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Abstract

The task of point cloud segmentation, comprising semantic, instance, and panoptic
segmentation, has been mainly tackled by designing task-specific network archi-
tectures, which often lack the flexibility to generalize across tasks, thus resulting
in a fragmented research landscape. In this paper, we introduce PROTOSEG, a
prototype-based model that unifies semantic, instance, and panoptic segmentation
tasks. Our approach treats these three homogeneous tasks as a classification prob-
lem with different levels of granularity. By leveraging a Transformer architecture,
we extract point embeddings to optimize prototype-class distances and dynamically
learn class prototypes to accommodate the end tasks. Our prototypical design
enjoys simplicity and transparency, powerful representational learning, and ad-hoc
explainability. Empirical results demonstrate that PROTOSEG outperforms concur-
rent well-known specialized architectures on 3D point cloud benchmarks, achieving
72.3%, 76.4% and 74.2% mIoU for semantic segmentation on S3DIS, ScanNet V2
and SemanticKITTI, 66.8% mCov and 51.2% mAP for instance segmentation on
S3DIS and ScanNet V2, 62.4% PQ for panoptic segmentation on SemanticKITTI,
validating the strength of our concept and the effectiveness of our algorithm. The
code and models are available at https://github.com/zyqin19/PROTOSEG.

1 Introduction

Point cloud segmentation entails partitioning a collection of 3D data points into meaningful categories
to interpret complex 3D scenes. Three classical subdivision segmentation tasks are involved: semantic
segmentation, which assigns a class label to each point based on its class; instance segmentation,
which distinguishes between individual instances of the same class; and panoptic segmentation, which
combines semantic and instance segmentation to address amorphous or uncountable regions. These
tasks use distinct technical approaches, which have advanced each individual task but lack flexibility
to generalize to other tasks. This methodological convention leads to fragmented research efforts.

For the purpose of advancing the field of point cloud segmentation in a synergistic manner, a shift from
task-specific network architectures towards a more universal framework is imperative. It is natural
to question why the existing methods cannot achieve such unification, and we address this issue
in § 2 by examining the relationships and distinctions between current approaches. Many of these
approaches are customized for individual tasks, resulting in data representation, feature extraction,
and prediction head inconsistencies that hinder integration into a unified framework [1]. Furthermore,
task-specific architectures tend to overfit their respective tasks, reducing their generalizability when
applied to other segmentation tasks, thus hindering the practical unification of segmentation tasks.

In light of the above discussion, our research question becomes more fundamental: what epistemo-
logical framework can effectively embrace this shift? In response, we revisit the prototype paradigm
and point clouds’ natural properties (irregular and sparse), and propose that point cloud segmentation
naturally aligns with a classification problem. This foundational perspective shapes our research
direction and motivates the creation of our prototype-anchored classification method, allowing us
to unify various segmentation tasks within a single framework seamlessly. In § 3, we introduce
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Figure 1: PROTOSEG unifies three 3D segmentation tasks (i.e., semantic, instance, and panoptic)
from the prototypical view, and greatly suppresses existing specialized and unified models.

PROTOSEG, a prototype-anchored classification method that unifies semantic, instance, and panoptic
segmentation. To achieve this, we employ a Transformer [2] backbone to extract point embeddings
and represent classes as prototypes. This approach allows for task-specific outputs based on various
granularity annotations (i.e., semantic, instance, and scene), without architectural modification. By
utilizing a dynamic association and updating mechanism, PROTOSEG captures class-wise character-
istics and intra-class variance. Ultimately, PROTOSEG creates well-structured embedded spaces with
inter-class separation and intra-class compactness by optimizing point-prototype-class distances.

Concretely, our innovations focus on three aspects. ① Simplicity and transparency: PROTOSEG
has an intuitive working mechanism [3] as the statistical meaning of class sub-centroids makes it
elegant and easy to understand. This leads to the automatic discovery of underlying data structures, as
the latent distribution of each class is automatically mined and fully captured as a set of representative
local means (see §3.2). This contrasts with non-prototype methods [4] that learn a single weight
(or query) vector per class, which may struggle to accommodate rich intra-class variations [5, 6].
② Representation learning: PROTOSEG achieves point-wise classification through comparisons
between data samples and class sub-centroids in the embedding space. This distance-based nature
enables PROTOSEG to blend unsupervised sub-pattern mining – class-wise clustering (see Eqs. 13-14)
with supervised representation learning – learnable prototype classification (see Eq. 15) in a synergistic
manner. Significant local patterns are automatically identified to facilitate classification decisions,
while the supervisory signal from classification directly optimizes the representation, in turn boosting
meaningful clustering and discriminative features learning. ③ Ad-hoc explainability: PROTOSEG is
a transparent classifier, imbued with a built-in case-based reasoning process, establishing IF· · ·Then
rules [7]. This is achieved by allowing the class sub-centroids to serve as representative samples from
the training set, thus providing human-understandable explanations for each prediction (see Fig. 3).
Such an ad-hoc explainability adheres to the internal decision-making process, thereby differentiating
PROTOSEG from many existing methods [8] that fail to elucidate precisely how a model works.

