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Fig. 1: LUPUS leverages an ensemble of frozen pre-trained models to segment and annotate uncurated, long-horizon robot
demonstrations. The resulting fully-labeled and segmented dataset can be used to train language-conditioned policies zero-
shot without any human annotation.

Abstract— A central challenge towards developing robots that
can relate human language to their perception and actions
is the scarcity of natural language annotations in diverse
robot datasets. Moreover, robot policies that follow natural
language instructions are typically trained on either templated
language or expensive human-labeled instructions, hindering
their scalability. To this end, we introduce a novel approach to
automatically label uncurated, long-horizon robot teleoperation
data at scale in a zero-shot manner without any human
intervention. We utilize a combination of pre-trained vision-
language foundation models to detect objects in a scene, propose
possible tasks, segment tasks from large datasets of unlabelled
interaction data and then train language-conditioned policies
on the relabeled datasets. Our initial experiments show that
our method enables training language-conditioned policies on
unlabeled and unstructured datasets that match ones trained
with oracle human annotations.

I. INTRODUCTION

Language-conditioned policies offer an intuitive and user-
friendly method to instruct robots [1], [2]. Training such
policies to perform diverse skills requires large amounts
of text-labeled robot trajectories for the policy to ground
instructions to behavior.

In response to these obstacles, Learning from Play (LfP)
has been introduced as a method of using play-like data
for fast and diverse data collection. This approach acquires
extended, varied demonstrations and makes the data col-
lection process more efficient and cost-effective. However,
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generating language labels for play demonstrations usually
includes human labeling, which is costly and inefficient.

Recent advances in vision-language foundation models
have shown capabilities of generalist models that can work
zero-shot in unseen environments for many different tasks
and thus have found applications in various robotic con-
texts [3], [4], [5], [6], [7], [8], leading to an intriguing ques-
tion: Can we leverage existing pre-trained vision-language
foundation models to annotate long-duration, uncurated play
data—recorded with just static camera images—for training
policies? Moreover, how do policies trained with syntheti-
cally labeled data stack up against those trained with manu-
ally annotated data?

To address these questions, we introduce Labeling Un-
structed Play Data utilizing Specialist Language Models
(LUPUS), a novel method for zero-shot labeling of long-
horizon videos capturing robot play without necessitating
human intervention or additional model training. LUPUS
employs an ensemble of pre-trained expert models to identify
relevant objects within the environment and generate poten-
tial task labels involving these objects. Our method intro-
duces an expert ensemble method to identify object-centric
keystates to segment long videos consisting of multiple tasks
into smaller windows with single actions. Subsequently, a
Large Language Model (LLM) generates language instruc-
tions matching the scene changes tracked by various pre-
trained models. As a result, LUPUS converts long-horizon
play data into segmented and annotated datasets for training
language-conditioned policies without any manual labeling.



We evaluate LUPUS on a challenging self-collected play
dataset in a toy kitchen. Our findings indicate that LUPUS
not only efficiently annotates play data with appropriate
task descriptions but also surpasses state-of-the-art closed-
source Vision-Language Models (VLMs), such as Gemini-
Pro. Furthermore, regardless of grounding, LUPUS reliably
finds important keystates in long-horizon demonstrations
better than prior zero-shot methods such as UVD [9]. Finally,
we demonstrate the efficacy of LUPUS in zero-shot policy
learning by training a language-guided diffusion policy using
our synthetically labeled data.

II. METHOD

In this section, LUPUS is introduced. We start by giving
a high-level overview of the method, followed by detailed
explanations of its three sub-methods for zero-shot play
labeling and key-state detection.

A. LUPUS Method Overview
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Fig. 2: Overview of the proposed LUPUS framework for
labeling long-horizon robot play sequences in a zero-shot
manner using an ensemble of experts.

LUPUS is divided into three primary steps: (I) Potential
Task Identification and Initial Object Retrieval, (II) Scene
Labeling, and (III) Keystate Detection with Grounding. Step
(I) focuses on identifying all objects within the scene and
querying a Large Language Model (LLM) to generate a
list of all potential tasks involving these objects. Step (II)
involves labeling all scene objects and monitoring their
changes throughout a frame sequence. Step (III) is dedicated
to identifying object-centric key states and prompting an
LLM to annotate the segmented interactions with appropriate
natural language descriptions. Figure 2 depicts a compre-
hensive overview of these steps. The subsequent sections
elaborate on each component of LUPUS.

B. Step 1: Identifying Potential Tasks from RGB Images

To effectively annotate play data with LUPUS, LUPUS
starts by determining all objects in the scene and subse-
quently compiling a set of potential tasks executable within
the given environment.

