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Abstract

This paper introduces alternators, a novel family of non-Markovian dynamical models for
sequences. An alternator features two neural networks: the observation trajectory network
(OTN) and the feature trajectory network (FTN). The OTN and the FTN work in con-
junction, alternating between outputting samples in the observation space and some feature
space, respectively. The parameters of the OTN and the FTN are not time-dependent and
are learned via a minimum cross-entropy criterion over the trajectories. Alternators are
versatile. They can be used as dynamical latent-variable generative models or as sequence-
to-sequence predictors. Alternators can uncover the latent dynamics underlying complex
sequential data, accurately forecast and impute missing data, and sample new trajectories.
We showcase the capabilities of alternators in three applications. We first used alternators
to model the Lorenz equations, often used to describe chaotic behavior. We then applied
alternators to Neuroscience, to map brain activity to physical activity. Finally, we applied
alternators to Climate Science, focusing on sea-surface temperature forecasting. In all our
experiments, we found alternators are stable to train, fast to sample from, yield high-quality
generated samples and latent variables, and often outperform strong baselines such as Mam-
bas, neural ODEs, and diffusion models in the domains we studied.

1 Introduction

Time underpins many scientific processes and phenomena. These are often modeled using differential equa-
tions (Schrödinger, 1926; Lorenz, 1963; McLean, 2012). Developing these equations requires significant
domain knowledge. Over the years, scientists have developed various families of differential equations for
modeling specific classes of problems. The interpretability of these equations makes them appealing. How-
ever, differential equations are often intractable. Numerical solvers have been developed to find approximate
solutions, often with significant computation overhead (Wanner & Hairer, 1996; Hopkins & Furber, 2015).
Several works have leveraged neural networks to speed up or replace numerical solvers. For example, neural
operators have been developed to approximately solve differential equations (Kovachki et al., 2023). Neural
operators extend traditional neural networks to operate on functions instead of fixed-size vectors. They can
approximate solutions to complex functional relationships described as partial differential equations. How-
ever, neural operators still require data from numerical solvers to train their neural networks. They may
face challenges in generalizing to unseen data and are sensitive to hyperparameters (Li et al., 2021; Kontolati
et al., 2023).

Beyond their intractability, differential equations as a framework may not be amenable to all time-dependent
problems. For example, it is not clear how to model language, which is inherently sequential, using differential
equations. For such general problems that are inherently time-dependent, fully data-driven methods become
appealing. These methods are faced with the complexities that time-dependent data often exhibit, including
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Figure 1: Generative process of an alternator with a cycle of length T = 3. An initial random feature z0 is
generated from a fixed distribution, e.g. a standard Gaussian. The rest of the observations x1:T and features
z1:T are generated by alternating between sampling from the OTN and the FTN, respectively.

high stochasticity, high dimensionality, and nontrivial temporal dependencies. Generative modeling is a
data-driven framework that has been widely used to model sequences. Several dynamical generative models
have been proposed over the years (Gregor et al., 2014; Fraccaro et al., 2016; Du et al., 2016; Dieng et al.,
2016; 2019; Kobyzev et al., 2020; Ho et al., 2020; Kobyzev et al., 2020; Rasul et al., 2021; Yan et al., 2021;
Dutordoir et al., 2022; Li et al., 2022b; Neklyudov et al., 2022; Lin et al., 2023; Li et al., 2024). Unlike
differential equations, generative models can account for the stochasticity in observations and can be easy to
generate data from. However, they are less interpretable than differential equations, may require significant
training data, and often fail to produce predictions and samples that are faithful to the underlying dynamics.

This paper introduces alternators, a new framework for modeling time-dependent data. Alternators model
dynamics using two neural networks called the observation trajectory network (OTN) and the feature tra-
jectory network (FTN), that alternate between generating observations and features over time, respectively.
These two neural networks are fit by minimizing the cross entropy of two joint distributions defined over
the observation and feature trajectories. This framework offers great flexibility. Alternators can be used as
generative models, in which case the features correspond to interpretable low-dimensional latent variables
that capture the hidden dynamics governing the observed sequences. Alternators can also be used to map
an observed sequence to an associated observed sequence, for supervised learning. In this case, the features
represent low-dimensional representations of the input sequences. These features are then used to predict
the output sequences. Alternators can be used to efficiently impute missing data, forecast, sample new
trajectories, and encode sequences. Figure 1 illustrates the generative process of an alternator over three
time steps.

Section 4 showcases the capabilities of alternators in three different applications: the Lorenz attractor, neural
decoding of brain activity, and sea-surface temperature forecasting. In all these applications, we found that
alternators tend to outperform other sequence models, including dynamical VAEs, neural ODEs, diffusion
models, and Mambas, on different sequence modeling tasks.

Alternators present significant opportunities and considerations across multiple domains. In scientific ap-
plications, the framework’s ability to model complex temporal dynamics with interpretable low-dimensional
latent variables could accelerate discovery in fields ranging from climate science to neuroscience, where
understanding underlying dynamical systems is crucial. Our contributions are threefold: (1) introducing
Alternators, a novel framework using alternating OTN/FTN networks trained via cross-entropy minimiza-
tion, (2) demonstrating versatility across generative modeling, prediction, imputation, and forecasting with
minimal modifications, and (3) showing consistent superior performance across dynamical systems.

2



Published in Transactions on Machine Learning Research (06/2025)

2 Alternators

We are interested in modeling time-dependent data in a general and flexible way. We seek to be able to
sample new plausible sequences fast, impute missing data, forecast the future, learn the dynamics underlying
observed sequences, learn good low-dimensional representations of observed sequences, and accurately predict
sequences. We now describe alternators, a framework for modeling sequences that offers the capabilities
described above.