Incorporating these innovations, we present an elegant, general, and flexible framework for point
cloud segmentation that achieves remarkable results (see Fig. 1) on widely recognized 3D point
cloud semantic, instance, and panoptic segmentation tasks. Specifically, our method achieves notable
performance gains in terms of 91.5% → 92.2% OAcc, 75.2% → 76.4% mIoU and 75.4% → 76.3%
mIoU for semantic segmentation on S3DIS [9] Area 5 and ScanNet V2 [10] test/val. sets, 64.7% →
66.8% mCov, 50.6% → 51.2% mAP and 67.6% → 68.4% mAP50 for instance segmentation
on S3DIS [9] Area 5 and ScanNet V2 [10] test/val. sets, and 61.5% → 62.4% PQ for panoptic
segmentation on SemanticKITTI [11] test set when compared to main competitors. Accompanied by
a comprehensive series of ablation studies in §5.4, our extensive experiments evaluations confirm the
strength of our concept and the effectiveness of our prototype-anchored classification algorithm.

2 Existing Task-Specialized Segmentation Models as Non-Prototype Learners

In this section, we provide an overview of existing methods for point cloud segmentation that are
tailored to specific tasks, such as semantic, instance, or panoptic segmentation. We will discuss the
key aspects of these methods, including data representation, feature extraction, and projection head.
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A key challenge is the inherent customization of segmentation methods for specific tasks. From a
broader perspective, it’s evident that semantic segmentation methods might not directly apply to
instance segmentation tasks and vice versa. For instance, the semantic segmentation method PTv2 [2]
lacks modules for instance-specific localization and segmentation. This makes it inadequate for
capturing the detailed spatial relationships required for precise instance boundary delineation and
separation. In contrast, the instance segmentation method SoftGroup [12] uses grouping mechanisms
to link points belonging to the same instance. While such a mechanism is essential for instance
segmentation, it could introduce unwarranted complexity and overhead in semantic segmentation
scenarios, where distinguishing individual instances isn’t the primary goal.

On a finer scale, we observe inconsistencies across data representation, feature extraction, and
prediction heads (Eqs. 1,2,3) in these methods. To illustrate, let’s first explore the differences between
the data representations that make up the initial steps of the segmentation. For a given 3D point cloud
scene M comprised of a set of points, data can be represented in multiple ways, including projection-
based [13], voxel-based [14, 15] and point-based [16, 17, 18, 19, 2] representations. Mathematically,
the input data representation through function ρ(·) can be expressed as:

X = ρ(M). (1)

After the data representation is obtained, an encoder ϕ is employed to extract point cloud embeddings:

E = ϕ(X), (2)

where ϕ incorporates techniques such as object detection [20, 21], clustering [22, 23] or graph
learning [24, 25] to enhance the embedding representation based on the backbone network.

Finally, each point embedding ei ∈E is fed into the projection head for segmentation [26]. Let
V = [v1, · · · ,vC ] ∈ RC×D be a set of class-specific vectors, where C is the number of class, D is
vector dimension, vc ∈ RD represents the linear weight or query vector in MLP-based [18, 2, 19, 2]
or Query-based models [27, 28] for the cth class. The probability that a point example xi ∈ X with
embedding ei ∈ RD is assigned to class c can be expressed with inner product as follows:

p(c|xi) =
exp((vc)⊤ei)∑C

c′=1 exp((v
c′)⊤ei)

. (3)

These above inconsistencies in data representation, feature extraction, and projection head further
complicate the unification of segmentation tasks, as the learned features may not be directly trans-
ferable across different tasks. In addition, the segmentation methods employed may not be optimal
for specific tasks, limiting their applicability and performance in a unified framework. Despite these
methods necessitating different processing techniques, thereby complicating the unification of the
tasks, they can collectively be categorized as Non-Prototype Learners.

3 Universal Segmentation Models as Prototype Classifiers
3.1 Problem Formulation

To address the challenges, we propose a unified framework that interprets different segmentation tasks
as unique granularity classification problems. This approach crafts a prototype classifier, eliminating
extra computational load and task-specific architectures. Specifically, let M be a 3D point cloud
scene containing a set of points {xi}. The objective of point cloud segmentation is to assign each
point xi to the class assignment set:

PointSeg(M) : xi 7→ {Ac(xi) | Ac(xi) ∈ {0, 1}, c = {1, . . . , C}} (4)

where Ac(xi) indicates whether the point xi ∈ M belongs (1) or does not belong (0) to class c.
Distinct from Eqs. 1-3 in §2, we seamlessly integrate 3D point cloud segmentation under Eq.4,
adopting a perspective of prototype-anchored classification, considering various levels of granularity.