LUPUS first generates n class-agnostic bounding boxes
for 16 uniformly sampled frames with OWLv2 [10]. These
boxes are then aligned with a predefined list of objects com-
monly appearing in robotic environments. n depends on the
maximum number of objects observable in the environment.
LUPUS further calculates similarity scores with SigLIP [11]
for each box proposal against all object text representations
for more robust grounding. Scores from both grounding pre-
dictions are then combined and filtered based on objectness
scores, grounding accuracy, and object temporal presence
to finalize the scene’s object set. With a finalized object
list, an LLM is prompted to generate a potential task list
by considering the objects’ interactions. Figure 9 of the
Appendix gives an example prompt to generate this task list.

C. Step 2: Scene Labeling

The perception module annotates all observable ob-
ject changes throughout the video, encompassing bounding
boxes, segmentation masks, object positions, frame-to-frame
displacements, and object relationships. LUPUS integrates
several state-of-the-art models for scene labeling.

Object Annotations and Segmentations. LUPUS com-
bines a state-of-the-art open vocabulary object detector,
OWL-v2, [12] and CLIPSeg, an open-vocabulary semantic
segmentation model [13]. The open vocabulary detector
struggles with some classes, and its grounding confidence
scores are not properly aligned for direct usage, resulting
in incomplete and wrong annotations. To tackle this issue,
LUPUS ensembles the segmentation model and detector:
First, we extract bounding boxes for all objects extracted
in Step 1 with a low detection threshold. LUPUS then
computes the agreement between the object detector and
dense predictor by summing the logits inside each proposed
bounding box. This results in complete bounding boxes and
more robust predictions, as illustrated in Figure 19.
LUPUS further extracts optical flow with GMFlow [14]
and metric depth estimates with DepthAnything [15] for all
frames.

Increasing Detection Robustness for Static Objects. For
non-moving objects, LUPUS employs a temporal consensus
approach to enhance detection robustness and accuracy, es-
pecially in scenarios prone to occlusion. A two-step filtering
process identifies the most representative bounding box for
static objects over time, first by eliminating statistical outliers
and then by clustering the remaining boxes using DB-
SCAN [16]. The final bounding box for each static object is
derived from the cluster with the highest overall confidence,
representing the object consistently across frames.

Object Filtering and Mask Refinement through Tem-
poral Aggregation. Initial object detections may suffer from
temporal misalignments, such as missing detections for cer-
tain frames or an object being classified with a synonym for
different frames. To address this challenge, LUPUS utilizes
DEVA [17], a mask-tracking model, to capture temporal
correlations between objects. LUPUS extends DEVA to
incorporate a class score for each propagated mask. The
resulting final mask belonging to each object has multiple



class scores of possibly different associated classes. LUPUS
obtains the most confident class and labels the object as
the determined class. DEVA sometimes continues tracking
a portion of the overlapping object as the occluded object.
To mitigate this, LUPUS analyzes each mask’s components
and keeps the component with the highest intersection-over-
union relative to the overall mask.

After applying DEVA and filtering, the masks are tempo-
rally more consistent and have consistent class labels.

D. Step 3: Keystate Detection by Heuristic Consensus

Given the scene annotations from Step 2, LUPUS utilizes
these representations to detect keystates and perform ground-
ing. LUPUS uses multiple heuristics to detect keystates in the
long-horizon trajectory. Despite postprocessing, the gener-
ated scene representations are noisy. By combining multiple
heuristics, we can filter out keystates induced by noise in
the observations and control the quality of the keystates with
the resulting score. Each heuristic monitors keystate changes
for individual objects. This approach minimizes overlapping
agreements in different parts of the scene caused by noise.

An object-centric keystate oi is valid if its score exceeds
a user-specified threshold. LUPUS considers keystates of
different heuristics within a certain range to be referring
to the same keystate. The keystates are averaged across the
heuristics for a final keystate.

LUPUS uses the following heuristics to determine impor-
tant states of the play demonstrations:

Gripper Position. The gripper position over time can
indicate robot-object interactions. Specifically, if the gripper
is close to an object for a time span of n frames, the
robot likely interacted with that object. To compute gripper-
object proximity, we utilize the object segmentation mask
of the robot and objects. This heuristic first estimates the
end-effector position from a predicted depth map and then
calculates end-effector object distances in pixel space.

State Prediction. LUPUS predicts the state of all objects
over all timeframes and outputs a keystate if a state change
is detected. LUPUS detects object states with SigLIP [11],
a contrastive foundation model. We first obtain an image of
the object at frame t by cropping the original frame with
the object’s bounding box. Then, we compare the CLIP
similarities of state text embeddings defined by a large
language model and the cropped images for non-occluded
frames.