Generative Modeling. We assume the data are from an unknown sequence distribution, which we denote
by p(x1:T ), with T being a pre-specified sequence length. Here each xt ∈ RDx . We approximate p(x1:T )
with a model with the following generative process:

1. Sample z0 ∼ p(z0).

2. For t = 1, . . . , T :

(a) Sample xt ∼ pθ(xt | zt−1).
(b) Sample zt ∼ pϕ(zt | zt−1, xt) .

Here z0:T is a sequence of low-dimensional latent variables that govern the observation dynamics. Each
zt ∈ RDz , with Dz << Dx. The distribution p(z0) is a prior over the initial latent variable z0. It is fixed.
The distributions pθ(xt | zt−1) and pϕ(zt | zt−1, xt) relate the observations and the latent variables at each
time step. They are parameterized by θ and ϕ, which are unknown. The latent variable zt−1 acts as a
dynamic memory used to predict the next observation xt at time t and to update its state to zt using the
newly observed xt.

The generative process described above induces a valid joint distribution over the data trajectory x1:T and
the latent trajectory z0:T ,

pθ,ϕ(x1:T , z0:T ) = p(z0)
T∏

t=1
pθ(xt | zt−1)pϕ(zt | zt−1, xt). (1)

This joint yields valid marginals over the latent trajectory and data trajectory,

pθ,ϕ(x1:T ) =
∫ {

p(z0)
T∏

t=1
pθ(xt | zt−1)pϕ(zt | zt−1, xt)

}
dz0:T (2)

pθ,ϕ(z0:T ) =
∫ {

p(z0)
T∏

t=1
pθ(xt | zt−1)pϕ(zt | zt−1, xt)

}
dx1:T (3)

These two marginals describe flexible models over the data and latent trajectories. Even though the model
is amenable to any distribution, here we describe distributions for modeling continuous data. We define

p(z0) = N (0, I) (4)

pθ(xt | zt−1) = N
(√

(1 − σ2
x) · fθ(zt−1), Dxσ2

x

)
(5)

pϕ(zt | zt−1, xt) = N
(√

αt · gϕ(xt) +
√

(1 − αt − σ2
z) · zt−1, Dzσ2

z

)
, (6)

where fθ(·) and gϕ(·) are two neural networks, called the observation trajectory network (OTN) and the
feature trajectory network (FTN), respectively. Here σ2

x and σ2
z are hyperparameters such that σ2

z < σ2
x.

The sequence α1:T is also fixed and pre-specified. Each αt is such that 0 ≤ αt ≤ 1 − σ2
z .

Learning. Traditionally, latent-variable models such as the one described above are learned using variational
inference (Blei et al., 2017). Here we proceed differently and fit alternators by minimizing the cross-entropy
between the joint distribution defining the model pθ,ϕ(x1:T , z0:T ) and the joint distribution defined as the
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product of the marginal distribution over the latent trajectories pθ,ϕ(z0:T ) and the data distribution p(x1:T ).
That is, we learn the model parameters θ and ϕ by minimizing the following objective:

L(θ, ϕ) = −Ep(x1:T )·pθ,ϕ(z0:T ) [log pθ,ϕ(x1:T , z0:T )] . (7)

To gain more intuition on why minimizing L(θ, ϕ) is a good thing to do, let’s expand it using Bayes’ rule,

L(θ, ϕ) = −Ep(x1:T )·pθ,ϕ(z0:T ) [log pθ,ϕ(z0:T ) + log pθ,ϕ(x1:T | z0:T )] (8)
= H(pθ,ϕ(z0:T )) + Epθ,ϕ(z0:T ) [KL(p(x1:T )∥pθ,ϕ(x1:T | z0:T )] . (9)

Here H(pθ,ϕ(z0:T )) is the entropy of the marginal over the latent trajectory and the second term is the
expected Kullback-Leibler (KL) divergence between the data distribution p(x1:T ) and pθ,ϕ(x1:T | z0:T ), the
conditional distribution of the data trajectory given the latent trajectory.

Eq. 9 is illuminating. Indeed, it says that minimizing L(θ, ϕ) with respect to θ and ϕ minimizes the entropy
of the marginal over the latent trajectory, which maximizes the information gain on the latent trajectories.
This leads to good latent representations. On the other hand, minimizing L(θ, ϕ) also minimizes the expected
KL between the data distribution and the conditional distribution of the observed sequence given the latent
trajectory. This forces the OTN to learn parameter settings that generate plausible sequences and forces the
FTN to generate latent trajectories that yield good data trajectories.

It may be tempting to view Eq. 9 as the evidence lower bound (ELBO) objective function optimized by
a variational autoencoder (VAE) (Kingma et al., 2019). That would be incorrect for two reasons. First,
interpreting Eq. 9 as an ELBO would require interpreting pθ,ϕ(z0:T ) as an approximate posterior distribution,
or a variational distribution, which we can’t do since pθ,ϕ(z0:T ) depends explicitly on model parameters.
Second, Eq. 9 is the sum of the entropy of pθ,ϕ(z0:T ) and the expected log-likelihood of the observed
sequence, whereas an ELBO would have been the sum of the entropy of the variational distribution and the
expected log-joint of the observed sequence and the latent trajectory.

