SciERC-Rel Micro F-1 89.0 (0.5) 89.3 (0.6) 87.1 (0.4) 86.8 (0.4) 86.1(0.2) 87.3(0.4)
Macro F-1 85.7 (0.7) 85.9 (0.9) 79.4 (0.7) 80.2 (0.8) 76.2(0.4) 80.4 (0.6)
Text Classification 81.2 81.1 79.7 79.8 78.3 80.1
Average Score
bcbedr Micro F-1 97.4 (0.0) 97.6 (0.0) 97.2 (0.3) 97.4 (0.0) 97.3 (0.0) 97.5 (0.0)
Macro F-1 90.0 (0.0) 90.6 (0.0) 89.0 (1.2) 90.0 (0.0) 89.5(0.1) 90.4 (0.1)
JNLPBA Micro F-1 93.8 (0.0) 93.8 (0.0) 93.8 (0.0) 93.9 (0.0) 93.7 (0.0) 93.7 (0.1)
Macro F-1 79.1 (0.1) 79.2 (0.2) 79.3 (0.1) 79.4 (0.1) 79.0 (0.1) 78.7 (0.3)
NCBI-disease Micro F-1 98.5 (0.0) 98.6 (0.0) 98.5 (0.0) 98.5(0.0) 98.4 (0.0) 98.6 (0.0)
Macro F-1 92.8 (0.1) 93.1 (0.1) 93.0 (0.1) 93.0 (0.1) 92.4 (0.1) 93.2 (0.1)
NER Average 91.9 92.1 91.8 92.0 91.7 92.0
Score
TriviaQA Micro F-1 75.3 (0.1) 76.8 (0.2) 76.6 (0.2) 75.1 (0.1) 70.8 (0.1) 76.7 (0.1)
Macro F-1 78.5 (0.1) 79.8 (0.1) 79.7 (0.2) 78.2(0.1) 73.8(0.1) 79.8 (0.1)
SQuAD Micro F-1 87.0 (0.1) 86.7 (0.0) 86.2 (0.0) 84.7 (0.0) 79.3 (0.0) 87.4 (0.0)
Macro F-1 93.5 (0.1) 93.4 (0.0) 92.8 (0.0) 91.8 (0.0) 87.8 (0.0) 93.6 (0.0)
QA Average 83.6 84.1 83.8 82.4 77.9 84.3
Score

Table 7: RoBERTa Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indi-
cates adapters on the transformer layers of a fully frozen reduced model, where the earlier half of transformer
layers were removed and their activations cached. Full Adapters indicates adapters on all transformer lay-
ers of a fully frozen model. Each score represents the average score of 10 runs, with the standard errors for

each score in parentheses.
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SciBERT

Reduced + Full 3 Layers 6 Layers 9 Layers Fully
Half Adpt Adapters Reduced Reduced Reduced Finetuned

ChemProt  Micro F-1  84.2 (0.3) 84.9 (0.4) 83.8 (0.4) 84.0 (0.2) 81.9 (0.2) 84.0 (0.3)
Macro F-1  56.9 (0.8) 54.8 (0.4) 56.5 (0.5) 57.0 (0.3) 54.3 (0.3) 56.3 (0.4)
SciCite Micro F-1  86.6 (0.2) 85.8 (0.1) 87.1 (0.1) 87.6 (0.1) 87.4 (0.1) 87.1 (0.2)
Macro F-1  85.5 (0.3) 84.6 (0.1) 86.1 (0.1) 86.6 (0.1) 86.2 (0.1) 86.0 (0.2)
SciERC-Rel  Micro F-1  89.4 (0.4) 88.5 (0.6) 86.6 (0.3) 86.1 (0.2) 85.4 (0.2) 86.3 (0.2)
Macro F-1  86.0 (0.7) 85.5 (0.6) 77.6 (0.5) 76.7 (0.3) 76.2 (0.4) 79.8 (0.5)
Text Classification 81.4 80.7 79.6 79.7 78.6 79.9
Average Performance
besedr Micro F-1 975 (0.0) 97.7 (0.1) 97.7 (0.0) 97.6 (0.0) 97.5 (0.0) 97.7 (0.0)
Macro F-1  90.0 (0.0) 90.9 (0.1) 91.0 (0.1) 90.7 (0.0) 90.2 (0.1) 91.3 (0.0)
JNLPBA Micro F-1 ~ 94.0 (0.0) 93.5 (0.0) 93.6 (0.1) 93.7 (0.1) 93.8 (0.0) 93.6 (0.1)
Macro F-1  79.8 (0.0) 78.3 (0.2) 78.6 (0.4) 78.8 (0.2) 79.0 (0.1) 79.0 (0.2)
NCBI-disease Micro F-1  98.6 (0.0) 98.5 (0.0) 98.5 (0.0) 98.6 (0.0) 98.5 (0.0) 98.5 (0.0)
Macro F-1  93.1 (0.1) 93.0 (0.1) 92.9 (0.1) 93.4 (0.1) 93.1 (0.1) 92.9 (0.1)
NER Average 92.2 92.0 92 92.1 92 92.2