Object Relations LUPUS additionally analyzes object
relations and determines keystates based on object-relation
changes. LUPUS constructs an object-relation graph where
nodes represent scene objects and edges denote their spatial
relations, as inspired by [18]. Some spatial relations (e.g.
inside, behind) require depth information. To address this,
we project scene objects onto a point cloud using a predicted
depth map [15], followed by canonicalization to reason about
directions in natural language [19].

Object Movement LUPUS tracks object movement based
on a predicted flow-map [20] and bounding-box displace-
ment. We select keyframes based on object movement if the

movement is above an object-specific adaptive threshold and
occurs for at least three frames.

Gripper Close Signals. LUPUS can also consider gripper
close signals as possible keystates, if available. Similar to
prior work [21], [22], [23], [24], [25], our gripper close
heuristic identifies a keystate when the gripper was pre-
viously closed for several frames and subsequently opens.
Typically, this indicates that the robot has completed an
interaction.

The employed keystate heuristics do not apply to all robot-
object interactions. For instance, the state heuristic only
applies to objects with states, the relation heuristic only
applies to movable objects, and the gripper position heuristic
often fails for small objects. Nevertheless, the heuristics
complement each other, depending on the interacted object.

E. Action Retrieval and Grounding

Each keystate heuristic outputs a natural description of
why a keystate was detected. LUPUS uses this information
to construct a prompt to query a large language model. The
LLM is tasked to reason about detected object movement and
relation changes to determine the possible actions performed
by the robot. Sometimes, the observations are insufficient to
reason about the performed task. In such cases, we instruct
the LLM to output all possible tasks that could result in
the observations. Despite the instruction being ambiguous,
it could still be useful for downstream policy learning. We
evaluate this hypothesis in our experiments. We provide a
list of prompts in Section F of the Appendix.

III. EVALUATION

In this section, we study LUPUS as an effective tool for
labeling uncurated play datasets. We want to answer the fol-
lowing key questions: (I) Is LUPUS able to label uncurated,
long-horizon robot data in different environments with a high
accuracy? (II) How good are the generated keystates? (III)
How does LUPUS perform in grounding against recent state-
of-the-art vision-language foundation models? (IV) How well
does a policy trained on automatic annotations understand
language instructions compared to a policy trained with
human annotations?

A. Experiment Description

To test the capabilities of LUPUS, we collect a long-
horizon play dataset in our own play kitchen using teleoper-
ation. The dataset and evaluation setup details can be found
in Sec. B.

B. Keystate Evaluation

We perform a quantitative evaluation of the keystates
produced by our method on the play dataset recorded in a toy
kitchen and BridgeV2 [26]. Since there are no hard ground
truths for keystates, we evaluate against multiple tolerance
thresholds, chosen according to the average short-horizon
task length. If a predicted keystates distance to an actual
keystate is smaller than the threshold, it is labeled as correct.
We measure precision, recall mean-average precision (mAP),
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Fig. 3: Keystate accuracy for different frame distance toler-
ances. When additionally incorporating gripper-close signals,
the keystate quality further increases.

a metric commonly used in temporal action localization [27].
Fig. 3 shows the result of our method on our Kitchen Play
dataset, compared against UVD [9] and uniform sampling
with interval 64.

Notably, LUPUS outperforms UVD by a large margin in
precision and recall for both tolerances and mAP. Addition-
ally, incorporating gripper-close signals further improves the
performance. We provide ablations of the performance of our
method with different heuristics in Table IV of the Appendix.
Results on CALVIN and BridgeV2 can be seen in Sec. E of
the Appendix.

The experiments show that LUPUS can extract meaningful
keystates across different challenging environments.

C. Grounding Evaluation

Method LLM Accuracy (ϵ = 8) Accuracy (ϵ = 16)
Amb. Single Amb. Single

S3D - 0.04 0.03
XCLIP - 0.07 0.09
Gemini 0.13 0.13

LUPUS
GPT-3.5 0.70 0.55 0.67 0.53
GPT-4 0.84 0.77 0.79 0.71

Gemini (Lang) 0.80 0.61 0.75 0.57
Mixtral8x7b 0.66 0.52 0.62 0.49

TABLE I: Grounding accuracy of our framework. For Amb.,
the prediction is labeled correct if the list of answers con-
tains the ground truth. In Single, ambiguous predictions are
considered wrong.

To address Question (III), we compare the annotations
produced by our framework with ground truth language
annotations obtained through human labeling on the Kitchen
Play environment. Given the natural language observations
made by our heuristics, we prompt four different LLMs
to select up to two tasks from a task list. As the LMM
sometimes outputs multiple tasks if the observations do not
allow for accurate reasoning about the performed task, we
differentiate between Ambiguous and Single.