To minimize L(θ, ϕ) we expand it further using the specific distributions we defined in Eq. 4, 5, and 6,

L(θ, ϕ) = Ep(x1:T )·pθ,ϕ(z0:T )

[
T∑

t=1
∥zt − µzt

∥2
2 + Dzσ2

z

Dxσ2
x

· ∥xt − µxt∥
2
2

]
(10)

µxt =
√

(1 − σ2
x) · fθ(zt−1) and µzt =

√
αt · gϕ(xt) +

√
(1 − αt − σ2

z) · zt−1 (11)

Although Eq. 10 is intractable–it still depends on expectations–we can approximate it using Monte Carlo,

L(θ, ϕ) ≈ 1
B

B∑
b=1

T∑
t=1

[∥∥∥z
(b)
t − µ

z
(b)
t

∥∥∥2

2
+ Dzσ2

z

Dxσ2
x

·
∥∥∥x

(b)
t − µ

x
(b)
t

∥∥∥2

2

]
, (12)

where x
(1)
1:T , . . . , x

(B)
1:T are data trajectories sampled from the data distribution1 and z

(1)
0:T , . . . , z

(B)
0:T are latent

trajectories sampled from the marginal pθ,ϕ(z0:T ) using ancestral sampling on Eq. 3.

Algorithm 1 summarizes the procedure for dynamical generative modeling with alternators. At each time
step t, the OTN tries to produce its best guess for the observation xt using the current memory zt−1. The
output from the OTN is then passed as input to the FTN to update the dynamic memory from zt−1 to zt.
This update is modulated by αt, which determines how much we rely on the memory zt−1 compared to the
new observation xt. When dealing with data sequences for which we know certain time steps correspond
to more noisy observations than others, we can use αt to rely more on the memory zt−1 than the noisy
observation xt. When the noise in the observed sequences is not known, which is often the case, we set αt

fixed across time. The ability to change αt across time steps provides alternators with an enhanced ability
to handle noisy observations compared to other generative modeling approaches to sequence modeling.

1Although the true data distribution p(x1:T ) is unknown, we have some samples from it which are the observed sequences,
which we can use to approximate the expectation.
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Algorithm 1: Dynamical Generative Modeling with Alternators
Inputs: Samples from p(x1:T ), batch size B, variances σ2

x and σ2
z , schedule α1:T

Initialize model parameters θ and ϕ
while not converged do

for b = 1, . . . , B do
Draw initial latent z

(b)
0 ∼ N (0, IDz )

for t = 1, . . . , T do
Draw noise variables ϵ

(b)
xt ∼ N (0, IDx

) and ϵ
(b)
zt ∼ N (0, IDz

)
Draw x

(b)
t =

√
(1 − σ2

x) · fθ(z(b)
t−1) + σx · ϵ

(b)
xt

Draw z
(b)
t = √

αt · gϕ(x(b)
t ) +

√
(1 − αt − σ2

z) · z
(b)
t−1 + σz · ϵ

(b)
zt

end
end
Compute loss L(θ, ϕ) in Eq. 12 using z1:B

0:T and data samples from p(x1:T )
Backpropagate to get ∇θL(θ, ϕ) and ∇ϕL(θ, ϕ)
Update parameters θ and ϕ using stochastic optimization, e.g. Adam.

end

Sequence-To-Sequence Prediction. When given paired sequences x1:T and y1:T , we can use alternators
to predict y1:T given x1:T and vice-versa. We simply replace p(x1:T )pθ,ϕ(z0:T ) with the product of the joint
data distribution, p(x1:T , y1:T ) and p(z0). The objective remains the cross entropy,

L(θ, ϕ) = −Ep(x1:T ,y1:T )p(z0) [log pθ,ϕ(x1:T , y1:T , z0)] . (13)

This leads to the same tractable objective as Eq. 12, replacing z1:T with y1:T ,

L(θ, ϕ) ≈ 1
B

B∑
b=1

T∑
t=1

[∥∥∥y
(b)
t − µ

y
(b)
t

∥∥∥2

2
+

Dyσ2
y

Dxσ2
x

·
∥∥∥x

(b)
t − µ

x
(b)
t

∥∥∥2

2

]
, (14)

where x
(1)
1:T , . . . , x

(B)
1:T and y

(1)
1:T , . . . , y

(B)
1:T are sequence pairs sampled from the data distribution, µxt

=√
(1 − σ2

x) · fθ(yt−1) and µyt
= √

αt · gϕ(xt) +
√

(1 − αt − σ2
y) · yt−1. Algorithm 2 summarizes the pro-

cedure for sequence-to-sequence prediction with alternators.

Imputation and forecasting. Imputing missing values and forecasting future events are simple using
alternators. We simply follow the generative process of an alternator, each time using xt when it is observed
or sampling it from pθ(xt | zt−1) when it is missing.

Encoding sequences. It is easy to get a low-dimensional sequential representation of a new sequence
x∗

1:T : we simply plug x∗
t at each time step t in the mean of the distribution pϕ(zt | zt−1, xt) in Eq. 6,

z∗
t =

√
αt · gϕ(x∗

t ) +
√

(1 − αt − σ2
z) · z∗

t−1. (15)

The sequence z∗
1:T is the low-dimensional representation of x∗

1:T given by the alternator. To uncover the
dynamics underlying a collection of B sequences x

(1)∗
1:T , . . . , x

(B)∗
1:T instead, we can simply use Eq. 15 for each

sequence x
(b)∗
1:T and take the mean for each time step. The resulting sequence is a compact representation of

the dynamics governing the input sequences.

3 Related Work

Alternators are a new family of models for time-dependent data. As such, they are related to many existing
dynamical models.

Autoregressive models (ARs) define a probability distribution for the next element in a sequence based on
the previous elements, making them effective for modeling high-dimensional structured data (Gregor et al.,
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2014). They have been widely used in applications such as speech recognition Chung et al. (2019), language
modeling Black et al. (2022), and image generative modeling Chen et al. (2018b). However, ARs don’t have
latent variables, which may limit their applicability.