Perforamcne

Table 8: SciBERT text classification and NER results for Reduced Models. Bold indicates the best average
score between the standard reduced, adapter-based reduced, and fully fine-tuned versions of each model.
Reduced + Half Adpt indicates adapters on the transformer layers of a fully frozen reduced model, where
the earlier half of transformer layers were removed and their activations cached. Full Adapters indicates
adapters on all transformer layers of a fully frozen model. Each score represents the average score of 10
runs, with the standard errors for each score in parentheses. QA tasks are not included since SciBERT was
pretrained for scientific datasets.

BERT

Reduced + Full 3 Layers 6 Layers 9 Layers Fully
Half Adpt Adapters Reduced Reduced Reduced Finetuned

TriviaQA Micro -1 63.9 (0.5) 65.5 (0.1) 65.7 (0.1) 64.1 (0.2) 61.4 (0.1) 66.0 (0.1)
Macro F-1  67.4 (0.5) 68.9 (0.1) 68.9 (0.1) 67.4 (0.1) 64.8 (0.1) 69.1 (0.1)
SQuAD Micro F-1  80.2 (0.1) 80.2 (0.0) 80.8 (0.1) 79.5 (0.1) 75.4 (0.1) 81.1 (0.1)
Macro F-1  87.9 (0.1) 87.9 (0.0) 88.4 (0.1) 87.5 (0.1) 84.8 (0.1) 88.5 (0.0)
QA Average 74.9 75.6 76.0 74.6 71.6 76.2
Scores

Table 9: BERT QA Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indi-
cates adapters on the transformer layers of a fully frozen reduced model, where the earlier half of transformer
layers were removed and their activations cached. Full Adapters indicates adapters on all transformer lay-
ers of a fully frozen model. Each score represents the average score of 10 runs, with the standard errors for
each score in parentheses.
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DeBERTaV2 XL

Reduced + Full 6 Layers 12 Layers 18 Layers Fully
Half Adpt Adapters Reduced Reduced Reduced Finetuned
ChemProt Micro F-1  87.2 (0.1) 86.5 (0.2) 87.2 (0.2) 86.8 (0.4) 86.4 (0.2) 86.7 (0.9)
Macro F-1 56.7 (0.5) 55.6 (0.6) 59.6 (0.2) 59.5 (0.5) 59.2 (0.3) 59.0 (1.1)
SciCite Micro F-1 85.8 (0.4) 86.4 (0.4) 86.0 (0.1) 86.3 (0.2) 86.2(0.3) 85.9(0.2)
Macro F-1 84.6 (0.4) 85.0 (0.5) 84.6 (0.1) 85.2 (0.1) 85.0 (0.3) 84.4 (0.2)
SciERC-Rel Micro F-1  88.6 (0.5) 88.0 (0.4) 88.3(0.2) 87.5(0.1) 86.6(0.3) 88.0 (0.4)
Macro F-1  82.9 (0.8) 82.1 (0.8) 80.5(0.5) 79.9(0.3) 78.0(0.4) 80.2(0.5)
Text Classification 81.0 80.6 81.0 80.9 80.2 80.7
Average Score
bc5cdr Micro F-1 97.6 (0.0) 97.7 (0.0) 97.4(0.3) 97.7(0.0) 97.6 (0.0) 97.9 (0.0)
Macro F-1 90.7 (0.1) 91.1 (0.1) 89.5(1.4) 91.3 (0.0) 90.9 (0.0) 91.8 (0.1)
JNLPBA Micro F-1 93.6 (0.0) 93.4 (0.0) 93.7 (0.1) 93.7 (0.0) 93.6 (0.0) 93.7 (0.0)
Macro F-1  79.3 (0.1) 79.0 (0.1) 78.5(0.3) 78.5(0.2) 77.8(0.1) 78.2(0.1)
NCBI-disease Micro F-1 98.3 (0.0) 98.4 (0.0) 98.6 (0.0) 98.6 (0.0) 98.5(0.0) 98.6 (0.0)
Macro F-1 93.3 (0.1) 93.5 (0.2) 93.1 (0.1) 93.3 (0.1) 92.8 (0.1) 934 (0.1)
NER Average 92.1 92.2 91.8 92.2 91.9 92.3
Score
TriviaQA Micro F-1 78.6 (0.2) 79.1 (0.2) 779 (0.2) 77.4(0.2) 77.0(0.2) 785 (0.1)
Macro F-1 81.6 (0.1) 82.3 (0.2) 81.2(0.1) 80.6 (0.1) 80.1(0.2) 81.8 (0.1)
SQuAD Micro F-1 88.6 (0.0) 87.2(0.1) 88.6(0.1) 88.7 (0.0) 87.1(0.0) 88.5(0.1)
Macro F-1  94.7 (0.0) 93.9 (0.0) 94.6 (0.0) 94.5 (0.0) 93.5 (0.0) 94.6 (0.0)
QA Average 85.9 85.6 85.6 85.3 84.4 85.8
Score