We compare against Gemini Pro Vision [28], which we
prompt with eight frames evenly spaced within keystates
produced by our method. The prompt can be seen in the

Appendix F. We also compare against two action-recognition
models, namely S3D [29], [30] and XCLIP [31].

LUPUS outperforms all baselines by a large margin.
The baselines struggle to ground the action performed by
the robot because of the large domain shift between the
challenging static camera robot environment and pre-training
data. On the other hand, LUPUS efficiently grounds the
performed actions through specialist foundation models and
object-centric prompting.

D. Language-conditioned Policy Training
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Fig. 4: Comparison of policies trained with different data
labels in our real world setting.

Next, we train a language-conditioned policy [5] on our
dataset. To compare the efficiency of our labels, we further
test the same policy using a human-annotated dataset. For
evaluation, we task the policies to solve tasks specified in
natural language. We evaluate two quantities: instruction
understanding and success rate. Detailed descriptions of our
policy, environment setup, and evaluation are summarized in
B of the Appendix. Fig. 4 shows the grounding and success
ratio across 12 tasks. The policy trained with automatically
labeled data performs on par with the human-annotated
dataset regarding grounding, while the success rate is slightly
lower. This can be attributed to the overall lower number of
training samples produced by our method. Including noisy
samples seems to hurt the performance significantly.

IV. CONCLUSION

In this work, we introduced LUPUS the first method,
that is able to fully label long-horizon play-datasets without
needing any human interventions or model training. The
framework leverages a set of vision-language foundation
models and an LLM to detect key-frames in these in-
teraction videos and detect all changes of objects in the
scene. Furthermore, we show that LUPUS’ keystate detection
heuristics can be used to extract informative keyframes
from long horizon data with RGB images only. Compared
against strong baselines of recent foundation vision-language
models, LUPUS is able to generate consistent labels for long-
horizon videos. Our experiments demonstrate that language-
guided policies trained on the artificially labeled dataset
perform competitively with those trained on fully human-
labeled data.
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APPENDIX

A. Related Work

Learning From Play. LfP is a training data paradigm
for imitation learning, that leverages play-like data for im-
itation learning. Instead of collecting a fixed set of expert
demonstrations, an operator interacts in the given environ-
ment without constraints. Collecting demonstrations this way
results in more diverse and wide state space and easier data
collection. Consequently, a policy trained from such play
data usually shows a better generalization and performance
in unseen state goal spaces. To apply this paradigm to goal-
conditioned imitation learning, goal states in these long
demonstrations must be available. When working with image
goals, goal states can be extracted by sampling random
windows from the long-horizon play sequence or with robot
proprietary information [32], [33], [5]. Hierarchical methods
use multiple policies to extract and learn subskills from play
data [34], [35], [36], [37], [22].

Several recent work try to learn a multimodal goal space to
embed goal states of text instructions and goal images [38],
[2], [39], [40], [25], [29]. Some methods require as little
as 1% language annotated data combined with efficiently
collected image goals to train policies [2], [38], [5]. Despite
these efforts, learning language-conditioned policies from
play still requires some language annotations.

Key State Identification. Long-horizon tasks often consist
of multiple subtasks. To efficiently learn goal-conditioned
policies from long-horizon tasks, one has to identify impor-
tant keystates from long-horizon tasks. From these keystates,
various goal modalities, such as image or language goals, can
be derived. Several methods can be used to extract keystates
from long-horizon demonstrations. These methods can range
from very simple to complex, depending on the complexity
of the task at hand. For instance, some approaches use the
robot’s proprioceptive observation [21], [22], [23], [24] to
detect points of interest. While proprioceptive observations
are strong indicators for keystates, they cannot universally
detect keystates for all actions.

Waypoint reconstruction is used to obtain important
keyframes from a long-horizon trajectory [21]. All these
methods require knowledge about robot or environment
states to extract keystates. UVD proposes to leverage founda-
tion models trained on large-scale robotic datasets to identify
keyframes by detecting phase shifts in the latent space of
these models [9]. This allows for keystate identification based
solely based on RGB observations. While this approach
presents a strong baseline, incorporating additional infor-
mation can significantly improve the keystate quality. We
argue that access to robot proprietary information is a viable
assumption, as this data is required to train a policy.

Changes in object relations and object states can also
be a strong indicator for subtask completion. REFLECT
constructs a scene graph containing object relations and
states [18]. If a scene graph changes for two consecutive
frames the frame is marked as a keyframe. This method
works well with access to ground truth state information



and object positions, usually only available in simulated
environments. While we use a similar approach to detect
keystates, our studies focus on the general applicability in
real-world environments without these restrictions.