3.2 Prototypical Classifiers for Segmentation

We propose a unified prototypical classifier for specific segmentation tasks. To achieve this, we
leverage a set of prototypes P = {pc

k}
C,K
c,k=1 ∈RD×C×K , where pc

k ∈ RD denotes the center of the
kth sub-cluster (property) of training point samples belonging to class c. For a given point sample xi,
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Figure 2: Overall pipeline of PROTOSEG. The classification of points is predicted by evaluating the
minimum distance between the embedding ei (extracted by encoder ϕ) and prototype pc

k via our
Prototype Association and Update mechanism (see Eq. 10, Eq. 12 in §3.2). Subsequently, supervision
scheme optimizes ϕ by minimizing the point-prototype-class distance (see Eqs. 13-15 in §3.3). Ad-
hoc explains the decision-making process of our classification model, detailed in §5.4.

we make predictions by comparing point embedding ei∈RD, extracted using a simple Transformer
encoder ϕ, with prototype pc

k and assigning the corresponding prototype’s class as the response:

p(c|xi) =
exp(−dei,c)∑C

c′=1 exp(−dei,c′)
, with dei,c = argmin{⟨ei,p

c
k⟩}Kk=1, (5)

where the negative cosine distance measure ⟨·, ·⟩ is defined as ⟨ei,pc
k⟩=−e⊤i p

c
k.

To get the informative prototype that can represent the properties of the class, we first associate the
point embeddings to the prototypes belonging to the same class (i.e., Prototype Association) and
then dynamically update prototypes according to the assignments (i.e., Prototype Update).

Prototype Association. Given embeddings of point samples Ec = {eci}
Nc
i=1 ∈ RD×Nc in a training

batch and prototypes P c={pc
k}Kk=1∈RD×K for class c, we aim to maximize the similarities J (M)

between the associated point sample embeddings and corresponding class prototypes:

max
M

J (M) = Tr((M c)⊤(P c)⊤Ec), (6)

where Tr(·) denotes the matrix trace, M c = {mc
k,i}

K,Nc

k,i=1 ∈ {0, 1}K×Nc is a point-to-prototype
permutation matrix that denotes the association between point and prototype, mc

k,i∈{0, 1} denotes
the one-hot assignment vector that assigns the point sample xi to the prototype k of the class c.

To accommodate the representation of all classes for M c, we impose two constraints aimed at
avoiding a trivial solution in which all point samples are assigned to a single prototype [29]:

(M c)⊤1K = 1Nc , (M c)⊤1Nc =
Nc

K
1K , (7)

where 1K ,1Nc
denotes the tensor of all ones of K or Nc dimensions. The former Unique assignment

Constraint ensures that each point embedding is assigned to one and only one prototype across all
classes. The latter Equipartition Constraint enforces that each prototype is selected an equal number
of times within the batch on average. The implementation of these constraints is of utmost importance
as it significantly enhances the representative capability of the prototypes for each class.

For more intuitive, Eq. 6 can be rewritten as estimating the optimal M c,∗:

M c,∗ = max
M

Tr((M c)⊤(P c)⊤Ec). (8)

Following [30], we smooth Eq. 8 with an entropic regularization term h(M c):

M c,∗ = max
Mc

Tr((M c)⊤(P c)⊤Ec)+κh(M c), s.t. M c∈RK×N
+ , (9)

where h(M c)=
∑

k,i−mc
k,ilogm

c
k,i reduces the randomness of association and avoids most point

samples associating to one single prototype. We control the association smoothness using a small
value κ to ensure that each point embedding is assigned to only one prototype.
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With the entropic regularization term in Eq. 9, the problem can be solved using the Sinkhorn-Knopp
iteration [30] on the renormalization vectors uc ∈ RK and vc ∈ RNc

. After a few iterations, the
vectors uc and vc converge, and then the permutation matrix M∗ can be directly calculated as:

M c,∗ = diag(uc) exp

(
(P c)⊤Ec

κ

)
diag(vc), (10)

where diag(·) denotes a diagonal matrix formed by the input vector. The hyper-parameter κ balances
the convergence speed and stability of Eq. 10 in addition to smoothing the association (Eq. 9). A
smaller κ can lead to slower convergence but more accurate results, while a larger κ does the opposite.
We just use κ = 0.05 following [30] for our experiments, not extensively fine-tuned. The resulting
matrix M c,∗ satisfies both the unique assignment and equipartition constraints, effectively mapping
each point sample xi in the training batch to its corresponding prototype pc

k for each class c.

Prototype Update. In previous solutions [31, 5], the prototypes are typically computed by determin-
ing the centers of the corresponding embedded point samples and subsequently updating them based
on the online clustering results. However, this strategy may not effectively mitigate the widespread
class imbalance issue, resulting in sub-optimal prototypes specifically for rare classes.

To overcome this limitation, we introduce a prototype calibration strategy with a learnable calibration
factor, which estimates the representative level of each class prototype showing the importance
of tailed class prototype embeddings. The calibration factor is determined by a rectified sigmoid
function that adjusts the distance between the prototypes P c = {pc

k}Kk=1 of class c and the point
embedding set {eci}

Nc
i=1 assigned to pc

k by prototype association in current training batch:

wc =
1

NcK

∑Nc

i=1

∑K

k=1

1

1 + exp((eci)⊤pc
k)

, wc ∈ [0, 1]. (11)

Thus, the formula for the modified prototype updating method with prototype calibration is as follows:

pc
k ← µpc

k + wc(1− µ)Ēc, (12)

where µ ∈ [0, 1] is a momentum coefficient, and Ēc ∈ RD is the mean vector of {eci}
Nc
i=1.