Temporal point processes (TPPs) were introduced to model event data (Du et al., 2016). TPPs model both
event timings and associated markers by defining an intensity function that is a nonlinear function of history
using recurrent neural networks (RNNs). However, TPPs lack latent variables and are only amenable to
discrete data, which limits their applicability.

Dynamical VAEs such as VRNNs (Chung et al., 2015) and SRNNs (Fraccaro et al., 2016) model sequences by
parameterizing VAEs with RNNs and bidirectional RNNs, respectively. This enables these methods to learn
good representations of time-dependent data by maximizing the ELBO. However, they fail to generalize and
struggle with generating good observations due to their parameterizations of the sampling process.

Differential equations are the traditional way dynamics are modeled in the sciences. However, they may be
slow to resolve. Recently, neural operators have been developed to extend traditional neural networks to
operate on functions instead of fixed-size vectors (Kovachki et al., 2023). They can approximate solutions
to complex functional relationships modeled as partial differential equations. However, neural operators rely
on numerical solvers to train their neural networks. They may struggle to generalize to unseen data and are
sensitive to hyperparameters (Li et al., 2021; Kontolati et al., 2023).

Neural ordinary differential equations (NODEs) model time-dependent data using a neural network to predict
an initial latent state which is then used to initialize a numerical solver that produces trajectories (Chen
et al., 2018a). NODEs enables continuous-time modeling of complex temporal patterns. They provide a more
flexible framework than traditional ODE solvers for modeling time series data. However, NODEs are still
computationally costly and can be challenging to train since they require careful tuning of hyperparameters
and still rely on numerical solvers to ensure stability and convergence (Finlay et al., 2020). Furthermore,
NODEs are deterministic; stochasticity in NODEs is only modeled in the initial state. This makes NODEs not
ideal for modeling noisy observations. Alternators also differ fundamentally from neural stochastic differential
equations (SDEs) introduced by Liu et al. (2019) in several key ways. While neural SDEs incorporate
stochastic terms to model randomness, but rely on computationally expensive numerical solvers and maintain
high-dimensional state representations, Alternators use direct neural network mappings and explicitly model
low-dimensional latent variables (Dz ≪ Dx), making them significantly faster as demonstrated in our sea-
surface temperature forecasting experiments while maintaining stochasticity through noise models for both
latent and observation spaces.

Probability flows are generative models that utilize invertible transformations to convert simple base dis-
tributions into complex, multimodal distributions (Kobyzev et al., 2020). They employ continuous-time
stochastic processes to model dynamics. These models explicitly represent probability distributions using
normalizing flow (Papamakarios et al., 2021). While normalizing flows offer advantages such as tractable
computation of log-likelihoods, they have high-dimensional latent variables and require invertibility, which
hinders flexibility.

Recently, diffusion models have been used to model sequences (Lin et al., 2023). For example DDPMs can
be used to denoise a sequence of noise-perturbed data by iteratively removing the noise from the sequence
(Rasul et al., 2021; Yan et al., 2021; Biloš et al., 2022; Lim et al., 2023). This iterative refinement enables
DDPMs to generate high-quality samples. TimeGrad is a diffusion-based approach that introduces noise
at each time step and gradually denoises it through a backward transition kernel conditioned on historical
time series (Rasul et al., 2021). ScoreGrad follows a similar strategy but extends the diffusion process to
a continuous domain, replacing discrete steps with interval-based integration (Yan et al., 2021). Neural
diffusion processes (NDPs) are another type of diffusion process that extend diffusion models to Gaussian
processes, describing distributions over functions with observable inputs and outputs (Dutordoir et al.,
2022). Discrete stochastic diffusion processes (DSDPs) view multivariate time series data as values from a
continuous underlying function (Biloš et al., 2022). Unlike traditional diffusion models, which operate on
vector observations at each time point, DSDPs inject and remove noise using a continuous function. D3VAE
is yet another diffusion-based model for sequences (Li et al., 2022a). It starts by employing a coupled diffusion
process for data augmentation, which aids in creating additional data points and reducing noise. The model
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then utilizes a BVAE alongside denoising score matching to further enhance the quality of the generated
samples. Finally, TSGM is a diffusion-based approach to sequence modeling that uses three neural networks
to generate sequences (Lim et al., 2023). An encoder is trained to map the underlying time series data
into a latent space. Subsequently, a conditional score-matching network samples the hidden states, which a
decoder then maps back to the sequence. This methodology enables TSGM to generate good sequences. All
these diffusion-based methods lack low-dimensional dynamical latent variables and are slow to sample from
as they often rely on Langevin dynamics.

Action Matching (AM) is a method that learns the continuous dynamics of a system from snapshots of
its temporal marginals, using cross-sectional samples that are not correlated over time (Neklyudov et al.,
2022). AM allows sampling from a system’s time evolution without relying on explicit assumptions about
the underlying dynamics or requiring complex computations such as backpropagation through differential
equations. However, AM does not have low-dimensional dynamical latent variables, which can limit its
applicability.

The current widely used class of dynamical models for modeling sequences are state-space models, particu-
larly Mambas (Gu & Dao, 2023). A Mamba uses a latent dynamical model to capture temporal dependencies
and an observation process driven by the latent variables to generate data. Mambas are able to model com-
plex and diverse sequences effectively. However, Mambas have limitations. First, the latent variables in
Mambas have the same dimensionality as the data, just as for flows, which leads to big models and increases
computational complexity. Second, this same high-dimensionality of the latents reduces interpretability,
making extracting meaningful insights about the underlying dynamics challenging.

In contrast to the approaches above, Alternators explicitly alternate between generating observations and
latent features over time using two neural networks, the OTN and the FTN, jointly optimized to minimize
cross-entropy over the observation and feature trajectories. Alternators have low-dimensional latent variables,
which enhances their interpretability and makes them more robust to noise in data. Unlike Mambas, which
prioritize expressivity using high-dimensional latent variables, Alternators balance computational efficiency,
interpretability, and flexibility, excelling in scenarios where understanding a sequence’s low-dimensional
dynamics is critical.