Table 10: DeBERTaV2-XL Results for Reduced Models. Bold indicates the best average score between
the standard reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced —+
Half Adpt indicates adapters on the transformer layers of a fully frozen reduced model, where the earlier
half of transformer layers were removed and their activations cached. Full Adapters indicates adapters on
all transformer layers of a fully frozen model. Each score represents the average score of 5 runs, with the

standard errors for each score in parentheses.
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T5 Large
Reduced + Full 6 Layers 12 Layers 18 Layers Fully
Half Adpt Adapters Frozen Reduced Reduced Finetuned
ChemProt Micro F-1 84.3 (0.6) 84.9 (0.6) 84.7 (0.6) 84.6 (0.6) 85.0 (0.1) 84.1 (0.8)
Macro F-1 57.2 (0.7) 58.0 (0.8) 56.2 (0.7) 56.2 (0.7) 57.4(0.1) 56.1 (0.7)
SciCite Micro F-1 86.7 (0.3) 86.2 (0.3) 87.4(0.2) 87.6(0.1) 88.0 (0.2) 86.4 (0.2)
Macro F-1 85.3 (0.4) 84.5(0.4) 86.0 (0.2) 86.3(0.2) 86.9 (0.2) 84.9 (0.2)
SciERC-Rel Micro F-1 85.6 (0.4) 85.2(0.1) 84.3(0.3) 86.8(0.4) 83.4(0.7) 87.4 (0.5)
Macro F-1 76.2 (1.0) 75.6 (0.2) 73.6 (0.9) 77.4(0.7) 72.2(1.0) 80.2 (1.1)
Text Classification 79.2 79.1 78.7 79.8 78.8 79.9
Average Score
bc5cdr Micro F-1 93.8 (0.6) 95.7 (0.7) 97.7 (0.7) 97.4 (0.3) 95.4 (0.8) 97.5(0.2)
Macro F-1 79.9 (1.0) 85.7 (1.1) 91.1 (0.5) 90.7 (1.1) 89.3 (1.0) 89.9 (0.8)
JNLPBA Micro F-1 93.9 (0.4) 93.8 (0.1) 93.8 (0.0) 94.0 (0.0) 93.9 (0.0) 94.2 (0.0)
Macro F-1 78.8 (0.6) 79.5(0.2) 788 (0.1) 79.6 (0.1) 79.3(0.0) 80.0 (0.0)
NCBI-disease Micro F-1 97.8 (0.0) 98.5(0.0) 98.5(0.0) 98.5(0.0) 98.4 (0.0) 98.6 (0.0)
Macro F-1 92.1 (0.2) 92.5(0.2) 93.1(0.1) 92.8 (0.0) 92.2 (0.1) 93.5 (0.0)
NER Average 89.4 90.9 92.2 92.2 91.4 92.3
Score
TriviaQA Micro F-1 68.2 (0.2) 68.8 (0.2) 67.0 (0.0) 66.9 (0.0) 63.9 (0.0) 68.7(0.0)
Macro F-1 77.0 (0.1) 77.5(0.1) 77.5(0.0) 77.3(0.0) 74.8(0.0) 78.0 (0.0)
SQuAD Micro F-1 81.2 (0.1) 82.0 (0.1) 86.6 (0.1) 86.3 (0.6) 85.2(0.4) 86.7 (0.4)
Macro F-1 90.6 (0.1) 91.0 (0.1) 93.8 (0.0) 93.7(0.3) 92.8 (0.2) 93.9 (0.3)
QA Average 79.2 79.8 81.2 81.0 79.2 81.8
Score