3.3 Supervision Scheme

Based on prototype assignment and update, we get the learned prototypes where {pc
k}Kk=1 has class

representation ability and is typical for their corresponding class c, and pc
k represents kth property

within the class c. In order to shape well-structured embedded spaces, we designed a comprehensive
supervision scheme based on metric learning to enhance inter-class prototypes separation (see LPPS
in Eq. 13), intra-class point-prototype compactness (see LPPC in Eq. 14), and inter-class point-class
separation (see LPCS in Eq. 15) through optimizing point-prototype-class distances.
Prototype-Prototype Distances Optimization. In order to differentiate between different prototypes
within the same class (i.e., inter-class prototypes separation), we utilize a prototype-based metric
learning strategy to enhance the relationship between points and their assigned prototypes within a
specific class. By utilizing the point-to-prototype permutation matrix M c,∗, this strategy encourages
each point embedding eci to be similar to its assigned (’positive’) prototype pci

ki
and dissimilar to

other irrelevant (’negative’) prototypes P− = {pcj
kj
|pcj

kj
∈ {pc

k}
C,K
c,k=1 andpcj

kj
̸=pci

ki
}:

LPPS = − log
exp((ec

i )
⊤pci

ki
/τ)

exp((ec
i )

⊤pci
ki
/τ) +

∑
p
cj
kj

∈P− exp((ec
i )

⊤p
cj
kj
/τ)

, (13)

where τ controls the concentration level of the distributions over classes.
Point-Prototype Distance Optimization. To reduce intra-cluster variation, we directly minimize
the distance between each embedded point eci and its assigned prototype pci

ki
(i.e., intra-class point-

prototype compactness), resulting in tighter and more coherent class representations:

LPPC = (1− (ec
i )

⊤pci
ki
)2. (14)

Point-Class Distances Optimization. In addition to the constraints between point-prototype, for
more accurate classification prediction, we aim to correctly associate points with their respective
classes (i.e., inter-class point-class separation). Specifically, we push the embedded points closer to
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their corresponding class (i.e., ci) and enlarge the distance from other irrelevant classes (i.e., c′ ̸= ci).
Given the groundtruth class ci of each point embedding ei, the cross-entropy loss is used for LPCS as:

LPCS = − log
exp(−dei,ci)

exp(−dei,ci)+
∑

c′̸=ci
exp(−dei,c′)

, with dei,c = argmin{⟨ei,p
c
k⟩}Kk=1 (15)

where the point-class distance dei,c ∈ [−1, 1] is the distance to the closest prototype of class c.
Total Losses. Our prototypical classifier can effectively optimize the point embedding space extracted
through ϕ by minimizing the combined loss over all the training point samples:

LTotal = LPCS + αLPPS + βLPPC, (16)

where α, β are hyperparameters that control the trade-off between inter-class separation, intra-class
compactness, and correct classification. By minimizing LTotal, our model segments the point cloud
effectively while producing compact and discriminative class representations in the embedding space.

3.4 Implementation Details

We use PointTransformer V2 [2] as the encoder ϕ and replace the original MLP-based semantic
prediction head with our prototypical classifier. Instance segmentation and panorama segmentation
tasks can be viewed as more fine-grained prototype classification problems. For these tasks, we
additionally learn fine-grained prototypes P c,o∈RD×T ,P c∈RT×K , and a fine-grained permutation
matrix M c,o ∈ {0, 1}T×Nc ,M c ∈ {0, 1}K×T , where o ∈ O, T,O are the number of instance
prototypes and instances per class. The association and update of prototypes follow §3.2. Instance-
level supervision using a cross-entropy loss is incorporated into our supervision scheme (§3.3).

Reproducibility. Training and testing are conducted on eight NVIDIA A100 GPUs. More details
and parameter settings can be found in the Appendix.

4 Important Knows and Knowledge Gap

Specialized point cloud segmentation. Point cloud segmentation comprises three separate tasks, i.e.,
semantic, instance and panoptic segmentation, each of which focuses on different semantic aspects.
Historically, researchers have devised specialized models and optimization objectives for each task.

Semantic segmentation is to achieve comprehension of high-level semantic concepts through the
grouping of points into discrete semantic units. The advent of point convolution [16] has facilitated the
development of sophisticated models, encompassing context aggregation [27, 19], graph convolution
integration [24, 17], and contrastive learning [32, 33]. Recently, Transformer architectures [18, 2],
which has been successful in vision [34, 35, 36], have obtained considerable research interest.

Instance segmentation involves assigning foreground points to individual object instances, similar to
video tasks [37], which can be achieved through three main approaches: ① top-down models [21, 12]
that initially detect object bounding boxes and generate an instance mask for each box, ② bottom-
up models [38, 39] that learn distinctive point embeddings on instance boundaries, energy levels,
geometric structures, and point-center offsets, and group them into instances, and ③ single-shot
models [22] that directly predict instance masks through a set of learnable object queries.

