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Abstract

We perform a non-asymptotic analysis of the contrastive divergence (CD) algorithm,
a training method for unnormalized models. While prior work has established that
(for exponential family distributions) the CD iterates asymptotically converge at
an O(n−1/3) rate to the true parameter of the data distribution, we show, under
some regularity assumptions, that CD can achieve the parametric rate O(n−1/2).
Our analysis provides results for various data batching schemes, including the fully
online and minibatch ones. We additionally show that CD can be near-optimal, in
the sense that its asymptotic variance is close to the Cramér-Rao lower bound.

1 Introduction

Describing data using probability distributions is a central task in multiple scientific and industrial
disciplines [1, 2, 3]. Since the true distribution of the data is generally unknown, such a task requires
finding an estimator of the true distribution among a model class that best describes the available
data. An estimator can be characterized at multiple levels of granularity: at the highest level lies
consistency [4], a property which states that as the number of available data points increases, a given
estimator will converge to the one best describing the data distribution. At a lower level, a consistent
estimator can be further characterized by its convergence rate, a quantity upper–bounding its distance
to the true distribution as a function of the number of samples. A convergence rate can be either
asymptotic, e.g. hold only in the limit of an infinite sample size, or non-asymptotic, in which case
the rate also holds for finite sample sizes. In their simplest form, convergence rates are provided in
big–O notation, discarding finer grained information such as asymptotically dominated quantities as
well as multiplicative constants. These constants play a role in the so–called asymptotic variance of
the estimator, which is a precise descriptor of an estimator’s statistical efficiency. Convergence rates
and asymptotic variances have been the subject of extensive research in the statistical literature; in
particular, well–known lower bounds exists regarding both the best possible (asymptotic) convergence
rate of an estimator and its best possible asymptotic variance. These results set a clear frame of
reference to interpret individual convergence rates, and are routinely present in the analysis of modern
statistical algorithms such as noise-contrastive estimation [5, 6] or score matching [7, 8, 9].

In this work, we focus on cases where (1) the true data distribution admits a density with respect
to some known base measure, and (2) the model class is parametrized by a finite-dimensional
parameter. In this setting, provided that the true distribution belongs to the model class, a celebrated
result in statistical estimation states that the model maximizing the average log-likelihood both
achieves the best possible asymptotic convergence rate (called the parametric rate) and the best
possible asymptotic variance, called the Cramér-Rao bound (see, e.g. [10]). While this result
shows that Maximum Likelihood Estimators (MLE) are asymptotically optimal, fitting them is
complicated by computational hurdles when using models with intractable normalizing constants.
Such unnormalized models are common in the Machine Learning literature due to their high flexibility
[11, 12]; their weakness however lies in the fact that expectations under these models have no unbiased
approximation. For this reason, popular approximation algorithms such as unbiased gradient-based
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stochastic optimization of the empirical log-likelihood cannot a priori be used, as the gradient of the
normalizing constant is given by an expectation under the model distribution.

The Contrastive Divergence (CD) algorithm [13] is a popular approach that circumvents this issue
by using a Markov Chain Monte Carlo (MCMC) algorithm to approximate the gradient of the log-
likelihood. Unnormalized models trained with Contrastive Divergence have been shown to reach
competitive performance in high-dimensional tasks such as image [14, 15, 16], text [17], and protein
modeling [18, 19], or neuroscience [20]. A consistency analysis of the Contrastive Divergence
algorithm is delicate, however: indeed, the optimization error e.g. the difference between the estimate
returned by CD and the MLE, is likely to be non-negligible as compared with statistical error – the
distance between the MLE and the true distribution – and thus cannot be discarded, as often done
when analyzing estimators that minimize tractable objectives [8, 5]. Recent work [21] elegantly
established asymptotic O(n−1/3)–consistency of the CD estimator for unnormalized exponential
families when using only a finite number of MCMC steps. Key to their argument is the fact that the
bias of the CD gradient estimate decreases as iterates approach the data distribution. However, as
noted by the authors, their work left open the question of whether and under what conditions CD
might achieve O(n−1/2)–consistency.

Contributions In this work, we answer this question by providing a non-asymptotic analysis of the
CD algorithm for unnormalized exponential families. While existing convergence bounds [21] were
derived for the “full batch” setting, where the CD gradient is estimated using the full dataset at each
iteration, our analysis covers both the online setting (where data points are processed one at a time
without replacement), and the offline setting with multiple data reuse strategies (including full batch).

In the online case (Section 3), we show, under a restricted set of assumptions compared to Jiang et
al. [21], that the CD iterates can converge to the true distribution at the parametric O(n−1/2) rate.
Our analysis reveals that CD contains two sources of approximation: a bias term, and a variance term.
These sources are almost independent of each other, in the sense that decreasing the bias by increasing
the number of MCMC steps will not decrease the variance. The impact of these two sources of
approximation transparently propagates in our resulting bounds: in particular, as the bias of the CD
algorithm goes to 0, our bounds recover well-known results in online stochastic optimization [22].
Finally, we study the asymptotic variance of an estimator obtained by averaging the CD iterates, a
classic acceleration technique in stochastic optimization [23]. We show that provided that the number
of steps m is sufficiently large, the asymptotic variance of this estimator matches (up to a factor 4)
the Cramér-Rao bound.

Next, we study the offline setting (Section 4), where the CD gradient is estimated by reusing
(potentially random) subsets of a finite dataset. We show that a similar result to the online setup
holds, up to an additional correlation term that arises from data reuse, and present several approaches
to control this term. We improve over the results of [21] by showing a non-asymptotic and near-
parametric rate at O((log n)1/2n−1/2) under their conditions, and also illustrate how different rates
can be obtained under a variety of conditions. Our results also show an interesting tradeoff between
the effect of initialization and the statistical error as a function of batch size.

In summary, we establish the near–optimality of a variety of Contrastive Divergence algorithms for
unnormalized exponential families in the so called “long-run” regime, where the number of MCMC
steps is high enough to ensure that the CD gradient bias is sufficiently offset by the convexity of the
negative log-likelihood.

2 Contrastive Divergence in Unnormalized Exponential Families
Unnormalized Exponential Families Exponential families (EF) [24, 25] form a well-studied class
of probability distributions, given by

pψ(dx) := eψ
⊤ϕ(x)−logZ(ψ)c(dx), Z(ψ) :=

∫
X e

ψ⊤ϕ(x)c(dx). (1)

Here, X ∋ x is the data or sample space, which we set to be a subset of Rd for some d ∈ N∗, although
our results are readily extendable to more general measurable spaces. c is a measure on X called the
base or carrier measure. When X ⊆ Rd, c is often set to be the corresponding Lebesgue measure.
ψ ∈ Ψ ⊆ Rp is a finite-dimensional parameter called the natural parameter, and ϕ : Rd 7−→ Rp
is a function called the sufficient statistics, which, alongside with the base measure, fully describes
an exponential family. Finally, logZ(ψ), the log–normalizing (or cumulant) function, is a quantity
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ensuring that pψ integrates to 1 over X . Crucially, we will not assume that logZ(ψ) admits a closed
form expression for all ψ. The latter fact provides the practitioner with a great deal of flexibility in
designing the model class: indeed, the only requirement that should be satisfied prior to performing
statistical estimation is to have Z(ψ) < +∞ for all ψ, something that can be readily verified and
is often the case in practice. The drawback of unnormalized EFs is the fact that sampling (and thus
approximating expectations under the model) cannot usually be performed in an unbiased manner.
Instead, inference in unnormalized EFs is often performed using tools from the Bayesian Inference
literature, such as MCMC [26]. Unnormalized EFs belong to the larger class of unnormalized models
[27, 28, 7, 6], of the form e−Eψ(x)−logZ(ψ)c(dx), Z(ψ) = ∫ e−Eψ(x)c(dx), for some parametrized
function Eψ : Rd 7−→ R referred to as the energy. Unnormalized models thus take the flexibility of
unnormalized EFs one step further by allowing the (negative) unnormalized log–density to be an
arbitrary function Eψ of x and ψ, instead of requiring a linear dependence on ψ as in Equation 1. We
focus in this work on unnormalized EFs due to the multiple computational benefits they provide, as
explained in the next section, but we believe that extending our analysis to more general unnormalized
models is an interesting avenue for future work.

Statistical Estimation in Unnormalized Exponential Families using Contrastive Divergence We
now review the Contrastive Divergence algorithm, an algorithm used to fit unnormalized models, and
our main object of study in this work. The general setting is the following: we assume access to n
i.i.d. samples (X1, . . . , Xn) drawn from some unknown distribution p⋆, which we assume belongs to
Pψ , e.g. p⋆ = pψ⋆ for some ψ⋆ ∈ Ψ. Given these samples, we aim to perform statistical estimation,
e.g. find a parameter ψn within Ψ that should approach ψ⋆ as n grows.

The starting point of the Contrastive Divergence algorithm is the unfortunate realization that
Maximum Likelihood Estimation, which corresponds to minimizing the cross-entropy L(ψ) :=
−Epn log dpψ/dc between the model pψ and the empirical data distribution pn := 1/n

∑n
i=1 δXi ,

cannot be performed using exact (possibly stochastic) gradient-based optimization, as the gradient
∇ψL(ψ) of L with respect to the parameter ψ contains an expectation under the model distribution
pψ . Indeed, the cross entropy and its gradient are given by{

L(ψ) = − 1
n

∑n
i=1 ϕ(Xi)

⊤ψ + logZ(ψ)

∇ψL(ψ) = − 1
n

∑n
i=1 ϕ(Xi) + Epψϕ.

(2)

The second line follows from the well known identity ∇ψ logZ(ψ) := Epψϕ; we refer to [25,
Proposition 3.1] for a proof. The Contrastive Divergence algorithm circumvents this issue by
running approximate stochastic gradient descent (SGD) on L, where the intractable expectation
in ∇ψ logZ is estimated using an MCMC algorithm initialized at the empirical data distribution.
In more details, given a number of epochs T , a sequence of data batches Bt,j of size B (e.g.
Bt,j ∈ [[1, n]]B , 1 ≤ t ≤ T, 1 ≤ j ≤ N⌈n/B⌉), and a family of Markov kernels {kψ, ψ ∈ Ψ} each
with invariant distribution pψ , at the jth minibatch of epoch t,∇ψ logZ(ψt,j−1

) is approximated by
1
B

∑
i∈Bt,j ϕ(X̃

m
i ), where X̃m

i is produced by running the recursion X̃k
i ∼ kψt(X̃

k−1
i , ·), X̃0

i = Xi

up to k = m. Throughout the paper, we will refer to the conditional distribution of X̃m
i given Xi as

kmψ (Xi, ·). The resulting gradient estimate arising from combining this approximation with the other
(tractable) sum over the data samples present in∇ψL(ψ), which we refer to as the CD gradient and
denote as ht, is thus

ht,j :=
1

B

∑
i∈Bt,j

ϕ(Xi)−
1

B

∑
i∈Bt,j

ϕ(X̃m
i ) =

1

B

∑
i∈Bt,j

(
ϕ(Xi)− ϕ(X̃m

i )
)
. (3)