4 Experiments

We now showcase the capabilities of alternators in three different domains. We first studied the Lorenz
attractor, which exhibits complex chaotic dynamics. We found alternators are better at capturing these
dynamics than baselines such as VRNN, SRNN, NODE, and Mamba. We also used alternators for neural
decoding on three datasets to map brain activity to movements. We found that alternators tend to outperform
VRNN, SRNN, NODE, and Mamba. Finally, we show that alternators can produce reasonably accurate sea-
surface temperature forecasts while only taking a fraction of the time required by diffusion models and
Mambas. For comprehensive details regarding implementation specifics and hyperparameter configurations
across each experiment, we refer the reader to the Appendix B (code available at: https://github.com/
vertaix/Alternators).

4.1 Model System: The Lorenz Attractor

The Lorenz attractor is a chaotic system with nonlinear dynamics described by a set of differential equations
(Lorenz, 1963). We use the attractor to simulate features z1:T , with zt ∈ R3 for all t ∈ {1, . . . , T} and
T = 400. We simulate from the Lorenz equations by adding noise variables ϵ1, ϵ2, ϵ3 to the coordinates,

ż1(t) = σ · (z2(t) − z1(t)) + ϵ1, ϵ1 ∼ N (0, 1)
ż2(t) = z1(t) · (ρ − z3(t)) − z2(t) + ϵ2, ϵ2 ∼ N (0, 1)
ż3(t) = z1(t) · z2(t) − β · z3(t) + ϵ3, ϵ3 ∼ N (0, 1).

The parameters σ, ρ, β control the dynamics. Here we set σ = 10, ρ = 28, β = 8/3 to define complex
dynamics which we hope to capture well with alternators. Given the features z1:T , we simulated x1:T ,
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Mamba

Figure 2: Alternators are better at tracking the chaotic dynamics defined by a Lorenz attractor, especially
during transitions between attraction points, than baselines such as VRNN, SRNN, NODE, and Mamba.

Table 1: Alternators outperform several dynamical models in predicting the dynamics defined by the Lorenz
equations in terms of MAE, MSE, and CC.

Method MAE↓ MSE ↓ CC ↑
SRNN 0.052 ± 0.017 0.148 ± 0.007 0.955 ± 0.001
VRNN 0.074 ± 0.003 0.173 ± 0.002 0.963 ± 0.001
NODE 0.044 ± 0.013 0.220 ± 0.012 0.888 ± 0.012
Mamba 0.045 ± 0.003 0.135 ± 0.001 0.958 ± 0.001
Alternator 0.030 ± 0.005 0.076 ± 0.003 0.977 ± 0.001

with each xt ∈ {0, 1}100, by sampling from a time-dependent Poisson point process. We selected the time
resolution small enough to ensure xt ∈ {0, 1} for all t. We use the Poisson process to mimic spiking activity
data. Empirical studies have shown that spike counts within fixed intervals often align well with the Poisson
distribution, making it a practical and widely used model in neuroscience (Rezaei et al., 2021; Truccolo et al.,
2005). The intensity of the point process is a nonlinear function of the features, λ̂j(z, t) = λj(z) ∗ λj,H(t),
where we define

λj(z) = exp
[

aj −
∑
zt∈z

(zt − µj,zt
)2

2σ2
j,zt

]
and λj,H(t) =

∑
sn∈Sj

1 − exp
(

− (t − sn)2

2σ2
j

)

for j ∈ {1, ..., 100}. Here µj,zt
and σ2

j,zt
are the center and width of the receptive field model of zt, aj is the

maximum firing rate, and Sj is the collection of all the spike times of the jth channel. They are drawn from

µj,zt ∼ U(µ(zt) − 2 ∗ σ(zt), µ(zt) + 2 ∗ σ(zt)) (16)
σj,zt ∼ U(σmin, 1/100), σj ∼ U(σmin, 1/100), and aj ∼ U(frmin, frmax). (17)

We set frmin = 0, frmax = 10, and σmin = 0.001. We then used the paired data (x1:T , z1:T ) in a sequence-
to-sequence prediction task to train an alternator as well as a NODE, an SRNN, a VRNN, and a Mamba.
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Figure 3: Alternators tend to outperform VRNN, SRNN, NODE, and Mamba on trajectory prediction in
the neural decoding task on three different datasets in terms of MAE, MSE, and CC.

We didn’t include a diffusion model as a baseline here since it lacks a dynamical latent process that can be
inferred from the spiking activities for sequence-to-sequence prediction.

We evaluate each model by simulating 100 new paired sequences following the same simulation procedure.
We used the new observations to predict the associated simulated features. We assess feature trajectory
prediction performance using three metrics that compare predictions from each model with the ground truth
features: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Correlation Coefficient (CC). We
used 2-layer attention models, each followed by a hidden layer containing 10 units for both the OTN and
the FTN. We set σz = 0.1, σx = 0.3, and αt = 0.3 is fixed for all t. The models were trained for 500 epochs
using the Adam optimizer with an initial learning rate of 0.01. We applied a cosine annealing learning rate
scheduler with a minimum learning rate of 1e-4 and 10 warm-up epochs.