Panoptic segmentation seeks comprehensive scene understanding, considering semantic relations
between background points and instance memberships of foreground points. Traditional solutions
involve decomposing the problem into manageable tasks such as box-based segmentation [11, 20],
thing-stuff merging [40], instance clustering [23, 41, 25]. More recent DETR-like approaches [28]
shifted towards an end-to-end scheme using Transformer [42] and achieved compelling performance.

Prototypical classifier. Prototype-based classification, an exemplar-driven approach that compares
observations with representative examples, has gained particular attention among various machine
learning algorithms, which include classical statistics-based methods, Support Vector Machines, and
Multilayer Perceptrons. The nearest neighbors rule, the earliest prototype learning method [43], has
led to the development of many well-known, non-parametric classifiers [44], such as generalized
Learning Vector Quantization (LVQ) [45], and Neighborhood Component Analysis [46]. Metric
learning [47, 48] is also naturally related to prototype learning. Recent efforts have attempted to
integrate deep learning into prototype learning, demonstrating its potential in few-shot [49], self-
supervised learning [50], weakly supervised learning [51, 52], as well as supervised learning [53, 54]
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and interpretable networks [55]. Building on these successes, we aim to advance this research by
developing a universal 3D segmentation framework based on prototypical classification. Our method,
PROTOSEG, incorporates prototype-anchored classification design and simple Transformer archi-
tecture to better capture the nature of prototypical learning and effectively handle the heterogeneity
across various segmentation tasks using the same architecture.

Universal 3D Segmentation. Universal segmentation strives to adopt a unified architecture capable
of addressing diverse segmentation tasks. One of the early attempts at unification through multi-task
learning is MT-PNet [56], which uses two branches to predict semantic class labels and instance
embedding labels, respectively. More recent studies, such as those presented in [57], employ clustering
schemes to integrate semantic and instance information, but their heuristic post-processing technique
(e.g., mean shift) can bring serious computational burden. In comparison to these pioneering efforts,
PROTOSEG distinguishes itself by being: ① more transparent - leveraging straightforward, case-
based reasoning for 3D tasks; ② more flexible - handling multiple segmentation tasks simultaneously;
and ③ more powerful - leading specialized methods by notable margins.

Multi-Task Image Segmentation Multi-Task Image Segmentation aims to develop a cohesive archi-
tecture to address various segmentation challenges. K-Net [58] pioneered this approach, leveraging
dynamic kernel learning for mask generation. In recent developments, several architectures inspired
by DETR [59] have formulated different tasks within a mask classification paradigm. For instance,
Max-DeepLab [60] and kMaX-DeepLab [61] negate the need for box predictions by employing
conditional convolutions, bridging the gap between box-dependent and box-independent methods
for the first time. MaskFormer [62] and its subsequent versions [63, 64] introduce a streamlined and
effective inference strategy to merge outputs into a task-specific prediction format using a collection
of binary masks. In addition, methods based on dense prediction [65], optimal transport [66], graph
modeling [67], and clustering [68, 69, 70] also have achieved great success.

Unlike the above methods, our approach perceives these three closely-related tasks as a prototype-
anchored classification challenge with distinct granularity levels. We define prototypes as class
sub-centroids derived from the feature embeddings of training samples. Then, a test sample is directly
classified based on its proximity to the nearest centroids. Such an approach, rooted in case-based
reasoning, introduces a distinct element of ad-hoc interpretability to our method (see Fig. 3 in §5.4).

5 Empirical Evidence

PROTOSEG is the first framework to support three core point cloud segmentation tasks with a single
unified architecture. To demonstrate its broad applicability and wide benefit, we conduct extensive
experiments on semantic (§5.1), instance (§5.2), panoptic (§5.3) segmentation, and carry out ablation
studies (§5.4) related to our framework design. More qualitative results are available in Appendix.

5.1 Experiment on Semantic Segmentation

Dataset. S3DIS [9], a large-scale indoor point cloud dataset, encompasses point clouds from
271 rooms across 6 areas. Each room represents a medium-sized point cloud, annotating every
point with a semantic label from one of the 13 classes. ScanNet V2 [10] provides over 1,500
indoor scenes and around 2.5 million annotated RGB-D images with approximately 90% surface
coverage. The benchmark is evaluated on 20 semantic classes, which include 18 different object
classes. SemanticKITTI [11] is introduced based on the well-known KITTI Vision [71] benchmark
illustrating complex outdoor traffic scenarios. It contains 22 data sequences, 43,552 frames of outdoor
scenes, of which 23,201 frames with panoptic labels are used for training and validation, and the
remaining 20,351 frames without labels are used for testing. There are annotated point-wise labels in
20 classes for segmentation tasks, 8 of which are defined as thing classes.