Table 11: T5 Large Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model.
indicates adapters on the encoder and decoder transformer layers of a fully frozen reduced model, where
the earlier half of the encoder layers were removed and their activations cached. Full Adapters indicates
adapters on all encoder and decoder transformer layers of a fully frozen model. Each score represents the

average score of 5 runs, with the standard errors for each score in parentheses.
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DistilBERT

2 Layers 3 Layers 4 Layers Fully
Reduced Reduced Reduced Fine-tuned

ChemProt Micro F-1  79.1 (0.4) 80.3 (0.1)  79.0 (0.2) 79.1 (0.5)
Macro F-1  52.1 (0.5)  51.6 (0.6)  51.6 (0.4)  52.6 (0.3)
SciCite Micro F-1  85.7 (0.1)  85.6 (0.1) 85.8 (0.1) 85.5 (0.1)
Macro F-1  84.3 (0.1)  84.1 (0.1)  84.2 (0.1) 84.0 (
SciERC-Rel  Micro F-1 843 (0.3)  84.5(0.3) 84.6 (0.2) 83.5 (0.
Macro F-1  74.1 (0.7) 74.9 (0.7)  74.6 (0.4) 72.9 (

Text Classification

Average Score 76.6 76.8 76.6 76.3
beSedr Micro F-1  97.0 (0.0)  97.0 (0.0)  96.9 (0.0)  97.2 (0.0)
Macro F-1  88.3 (0.0) 883 (0.1) 87.9 (0.0)  88.7 (0.1)
JNLPBA Micro F-1  93.4 (0.1) 93.5 (0.0)  93.4 (0.0)  93.5 (0.0)
Macro F-1  78.0 (0.3) 78.6 (0.1)  77.9 (0.1)  78.5 (0.1)
NCBI-disease Micro F-1  98.2 (0.0)  98.0 (0.0)  98.1 (0.0) 98.2 (0.0)
Macro F-1  91.4 (0.1)  90.5 (0.1)  90.7 (0.1) 91.3 (0.1)
NER Average 91.1 91 90.8 91.2
Score
TriviaQA Micro F-1 62.9 (0.1) 61.4 (0.1) 59.1 (0.1) 63.6 (0.1)
Macro F-1  66.2 (0.1)  64.7 (0.1) 624 (0.1)  66.8 (0.1)
SQuAD Micro F-1  76.6 (0.1)  76.3 (0.1)  72.5(0.1)  77.1 (0.1)
Macro F-1  85.1 (0.1)  84.8 (0.0) 82.3(0.1)  85.4 (0.0)
QA Average 72.7 71.8 69.1 73.2
Score

Table 12: DistilBERT Results for Reduced Models. Bold indicates the best average score between the
reduced and fully fine-tuned versions of each model. Each score represents the average score of 10 runs, with
the standard errors for each score in parentheses.
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MiniLM: 6L-H768

2 Layers 3 Layers 4 Layers Fully
Reduced Reduced Reduced Fine-tuned

ChemProt Micro F-1  79.4 (0.3) 78.3 (0.4) 79.0 (0.2) 79.3 (0.3)
Macro F-1  51.8 (0.4)  50.6 (0.4)  52.0 (0.2)  52.6 (0.4)
SciCite Micro F-1 85.4 (0.1) 85.8 (0.2) 85.9 (0.1) 86.0 (0.2)
Macro F-1 84.1 (0.2) 84.5 (0.2) 84.5 (0.1) 84.6 (0.2)
SciERC-Rel Micro F-1 84.7 (0.3) 83.9 (0.3) 84.1 (0.4) 86.3 (0.2)
Macro F-1 75.0 (0.4) 74.8 (0.4) 75.3 (0.6) 78.2 (0.6)
Text Classification 6.7 76.3 76.8 78
Average Score
bcbedr Micro F-1 96.1 (0.3) 96.8 (0.0) 96.6 (0.0) 96.8 (0.2)
Macro F-1 84.6 (1.1) 87.8 (0.1) 86.6 (0.0) 87.5 (1.0)
JNLPBA Micro F-1 93.2 (0.0) 93.2 (0.0) 93.3 (0.0) 93.3 (0.0)
Macro F-1  77.5 (0.1) 77.3 (0.1) 77.3 (0.1) 76.9 (0.2)
NCBI-disease Micro F-1  98.3 (0.0)  98.2 (0.0)  98.2 (0.0) 98.3 (0.0)
Macro F-1  92.1 (0.1) 91.1 (0.1) 91.0 (0.1) 92.1 (0.1)
IS\IER Average 90.3 90.7 90.5 90.8
core
TriviaQA Micro F-1 70.2 (0.1) 68.9 (0.1) 65.5 (0.1) 70.4 (0.2)
Macro F-1 73.4 (0.1) 72.2 (0.1) 68.9 (0.1) 73.8 (0.2)
SQuAD Micro F-1 77.6 (0.1) 75.6 (0.1) 65.4 (0.2) 78.9 (0.1)
Macro F-1 86.4 (0.1) 85.0 (0.1) 77.0 (0.1) 87.0 (0.1)
QA Average 76.9 75.4 69.2 77.5
Score