Key to the behavior and analysis of the CD algorithm is the strategy employed to generate minibatches
Bt,j . The case where T = 1, B = 1, and B1,j = {j} will be referred to as online CD, while the
variant where T > 1, and each batch Bt,j draws B indices (with or without replacement) from
[[1, n]] will be referred to as offline CD. In online CD, each data point is present in one and one batch
only, while in offline CD, data points are reused across batches. From a statistical perspective, we
will see that online CD can be analyzed in a remarkably simple way, while offline CD introduces
additional correlations that require care to be controlled. Both settings come with their advantages and
drawbacks, as we will see in the next section. The CD algorithms we study will employ decreasing
step size schedules (ηt)t≥0 of the form ηt = Ct−β , where C > 0 is the initial leaning rate and
β ∈ [0, 1]. We lay out online CD and offline CD in Algorithms 1 and 2. Note that our algorithms
include a projection step on the parameter space Ψ to account for the case where Ψ is compact. In the
case Ψ = Rp, this step can be omitted. Next we depart from the setting of [21] and start by analyzing
online CD.
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Algorithm 1 Online CD

Input: (X1, . . . , Xn)
i.i.d.∼ pψ⋆

Parameters: Model class {pψ, ψ ∈ Ψ},
Markov kernels {kψ, ψ ∈ Ψ}, number of
MCMC steps m, learning rate schedule
ηt := Ct−β , β ∈ [0, 1], C > 0, initial
parameter ψ0

for t = 1, . . . , n do
//Approx. sample from pψt−1

X̃m
t ∼ kmψt−1

(Xt, ·)
ht := ϕ(Xt)− ϕ(X̃m

t )
ψt ← ψt−1 − ηtht
ψt ← ProjΨ(ψt)

end for
return ψn

Algorithm 2 Offline CD

Input: (X1, . . . , Xn)
i.i.d.∼ pψ⋆

Parameters: Same as Algorithm 1, plus
number of epochs T , batch size B, batching
schedule Bt,j , initial parameter ψ0,0

for t = 1, . . . , T do
for j = 1, . . . ⌈n/B⌉ do
[X̃m

t,i,j ∼ kmψt−1
(Xi, ·) for i in Bt,j ]

ht,j :=
1
B

∑
i∈Bt,j (ϕ(Xi)−ϕ(X̃m

t,i,j))

ψt,j ← ψt,j−1 − ηtht,j
ψt,j ← ProjΨ(ψt,j)

end for
end for
return ψT

3 Non-asymptotic analysis of Online CD
3.1 Preliminaries and Assumptions
Recall that the chi-squared divergence between two probability measures p and q is defined as:
χ2(p, q) :=

∫
(dpdq (x) − 1)2q(dx) if p ≪ q, and +∞ otherwise. Here, p ≪ q denotes that p is

absolutely continuous with respect to q and dp/dq is the Radon-Nikodym derivative [29] of p with
respect to q. Let L2(pψ) be the space of square-integrable functions with respect to pψ . For a function
f ∈ L2(pψ), we define

α(f, ψ) =

( ∫ ( ∫
(f − Epψf)(y) kψ(x, dy)

)2
pψ(dx)

)1/2( ∫
(f − Epψf)(x)2pψ(dx)

)1/2 (4)

which is a measure of how quick a Markov chain with kernel kψ mixes, relative to the function f
[30]. With these definitions in hand, we now state the assumptions required by our analysis of online
CD. These assumptions form a strict subset of the assumptions considered in prior work [21], which
required additional regularity and tail conditions on the Markov kernels kψ .
Assumption A1. Pψ is a subset of a regular and minimal [25, Section 3.2] exponential family with
natural parameter domain D ⊆ Rp, Ψ is a convex and compact subset of D, and ψ∗ lies in the interior
of Ψ.
Assumption A2. There exists a constant Cχ > 0 such that χ2(pψ⋆ , pψ) ≤ C2

χ∥ψ − ψ⋆∥2

Assumption A3. α := sup{α(f, ψ), f ∈ {ϕi}pi=1 ∪ {ϕiϕj}
p
i,j=1, ψ ∈ Ψ} < 1, where ϕi is the i-th

component of the function ϕ, and ϕ2i is the i-th component of the function x 7−→ ϕ(x)2.

A well known property of EFs [25, Proposition 3.1] is that their negative cross-entropy (against any
other measure) is C∞, convex, and strictly so if the exponential family is minimal (meaning that
the set of sufficient statistic functions ϕi are not linearly dependent). Leaving aside the issue of
intractable expectations, this convexity suggests that L can be efficiently minimized using stochastic
approximation algorithms [31, 22]. The compactness of Ψ provided by Assumption A1 thus ensures,
by the extreme value theorem [32], the existence of finite positive constants µ and L defined as:

µ := minψ∈Ψ λmin

(
∇2
ψL(ψ)

)
, L := maxψ∈Ψ λmax

(
∇2
ψL(ψ)

)
, (5)

where ∇2
ψL is the Hessian of L with respect to ψ. µ (called the strong convexity constant) and L

(a bound controlling the smoothness of the problem) play a critical role in the analysis of convex
optimization algorithms [31]. While it is possible to obtain convergence rates in non-smooth or
non-strongly-convex settings, our analysis follows the spirit of [21] by leveraging the strong convexity
of the problem to compensate for the bias introduced by using CD gradients instead of unbiased
stochastic gradients.

Assumption A2 allows link variations in distribution space to variations in parameter space, and
will be instrumental to control the bias of the CD gradient. Note that since χ2(pψ⋆ , pψ) =
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elogZ(2ψ−ψ⋆)−(2 logZ(ψ)−logZ(ψ⋆)) − 1 provided that 2ψ − ψ⋆ ∈ D (see [33, Lemma 1]), we
expect Assumption A2 to hold in many cases of interests. On the other hand, the possible exponential
scaling of Cχ w.r.t logZ suggests that this constant may be large in some instances.

Assumption A3 is a restricted spectral gap condition: it guarantees that the time required by the
MCMC algorithm to estimate expectations of ϕ and ϕ2 under pψ will be uniformly bounded. This
assumption is weaker than the (unrestricted) uniform spectral gap condition of [21], which requires
that α controls the convergence rate of all functions in L2(pψ). Note that standard results in stochastic
analysis [34] guarantee that α ≤ 1: thus, it only remains to ensure that α is strictly less than 1.
Spectral gaps are strongly dependent on two properties of distribution: their tail behavior and their
multimodality. While multimodality poses the risk of pushing the constant α close to 1, very heavy
tails distributions may not verify the spectral gap condition at all.

3.2 Results
3.2.1 Parametric convergence of online CD
In this section, we show that under the assumptions stated in Section 3.1, the iterates ψt produced
by the online CD algorithm described in Algorithm 1 will converge to the true parameter ψ⋆ at the
parametric rate O(n−1/2). To do so, we follow a well known paradigm in convex optimization [22]
by deriving a recursion on the quantity δt := E ∥ψt − ψ⋆∥2, which will allow, after unrolling, to
obtain convergence rates for the iterates ψt. We aim to characterize precisely the impact of performing
CD as opposed to performing online SGD on L, which would consist of replacing the CD gradient ht
of Algorithm 1 by the unbiased (stochastic) gradient, given by:

gt(ψ) := −ϕ(Xt) +∇ψ logZ(ψ) (6)

which satisfies E gt(ψ) = ∇ψL(ψ). The only stochasticity in gt comes from the sampling of a
single data point xt from the true distribution, which is unavoidable in the online setting, and we
have E∥gt(ψ⋆)∥2 = Tr(Covpψ⋆ϕ) =: σ

2
⋆. σ2

⋆ plays a key role in the analysis of Stochastic Gradient
Descent [22]. We expect that replacing gt by ht will introduce two sources of approximation: a bias
term coming from using a finite number of MCMC steps m, and an additional variance term, coming
from using a single sample x̃mt to estimate∇ψ logZ(ψt). With that in mind, we derive a recursion
on δt in the following lemma.

Lemma 3.1. Let (ψt)0≤t≤n be the iterates from Algorithm 1. Denote δt = E∥ψt − ψ⋆∥2, σ⋆ =

(Epψ⋆∥ϕ − Epψ⋆ϕ∥2)1/2, and σt = (Epψt∥ϕ − Epψtϕ∥
2)1/2. Then, under A1, A2 and A3, for all

t ≥ 1,

δt ≤ (1− 2ηtµ̃m,t−1 + 2η2tL
2)δt−1 + 2η2t σ̃

2
m,t−1 + 4αm/2η2t ∥logZ∥3,∞ Cχδ

1/2
t−1 (7)

where ∥logZ∥3,∞ is a constant, µ̃m,t := µ− αmσtCχ, and σ̃m,t := (σ2
⋆ + σ2

t + 2σ2
tα

2m)1/2.

Lemma 3.1 is proved in Appendix D.2, which details the form of ∥logZ∥3,∞, a constant that
we expect to scale roughly as dL. Loosely speaking, this recursion suggests that as the learning
rate ηt goes to 0, the two terms scaling in η2t will be negligible, in which case we will have:
δt ≤ (1 − 2ηtµ̃m,t−1)δt−1 < δt−1, yielding convergence of δt to 0. We make these arguments
formal in the next theorem. The reader familiar with the convex optimization literature will note the
similarities between this recursion and the one derived in [22], which would apply as is to online SGD
on L using gt. The difference between the two recursions is that the roles of the strong convexity
constant µ and the noise σ⋆ are now played respectively by

µ̃m,t−1 = µ− αmσt−1Cχ and σ̃2
m,t−1 = σ2

⋆ + σ2
t + 2σ2

tα
2m

These two modifications respectively characterize the impact of the bias and the additional variance
introduced by the CD gradient. The last term in Equation 7, scaling in αm/2η2t

√
δt, is a residual

higher order mixed term coming from relating the variance of the Markov chain sample x̃mt to σ2
t .

This term can be easily controlled as done next, and disappears as m→∞. Investigating the impact
of m in the recursion, we notice that as m → ∞, µ̃m,t → µ. As we will see later, this ensures
that CD will converge for a sufficiently high m. On the other hand, in that same regime, σ̃m,t does
not converge to σ⋆, but rather to (σ2

⋆ + σ2
t )

1/2, showing the irreducible impact of the variance term.

5



While we precisely investigate the impact of the residual variance term in the next section, we now
unify σ⋆ and σt by introducing

σ := supψ∈Ψ(Epψ∥ϕ− Epψϕ∥2)1/2. (8)

σ is an upper bound on the noise induced both by the CD gradient and by the online setup, and was
used in prior work [21]. Note that by the properties of logZ, σ2 also equals supψ∈Ψ tr(∇2

ψL(ψ)),
where tr(A) is the trace of A ∈ Rp×p, and thus finite by the extreme value theorem. The following
theorem is obtained by invoking standard unrolling arguments in the convex optimization literature.
In the next result, we use the function φγ(t), defined as φγ(t) = tγ−1

γ if γ ̸= 0, and log t if γ = 0.

Theorem 3.2. Fix n ≥ 1. Let (ψt)0≤t≤n be the iterates produced by Algorithm 1, and define
δt := E ∥ψt − ψ⋆∥2. Moreover, assume that m >

log(σCχ/µ)
log |α| , i.e. µ̃m := µ − αmσCχ > 0. Then

under Assumptions A1, A2 and A3, for ηt = Ct−β with C > 0, we have:

δn ≤

2 exp
(
4L̃C2φ1−2β(n)

)
exp

(
− µ̃mC4 n1−β

)(
δ0 +

σ̃2
m

L̃2

)
+

4Cσ̃2
m

µ̃mnβ
, if 0 ≤ β < 1

exp(2L̃2C2)
nµ̃C

(
δ0 +

σ̃2
m

L̃2

)
+ 2σ̃2

mC
2 φµ̃mC/2−1(n)

nµ̃mC/2
, if β = 1 ,

where σ̃m = σ2(2 + 2α2m) + αm/2 ∥logZ∥23,∞ C2
χ and L̃ = (L2 + αm/2)1/2 . Consequently, if

ηn = C
n with an initial learning rate C > 2µ̃−1

m , we have
√
δn ≤ 2σ̃mC

√
µ̃mC
µ̃mC−2

1√
n
+ o
(

1√
n

)
.