Metric. To evaluate our semantic segmentation performance, we apply the mean Intersection-over-
Union (mIoU ↑), the overall accuracy (OAcc ↑) taking all points into consideration and the average
class accuracy (mAcc ↑) of all semantic classes upon the whole dataset.

Performance Comparison. Table 1 and Table 2 show the results of our PROTOSEG model
compared with previous methods on S3DIS [9] and ScanNet v2 [10], respectively. Our model
outperforms prior methods across all evaluation metrics. Notably, PROTOSEG significantly out-
performs PTv2 [2] by 0.9% and 1.2% mIoU on the ScanNet v2 [10] validation and test set, and
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Table 1: Comparisons of semantic segmentation
performance on S3DIS [9] Area 5 (see §5.1).

Method OAcc mAcc mIoU
JSNet [57] [AAAI’20] 87.7 61.4 54.5
SegGCN [72] [CVPR’20] 88.2 70.4 63.6
SCF-Net [73] [CVPR’21] 88.4 71.6 82.7
PAConv [74] [CVPR’21] – - 66.6
RepSurf-U [75] [CVPR’22] 90.2 76.0 68.9
CBL [33] [CVPR’22] 90.6 75.2 69.4
PTv1 [18] [ICCV’21] 90.8 76.5 70.4
FastPT [76] [CVPR’22] – 77.9 70.3
PointMixer [77] [ECCV’22] – 77.4 71.4
PTv2 [2] [NeurIPS’22] 91.1 77.9 71.6
StratifiedFormer [78] [CVPR’22] 91.5 78.1 72.0
Ours (Area 5) 92.2 78.6 72.3

Table 2: Comparisons of semantic segmentation
with mIoU on ScanNet v2 [10] (see §5.1).

Method Test Val.
SegGCN [72] [CVPR’20] 58.9 –
RandLA-Net [79] [CVPR’20] 64.5 –
PointASNL [27] [CVPR’20] 66.6 63.5
RPNet [80] [ICCV’21] 68.2 –
FusionNet [81] [ECCV’20] 68.8 –
JSENet [82] [ECCV’20] 69.9 –
RepSurf-U [75] [CVPR’22] 70.2 –
PTv1 [18] [ICCV’21] - 70.6
PointNeXt [19] [NeurIPS’22] 71.2 71.5
StratifiedFormer [78] [CVPR’22] 73.7 74.3
PTv2 [2] [NeurIPS’22] 75.2 75.4
Ours 76.4 76.3

surpasses other methods in all metrics on the S3DIS [9] dataset. These results further support the
robustness and effectiveness of our method for large-scale point cloud semantic segmentation tasks.

Table 3: Comparisons of seman-
tic segmentation performance on Se-
manticKITTI val set (see §5.1).

Method mIoU
Cylinder3D [83][CVPR’21] 65.9
2DPASS [84][ECCV’22] 69.3
(AF)2-S3Net [85][CVPR’21] 74.2
Ours 74.2

Notably, our method yields a more substantial performance
enhancement on ScanNet V2 than on S3DIS compared to the
main competitor PTv2 [2]. This discrepancy can be attributed to
PROTOSEG’s statistical characteristics, which can mine richer
intra-class variations on the larger scale and more categories
ScanNet V2. To evaluate the performance more comprehen-
sively, we report the results of semantic segmentation on the
SemanticKITTI validation set. PROTOSEG achieves a mIou of
74.2%, confirming the performance benefits of our model.

5.2 Experiment on Instance Segmentation

Dataset. S3DIS [9] and ScanNet V2 [10] are utilized for instance segmentation experiments.

Metric. We use mean coverage (mCov ↑), mean weighed coverage (mWCov ↑), mean preci-
sion (mPrec ↑), and mean recall (mRec ↑) as the evaluation metrics for S3DIS [9]. Additionally,
ScanNet V2 [10] is evaluated using mean average precisions (mAPs ↑) under different IoU thresholds.

Table 4: Comparisons of instance segmentation performance on
S3DIS [9] Area 5 (see §5.2 for more details).

Method mCov mWCov mPrec mRec
PointGroup [86] [CVPR’20] – – 61.9 62.1
MaskGroup [39] [ICME’22] – – 62.9 64.7
SSTNet [22] [ICCV’21] 42.7 59.3 65.5 64.2
DyCo3D [87] [CVPR’21] 63.5 64.6 64.3 64.2
HAIS [38] [ICCV’21] 64.3 66.0 71.1 65.0
DKNet [88] [ECCV’22] 64.7 65.6 70.8 65.3
Ours 66.8 68.4 69.7 66.3

Table 5: Comparisons of instance segmentation performance on
ScanNet v2 [10] (see §5.2 for more details).