Table 13: MiniLM L6-H768 Results for Reduced Models. Bold indicates the best average score between
the reduced and fully fine-tuned versions of each model. Each score represents the average score of 10 runs,
with the standard errors for each score in parentheses.
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MiniLM: L6-H384

2 Layers 3 Layers 4 Layers Fully
Reduced Reduced Reduced Fine-tuned

ChemProt Micro F-1 754 (0.5) 76.9 (0.2) 749 (0.3)  74.6 (0.4)
Macro F-1  47.3 (0.7) 50.4 (0.2) 488 (0.4)  47.1 (0.8)
SciCite Micro F-1  84.4 (0.1) 85.4 (0.1)  85.1 (0.1)  84.4 (0.1)
Macro F-1  82.8 (0.1) 83.7 (0.1)  83.4 (0.1)  82.8 (0.1)
SciERC-Rel  Micro F-1 832 (0.3)  82.6 (0.3) 83.3 (0.2)  79.5 (0.9)
Macro F-1 727 (0.6)  72.1 (0.6) 73.7 (0.3)  68.9 (1.1)
Text Classification 74.3 75.2 74.9 79.9
Average Score
besedr Micro F-1  96.6 (0.0)  96.3 (0.0)  95.6 (0.0)  96.9 (0.0)
Macro F-1  86.9 (0.1)  85.9 (0.1)  83.2 (0.1)  88.3 (0.1)
JNLPBA Micro -1 93.0 (0.0) 922 (0.0)  92.0 (0.0)  93.3 (0.0)
Macro -1 76.3 (0.1)  74.0 (0.1)  73.6 (0.1)  77.2 (0.1)
NCBI-disease Micro F-1 98.0 (0.0)  97.9 (0.0)  97.7 (0.0) 98.2 (0.0)
Macro F-1  90.6 (0.1)  89.9 (0.1)  88.9 (0.1)  91.7 (0.1)
NER Average 90.2 89.4 88.5 90.9
Score
TriviaQA Micro F-1  66.6 (0.1)  65.6 (0.1)  63.4 (0.1)  67.6 (0.2)
Macro -1 69.9 (0.1)  69.2 (0.1)  67.0 (0.1)  71.0 (0.2)
SQuAD Micro F-1  81.6 (0.0)  80.9 (0.1) 742 (0.2)  81.6 (0.1)
Macro F-1  89.7 (0.0)  89.0 (0.0) 845 (0.1)  89.6 (0.0)
QA Average 76.9 76.2 72.3 77.4
Score

Table 14: MiniLM L6-H384 Results for Reduced Models. Bold indicates the best average score between
the reduced and fully fine-tuned versions of each model. Each score represents the average score of 10 runs,
with the standard errors for each score in parentheses.

Standard Adapter-Based

Task Averages Recycling Recycling
Classification Training Time 2204 2349
Epochs 38 42
NER Training Time 4269 3857
Epochs 43 39
QA Training Time 8252 8513
Epochs 6 7

Table 15: Average Training Times and Epochs for Embedding Recycling (seconds for training time, count for
epochs). Standard Recycling corresponds to layer recycling on a reduced transformer model. Adapter-
Based Recycling corresponds to layer recycling on a reduced frozen transformer model with added trainable
Adapter modules. Training time and epoch averages are the averages across the RoOBERTa, BERT, SciBERT,
DeBERTa V2 XL, and T5-Large transformer models and the text classification, NER, and QA datasets
tested.
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