Theorem 3.2 is proved in Appendix D.3. It shows that the iterates produced by online CD will
converge to the true parameter ψ⋆ at the rate O(n−1/2) provided that the number of steps m is
sufficiently large, improving over the asymptotic O(n−1/3) rate of [21], while imposing slightly
weaker conditions on the number of steps m (see [21, Theorem 2.1]). This proves that online CD
can be asymptotically competitive with other methods for training unnormalized models, such as
Noise Contrastive Estimation [6], or Score Matching [7]. However, the asymptotic variance of ψt
(e.g. the multiplicative factor in front of the O(n−1/2) term) is likely to be suboptimal, e.g. much
larger than the Crámer-Rao bound, given by the trace of the inverse of the Fisher information matrix
[25]. Given the statistical optimality of MLE, and the fact that CD in an approximate MLE method,
this motivates the further goal or obtaining a CD estimator with near-optimal statistical properties. In
the next section, we achieve this goal by showing that averaging the iterates ψt will produce a near
statistically-optimal estimator, in a sense that we will make precise.

3.2.2 Towards statistical optimality with averaging

Polyak-Ruppert averaging [23] is a simple yet surprisingly effective way to construct an asymptotically
optimal estimator ψ̄n := 1

n

∑n
t=1 ψi from a sequence of iterates (ψt)0≤t≤n obtained by running a

standard online SGD algorithm [22]. As shown in [22], when the objective is the cross-entropy of a
model, and assuming the unbiased stochastic gradients are available, averaging yields an estimator
ψ with the asymptotic variance tr(I(ψ⋆)−1)/n, where I(ψ) := Covpψ⋆ϕ is the Fisher information
matrix of the data distribution pψ⋆ . I(ψ⋆)−1 being the Cramér-Rao lower bound on asymptotic
variances of statistical estimators [10], this estimator ψ̄n is asymptotically optimal. The following
theorem shows conditions under which averaging CD iterates can give rise to a near-optimal estimator.
Theorem 3.3 (Contrastive Divergence with Polyak-Ruppert averaging). Let (ψt)t≥0 the sequence of
iterates obtained by running the CD algorithm with a learning rate ηt = Ct−β for β ∈ ( 12 , 1). Define
ψ̄n := 1

n

∑n
i=1 ψi. Then, under the same assumptions as Theorem 3.2, and assuming additionally

that m := m(n) > (1−β) logn
2| logα| , we have, for all n ≥ 1,(

E
∥∥ψn − ψ⋆∥∥2 )1/2 ≤ 2

√
tr(I(ψ⋆)−1)

n
+ o(n−1/2)

Consequently, we have that lim supn→∞ nE(
∥∥ψn − ψ⋆∥∥2) ≤ 4tr(I(ψ⋆)−1).

Theorem 3.3, alongside with a statement which includes the asymptotic order of the residual term,
is proved in Appendix D.4. It shows that at the cost of an increase in computational complexity of
the entire algorithm from O(n) to O(n log n), ψ̄n will be a near-optimal statistical estimator of ψ⋆.
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While this increase in complexity emerges from the bias of CD, the additional variance of CD results
in an asymptotic variance inflated by a factor of 4 compared to the Cramér-Rao bound.

Theorem 3.3 concludes our analysis of online CD. Despite their asymptotic near-optimality, the
bounds provided for online CD and its averaged version have weaknesses: the online CD iterates are
not robust to choices of C. On the other hand, as shown in Appendix D.4, the bound of the averaged
iterates contain higher-order terms that could be large in intermediate sample regimes. Next, we show
that offline CD, which processes data points multiple times, can alleviate these issues.

4 Non-asymptotic analysis of offline CD
In practice, CD gradient approximation schemes are commonly used within an offline stochastic
gradient descent (SGD) algorithm, where one is given the full size-n dataset upfront and each
update uses some stochastic subset of the data. We study CD under offline SGD with replacement
(SGDw), i.e. Algorithm 2 with batches Bt,j being i.i.d. uniform draws of size-B subsets of [n],
and include SGD without replacement in Appendix B.2. To do so, we follow the setting of prior
work on offline CD [21], which established its asymptotic O(n−

1
3 ) consistency. We show that by

slightly strengthening a moment assumption used in [21], the offline CD iterates converge to the
true parameter at a near-parametric O((log n)

1
2n−

1
2 ) rate. Our proof proceeds by controlling a “tail

probability” term specific to the offline setting which characterizes the strength of the correlations
between the offline CD iterates and the training data. While, as we show, the assumptions of [21]
provide a tail control sufficient to obtain a near-parametric rate, other strategies are possible to obtain
convergence guarantees. In particular, we show that non-asymptotic convergence can be obtained by
either (1) relaxing assumptions on the Markov kernel required by prior work, or (2) making a specific
mixing assumption the Markov chain.

4.1 Background: Asymptotic consistency of offline CD in subexponential settings

Prior work [21] has established asymptotic O(n−
1
3 ) consistency of the (averaged) offline CD iterates

in the full-batch case. We summarize their results and assumptions below.
Assumption A4. There exists ν ≥ 2 s.t. for all m ∈ N, there is κν;m <∞ s.t.

supx∈X supψ∈Ψ

(
E
∥∥ϕ(Km

ψ (x))− E[ϕ(Km
ψ (x))]

∥∥ν)1/ν ≤ κν;m .

Assumption A5. There exists someCm > 0 such that, for all ψ1, ψ2 ∈ Ψ, supx∈X ∥E[ϕ(Km
ψ1
(x))]−

E[ϕ(Km
ψ2
(x))]∥ ≤ Cm∥ψ1 − ψ2∥.

Assumption A6. There exist some σm, ζm > 0 such that, for any z ∈ Rp with ∥z∥ ≤ ζm,
E[ez

⊤(ϕ(Km
ψ∗ (X1))−E[ϕ(Km

ψ∗ (X1))])] ≤ eσ2
m∥z∥2/2.

Theorem 4.1 (Theorem 2.1 of [21]). Assume assumptions A1,A2, A3, A4 (for ν = 2), A5 and A6. Let
ψt,1 be the t-th iterate of offline CD with full-batch gradient descent and constant stepsize ηt = C,
i.e the iterates produced by Algorithm 2 using Bt,1 = [[1, n]]. Then for any learning rate C and
number of Markov kernel steps m satisfying µ − αmσCχ − C

2 (L + αmσCχ)
2 > 0, we have, for

some Am > 0,

lim
n→∞

P

(
lim sup
T→∞

∥∥∥∥∥ 1T
T∑
t=1

ψSGDw
t,1 − ψ⋆

∥∥∥∥∥ > Amn
− 1

3

)
= 0

This result shows convergence of the averaged full-batch CD iterates to the true parameter in the
large n and T limit. As discussed, this result is asymptotic both in n and T : the probability of the
error exceeding Amn−

1
3 goes to 0 as n→∞ and T →∞, but at an unknown rate. Moreover, the

O(n−
1
3 ) does not match the optimal O(n−

1
2 ) rate.

4.2 Sharpening offline CD bounds in subexponential settings

4.2.1 Non-asymptotic Õ(n−1/2)-consistency

As a first result, we show that under the assumptions of [21] (except for a slightly stronger ν > 2
moment assumption in A4), ψSGDw

T,N in fact achieves a near-parametric rate. The most general version
of our result holds for any learning rate schedule of the form Ct−β , β ∈ [0, 1], and for offline SGD
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with arbitrary batch sizes B, with data drawn either with or without replacement across batches. For
simplicity, we first present our result assuming full batch (B = n,N = 1, ψSGDw

t,j = ψSGDw
t,1 for

t ≥ 1) SGD with constant step sizes ηt = C, which is the setting of [21]. Analogue bounds holding
for the other mentioned batching and step sizes schedules can be found in Appendix B.

Theorem 4.2. Assume the setup of Theorem 4.1, except that Assumption A4 holds for some ν > 2,
and that µ̃m = µ− αmσCχ > 4CL2 . Let δSGDw

t,j := E∥ψSGDw
t,j − ψ∗∥2. Then, we have:√

δSGDw
T,1 ≤ ET,11

√
δSGDw
0,0 + C ′(p, ν,m,Ψ)

(√
logn
√
n

+
1
√
n

)(
e
µ̃mC

2

µ̃mC
+

ET,12

L2C2

)
(9)

where ET,11 , ET,12 are functions decreasing exponentially in T , and C ′(p, ν,m,Ψ) is a constant in
n, T . Consequently,

lim
T→∞

√
δSGDw
T,1 ≤ e

µ̃mC
2

µ̃mC
C ′(p, ν,m,Ψ, β)

(√
logn
√
n

+
1
√
n

)
.

The precise values of all the constants can be found in Theorem B.1 (for ET,11 , ET,12 ) and Lemma B.3
(for C ′(p, ν,m,Ψ, β)), including their expressions for N > 1 and β ∈ [0, 1]. We comment on the
main differences between our result and the one of [21]. First our bound holds for any epoch T and
number of samples n. Second, fixing n but taking T →∞, the final bound matches the parametric
O(
√
n) up to a

√
log(n) factor, a significant improvement over the O(n−

1
3 ) rate of [21]. Finally, we

control an L2 error, which is a stronger control than a high probability bound by Markov’s inequality;
we hypothesize this is the reason why a slightly stronger moment assumption is required for our
setup, compared to the one used for the high probability bound in [21].

Inspecting Equation 9, we notice the presence of two transient terms, and a stationary term, reminis-
cent of the structure of upper bound of Theorem 3.2. The transient terms (i.e. the ones containing
ET,11 and ET,12 ) vanish exponentially fast in the total number of CD updates T . However, unlike in
online CD where the number of updates and the number of samples are tied (e.g. T = n), these two
values are now decoupled, and these terms can be made arbitrarily small by increasing the number of
gradient steps T without having to collect more samples n. The stationary term, which is the only one
remaining in the limit of T →∞, decreases with n at a rate that is independent of hyperparameters
like the step size C or the learning rate schedule β (see Lemma B.3). In that sense, offline CD
compares favorably to online CD, whose rate is sensitive to β and C, and averaged online CD, whose
bound contains higher-order (in n) terms which can be large in the moderate n regime. On the other
hand, the stationary term in offline CD is asymptotically suboptimal: its rate is larger (while only up
to a log factor) than the best-case O(

√
n) one achieved by online CD algorithms, and the leading

constant does not match the optimal one.

4.2.2 Proof of Theorem 4.2

The high-level proof of Theorem 4.2 follows a similar strategy as the online one: first, derive a
recursion for the quantity δSGDw

t,1 := E∥ψSGDw
t,1 − ψ∗∥2, then unroll it explicitly to obtain a final

bound on δSGDw
T,1 . The main difference to online CD is the presence of an additional offline-specific

correlation between the iterates and the data. We thus break down the proof into three steps: (1)
deriving a controllable, uniform-in-time upper bound of the data-iterate correlations, (2) deriving and
unrolling a recursion on δSGDw

t,1 containing this new term, and (3) controlling that term to obtain a
final bound on δSGDw

T,1 .