Figure 2 shows the simulated features, along with fits from an alternator, an SRNN, a VRNN, a NODE,
and a Mamba. The alternator is better at predicting the true latent trajectory compared to the baselines.
Specifically, alternators accurately capture the chaotic dynamics characterized by the Lorenz attractor,
especially during transitions between attraction points. The results presented in Table 1 quantify this, with
alternators achieving better MAE, MSE, and CC than the baselines.
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Figure 4: Alternators tend to outperform VRNN, SRNN, NODE, and Mamba on missing value imputation
in the neural decoding task on three datasets in terms of MAE, MSE, and CC. The results are averaged
across several imputation settings, where we varied the missing value rate from 10% to 95%. The standard
errors are shown as vertical bars.

4.2 Neural Decoding: Mapping Brain Activity To Movement

Neural decoding is a fundamental challenge in neuroscience that helps increase our understanding of the
mechanisms linking brain function and behavior. In neural decoding, neural data are translated into in-
formation about variables such as movement, decision-making, perception, or cognitive functions (Donner
et al., 2009; Lin et al., 2022; Rezaei et al., 2018; 2023).

We use alternators to decode neural activities from three experiments. In the first experiment, the data
recorded are the 2D velocity of a monkey that controlled a cursor on a screen along with a 21-minute
recording of the motor cortex, containing 164 neurons. In the second experiment, the data are the 2D
velocity of the same monkey paired with recording from the somatosensory cortex, instead of the motor
cortex. The recording was 51 minutes long and contained 52 neurons. Finally, the third experiment yielded
data on the 2D positions of a rat chasing rewards on a platform paired with recordings from the hippocampus.
This recording is 75 minutes long and has 46 neurons. We refer the reader to Glaser et al. (2020; 2018) for
more details on how these data were collected. For these experiments, the time horizons were divided into
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Figure 5: A set of 20 trajectories sampled from different models conditional on spiking activities from
datasets: Motor cortex, Somatosensory, and Hippocampus. The alternator produces samples that are closer
to the ground truth dynamics.

1-second windows for decoding, with a time resolution of 5 ms. We use the first 70% of each recording for
training and the remaining 30% as the test set.

Similarly to the Lorenz experiment, we used attention models comprising two layers, each followed by a
hidden layer containing 10 units for both the OTN and the FTN. We set σz = 0.1, σx = 0.2, and αt = 0.4
was fixed for all t. The model underwent training for 1500, 1500, and 1000 epochs for Motor Cortex,
Somatosensory, and Hippocampus datasets; respectively. We used the Adam optimizer with an initial
learning rate of 0.01. We also used a cosine annealing learning rate scheduler with a minimum learning rate
of 1e-4 and 5 warm-up epochs.
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Table 2: Performance of different models on sea-surface temperature forecasting 1 to 7 days ahead. Numbers
are averaged over the evaluation horizon. For SSR, a value closer to 1 is better. The time column represents
the time needed to forecast all 7 timesteps for a single batch. Alternators perform reasonably well in terms
of CRPS and MSE, and are fast. However, they achieve a worse SSR than MCVD and Dyffusion.

Method CRPS ↓ MSE↓ SSR (= 1) Time [s]↓
DDPM-P 0.281 ± 0.004 0.180 ± 0.011 0.411 ± 0.046 0.4241
DDPM-D 0.267 ± 0.003 0.164 ± 0.004 0.406 ± 0.042 0.4241
DDPM 0.246 ± 0.005 0.177 ± 0.005 0.674 ± 0.011 0.3054
Alternator 0.221 ± 0.031 0.144 ± 0.045 1.325 ± 0.314 0.7524
Dyffusion 0.224 ± 0.001 0.173 ± 0.001 1.033 ± 0.005 4.6722
Mamba 0.219 ± 0.002 0.134 ± 0.003 0.753± 0.009 0.6452
MCVD 0.216 0.161 0.926 79.167

In this experiment, we define the features as the velocity/position and the observations as the neural activity
data. We benchmarked alternators against state-of-the-art models, including VRNN, SRNN, NODE, and
Mamba on their ability to accurately predict velocity/position given neural activity. We didn’t include
a diffusion model baseline for the same reason as in the Lorenz experiment, which was also a supervised
learning task. We used the same metrics as for the Lorenz experiment. The results are shown in Figure 6,
Figure 4, and Figure 5. Alternators are better at decoding neural activity than the baselines on all three
datasets.

4.3 Sea-Surface Temperature Forecasting

Accurate Sea-Surface Temperature (SST) dynamics prediction is indispensable for weather and climate fore-
casting and coastal activity planning. Expressivity is important here since prediction performance matters
a lot more than interpretability. However, we tested alternators on this task to gauge how they would fare
against models such as Mambas and diffusion models on this task. The SST dataset we consider here is
the NOAA OISSTv2 dataset, which comprises daily weather images with high-resolution SST data from
1982 to 2021 (Huang et al., 2021). We used data from 1982 to 2019 (15,048 data points) for training, data
from the year 2020 (396 data points) for validation, and data from 2021 (396 data points) for testing. We
further turned the training data into regional image patches, selecting 11 boxes with a resolution of 60 × 60
(latitude× longitude) in the eastern tropical Pacific Ocean. Specifically, we partitioned the globe into a
grid, creating 60 × 60 (latitude × longitude) tiles (Cachay et al., 2023). Eleven grid tiles are strategically
subsampled, with a focus on the eastern tropical Pacific region, establishing a refined and consistent dataset
for subsequent SST forecasting 1 to 7 days into the future.

We used an ADM (Dhariwal & Nichol, 2021) to jointly model the OTN and the FTN. The ADM is a specific
U-Net architecture that incorporates attention layers after each intermediate CNN unit in the U-Net. We
selected 128 base channels, 2 ResNet blocks, and channel multipliers of {1, 2, 2}. We trained the model with
a batch size of 10 for 800 epochs, setting σz = 0.2, σx = 0.3, and fixed αt = 0.6 for all t. We used the Adam
optimizer with an initial learning rate of 0.001 and applied a cosine annealing learning rate scheduler with
a minimum learning rate of 1e − 4 and 5 warm-up epochs.