Action Recognition. Video action recognition is the task
of retrieving an action performed over multiple frames.
Video action recognition consists of two subtasks. Dense
video action recognition aims to extract multiple actions and
their corresponding time frames from a video. Video action
classification assumes that the provided video only contains
a single action. Recent advances in generalist VLMs enable
them to solve these tasks in a zero-shot, open-vocabulary
manner [41], [42], [43], [44], [45].

RoboVQA collects a dataset of long-horizon demonstra-
tions [8]. Human annotators then divide the tasks into short-
horizon tasks and label the sequences accordingly. The
resulting data is used to finetune a video VLM on a VQA
dataset derived from the labeled robot demonstrations. The
model can then answer several questions regarding a video
demonstration, including the action performed by the robot.
Several recent works fine-tune CLIP foundation models using
in-domain robotics data [46], [47], [39]. The finetuned mod-
els are used for goal-conditioned behavior learning or action
retrieval for a larger, unlabeled dataset. These approaches
assume known key states and require labeled in-domain
finetuning data. LUPUS does not require any finetuning
and is thus environment agnostic. Several studies [48], [49],
[50], [51] train generalist visual representation models on
large-scale egocentric datasets [52], [53]. Although the main
purpose of these models is to provide a general representation
for downstream policy learning, they can also be used
for action retrieval, given their alignment of language and
images during pretraining. Often, finetuning of the models
is required to align language and images for new unseen
environments.

B. Real World Experiments Description

The following section describes our real-world play
kitchen environment in detail.

We collect play data through teleoperation in our robot
kitchen environment. The setup is illustrated in Fig 5. The
robot can solve 12 tasks in the environment, as shown in
Fig. 6.

The dataset consists of 1 hour of pure play trajectories.
Each trajectory consists of at least 10 different tasks that are
completed randomly. The demonstration data contains 439
short-horizon demonstrations of 12 different tasks. In our
evaluation, we distinguish between keystate and grounding
evaluation. Additionally, we investigate the capability of a
policy trained with automatically labeled data to understand
language instructions. We compare the performance of this
policy against one trained on the same dataset but with
human annotations. We evaluate the performance of the
trained policies based on two metrics:

Success Rate We perform each task three times and
calculate the average number of successful task completions.
We then compute the average success rate over all tasks.

Correct Grounding We evaluate whether the policy cor-
rectly understands language instructions. The task does not
need to be completed successfully. The robot only has to
show that it correctly understood the task. For instance, if
the robot approaches the oven and tries to open it but fails,
we label the task as correctly grounded. We again compute
the average over all possible tasks.

We train three policies:
Human. A policy trained on ground truth, human-

annotated data.
LUPUS. A policy trained on data labeled by LUPUS. We

discard ambiguous labels.
LUPUS Noisy. If the LLM outputs multiple language

instructions, we incorporate the demonstration in the training
dataset multiple times with each generated instruction.

The grounding accuracies and success rates for each task
are shown in Table II.

Task Human Lupus Lupus Noisy

banana in sink 3-2 3-3 3-3
pot right 3-3 3-3 3-2
pot left 3-2 3-2 3-1
open microwave 3-3 2-2 0-0
open oven 3-0 3-0 3-0
open fridge 3-0 3-0 3-1
close microwave 3-3 3-3 2-2
close oven 3-3 3-2 0-0
close fridge 2-1 3-2 1-1
banana on stove 3-1 1-0 0-0
banana oven 0-0 0-0 0-0
pot in sink 3-2 3-0 3-0

TABLE II: Number of correct task groundings and successful
task completions. The first number depicts the number of
correctly grounded tasks, and the second the number of
successful completions. We evaluate each task three times.

Fig. 5: Overview of the teleoperation setup on the real
kitchen environment. The human operates on the leader
robot. The follower robot imitates the actions of the leader.
The top and front cameras record the play trajectory at 30Hz.



Fig. 6: Overview of the 12 tasks recorded during play from the preprocessed front camera perspective.

C. Real Robot Policy

For our experiments, we use the Multimodal Diffusion
Transformer (MDT) policy architecture [5]. The model con-
sists of a transformer encoder-decoder architecture and uses
a continuous-time diffusion generative model to generate a
sequence of 20 future actions. To encode the text instructions,
a pre-trained CLIP text encoder is used, while images are
encoded with FiLM-conditioned ResNets-18. We follow all
hyperparameter recommendations from the paper for our
own implementation and train the resulting policy on our
real-robot dataset for approx. 400 epochs with a batch size
of 512. Our policy learns to predict a sequence of joint state
positions.