Test Val.Module mAP mAP50 mAP mAP50

DyCo3D [87] [CVPR’21] 39.5 64.1 35.4 57.6
PointGroup [86] [CVPR’20] 40.7 63.6 34.8 56.7
MaskGroup [39] [ICME’22] 43.4 66.4 42.0 63.3
HAIS [38] [ICCV’21] 45.7 69.9 43.5 64.1
SoftGroup [12] [CVPR’22] 50.4 76.1 46.0 67.6
SSTNet [22] [ICCV’21] 50.6 69.8 49.4 64.3
Ours 51.2 78.1 47.8 68.4

Performance Comparison. As is de-
picted in Tables 4-5, our method signifi-
cantly outperforms other methods on the
S3DIS [9] dataset. The main criteria,
mCov and mWCov, take into account
both the completeness and accuracy of
instance segmentation results. Specifi-
cally, in terms of the main criteria, our
method yields a mCov of 66.8%, a mW-
Cov of 68.4%, a mPrec of 69.7% and
a mRec of 66.3% in Area 5, surpassing
most methods. Furthermore, the supe-
rior performance on ScanNet V2 [10]
dataset in both the val. and test sets also
highlights the effectiveness of our ap-
proach for instance segmentation. The
significant improvements across various
metrics and benchmarks demonstrate
the efficacy and robustness of PROTO-
SEG, even in challenging scenarios.

5.3 Experiment on Panoptic Segmentation

Dataset. SemanticKITTI [11] is utilized for panoptic segmentation experiments.
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Table 6: Comparisons of panoptic segmentation performance on SemanticKITTI [11] test (see §5.3).

Method PQ mIou PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt

LPSAD [90] [IROS’20] 38.0 50.9 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2
Panoster [91] [RAL’21] 52.7 59.9 59.9 64.1 80.7 49.4 58.5 83.3 55.1 68.2 78.8
Panoptic-PolarNet [23] [CVPR’21] 54.1 59.5 60.7 65.0 81.4 53.3 60.6 87.2 54.8 68.1 77.2
DS-Net [41] [CVPR’21] 55.9 61.6 62.5 66.7 82.3 55.1 62.8 87.2 56.5 69.5 78.7
EfficientLPS [40] [TR’21] 57.4 61.4 63.2 68.7 83.0 53.1 60.5 87.8 60.5 74.6 79.5
GP-S3Net [25] [ICCV’21] 60.0 70.8 69.0 72.1 82.0 65.0 74.5 86.6 56.4 70.4 78.7
SCAN [28] [AAAI’22] 61.5 67.7 67.5 72.1 84.5 61.4 69.3 88.1 61.5 74.1 81.8
Panoptic-PHNet [15] [CVPR’22] 61.5 66.0 67.9 72.1 84.8 63.8 70.4 90.7 59.9 73.3 80.5
Ours 62.4 67.5 68.5 74.4 83.4 65.6 72.6 89.1 61.8 75.7 79.2
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Figure 3: Interpretable prototype (i.e., class sub-centroids) with IF· · ·Then rules (left) and decision-
making process based on distance to prototypes (right). colors represent prototype instance for
three S3DIS [9] classes, [·,·] stands for distance between point embedding E and instances.

Metric. We use the panoptic quality (PQ) [89] as our main metric to evaluate the performance
of panoptic segmentation. PQ can be seen as the multiplication of segmentation quality (SQ) and
recognition quality (RQ). These three metrics can be extended to things and stuff classes, denoted as
PQTh, PQSt, RQTh, RQSt, SQTh, SQSt, respectively. PQ† replaces PQ with IoU for stuff classes.
Performance Comparison. Table 6 presents a comparison of panoptic segmentation performance
on the SemanticKITTI [11] test. Our proposed method demonstrates a significant improvement
over the best-performing baseline method, with a 62.4% increase in PQ. It is noteworthy that our
unified framework demonstrates superior performance in both things and stuff classes, as evidenced
by outperforming the second-best method, Panoptic-PHNet [15], in 7 out of 11 metrics.

Overall, PROTOSEG demonstrates excellent performance across various segmentation tasks (see
§5.1-5.3) on both indoor and outdoor datasets. Notably, it does not require inherent modifications to
the architecture or the training regime, which highlights its generality and flexibility.

5.4 Diagnostic Experiment

This section conducts ablation studies for PROTOSEG’s semantic segmentation on S3DIS [9] Area5.

Study of Ad-hoc Explainability. In §2 and §5.1-5.3, we have explained the simple yet transparent
mechanism of PROTOSEG and verified its robustness and effectiveness in representation learning. We
now highlight PROTOSEG’s interpretability in Fig. 3, which depicts prototypes that represent specific
objects in the training set. Fig. 3 (left) displays representative instances, serving as interpretable
prototypes (class sub-centroids) for three S3DIS [9] classes. These objects, diverse in appearance,
viewpoints, illuminations, and scales, characterize their respective classes, providing a human-
interpretable overview. Leveraging the simplicity of the Nearest Centroids mechanism, we formulate
intuitive IF· · ·Then rules, providing an intuitive glimpse into PROTOSEG’s decision-making process.
Furthermore, we can elucidate PROTOSEG’s predictions by visualizing the computed distance
(similarity) between the query and prototypes. As illustrated in Fig. 3 (right), the model accurately
classifies an observation, perceiving it as more closely resembling a particular chair exemplar (see the
top right of Fig. 2). Overall, this visualization clearly shows that the classification decision procedure
relies on the notion of distance beyond the selection of the encoder ϕ.