Step 1:characterizing the data-iterate correlations in offline CD In offline CD, at each epoch
t ≥ 1, the iterate ψSGDw

t−1,1 and the data samples Xi are correlated: this is because these samples may
have been used in previous epochs t′ < t − 1 to obtain the ψSGDw

t′,1 , which themselves influenced
ψt−1,1. With such correlations, we now have P(Xi|ψSGDw

t−1,1 ) ̸= P(Xi), preventing us from obtain-
ing an unrollable recursion on δSGDw

t,1 by first marginalizing Xi out to obtain an upper bound of
E
[∥∥ψSGDw

t,1 − ψ∗
∥∥ 2|ψSGDw

t−1,1

]
that only depends on

∥∥ψSGDw
t−1,1 − ψ⋆

∥∥, and then marginalizing over
ψSGDw
t−1,1 to obtain a recursion as in Lemma 3.1. As this problem would not have occurred had we used

“fresh samples” (e.g. i.i.d copies of Xi not present in the training data) to perform our update, the
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core of the proof lies in controlling the following quantity:

∆(ψSGDw
t,1 ) :=

∥∥∥ 1

n

∑
i≤n

(
E
[
ϕ
(
Km
i;ψSGDw

t,1
(Xi)

)∣∣ψSGDw
t,1 , Xi

]
− E

[
ϕ
(
Km
i;ψSGDw

t,1
(X ′

1)
) ∣∣ψSGDw

t,1

])∥∥∥
whereX ′

1 is an i.i.d. copy ofX1. ∆(ψSGDw
t,1 ) is the expected (over the data and iterates) error between

a quantity that allows to obtain a recursion (the rightmost term) and the one actually used by offline
CD (the leftmost term). To control it, we upper-bound it using a tail decomposition:

E[∆(ψSGDw
t,1 )2] ≤ ϵ2+(sup

t
E[∆(ψSGDw

t,1 )ν ])2/ν sup
t
P(∆(ψSGDw

t,1 ) > ϵ)
ν−2
ν := εSGDw

n,m,T ;ν(ϵ)
2

(10)
We invoke an additional assumption to ensure that (E[∆(ψSGDw

t,1 )ν ])2/ν is finite; in the results of
[21], this is automatically implied by assumptions A4 and A6. For simplicity we assume the same
bounding constant κν;m.
Assumption A7. There exists ν ≥ 2 s.t. for all m ∈ N, κν;m from A4 moreover verifies

supψ∈Ψ

(
E
∥∥ϕ(Km

ψ (X1))− E[ϕ(Km
ψ (X1))]

∥∥ν)1/ν ≤ κν;m .

Note the similarity of this assumption with assumption A4: the only difference is that X1 is now a
random training point instead of an deterministic (arbitrary) one. Ensuring assumption A7 in addition
to assumption A4 thus requires controlling a ν-th order moment, instead of all moments as implied
by assumption A6.

Step 2: Deriving and unrolling the recursion on δSGDw
t,1 The right-hand side of Equation (10)

does not depend on t, allowing for the derivation of an “unrollable” recursion on δSGDw
t,1 and its

subsequent unrolling, which is performed in the following theorem. For simplicity, we again assume
β = 0 and N = 1 and defer the general case to Theorem B.1 in appendix.
Theorem 4.3 (Convergence up to a tail control). Assume A1, A2, A3, A4 and A7. Let ηt = C for
some C > 0, and assume that µ̃m = µ− αmσCχ > 4CL2 . Then for any ϵ > 0,√

δSGDw
T,1 ≤ET,11

√
δSGDw
0,0 + C

(
εSGDw
n,m,T ;ν(ϵ) +

5σ + 5κν,m√
n

)(
e
µ̃mC

2

µ̃mC
+

ET,12

L2C2

)
where εSGDw

n,m,T ;ν(ϵ) is defined in Equation (10).

Note that in the general, non-full batch B ≤ n case, 5σ+5κν,m√
n

is replaced by 5σ+5κν,m√
B

(see
Theorem B.1). Under our bounds, obtaining consistency thus requires setting B ≡ B(n) →

n→∞
+∞.

Step 3: Controlling the tail probability term Theorem 4.3 is just one step away from the final
bound of Theorem 4.2: it remains to control the tail term εSGDw

n,m,T ;ν(ϵ). Under the assumptions of [21],
minimizing εSGDw

n,m,T ;ν(ϵ) over ϵ yields the following result:

Lemma 4.4. Assume the setup of Theorem 4.2. Let n ∈ N be sufficiently large s.t. logn
n <

σ2
mζ

2
m

p+ν−2 .
Denote rΨ as the radius of the smallest sphere inRp that contains Ψ, which is finite under A1. Then

inf
ϵ>0

εSGDw
ν;n,m,T (ϵ) ≤(
3σm

√
p((ν − 2)p+ 2ν)
√
ν − 2

+ κν;m2
ν−2
2ν (rΨ)

(ν−2)p
2ν

(
1 +

2Cm(ν − 2)1/2

σmp1/2((ν − 2)p+ 2ν)1/2

) (ν−2)p
2ν

) √
logn
√
n
.

To obtain this result, we control the moment term (supt E[∆(ψSGDw
t,1 )ν ]) using A7, and we control

the tail probability term suptP(∆(ψSGDw
t,1 ) > ϵ) as in [21, Lemma 3.1] using an union bound, a

covering argument and A6. Theorem 4.2 then follows by plugging Lemma 4.4 into Theorem 4.3.

4.3 Consistency of offline CD: beyond subexponential tails.

As discussed above, the general unrolling result of Theorem 4.3 holds without the subexponentiality
assumption A6; this assumption was only used in Lemma 4.4 to control εSGDw

n,m,T ;ν(ϵ). We now
discuss two alternative ways to control this quantity without requiring subexponential tails. The first
generalizes the idea of Jiang et al. [21], while the second exploits mixing of the Markov chain Km

ψ (x)
as m → ∞. As before we only state partial results (full batch, β = 0) and defer the full explicit
bounds to Appendix B.3.
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Control via Markov Inequality Our first alternative uses Markov Inequality to yield the following.

Theorem 4.5. Assume the setup of Theorem 4.3 and additionally that A5 holds. Then

inf
ϵ>0

εSGDw
ν;n,m,T (ϵ) ≤ C̃(p, ν,m,Ψ)n

− (ν−2)ν

2(ν2+(ν−2)p) ,

lim
T→∞

√
δSGDw
T,1 ≤ C̃ ′(p, ν,m,Ψ)

(
n
− (ν−2)ν

2(ν2+(ν−2)p) +
1
√
n

)
,

where C̃ and C̃ ′ are functions whose explicit expressions are given in Lemma B.4 in the appendix.

In the case p = 1 and ν = 3, the sub-optimal error from Theorem 4.5 readsO(n−3/20). Theorems 4.2
and 4.5 reveal that, depending on the tail condition imposed on the noise introduced by the Markov
kernel, the convergence rate of offline CD varies: A subexponential tail, as assumed in prior work,
in fact leads to near-parametric rate. Meanwhile, consistency can be obtained without assuming
subexponentiality, albeit at a sub-optimal rate.

Control via Markov chain mixing. Alternatively, notice that E[∆(ψSGDw
t,1 )2] involves an average

of E
[
ϕ
(
Km
ψSGDw
t,1

(Xi)
2
)∣∣Xi, ψ

SGDw
t,1

]
− E

[
ϕ
(
Km
ψSGDw
t,1

(X ′
1)
)∣∣ψSGDw

t,1

]
. When m→∞, the effect of

initialization vanishes, and one may expect the difference to converge to zero. We defer to Lemma B.5
in the appendix to show that, under a ϕ-discrepancy mixing condition ([35]) with a mixing coefficient
α̃ ∈ [0, 1),

inf
ϵ>0

εSGDw
ν;n,m,T (ϵ) = O(κν;mα̃

(ν−2)m
3ν−2 ) and lim

T→∞

√
δSGDw
T,1 = O

(
κν;mα̃

(ν−2)m
3ν−2 +

σ + κν;m√
n

)
.

As m → ∞, this recovers the parametric rate O(n−1/2). This alternative convergence guarantee
comes at the cost of requiring m, the number of Markov chain steps, to grow with the sample size n.

Remark (Examples). In our main results (Theorems 3.2, 3.3 and 4.3) and the tail condition for offline
SGD (Theorem 4.2), we employed a weaker set of assumptions than those in [21] (except for the mild
ν > 2 moment assumption in (A4)). Consequently, our results apply to all three examples studied
in [21]: A bivariate Gaussian model with unknown mean and random-scan Gibbs sampler, a fully
visible Boltzmann machine with random-scan Gibbs sampler, and an exponential-family random
graph model with a Metropolis-Hastings sampler.

5 Related Work
Central to this paper is the prior work of Jiang et al. [21], which provided a rigorous theoretical foun-
dation to analyze the convergence of full-batch CD, and which we refine. The study of optimization
with biased gradient descent has attracted a lot of attention in recent years [36, 37, 38, 39]. These
works, while closely connected to ours, analyze algorithms with different implementation choices
than the CD algorithm: i.i.d. noise setup [36], or setup where a persistent Markov chain is maintained
through the iterations [36, 37, 38, 39]. The latter is akin to a variant of the CD algorithm, called
the persistent CD [40]. In contrast, our analysis focus on the CD algorithm that restarts a batch of
Markov chains from the data distribution at every iteration. Finally, there is a rich body of work on
convergence guarantees for offline multi-pass SGD [41, 42, 43, 44, 45, 46]. A notable difference of
our analysis is that we are primarily concerned with statistical errors associated with convergence to
the true parameter ψ∗ in number of samples n, and not the commonly studied convergence rate in
number of epochs T . Consequently, most of our work for the offline setup goes into handling the
correlations that accumulate by reusing data across epochs.

6 Discussion
In this work, we provide a non-asymptotic analysis of the Contrastive Divergence algorithms, showing,
in the online setting, their potential to converge at the parametric rate and to have near-optimal
asymptotic variance, and proving a near-parametric rates in the offline setting, significantly extending
prior results. Our results apply to unnormalized exponential families: despite their flexibility, these
models only cover log-densities with linear relationships on the model parameters. We believe that
extending our results to more general forms of unnormalized models is an important direction for
future work.
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Supplementary Material for "Near-Optimality of Contrastive
Divergence Algorithms"

The supplementary material provides the proofs of the main results of the paper:

Section B states full explicit bounds for the offline CD algorithm.

Section C collects a list of useful tools for our proofs. These include the properties of φγ introduced
before Theorem 3.2 in the main text, as well as several contraction and integrability results.

Section D provides the proofs for the online CD algorithm.

Sections E, F and G contain the proofs about the offline CD algorithm and the tail control.

A Notations

Throughout the proofs, we will denote by Pmψ the following operator from L2(pψ) to itself:

Pmψ f(x) :=
∫
km(x, x′)f(x′)pψ(x

′)dx′. (11)

Here, km(x, x′) is the m-iterated version of some Markov transition kernel kψ , e.g.:

kmψ (x, x′) :=
∫
kψ(x, x1) . . . kψ(xm−2, xm−1) . . . kψ(xm−1, x

′)dx1 . . . dxm−1. (12)

ProjΨ : Rp 7−→ Ψ denotes the projection operator onto the convex set Ψ, e.g.