D. Ablations

(ϵ = 8) (ϵ = 16)

Amb. Single Amb. Single

Grounding
Naive 0.59 0.34 0.60 0.33

Naive - SG 0.62 0.27 0.59 0.26
- Temporal Alignment 0.76 0.53 0.68 0.51
- Detection ensembling 0.59 0.50 0.59 0.50

F.F. 0.80 0.61 0.75 0.57

Precision Recall Precision Recall mAP ↑
Keystates Naive 0.46 0.36 0.67 0.53 0.36

- Temporal alignment 0.41 0.45 0.70 0.77 0.45
- Detection ensembling 0.46 0.48 0.69 0.73 0.48

F.F. 0.50 0.46 0.75 0.69 0.51

TABLE III: Ablation for the effectiveness of our perception
filtering. For Naive, we simply use OWL-v2 and SAM
to extract masks and bounding boxes without additional
filtering or temporal aggregation. In Naive-SG, we provide a
full object-relation prompt to the LLM when retrieving the
action. F.F. depicts full filtering.

In Table III, we provide ablations of our perception mod-
ule. To assess the effectiveness of our perception module, we
compare against simple box generation with OWLv2 and
object segmentation with Efficient-SAM [54]. We perform
ablations by disabling several components: ensembling with
a dense open vocabulary predictor, statistical mask outlier

filtering, temporal aggregation, state prediction without oc-
clusion, and static object box aggregation. We perform all
experiments with a keystate threshold of 0.3 and Gemini as
the LLM.

When we omit our heavy postprocessing steps, we ob-
serve a significant decline in keystate quality and grounding
accuracy. Although the drop in keystate precision is not sub-
stantial, the recall shows a notable decrease. Additionally, the
grounding accuracy drops significantly, especially when only
unambiguous prompts are considered valid. We observed that
constraining the prompt information to a specific object and
its relations helps to reduce hallucination and results in more
precise predictions.

These findings underscore the necessity of robust postpro-
cessing techniques to effectively leverage current state-of-
the-art perception models in novel and challenging domains.

ϵ = 8 ϵ = 16

LUPUS
Gripper

gripper close 0.35 0.32 0.73 0.65
gripper close + object state 0.38 0.36 0.73 0.69

all 0.50 0.46 0.75 0.69

LUPUS
RGB

all 0.42 0.40 0.66 0.62

object relations 0.21 0.13 0.56 0.35
+ gripper pos. 0.29 0.40 0.52 0.71

+ gripper pos. + state 0.39 0.32 0.62 0.51

object movement 0.31 0.40 0.52 0.68
+ gripper pos. 0.34 0.42 0.56 0.70

+ gripper pos. + state 0.42 0.38 0.65 0.59

gripper pos. 0.31 0.43 0.50 0.69

TABLE IV: Keystate precision and recall when using dif-
ferent keystate heuristics. For all experiments, the keystate
detection threshold is set to 0.3, if applicable.



Fig. 7: Keystate detection precision and recall for different
threshold values.

Table IV shows the performance of our method when
incorporating different keystate heuristics. Gripper close sig-
nals present a very strong baseline. However, as mentioned
before, gripper close signals are not always available and can
not represent all different kinds of tasks. This is shown by the
increased precision and recall when incorporating additional
heuristics. Especially for a smaller threshold, we observe
a significantly increased performance when incorporating
additional heuristics.

Incorporating additional heuristics usually results in an
increase in precision and a decrease in recall. Always using
all heuristics is desired, as the precision-recall tradeoff can
then be best controlled by setting an appropriate threshold.

Fig. 7 depicts the relation between threshold, keystate
precision and recall, and grounding accuracy. With increasing
threshold, the grounding accuracy and keystate precision
increase. This indicates that with our scoring method, the
quality of samples can be controlled effectively. In the future,
we plan to evaluate the impact of different quality samples on
policy training more thoroughly in a simulated environment.

E. Additional Experiments

↑
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Fig. 8: Keystate accuracy for different frame distance toler-
ances on BridgeV2. We report the precision and recall of our
method at two different keystate thresholds.

ϵ = 8 ϵ = 16

Method Precision Recall Precision Recall

UVD VIP 0.16 0.06 0.28 0.10

LUPUS 0.37 0.21 0.53 0.31

TABLE V: Keystate accuracy for different frame distance
tolerances on CALVIN with RGB Image-Data Only.