Key Components. We first investigate our Prototypical Classifier (§3.2) and supervision scheme
(§3.3) on S3DIS [9] and ScanNet V2 [10] datasets. As shown in Table 7a, introducing prototypical
classifiers in conjunction with LPCS improves the performance to 71.74% and 75.84%. Adding either
LPPS or LPPC to the prototypical classifiers and LPCS promotes performance gains, indicating the
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Table 7: A set of ablative studies (see §5.4) on S3DIS [9] Area 5.
(a) Key Components

Prototypical LPCS LPPS LPPC S3DIS ScanNetv2
Classifiers (Eq. 15) (Eq. 13) (Eq. 14) (mIoU) (mIoU)

✓ 71.53 75.36
✓ ✓ 71.74 75.84
✓ ✓ ✓ 72.05 76.07
✓ ✓ ✓ 72.06 76.12
✓ ✓ ✓ ✓ 72.34 76.32

(b) Prototype Number K

# Prototype mIoU (%)
K = 1 71.48
K = 5 71.84
K = 10 72.34
K = 20 72.18
K = 50 72.05

(c) Distance Measure

mIoUDistance (%)
Standard 72.10
Huberized 72.17
Cosine 72.34

(d) Momentum Coefficient

Coefficient µ mIoU (%)
0.9 71.62
0.99 71.88
0.999 72.34
0.9999 72.04

(e) Class Balance

Strategy mIoU (%)
w/o 71.49
wc 72.34
Mp 72.14
Mn 71.83

(f) Sinkhorn Iterations S

Iterations mIoU
(Eq. 10) (%)
S = 1 71.29
S = 3 72.34
S = 5 71.43

value of explicitly learning point-prototype relations. The improvements observed by introducing
prototypical classifiers and supervision scheme (mIoU: 71.53%→72.34% on S3DIS [9], 75.36%→
76.32% on ScanNet V2 [10]) confirm the effectiveness of our proposed framework.

Prototype Number Per Class. We then analyze the impact of the number of prototypes per class on
segmentation performance, as reported in Table 7b. With a single prototype (K=1), each class is
represented by the mean embedding of its point samples, yielding the mIoU score of 71.48%. The
mIoU score peaks at 72.34% when K = 10. Further increment of prototypes to K = 20, K = 50
only results in a slight decrease in performance, with mIoU scores of 72.34%→72.18%→72.05%,
respectively. These results suggest an optimal balance between accuracy and computational cost at
K = 10 prototypes per class, affirming our rationale for leveraging multiple prototypes to encapsulate
intra-class variations and enhance segmentation performance. It would be interesting to find ways to
ascertain this number automatically. In our exploration, we encountered clustering techniques like
[92] that might help, but complex algorithms led to time challenges.

Distance Measure. Next, we examine the impact of different distance metrics on our Supervision
Scheme (see Eqs. 13-15 in §3.3). By default, we use cosine distance (denoted as Cosine in Table 7c).
We also consider two alternative metrics, i.e.. standard Euclidean distance (Standard) and Huber-
like function [93] (Huberized). Table 7c demonstrates that the Cosine distance surpasses the un-
normalized Euclidean metrics, affirming its superiority in measuring point-prototype similarity.

Momentum Coefficient. Table 7d quantifies the effect of the momentum coefficient (µ in Eq. 12).
Our model achieves the best performance when the momentum coefficient is set to 0.999. As the
momentum coefficient decreases, the performance gradually declines. These results suggest that a
higher value (i.e., slower updating) generally leads to better results in the common case.

Class Balance Strategy. Next, we proceed to validate the effectiveness of our strategy in mitigating
the issue of category imbalance. As Table 7e shown, the baseline (w/o) fixes wc = 1 in Eq. 12,
Ml [31] and Mu [94] utilize parameter and non-parametric augmented memory banks, respectively.
The reported results provide evidence for the efficacy of our prototype calibration strategy.

Sinkhorn-Knopp Iteration. Finally, we verify the effect of iterations on the model. Table 7f shows
that the optimal segmentation results can be achieved using a smaller number (S = 3) of iterations.
This further verifies the efficiency of our Prototype Association (see §3.2).

6 Conclusion
We present PROTOSEG, a novel, prototype-anchored classification framework for 3D point cloud
segmentation that unifies semantic, instance, and panoptic segmentation tasks. By considering
these tasks under the umbrella of classification problems but at various granularity, PROTOSEG
offers an elegant, general, and flexible solution that eschews task-specific network architectures.
Compared to task-specific models, PROTOSEG offers several advantages: i) The prototype-based
classification mechanism is simple and transparent. ii) Our supervision scheme, which leverages
prototype-based metric learning, exhibits robust representational learning ability. iii) PROTOSEG
offers ad-hoc explainability by anchoring class exemplars to real observations. Our comprehensive
experiments demonstrate the superior performance of PROTOSEG in terms of efficacy and enhanced
interpretability. Overall, we believe that our work may motivate further research in this field.
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