ProjΨ(ψ) := argmin
ψ′∈Ψ

∥ψ − ψ′∥ .

We also frequently use the following function, used in standard convex optimization results [22].

φγ(t) =

{
tγ−1
γ if γ ̸= 0

log t if γ = 0

which is defined on R+ \ {0}.

B Additional results for offline SGD

In this section, we provide the full statements on error bounds for SGD with replacement (SGDw),
SGD with reshuffling (SGDo) and tail moment bounds, which complement the results in Section 4.
Proofs are deferred to Appendix F, which make use of L2 approximation by auxiliary gradient
updates derived in Appendix E.

Notations Denote the SGDw iterates by (ψSGDw
t,j )t∈N,j≤N and let X ′

1 be an i.i.d. copy of X1.
Throughout the remaining of the appendix, we define given ϵ > 0 and n ∈ N

ϑSGDw
n,m,T (ϵ):= sup

t∈[T ]
j∈[N ]

P

(∥∥∥∑n
i=1

(
E
[
ϕ
(
Km
ψSGDw
t−1,j

(Xi)
)∣∣∣Xi, ψSGDw

t−1,j

]
− E

[
ϕ
(
Km
ψSGDw
t−1,j

(X′
1)
)∣∣∣ψSGDw

t−1,j

])∥∥∥
n

> ϵ

)
.

= sup
t,j
P(∆(ψSGDw

t,j ) > ϵ)

and ϑSGDo
n,m,T (ϵ) analogously. Using these notations, we can redefine the quantity εSGDw

n,m,T ;ν(ϵ) in the

main as εSGDw
n,m,T ;ν(ϵ) :=

√
ϵ2 + κ2ν;m

(
ϑSGDw
n,m,T (ϵ)

) ν−2
ν .
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B.1 An explicit finite-sample bound for SGDw

In the result below, we write δSGDw
t,j := E

∥∥ψSGDw
t,j − ψ∗

∥∥2 and, for a fixed ϵ > 0, the quantity

σSGDw
n,T = εSGDw

n,m,T ;ν(ϵ) +
5σ + 5κm√

B
=

√
ϵ2 + κ2m

(
ϑSGDw
n,m,T (ϵ)

) ν−2
ν +

5σ + 5κm√
B

.

Theorem B.1. Assume A1 (where Ψ may be non-compact), A2, A3, A4 and A7. Let ηt = Ct−β for
some β ∈ [0, 1] and C > 0, and assume that m >

log(σCχ/µ)
log |α| s.t. µ̃m = µ − αmσCχ > 0 as in

Theorem 3.2. Then for any ϵ > 0,
√
δSGDw
T,N is upper bounded by

ET,N1

√
δSGDw
0,0 + CσSGDw

n,T

(
4e

µ̃mCN

(T+1)1/2

µ̃mC
+ 2N(1 + µ̃mC)

N−1φ 1
2−L2C2N (T + 1)ET,N2

)
for β =

1

2
,

ET,N1

√
δSGDw
0,0 + CσSGDw

n,T

(
4

µ̃mC
+

3N
(
1 + L2C2

2

)N−1
e2L

2C2N log(T + 1)

(T + 1)(µ̃mCN)/2

)
for β = 1 ,

ET,N1

√
δSGDw
0,0 + CσSGDw

n,T

(
22β+1

µ̃mC
e
µ̃mC

2(1−β)
N

(T+1)β +
3β(1 + µ̃mC)N−1(T + 2)β

L2C2
ET,N2

)
otherwise ,

where ET,N1 and ET,N2 are two decreasing functions in T defined by

ET,N1 := exp
(
1−Nµ̃mCφ1−β(T + 1) +

NL2C2

2
φ1−2β(T + 1)

)
,

ET,N2 := exp
(
− Nµ̃mC

2
φ1−β(T + 1) + 2NL2C2φ1−2β(T + 1)

)
.

We emphasize that the full result above holds for any β ∈ [0, 1], which in particular includes the
constant step size β = 0 regime considered by [21]. When β = 0, for ET,N1 and ET,N2 to decay to
zero as T →∞, we additionally need the condition

µ̃m = µ− αmσCχ > 4CL2 .

This is almost identical to the condition used in [21, Equation 2.5, Theorem 2.1], except that 4L2

gets replaced by 1
2 (L+ αmσCχ)

2. Notably this says that an additional step size condition is needed
for our results to hold in the constant step size regime, but not necessary for a decreasing step size.

B.2 Results for SGDo

SGD with reshuffling (SGDo, also called SGD without replacement) is an optimization scheme that is
also widely used in practice compared to SGDo and online SGD. In the context of CD, it corresponds
to Algorithm 2 with batches chosen as

(Bt,1, . . . , Bt,N ) = π({1, . . . , n}) ,

where π is a uniform draw of the permutation group on n elements. We denote the iterates of SGDo
(ψSGDo
t,j )t∈N,j∈[N ]. Analogously to ϑSGDw

n,m,T , we define, for X ′
1 an i.i.d. copy of X1, ϵ > 0 and n ∈ N,

the tail probability term

ϑSGDo
n,m,T (ϵ):= sup

t∈[T ]
j∈[N ]

P

(∥∥∥∑n
i=1

(
E
[
ϕ
(
Km
ψSGDo
t−1,j

(Xi)
)∣∣∣Xi, ψSGDo

t−1,j

]
− E

[
ϕ
(
Km
ψSGDo
t−1,j

(X′
1)
)∣∣∣ψSGDo

t−1,j

])∥∥∥
n

> ϵ

)
.

Also denote εSGDo
n,m,T ;ν(ϵ) =

√
ϵ2 + κ2m

(
ϑSGDo
n,m,T (ϵ)

) ν−2
ν and σSGDw

n,T = εSGDo
n,m,T ;ν(ϵ) +

5σ + 5κm√
B

.

The following result says that ψSGDo
t,j enjoys exactly the same convergence guarantee as ψSGDo

t,j in
Theorem 4.3. The statement is identical to that of Theorem B.1 and is stated in full for completeness;
see Appendix F.2 for the proof, which is a slight adaptation of the proof for Theorem B.1. As before
we write δSGDo

t,j := E
∥∥ψSGDo

t,j − ψ∗
∥∥2.
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Theorem B.2 (Convergence of CD-SGDo). Assume A1 (where Ψ may be non-compact), A2, A3,
A4 and A7. Let ηt = Ct−β for some β ∈ [0, 1] and C > 0, and assume that m >

log(σCχ/µ)
log |α|

s.t. µ̃m = µ− αmσCχ > 0 as in Theorem 3.2. Then for any ϵ > 0,
√
δSGDo
T,N is upper bounded by

ET,N1

√
δSGDo
0,0 + CσSGDo

n,T

(
4e

µ̃mCN

(T+1)1/2

µ̃mC
+ 2N(1 + µ̃mC)

N−1φ 1
2−L2C2N (T + 1)ET,N2

)
for β =

1

2
,

ET,N1

√
δSGDo
0,0 + CσSGDo

n,T

(
4

µ̃mC
+

3N
(
1 + L2C2

2

)N−1
e2L

2C2N log(T + 1)

(T + 1)(µ̃mCN)/2

)
for β = 1 ,

ET,N1

√
δSGDo
0,0 + CσSGDo

n,T

(
22β+1

µ̃mC
e
µ̃mC

2(1−β)
N

(T+1)β +
3β(1 + µ̃mC)N−1(T + 2)β

L2C2
ET,N2

)
otherwise ,

where ET,N1 and ET,N2 are two decreasing functions in T defined by

ET,N1 := exp
(
1−Nµ̃mCφ1−β(T + 1) +

NL2C2

2
φ1−2β(T + 1)

)
,

ET,N2 := exp
(
− Nµ̃mC

2
φ1−β(T + 1) + 2NL2C2φ1−2β(T + 1)

)
.

Remark. We also remark that existing works [47, 48] show that the standard SGDo typically gives
a faster convergence rate in T than SGDw. An analogous result for the CD setup would involve
additional technical hurdles of jointly controlling the correlations across minibatches and from reusing
data samples, and we defer this to future work.

B.3 Explicit tail control

We now provide the full explicit tail control bounds. All results in this section hold directly for
εSGDo
ν;n,m,T (ϵ) and δSGDo

T,N , and we omit them here. In the result below, we denote rΨ as the radius of
the smallest sphere inRp that contains Ψ, which is finite under A1.

Lemma B.3. Assume A5 and A6. Let n ∈ N be sufficiently large s.t. logn
n <

σ2
mζ

2
m

p+ν−2 . Then

inf
ϵ>0

εSGDw
ν;n,m,T (ϵ) ≤(
3σm

√
p((ν − 2)p+ 2ν)
√
ν − 2

+ κν;m2
ν−2
2ν (rΨ)

(ν−2)p
2ν

(
1 +

2Cm(ν − 2)1/2

σmp1/2((ν − 2)p+ 2ν)1/2

) (ν−2)p
2ν

) √
logn
√
n

.

In particular, if we additionally assume the conditions of Theorem B.1, we have

lim
T→∞

√
δSGDw
T,N ≤ C ′(p, ν,m,Ψ, β)

(√
logn
√
n

+
1

√
B

)
where

C ′(p, ν,m,Ψ, β) :=
8(1 + 5σ + 5κm)

µ̃m

×
(

3σm
√
p((ν − 2)p+ 2ν)
√
ν − 2

+ κν;m2
ν−2
2ν (rΨ)

(ν−2)p
2ν

(
1 +

2Cm(ν − 2)1/2

σmp1/2((ν − 2)p+ 2ν)1/2

) (ν−2)p
2ν

)
.

Lemma B.4. Assume the conditions of Theorem 4.3 and additionally that A5 holds. Then

inf
ϵ>0

εSGDw
ν;n,m,T (ϵ) ≤

(
3Cm + κν/2ν;m(rΨ)

(ν−2)p
2ν C

− ν−2
2

m 3
(ν−2)p

2ν

)
n
− (ν−2)ν

2(ν2+(ν−2)p) ,

lim
T→∞

(
δSGDw
T,N

)1/2 ≤ C̃ ′(p, ν,m,Ψ, β)
(
n
− (ν−2)ν

2(ν2+(ν−2)p) +B−1/2
)
,

where

C̃ ′(p, ν,m,Ψ) :=
8(1 + 5σ + 5κm)

µ̃m

(
3Cm + κν/2ν;m(rΨ)

(ν−2)p
2ν C

− ν−2
2

m 3
(ν−2)p

2ν

)
.
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The next result considers a ϕ-discrepancy mixing condition ([35]), which is a mixing assumption on
Km
ψ but with respect to a specific test function ϕ, and we impose it uniformly over ψ ∈ Ψ. We also

recall that Xψ
1 ∼ pψ .

Lemma B.5. Assume that there exist α̃ ∈ [0, 1) and C̃K > 0 such that, for all ψ ∈ Ψ and x ∈ X ,
∥E[ϕ(Km

ψ (x))]− E[ϕ(Xψ
1 )]∥ ≤ C̃K α̃m. Then

infϵ>0 ε
SGDw
ν;n,m,T (ϵ) ≤

(
1 + 2

ν−2
2ν κν;m(C̃K)

ν−2
2ν

)
α̃

(ν−2)m
3ν−2 .