In Table V we show the keystate detection precision
and recall on the CALVIN [38] benchmark. CALVIN is
a challenging benchmark and is especially hard given the
large domain shift of the low-resolution simulation. LUPUS
utilizes off-the-shelf models trained on real-world data. Thus,
these models struggle significantly in simulated environments
that contain abstract objects. We had to perform prompt engi-
neering to make the detection and OV-segmentation models
detect any objects in the scene. Nevertheless, our method
performs reasonably well. Fig. 8 shows the performance
of our framework on BridgeV2 compared against the same
baselines. Given the shorter average task length in BridgeV2,
we opted for lower evaluation tolerance thresholds. We also
assess the quality of keystates produced by our framework
at two keystate thresholds, θo = 0.25 and θo = 0.35.
Our approach surpasses both UVD and Uniform Sampling
in terms of precision and mAP. A notable increase in the
precision of our generated keystates is observed when the
keystate threshold is raised to 0.35, suggesting that our
method’s keystate score can effectively manage keystate
quality. One challenge with the BridgeV2 dataset is the
frequent introduction of new objects by humans in between
short-horizon demonstrations. Our current framework does
not accommodate this, leading to some objects going unde-
tected and consequently lowering our method’s overall recall
in this environment. We aim to enhance our framework in
the future by incorporating a feature to verify the detection
of all objects in the current frame.

We do not perform quantitative grounding evaluation on
CALVIN and BridgeV2 due to the difficulties that arise when
evaluating language commands in high-dimensional natural
language task spaces. Multiple instructions can be considered
valid, and evaluating the correctness of an instruction is not
trivial.

F. Example Prompts

We give example prompts used to generate the list of
potential tasks given a list of objects in Fig. 9. In Fig. 10,
an example prompt used to label the task a robot solved in
between two keystates is given.

G. Open-Ended Language Annotation

We show qualitative examples of our framework’s pro-
duced natural language instructions on BridgeV2 [26] in
Figs. 12–15.

We do not restrict the LLM to choose a task from a prede-
fined list for this task. Instead, we task it to generate possible
actions given the natural language descriptions generated by
our method. As shown in the figures, LUPUS often generates



You will be provided with a list of objects
observed by a robot. Based on the objects, give
possible instructions to the robot. Infer the
type of environment from the provided objects.
Follow these guidelines:

- Keep the instructions simple. Focus on
tasks that only require a single step.
- Include tasks like placing an object inside
another object or moving the object. Only for
movable objects.
- Dont assume the presence of any objects not
listed.
Output at least 20 possible instructions
delimited by comma.

Here are a few examples: "Place the tin
can to the left of the pot.", "Move the dishrag
to the bottom of the table next to the towel","Put
the pot to the right of the fruit","Turn on
stove", "Open the microwave"

The following objects are in the environment:
[OBJECT LIST]

Fig. 9: Task generation prompt

useful tasks that could later be used for downstream policy
learning. The examples show that lupus can produce clear
language instructions, while Gemini Vision Pro suffers from
heavy hallucinations. Evaluating these tasks automatically
poses challenges due to the absence of a definitive ground
truth. Multiple instructions can be deemed valid, and assess-
ing predicted instructions necessitates an understanding of
the scene or accurate knowledge of object locations. While
a potential evaluation methodology is outlined in [55], the
most dependable source of validation in such scenarios likely
lies in human intervention.

H. Limitations

Perception. Our work shows that it is possible to leverage
off-the-shelf specialist models to annotate challenging long-
horizon data. The major limitations of our framework are in-
duced by these off-the-shelf models. Commonly used robotic
environments and their contained objects are still very chal-
lenging for state-of-the-art models. For instance, common
evaluation environments in robotics are toy kitchens. Open-
vocabulary detectors often struggle with grounding in such
environments. For instance, our framework frequently detects
the banana as a sponge in our toy kitchen setup. This hinders
the applicability of our framework in challenging scenarios,
such as BridgeV2. While there are models specifically ap-
plicable to the robotic domain, such as Spatial-VLM[19],
RoboVQA [8] or PGBlip [56], these models are either
not easily accessible or too specific for broader grounding
applications.

Furthermore, our initial object detection currently assumes
that all objects are visible within 16 frames uniformly
sampled over the long horizon trajectory. However, this

You will be provided with observations of a robot
interaction with an environment, delimited by
triple quotes.
Select a task from this list that best describes
the robots actions:
‘‘‘ [TASK LIST] ‘‘‘
Follow these guidelines:
Step 1: Determine the object the robot interacted
with and then determine tasks that include that
object. Output the possible tasks after this step
delimited by commas.
Step 2: Determine the object movement and the
resulting object relations. Think about where the
object and its relational objects are located
in the scene on a global scale. Think step by
step and list the locations and relations of
all objects. Pay special attention to the object
relations from Step 1.
Step 3: Determine what tasks result in the object
relations from Step 2. Explain why the task
accomplishes the object relations. If the task
is not clear, output None. If multiple tasks are
possible, output multiple tasks with a low score.
Step 4: Some tasks do not have specific object
relations, but instead require moving objects
in some direction. Also consider these tasks by
examining the object movements.
Follow the steps above. Explain your reasoning.
Output the reasoning delimited by ***.