We compared the alternator against several baselines: DDPM (Ho et al., 2020), MCVD (Voleti et al.,
2022), DDPM with dropout enabled at inference time (Gal & Ghahramani, 2016) (DDPM-D), DDPM with
random perturbations of the initial conditions/inputs with a fixed variance (DDPM-P) (Pathak et al., 2022),
dyffusion (Cachay et al., 2023), and Mamba (Gu & Dao, 2023). We used several performance metrics. One
such metric is the Continuous Ranked Probability Score (CRPS) (Matheson & Winkler, 1976), a proper
scoring rule widely used in the probabilistic forecasting literature (Gneiting & Katzfuss, 2014; de Bézenac
et al., 2020). In addition to CRPS, we also used MSE and Spread-Skill Ratio (SSR). SSR assesses the
reliability of the ensemble and is defined as the ratio of the square root of the ensemble variance to the
corresponding ensemble RMSE. It serves as a measure of the dispersion characteristics, with values less

12



Published in Transactions on Machine Learning Research (06/2025)

than 1 indicating underdispersion (i.e., overconfidence in probabilistic forecasts) and larger values indicating
overdispersion (Fortin et al., 2014). We used a 50-member ensemble for each method and compute MSE
based on the ensemble mean prediction.

Table 2 shows the results. The alternator achieves reasonable performance in terms of CRPS and MSE, even
outperforming Dyffusion and MCVD while being significantly faster. However, the alternator is performing
worst in terms of SSR. We attribute this to the alternator’s stochasticity, which introduces greater variability
into the ensemble predictions.

5 Conclusion

We introduced alternators, a new flexible family of non-Markovian dynamical models for sequences. Alter-
nators admit two neural networks that work in conjunction to produce observation and feature trajectories.
These neural networks are fit by minimizing the cross-entropy between two joint distributions over the
trajectories—the joint distribution defining the model and the joint distribution defined as the product of
the marginal distribution of the features and the marginal distribution of the observations, i.e. the data dis-
tribution. We showcased the capabilities of alternators in three different applications: the Lorenz attractor,
neural decoding, and sea-surface temperature prediction. We found alternators to be stable to train, fast
to sample from, and reasonably accurate, often outperforming several strong baselines in the domains we
studied.

While alternators demonstrate strong performance across various tasks, several limitations warrant consider-
ation. For imputation tasks, our current approach uses missing-at-random sampling and relies on the latent
state z as dynamic memory to generate missing observations in a forward manner. However, bidirectional
architectures could enhance performance when both the beginning and end of sequences are available by
incorporating backward information flow. Future work could explore integrating bidirectional structures
into both the OTN and FTN to smooth predictions through bidirectional processing, potentially improving
imputation accuracy for sequences with complex temporal dependencies.
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A Appendix

Sequence-to-sequence prediction algorithm. Given paired sequences x1:T and y1:T , we employ alter-
nators to predict y1:T from x1:T and vice versa. Algorithm 2 outlines the procedure for sequence-to-sequence
prediction using alternators.

Estimating the log-likelihood of a new sequence. Sometimes, scientists may be interested in scoring
a given sequence using a model fit on data to study how the new input sequence deviates from the data.
Alternators provide a way to do this using the log-likelihood. Assume given a new input sequence x∗

1:T . We
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Algorithm 2: Sequence-To-Sequence Prediction with Alternators
Inputs: Samples from p(x1:T , y1:T ), batch size B, σ2

x and σ2
y, schedule α1:T

Initialize model parameters θ and ϕ
while not converged do

for b = 1, . . . , B do
Draw initial latent z

(b)
0 ∼ N (0, IDz

)
for t = 1, . . . , T do

Compute µ
(b)
xt =

√
(1 − σ2

x) · fθ(y(b)
t−1)

Compute µ
(b)
yt = √

αt · gϕ(x(b)
t ) +

√
(1 − αt − σ2

y) · y
(b)
t−1

end
end
Compute loss L(θ, ϕ) in Eq. 14 using samples from p(x1:T , y1:T )
Backpropagate to get ∇θ(L(θ, ϕ)) and ∇ϕ(L(θ, ϕ))
Update parameters θ and ϕ using stochastic optimization, e.g. Adam.

end

can estimate its likelihood under the Alternator as follows:

log pθ,ϕ(x∗
1:T ) = log

∫
pθ,ϕ(x∗

1:T , z0:T ) dz0:T (18)

= log
∫

pθ,ϕ(z0:T ) · pθ(x∗
1 | z0))

T∏
t=2

pθ(x∗
t | zt−1)) (19)

= logEpθ,ϕ(z0:T ) exp
[

log pθ(x∗
1 | z0) +

T∑
t=2

log pθ(x∗
t | zt−1)

]
(20)

≈ log 1
K

K∑
k=1

exp
[

log pθ(x∗
1 | z

(k)
0 ) +

T∑
t=2

log pθ(x∗
t | z

(k)
t−1)

]
, (21)

where z
(1)
0:T , . . . , z

(K)
0:T are K samples from the marginal pθ,ϕ(z0:T ). Eq. 21 is a sequence scoring function and

it can be computed in a numerically stable way using the function logsumexp(·).

Neural activity forecasting. We applied alternators to forecast neural activity across Motor Cortex,
Somatosensory Cortex, and Hippocampus datasets, with forecasting rates from 10% to 50%. Evaluated using
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Correlation Coefficient (CC), alternators
consistently outperform VRNN, SRNN, NODE, and Mamba (Figure 6), demonstrating superior robustness
and accuracy across varying forecasting horizons.