In particular, if we additionally assume the conditions of Theorem 4.3, we have

lim
T→∞

√
δSGDw
T,N ≤ 8

µ− αmσCχ

((
1 + 2

ν−2
2ν κν;m(C̃K)

ν−2
2ν

)
α̃

(ν−2)m
3ν−2 +

5σ + 5κm√
B

)
.

C Auxiliary Tools

C.1 Properties of φγ

The following lemma collects some identities used in [22].
Lemma C.1. φγ satisfies the following properties:

(i) φγ is increasing on R+ for all γ ;

(ii) φγ(t) ≤ tγ

γ for γ > 0, and φγ(t) ≤ − 1
γ for γ < 0 ;

(iii) φ1−β(t) ≥ t1−β for β ∈ (0, 1] ;
(iv) φγ(t)− φγ( t2 ) ≥

1
2x

γ for γ ∈ (0, 1] .

The next lemma provides some additional results on φγ .
Lemma C.2. φγ satisfies the following properties:

(i) φγ is positive on t > 0 and increasing for every γ ∈ R;
(ii) For 1 ≤ t1 ≤ t2 and β ≥ 0, we have

φ1−β(t2 + 1)− φ1−β(t1) ≤
∑t2

t=t1
t−β ≤ 2

(
φ1−β(t2 + 1)− φ1−β(t1)

)
.

If instead β < 0, we have
1

2

(
φ1−β(t2 + 1)− φ1−β(t1)

)
≤

∑t2

t=t1
t−β ≤ φ1−β(t2 + 1)− φ1−β(t1) ;

(iii) For 1 ≤ t1 ≤ t2 and γ ̸= 0, we have

tγ−1
1 ≤ φγ(t2)− φγ(t1) ≤ tγ−1

2 if γ ≥ 1 ,

t
−(1−γ)
2 ≤ φγ(t2)− φγ(t1) ≤ t

−(1−γ)
1 if γ ≤ 1 ;

(iv) Let 1 ≤ t1 < t2 and κ, β ≥ 0. If κ ̸= 1 and a > 0, we have∑t2

t=t1
(t+ 1)−β exp

(
aφ1−κ(t− 1)

)
≤ (t2 + 1)max{κ−β,0}

a
exp

(
aφ1−κ(t2 + 1)

)
,

and if κ ̸= 1 and a < 0, we have∑t2

t=t1
(t+ 1)−β exp

(
aφ1−κ(t)

)
≤ (t2 + 1)max{κ−β,0}

(−a)
exp

(
aφ1−κ(t1)

)
.

Proof of Lemma C.2. (i) follows from checking γ > 0, γ = 0 and γ < 0 respectively. The first set
of bounds in (ii) follow by noting that t 7→ t−β is decreasing for β ≥ 0:∑t2

t=t1
t−β ≥

∫ t2+1

t1
t−βdt = φ1−β(t2 + 1)− φ1−β(t1) ,

∑t2

t=t1
t−β ≤ 2

∑t2

t=t1
(t+ 1)−β ≤ 2

∫ t2

t1−1
(t+ 1)−βdt = 2

(
φ1−β(t2 + 1)− φ1−β(t1)

)
.
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The second set of bounds follows from noting that t 7→ t−β is increasing for β < 0:∑t2

t=t1
t−β ≥ 1

2

∑t2

t=t1
(t+ 1)−β ≥ 1

2

∫ t2

t1−1
(t+ 1)−βdt =

1

2

(
φ1−β(t2 + 1)− φ1−β(t1)

)
,

∑t2

t=t1
t−β ≤

∫ t2+1

t1
t−βdt = φ1−β(t2 + 1)− φ1−β(t1) .

For (iii), we note that for γ ̸= 0,

φγ(t2)− φγ(t1) =
tγ2 − tγ1
γ

,

so by the mean value theorem,

inft1≤t≤t2 t
γ−1 ≤ φγ(t2)− φγ(t1) ≤ supt1≤t≤t2 t

γ−1 .

The desired bounds then follow from an explicit computation of the infimum and the maximum in
each of the two cases γ ≥ 1 and γ ≤ 1.

For (iv), we first consider the case κ ̸= 1 and a > 0. Then∑t2

t=t1
(t+ 1)−β exp

(
aφ1−κ(t− 1)

)
= e−

a
1−κ

∑t2

t=t1
(t+ 1)−β exp

(
at1−κ

1− κ

)
≤ e−

a
1−κ maxt1≤t≤t2

(
(t+ 1)κ

(t+ 1)β

)∑t2

t=t1
(t+ 1)−κ exp

(
at1−κ

1− κ

)
≤ e−

a
1−κ (t2 + 1)max{κ−β,0} ∑t2

t=t1
(t+ 1)−κ exp

(
at1−κ

1− κ

)
.

Since, for x ≥ 0, x 7→ (x+1)−κ is decreasing and x 7→ exp(ax1−κ/(1−κ)) is increasing, we have
that for t1 ≤ t ≤ t2 and x ∈ [t, t+ 1],

(t+ 1)−κ ≤ x−κ and exp(at1−κ/(1− κ)) ≤ exp(ax1−κ/(1− κ)) .

This implies that∑t2

t=t1
(t+ 1)−β exp

(
aφ1−κ(t− 1)

)
≤ (t2 + 1)max{κ−β,0}e−

a
1−κ

∑t2

t=t1

∫ t+1

t
x−κ exp

(
ax1−κ

1− κ

)
dx

= (t2 + 1)max{κ−β,0}e−
a

1−κ

∫ t2+1

t1
x−κ exp

(
ax1−κ

1− κ

)
dx

≤ (t2 + 1)max{κ−β,0}

a
e−

a
1−κ e

a(t2+1)1−κ
1−κ

=
(t2 + 1)max{κ−β,0}

a
exp

(
aφ1−κ(t2 + 1)

)
.

The main difference in the case κ ̸= 1 and a < 0 is that we now use x 7→ exp(a(x+1)1−κ/(1− κ))
is decreasing to obtain, for t1 ≤ t ≤ t2 and x ∈ [t, t+ 1],

exp(a(t+ 1)1−κ/(1− κ)) ≤ exp(ax1−κ/(1− κ)) .

A similar argument then yields∑t2

t=t1
(t+ 1)−β exp

(
aφ1−κ(t)

)
≤ (t2 + 1)max{κ−β,0}e−

a
1−κ

∑t2

t=t1
(t+ 1)−κ exp

(
a(t+ 1)1−κ

1− κ

)
≤ (t2 + 1)max{κ−β,0}e−

a
1−κ

∫ t2+1

t1
x−κ exp

(
ax1−κ

1− κ

)
dx

=
(t2 + 1)max{κ−β,0}

a

(
exp

(
aφ1−κ(t2 + 1)

)
− exp

(
aφ1−κ(t1)

))
≤ (t2 + 1)max{κ−β,0}

(−a)
exp

(
aφ1−κ(t1)

)
.
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We also need the following lemma, which is useful for controlling the accumulation of errors from
the noise terms over iterations.

Lemma C.3. For any a, b ≥ 0, T,N ∈ N and κ, β ≥ 0 such that bt−β−at−κ ≤ 1 for all 1 ≤ t ≤ T ,
we have that

∏T

t=1
(1− bt−β + at−κ)N ≤ exp

(
− bN φ1−β(T + 1) + aN φ1−κ(T + 1)

)
.

Moreover, for any ζ ≥ 0, we have that

∑T

t=1
t−ζ

(∑N

j=1
(1− bt−β + at−κ)

) ∏T

s=t+1
(1− bs−β + as−κ)N

≤ Q1 + exp
(
− bN

2
φ1−β(T + 1) + 4aN φ1−κ(T + 1)

)
Q2 ,

where

Q1 :=


22ζ+1(T + 3)max{β−ζ,0}

b
exp

(
bN

2(1− β)(T + 1)β

)
if β ̸= 1 , b > 0 ,

2Nφ1−ζ+bN/2(T + 1) exp
(
− bN

2
φ1−β(T + 1)

)
if β = 1 or b = 0 ,

and

Q2 :=


3ζ(1 + a)N−1

2a
(T + 2)max{κ−ζ,0} if κ ̸= 1 and a > 0 ,

2N(1 + a)N−1 φ1−ζ−2aN (T + 1) if κ = 1 or a = 0 .

In the special case ζ = β = 1 < κ , we have

∑T

t=1
t−ζ

(∑N

j=1
(1− bt−β + at−κ)j−1

) ∏T

s=t+1
(1− bs−β + as−κ)N

≤ 4

b
+

3N(1 + a)N−1 e
4aN
κ−1 log(T + 1)

(T + 1)
bN
2

.

Proof of Lemma C.3. By assumption, bt−β − at−κ ≤ 1 for all 1 ≤ t ≤ T . Since 0 ≤ 1− x ≤ e−x
for all x ≤ 1, we have that for any 1 ≤ t1 ≤ t2 ≤ T ,

∏t2

t=t1
(1− bt−β + at−κ)N ≤ exp

(
− bN

∑t2

t=t1
t−β + aN

∑t2

t=t1
t−κ
)
. (13)

Applying this to the first quantity of interest followed by noting that a, b ≥ 0 and using Lemma C.2(ii),
we obtain the first bound that

∏T

t=1
(1− bt−β + at−κ)N ≤ exp

(
− bN

∑T

t=1
t−β + aN

∑T

t=1
t−κ
)

≤ exp
(
− bN φ1−β(T + 1) + aN φ1−κ(T + 1)

)
.

For the second bound, we define

t0 := sup
{
t ≤ T

∣∣∣ b
2
≤ at−(κ−β)

}
.
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Then by noting that 1 − bt−β + at−κ ≥ 0 for all 1 ≤ t ≤ T again,we can bound the quantity of
interest as∑T

t=1
t−ζ

(∑N

j=1
(1− bt−β + at−κ)j−1

) ∏T

s=t+1
(1− bs−β + as−κ)N

=
∑T

t=t0+1
t−ζ

(∑N

j=1
(1− bt−β + at−κ)j−1

) ∏T

s=t+1
(1− bs−β + as−κ)N

+
(∏T

s=t0+1
(1− bs−β + as−κ)

)
×
(∑t0

t=1
t−ζ

(∑N

j=1
(1− bt−β + at−κ)j−1

) ∏t0

s=t+1
(1− bs−β + as−κ)N

)
≤

∑T

t=t0+1
t−ζ

(∑N

j=1

(
1− b

2
t−β
)j−1) ∏T

s=t+1

(
1− b

2
s−β

)N
+
(∏T

s=t0+1

(
1− b

2
s−β

)N)(∑t0

t=1
t−ζ

(∑N

j=1
(1 + at−κ)j−1

) ∏t0

s=t+1
(1 + as−κ)N

)
≤ N ×

∑T

t=t0+1
t−ζ

∏T

s=t+1

(
1− b

2
s−β

)N
︸ ︷︷ ︸

=:S1

+N(1 + a)N−1 ×
(∏T

s=t0+1

(
1− b

2
s−β

)N)
︸ ︷︷ ︸

=:S3

×
(∑t0

t=1
t−ζ

∏t0

s=t+1
(1 + as−κ)N

)
︸ ︷︷ ︸

=:S2

.