After, produce your output as JSON. The
format should be: ‘‘‘{ "task candidates":
"Possible tasks from the list after Step 1,
delimited by commas.", "tasks": "The tasks
that can be considered valid, delimited by
comma. Make sure to output all tasks that
match the description. Output up to 2 tasks.",
"confidence": "A confidence score for each
task between 0 and 10, delimited by commas. Be
pessimistic." }‘‘‘

Observations: ‘‘‘[OBSERVATIONS]‘‘‘

Fig. 10: Main action retrieval prompt

assumption does not hold in some cases. We plan to extend
our framework to be more robust in such cases.

Runtime. Using multiple different models to generate
scene representations introduces substantial computational
cost. The inference time of our framework is significantly
higher compared to our baselines. However, the increase
in performance justifies this overhead. Furthermore, the
framework is designed to be applied offline to prerecorded
play data, so computation time should not be much of an
issue.

Objectness Assumptions LUPUS relies heavily on ob-
jectness assumptions and properties trackable with current
foundation models. As such, the framework has issues with
granular objects, which can not be detected reliably with
current object detectors.



<Frame 1>...<Frame 8>
Given the video frames, what task did the robot
perform? Choose matching tasks from the list:
‘‘‘ [TASK LIST] ‘‘‘
Sometimes multiple tasks are possible. Output all
possible tasks delimited by commas.

Fig. 11: Gemini Vision Pro Baseline Prompt

I. Additional Figures

Fig. 19: Bounding box refinement through dense prediction
ensembling. The best box is initially not detected completely.
Through incorporating the prediction from a dense open-
vocabulary predictor, we obtain the correct complete bound-
ing box.

(a) (b) (c) (d)

Fig. 20: Static object detection refinement. (a) shows the
initial noisy labels. The boxes are then filtered by removing
statistical outliers (b) and by obtaining the highest confidence
cluster (c). The final averaged box is visible in (d)



Fig. 12: Instructions generated by LUPUS: Move the pepper from inside the strainer to in front of the strainer, Take the
pepper out of the strainer and place it forward, Relocate the pepper to a position in front of the strainer
Instructions generated by Gemini Pro Vision: Move the yellow bell pepper to the left, Place the yellow bell pepper in the
pot, Move the pot to the right.

Fig. 13: Place the saucepan on top of the dishrag, Move the saucepan to the right of the soap, Position the saucepan behind
the ladle.
Instructions generated by Gemini Pro Vision: Move the cheese to the right, Move the bowl to the right, Move the spoon to
the right, Move the dishrag to the right

Fig. 14: Insturctions generated by LUPUS:
Move the sushi from on top of the dishrag to a new location away from the saucepan,Relocate the sushi to clear the area
on top of the dishrag, Shift the sushi to organize the workspace, ensuring it is no longer next to the saucepan.

Instructions generated by Gemini Pro Vision: The robot moved the green spatula from the left of the cutting board
to the right of the cutting board, The robot moved the yellow cloth from the right of the cutting board to the left of the
cutting board, The robot moved the pot from the right of the cutting board to the left of the cutting board.



Fig. 15: Put the reamer (juicer) inside the plate, Move the reamer (juicer) from next to the plate to inside it, Place the
reamer (juicer) into the plate for storage or preparation

Grounding Error. The initial object detections are wrong. Although the action is correctly predicted, the referenced
object is not correct.

Instructions generated by Gemini Pro Vision: The robot picked up a carrot that was resting on a green plate and
placed it in the sink. The robot moved a carrot from a green plate to the sink. The robot picked up a carrot and put it in
the sink.
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Fig. 16: Overview of the object-centric keystate determina-
tion. LUPUS determines potential keystates for the object
state changes, gripper-object proximity, object relations, and
object movements. It then computes the weighted average
over all potential keystates to determine the ones with the
highest agreement.
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Fig. 17: Example trajectory labeled with LUPUS. LUPUS successfully detected the keystates in the long-horizon trajectory
and correctly grounded the performed action for most of the short-horizon segments.

Fig. 18: Visualization of keystates extracted by LUPUS for the CALVIN environment. Keystates are extracted only via RGB
Images, without incorporating gripper-close signals. In the second sequence, some intermediate keystates are not detected.
Nevertheless, the predicted keystates are precise.