B Implementation Details

This section provides comprehensive implementation details for experimental tasks, including hyperparame-
ter optimization strategies, architectural configurations, and training procedures used across the three main
experimental domains.

B.1 Lorenz Attractor Modeling

For the Lorenz attractor experiments, we employed a 2-layer attention-based architecture for both the
Observation Transition Network (OTN) and Feature Transition Network (FTN). Each attention layer was
followed by a hidden layer containing 10 units, providing sufficient capacity to capture the complex chaotic
dynamics while maintaining computational efficiency.
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Figure 6: Alternators outperform VRNN, SRNN, NODE, and Mamba on forecasting in the neural decoding
task on all three datasets in terms of MAE, MSE, and CC. The results are averaged across several forecasting
settings, where we varied the forecasting rate from 10% to 50%. The standard errors are shown as vertical
bars.

The noise variance parameters were carefully tuned through grid search optimization σz, σx ∈ [0.01, 0.8]. We
find the latent noise variance σz = 0.1 and observation noise variance σx = 0.3 as the best choices. The
alternation parameter αt = 0.3 was kept fixed across all time steps to maintain consistent switching dynamics
between the forward and backward processes. In this experiment, models were trained for 500 epochs using
the Adam optimizer with an initial learning rate of 0.01. We applied a cosine annealing learning rate scheduler
that reduced the learning rate to a minimum of 1×10−4 over the training period, with 10 warm-up epochs to
stabilize initial training dynamics. The training data consisted of 400 time steps simulated from the Lorenz
equations with added Gaussian noise. Model performance was evaluated on 100 newly simulated paired
sequences following the same simulation procedure as the training data. We assessed feature trajectory
prediction performance using Mean Absolute Error (MAE), Mean Squared Error (MSE), and Correlation
Coefficient (CC) metrics, comparing predictions against ground truth Lorenz attractor features.
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B.2 Neural Decoding Experiments

We conducted experiments on three distinct neural datasets. The motor cortex dataset contained 164 neurons
recorded over 21 minutes, paired with 2D cursor velocity data. The somatosensory cortex dataset included
52 neurons recorded over 51 minutes, also paired with 2D velocity measurements. The hippocampus dataset
comprised 46 neurons recorded over 75 minutes, paired with 2D position data of a rat navigating a reward
platform. Time horizons were segmented into 1-second windows for decoding analysis, with a temporal
resolution of 5 ms. We allocated the first 70% of each recording for training purposes and reserved the
remaining 30% as the test set to ensure robust performance evaluation.

Similar to the Lorenz experiments, we utilized attention models comprising two layers for both OTN and
FTN components. Each attention layer was followed by a hidden layer containing 10 units, maintaining
architectural consistency across experimental domains while adapting to the specific characteristics of neural
data.

Through systematic hyperparameter search, we determined optimal settings for each dataset from a range
of σz, σx ∈ [0.01, 0.8]. The latent noise variance was set to σz = 0.1, while the observation noise variance was
configured as σx = 0.2. The alternation parameter αt = 0.4 was maintained constant across all time steps.

Training epochs were customized for each dataset based on convergence characteristics. The motor cortex
dataset required 1500 epochs, the somatosensory dataset also needed 1500 epochs, while the hippocampus
dataset converged after 1000 epochs. We employed the Adam optimizer with an initial learning rate of 0.01,
coupled with a cosine annealing scheduler that reduced the learning rate to 1×10−4 with 5 warm-up epochs.
Model performance was evaluated using the same metrics as the Lorenz experiments, specifically MAE, MSE,
and CC, to assess the accuracy of velocity and position predictions from neural activity patterns.

B.3 Sea-Surface Temperature Forecasting

We utilized the NOAA OISSTv2 dataset, encompassing daily high-resolution SST data from 1982 to 2021.
The dataset was partitioned into training data from 1982 to 2019 (15,048 data points), validation data from
2020 (396 data points), and test data from 2021 (396 data points). We focused on the eastern tropical Pacific
Ocean region, extracting 11 boxes with 60 × 60 (latitude × longitude) resolution for detailed analysis.

We employed an ADM network structure to jointly model the OTN and FTN components. The ADM
utilized a specialized U-Net architecture incorporating attention layers after each intermediate CNN unit.
The configuration included 128 base channels, 2 ResNet blocks per resolution, and channel multipliers of
{1, 2, 2} to capture multi-scale spatial-temporal patterns effectively.

Models were trained with a batch size of 10 over 800 epochs. The noise variance parameters were set to
σz = 0.2 and σx = 0.3, with a fixed alternation parameter αt = 0.6 across all time steps. We used the
Adam optimizer with an initial learning rate of 0.001, applying a cosine annealing scheduler that reduced
the learning rate to 1 × 10−4 with 5 warm-up epochs.

The models were designed to predict SST dynamics 1 to 7 days into the future, providing short to medium-
term forecasting capabilities essential for weather and climate applications. Performance assessment utilized
multiple complementary metrics. The Continuous Ranked Probability Score (CRPS) served as the primary
probabilistic forecasting metric, supplemented by Mean Squared Error (MSE) for deterministic accuracy.
The Spread-Skill Ratio (SSR) was employed to evaluate ensemble reliability, with values closer to 1 in-
dicating optimal calibration between forecast uncertainty and actual forecast skill. All SST experiments
were conducted on NVIDIA A6000 GPUs with 48GB of memory, enabling efficient processing of the high-
dimensional spatial-temporal inputs essential for accurate SST forecasting. All experiments were conducted
using appropriate computational resources to ensure reproducible results and fair comparison with base-
line methods. Timing measurements were recorded to assess computational efficiency alongside prediction
accuracy.
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