In the last line, we have used that 0 ≤ 1 − b
2 t

−β ≤ 1 for t ≥ t0 + 1 and 1 + at−κ ≤ 1 + a. To
control the three quantities, we first note that by (13) , we have

S3 ≤ exp
(
− bN

2

∑T

s=1
s−β

)
exp

(
bN

2

∑t0

s=1
s−β

)
(a)

≤ exp
(
− bN

2

∑T

s=1
s−β

)
exp

(
aN

∑t0

s=1
s−κ

)
(b)

≤ exp
(
− bN

2
φ1−β(T + 1) + 2aN φ1−κ(T + 1)

)
.

In (a) above, we have noted that b
2 ≤ as−(κ−β) for s ≤ t0; in (b), we have used t0 ≤ T and

Lemma C.2(ii) with a, b ≥ 0. In the special case β = 1 < κ, the above yields

S3 ≤ (T + 1)−
bN
2 exp

(
2aN

1− (T + 1)−(κ−1)

κ− 1

)
≤ (T + 1)−

bN
2 e

2aN
κ−1 .

We now control S2. By (13) again, we have

S2 ≤
∑t0

t=1
t−ζ exp

(
aN

∑t0

s=t+1
s−κ

)
≤

∑T

t=1
t−ζ exp

(
aN

∑T

s=t+1
s−κ

)
(c)

≤ exp
(
2aNφ1−κ(T + 1)

)
×
(∑T

t=1
t−ζ exp

(
− 2aNφ1−κ(t+ 1)

))
(d)

≤ 3ζ exp
(
2aNφ1−κ(T + 1)

) ∑T

t=1
(t+ 2)−ζ exp

(
− 2aNφ1−κ(t+ 1)

)
.

In (c) above, we have applied Lemma C.2(ii); in (d), we have noted that supt∈N(t+ 2)β/tβ = 3β .
If κ ̸= 1 and a > 0, we can apply Lemma C.2(iv) to get that

S2 ≤
3ζ

2aN
(T + 2)max{κ−ζ,0} exp

(
2aNφ1−κ(T + 1)

)
=

Q2

N(1 + a+ c)N−1
exp

(
2aNφ1−κ(T + 1)

)
.
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If κ = 1 or a = 0, the bound from (c) above reads

S2 ≤ exp
(
2aNφ1−κ(T + 1)

) ∑T

t=1
t−ζ(t+ 1)−2aN

≤ exp
(
2aNφ1−κ(T + 1)

) ∑T

t=1
t−ζ−2aN

≤ 2φ1−ζ−2aN (T + 1) exp
(
2aNφ1−κ(T + 1)

)
=

Q2

N(1 + a)N−1
exp

(
2aNφ1−κ(T + 1)

)
,

where we have used Lemma C.2(ii) in the last line. Now consider the special case with ζ = 1 < κ,
the bound from (d) becomes

S2 ≤ 3 exp
(
2aNφ1−κ(T + 1)

)(∑T

t=1
(t+ 2)−1 exp

(
− 2aNφ1−κ(t+ 1)

))
≤ 3 exp

(
2aN

1− (T + 1)−(κ−1)

κ− 1

)∑T

t=1
(t+ 2)−1

≤ 3e
2aN
κ−1 log(T + 1) .

We are left with controlling S1, which follows from a similar strategy as controlling S2:

S1

(13)
≤

∑T

t=t0+1
t−ζ exp

(
− bN

2

∑T

s=t+1
s−β

)
≤

∑T

t=1
t−ζ exp

(
− bN

2

∑T

s=t+1
s−β

)
(a)

≤ exp
(
− bN

2
φ1−β(T + 1)

)∑T

t=1
t−ζ exp

(
bN

2
φ1−β(t+ 1)

)
(14)

≤ 4ζ exp
(
− bN

2
φ1−β(T + 1)

)∑T

t=1
(t+ 3)−ζ exp

(
bN

2
φ1−β(t+ 1)

)
.

In (a) above, we used Lemma C.2(ii). For β ̸= 1 and b ̸= 0, we can apply Lemma C.2(iv) with
b
2 > 0 to obtain

S1 ≤ 4ζ exp
(
− bN

2
φ1−β(T + 1)

)
(T + 3)max{β−ζ,0}

bN/2
exp

(
bN

2
φ1−β(T + 3)

)
=

22ζ+1(T + 3)max{β−ζ,0}

bN
exp

(
bN

2(1− β)

(
(T + 3)1−β − (T + 1)1−β

))
(b)

≤ 22ζ+1(T + 3)max{β−ζ,0}

bN
exp

(
bN

2(1− β)(T + 1)β

)
=

Q1

N
.

In (b), we have used Lemma C.2(iii) with 1− β ≤ 1. Meanwhile, if β = 1 or b = 0, we have

S1 ≤ exp
(
− bN

2
φ1−β(T + 1)

)∑T

t=1
t−ζ(t+ 1)bN/2

≤ exp
(
− b

2
φ1−β(T + 1)

)∑T

t=1
t−ζ+bN/2

≤ 2φ1−ζ+bN/2(T + 1) exp
(
− bN

2
φ1−β(T + 1)

)
=

Q1

N
.

For the special case with ζ = β = 1, the bound in (14) becomes

S1 ≤ exp
(
− bN

2
φ0(T + 1)

)∑T

t=1
t−1 exp

(
bN

2
φ0(t+ 1)

)
= (T + 1)−

bN
2

∑T

t=1
t−1(t+ 1)

bN
2

≤ (T + 1)−
bN
2

∑T

t=1
t−(1− bN

2 )

(c)

≤ 2(T + 1)−
bN
2 φ bN

2
(T + 1) = 2(T + 1)−

bN
2

(T + 1)bN/2 − 1

bN/2
≤ 4

bN
.

In (c), we have used Lemma C.2(ii) for both the case 1− bN
2 ≤ 0 and 1− bN

2 ≥ 0.

Combining the bounds for the general cases, we obtain the first desired inequality that∑T

t=1
t−ζ

(∑N

j=1
(1− bt−β + at−κ)j−1

) ∏T

s=t+1
(1− bs−β + as−κ)N

≤ Q1 + exp
(
− b

2
φ1−β(T + 1) + uφ1−ξ(T + 3) + 4aφ1−κ(T + 1)

)
Q2 .
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For the special case ζ = β = 1 < κ, γ, combining the earlier bounds gives∑T

t=1
t−ζ

(∑N

j=1
(1− bt−β + at−κ)j−1

) ∏T

s=t+1
(1− bs−β + as−κ)N

≤ 4

b
+

3N(1 + a)N−1 e
4aN
κ−1 log(T + 1)

(T + 1)
bN
2

.

C.2 Contraction and integrability results

The next result is a standard result in convex analysis, needed to handle projections performed in
Algorithms 1 and 2.
Lemma C.4. Let Ψ a be convex subset of Rp. Let ψ⋆ ∈ Ψ. Then, for all ψ ∈ Rp, we have:

∥ProjΨ(ψ)− ψ⋆∥ ≤ ∥ψ − ψ⋆∥

Proof. We have:

∥ψ − ψ⋆∥2 = ∥ψ − ProjΨ(ψ) + ProjΨ(ψ)− ψ⋆∥2

= ∥ψ − ProjΨ(ψ)∥2 + 2 ⟨ψ − ProjΨ(ψ),ProjΨ(ψ)− ψ⋆⟩+ ∥ProjΨ(ψ)− ψ⋆∥2

Since by [49, Proposition 1.1.9], we have:

⟨ψ − ProjΨ(ψ), ψ
′ − ProjΨ(ψ)⟩ ≤ 0

for all ψ′ ∈ Ψ, we can use this inequality at ψ′ = ψ⋆ ∈ Ψ to obtain:

∥ψ − ψ⋆∥2 ≥ ∥ψ − ProjΨ(ψ)∥
2

and the result follows by taking the square root.

We now state two lemmas that guarantee an amount of integrability sufficient to our analysis.

Lemma C.5. Let p, q ∈ P(X ) such that dp
dq exists, and such that χ2(p; q) < +∞. Assume that

f ∈ L2(q) Then |Epf | < +∞.

Proof. By assumption, f ∈ L2(q). Moreover, χ2(p, q) < +∞, and thus we have dp
dq − 1 ∈ L2(q).

Thus, the inner product is finite, and∣∣∣ ∫ f
(
dp

dq
− 1
)
dq
∣∣∣ = ∣∣∣ ∫ fdp−

∫
fdq

∣∣∣ = |Epf − Eqf | :=M < +∞

=⇒ M − |Eqf | < Epf < M + |Eqf |

Lemma C.6. For all ψ ∈ Ψ, for all m ≥ 1, and for all k ≥ 1, we have:

Epψ⋆
∥∥Pmψ ϕ∥∥k < +∞

Proof. By analycity of the log partition function ψ 7−→ logZ(ψ), we have
∫
∥ϕ∥k dpψ(x) < +∞

for all ψ ∈ Ψ, and thus, the function x 7−→ ∥ϕ∥k (x) ∈ L2(pψ) for all ψ. Consequently, Pmψ ∥ϕ∥k ∈
L2(pψ). We can apply Lemma C.5 to Pmψ ∥ϕ∥

k to obtain Eψ⋆Pm∥ϕ∥k < +∞ for all k ≥ 1 and for

all m ≥ 0. As a by-product, we obtain Pmψ ∥ϕ∥
k ∈ L2(pψ⋆), and thus so ∥Pmϕ∥k.

The following lemma is used multiple time in our analysis.
Lemma C.7. Assume A3. Let q be a positive integer. Let f := (f1, . . . , fq) such that fk ∈
{ϕi}pi=1 ∪ {ϕiϕj}

p
i,j=1 for k ∈ [q]. Then, for all ψ ∈ Ψ, we have∥∥Epψ⋆ [Pmψ (f − Epψf)

]∥∥ ≤ αmCχ (Epψ [∥∥f − Epψf
∥∥2])1/2 ∥ψ − ψ⋆∥
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Proof. Let us note first that

∥Epψ⋆P
m
ψ

(
f − Epψf

)
∥2 (a)

=

q∑
i=1

(∫
Pmψ

(
fi − Epψfi

)
(x) (pψ⋆(x)− pψ(x)) dx

)2

=

q∑
i=1

(∫
Pmψ

(
fi − Epψfi

)
(x)

(
dpψ⋆

dpψ
(x)− 1

)
pψ(x)dx

)2

(b)

≤

(∫ (
dp⋆ψ
dpψ

(x)− 1

)2

pψ(x)dx

)
q∑
i=1

∫
Pmψ

(
fi − Epψfi

)
(x)2pψ(x)dx

≤ χ2(pψ, pψ⋆)

q∑
i=1

∥∥Pmψ (fi − Epψfi)
∥∥
L2(pψ)

(c)

≤ α2mχ2(pψ, pψ⋆)

q∑
i=1

∥∥fi − Epψfi
∥∥
L2(pψ)(Rd)

(d)

≤ α2mC2
χ ∥ψ − ψ⋆∥

2 Epψ
∥∥f − Epψf

∥∥2 .
Here, we used the fact that Pmψ admits pψ as an invariant measure in (a) [34, Eq. (1.2.2)], the
Cauchy-Schwarz inequality in (b)

C.3 Miscellaneous

Lemma C.8. Let f : Ψ → R
p be a differentiable function in the interior of Ψ ⊆ Rp. For ψ ∈ Ψ,

define σmin(ψ) := infθ∈Ψ,∥θ∥=1 θ
⊤∇f(ψ)θ and σmax(ψ) := supθ∈Ψ,∥θ∥=1 θ

⊤∇f(ψ)θ with respect
to the Jacobian matrix∇f(ψ). Then for any ψ1, ψ2 ∈ Ψ, we have that

infψ∈Ψ σmin(ψ) ≤ (ψ1 − ψ2)
⊤(f(ψ1)− f(ψ2)

)
≤ supψ∈Ψ σmax(ψ)

Proof of Lemma C.8. By the mean value theorem, there exists some a ∈ (0, 1) such that

(ψ1 − ψ2)
⊤(f(ψ1)− f(ψ2)

)
= (ψ1 − ψ2)

⊤(f(1× ψ1 + 0× ψ2)− f(0× ψ1 + 0× ψ2)
)

= (ψ1 − ψ2)
⊤∇f(aψ1 + (1− a)ψ2)(ψ1 − ψ2)

= ∥ψ1 − ψ2∥2
(ψ1 − ψ2)⊤

∥ψ1 − ψ2∥
∇f(aψ1 + (1− a)ψ2)

ψ1 − ψ2

∥ψ1 − ψ2∥
.

Plugging in the definition of σmax gives the desired upper bound and similarly σmin implies the lower
bound.

D Proofs for Online CD

D.1 Auxiliary Lemmas for Online CD

We recall the following notations used in the next lemmas, namely σψ := Epψ∥ϕ − Epψϕ∥2,
σ⋆ := σψ⋆ and σ := supψ∈Ψ σψ .

We now provide two intermediary lemmas necessary to analyze the impact of variance in the CD
gradient. The strategy is similar in both of them: we change the integration from pψ⋆ to pψ to
obtain contraction, at the cost of an additional term scaling with Cχ ∥ψ − ψ⋆∥. We obtain exact
constants that we choose to describe in terms of the smoothness parameters of the problem, e.g. the
kth derivatives of the log partition function logZ, which, for k ≥ 2, equals the kth derivative of the
negative cross-entropy model w.r.t pψ⋆ .

Second Moment convergence The following lemmas guarantee the second moment of a sample
from kmψ pψ⋆ approaches the second moment of a sample from the target distribution pψ .

Lemma D.1. Under A1, A2 and A3, for all ψ ∈ Ψ, we have:∣∣Epψ⋆Pmψ ∥ϕ∥2 − Epψ∥ϕ∥2
∣∣ ≤ αmCχ ∥ψ − ψ⋆∥ ∥logZ∥1,∞
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where

∥logZ∥1,∞ := sup
ψ∈Ψ

p∑
i=1

(4∂1i logZ(ψ)
2∂2i logZ(ψ) + 2∂2i logZ(ψ)

2 + 4∂1i logZ(ψ)∂
3
i logZ(ψ)

+ ∂4i logZ(ψ))
1/2 < +∞

Proof. Applying Lemma C.7 to each fi := ϕ2i , we have∣∣Epψ⋆Pmψ ϕ2i − Epψϕ2i
∣∣ = αmCχ ∥ψ − ψ⋆∥

(
Epψ

(
ϕ2i − Epψϕ2i

)2)1/2
= αmCχ ∥ψ − ψ⋆∥

(
Epψϕ4i − (Epψϕ2i )2

)1/2
We map the two moments to derivatives of logZ(ψ), since the kth derivative of logZ(ψ) is the kth
cumulant. It can be shown, using the multivariate moment to cumulant mapping, that

Eϕ4i =
∂ logZ

∂ψi

4

+ 6
∂ logZ

∂ψi

2 ∂2 logZ

∂ψ2
i

+ 3

(
∂2 logZ

∂ψ2
i

)2

+ 4
∂ logZ

∂ψi

∂3 logZ

∂ψ3
i

+
∂4 logZ

∂ψ4
i

= ∂1i logZ(ψ)
4 + 6∂1i logZ(ψ)

2∂2i logZ(ψ) + 3∂2i logZ(ψ)
2 + 4∂1i logZ(ψ)∂

3
i logZ(ψ)

+ ∂4i logZ(ψ)

where ∂ki logZ(ψ) denotes the kth derivative of logZ with respect to ψi. On the other hand,

Eϕ2i = ∂1i logZ(ψ)
2 + ∂2i logZ(ψ)

=⇒ (Eϕ2i )2 = ∂1i logZ(ψ)
4 + 2∂1i logZ(ψ)

2∂2i logZ(ψ) + ∂2i logZ(ψ)
2

implying

Epψϕ4i − (Ep2ψϕ
2
i )

2 = 4∂1i logZ(ψ)
2∂2i logZ(ψ) + 2∂2i logZ(ψ)

2 + 4∂1i logZ(ψ)∂
3
i logZ(ψ)

+ ∂4i logZ(ψ)

The result follows by summing over i, since:

|Epψ⋆P
m
ψ ∥ϕ∥2 − Epψ∥ϕ∥2| ≤

∑d

i=1
|Epψ⋆P

m
ψ ϕ

2
i − Epψϕ2i |

Note that ∥logZ∥1,∞ is finite since Ψ is compact and logZ is analytic.

Squared First Moment convergence The next lemma provides convergence (in squared absolute
value) of the first moment of the m-iterated Markov kernel kmψ .
Lemma D.2. Under A1, A2 and A3, for all ψ ∈ Ψ, we have∣∣∣∥Epψ⋆Pmψ ϕ∥2 − ∥∥Epψϕ∥∥2∣∣∣ ≤ αmσ2

ψ + Cχα
m/4 ∥logZ∥2,∞ ∥ψ − ψ

⋆∥

where

∥logZ∥2,∞ := sup
ψ∈Ψ

∑p

i=1

(
F (ψ)∂2i logZ(ψ)

)1/4
+ 2

∣∣∣∂1i logZ(ψ)∂2i logZ(ψ)1/2∣∣∣
and

F (ψ) := 15∂2i logZ(ψ)
3 + 10∂3i logZ(ψ)

2 + 15∂2i logZ(ψ)∂
4
i logZ(ψ) + ∂6i logZ(ψ)

Proof. We have:

(Epψ⋆P
m
ψ ϕi)

2 = (Epψ⋆P
m
ψ ϕi − Epψϕi + Epψϕi)2

= (Epψ⋆P
mϕi − Epψϕi)2 + 2Epψϕi (Epψ⋆P

mϕi − Epψϕi)
+ (Eψϕi)2

=⇒ |Epψ⋆ (P
m
ψ ϕi)

2 − (Epψϕi)2| ≤
∣∣∣(Epψ⋆Pmψ (ϕi − Epψϕi)

)2∣∣∣︸ ︷︷ ︸
∆1

+ 2
∣∣Epψϕi Epψ⋆Pm (ϕi − Epψϕi

)∣∣︸ ︷︷ ︸
∆2
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where

∆1 = Epψ (Pmψ (ϕi − Eψϕi︸ ︷︷ ︸
∆1,1

))2 + Epψ
((
Pmψ ϕi − Epψϕi

)2(dpψ⋆

dpψ
− 1

))
︸ ︷︷ ︸

∆1,2

(a)

≤ α2mEψ(ϕi − Epψϕi)2 + Cχ ∥ψ − ψ⋆∥
(
Epψ (Pm(ϕi − Epψϕi)4

)1/2
(b)

≤ α2mEψ(ϕi − Eψϕi)2 + Cχ ∥ψ − ψ⋆∥
(
EpψPm(ϕi − Epψϕi)2

)1/4 (EpψPm(ϕi − Epψϕi)6
)1/4

(c)

≤ α2mEψ(ϕi − Eψϕi)2 + αm/2Cχ ∥ψ − ψ⋆∥
(
Epψ (ϕi − Epψϕi)2

)1/4 (Epψ (ϕi − Epψϕi)6
)1/4

.

In (a), we used the restricted spectral gap Assumption A3 for ∆1,1, and the Cauchy-Schwarz
inequality combined with Assumption A2 for ∆1,2. In (b), we used the Cauchy-Schwarz once again,
and in (c) we used the fact that Pmψ is a contraction in L6(pψ) and another invocation of the spectral
gap assumption A3 As an aside, note that a simpler result can be obtained by making regularity
assumption on the mapping ψ 7−→ Pmψ . Assuming that ψ 7−→ Pmψ (x) is uniformly Lm-Lipschitz
across x ∈ X for instance (as done in [21, Assumption 5]), the second term ∆1,2 of ∆1 could have
been handled using

∆1,2 ≤ 2Epψ⋆
∥∥Pmψ ϕ− Eψ⋆ϕ

∥∥2 + 2
∥∥Epψϕ− Epψ⋆ϕ

∥∥2
≤ 4(Lm ∥ψ − ψ⋆∥+ σ2

⋆α
2m + 2

∥∥Epψϕ− Epψ⋆ϕ
∥∥2)

≤ 4(Lm ∥ψ − ψ⋆∥+ σ2
⋆α

2m + 2L2 ∥ψ − ψ⋆∥)

Although this result does not require possibly large constants related to sixth-order moments, it is less
tight in the sense that it does not go to 0 as m→∞. Back to the main proof, and ∆2 in particular.
Applying Lemma C.7 to f := ϕ, we have

∆2 ≤ αmEpψϕi Cχ ∥ψ − ψ⋆∥
(
Epψ (ϕi − Epψϕi)2

)1/2
≤ αmCχ∂1i logZ(ψ)∂2i logZ(ψ)1/2 ∥ψ − ψ⋆∥

Putting everything together, we have:

|Epψ⋆ (P
m
ψ ϕi)

2 − Epψϕ2i | ≤ α2mEpψ (ϕi − Epψϕi)2

+ Cχ ∥ψ − ψ⋆∥
(
αm/2(Epψ (ϕi − log ϕi)

6)1/4(Epψ (ϕi − log ϕi)
2)1/4

+ 2αm∂1i logZ(ψ)∂
2
i logZ(ψ)

1/2
)

≤ α2mEpψ (ϕi − Epψϕi)2

+ Cχα
m/2 ∥ψ − ψ⋆∥

(
(Epψ (ϕi − log ϕi)

6)1/4(Epψ (ϕi − log ϕi)
2)1/4

+ 2
∣∣∣∂1i logZ(ψ)∂2i logZ(ψ)1/2∣∣∣ )

Summing over i, we obtain

|Epψ⋆∥P
m
ψ ϕ∥2 − (Epψϕ)2|

≤
∑p

i=1
|Epψ⋆ (P

m
ψ ϕi)

2 − (Epψϕi)2|

≤ α2m
∑p

i=1
Epψ (ϕi − Epψϕi)2 + Cχα

m/2 ∥logZ∥2,∞ ∥ψ − ψ
⋆∥

≤ α2mσ2
ψ + Cχα

m/2 ∥logZ∥2,∞ ∥ψ − ψ
⋆∥

where

∥logZ∥2,∞ = supψ∈Ψ

∑p

i=1

(
Epψ (ϕi − Epψϕi)6

)1/4 (Epψ (ϕi − Epψϕi)2
)1/4

+ 2
∣∣∣∂1i logZ(ψ)∂2i logZ(ψ)1/2∣∣∣

26



Similarly to the previous lemma, one can upper bound E(ϕi − Epψϕi)6 using the centered moment
to cumulant formula:

Epψ (ϕi − Eϕi)6 =15∂2i logZ(ψ)
3 + 10∂3i logZ(ψ)

2 + 15∂2i logZ(ψ)∂
4
i logZ(ψ) + ∂6i logZ(ψ)

=: F (ψ)

To get a full description of ∥logZ∥2,∞:

∥logZ∥2,∞ = supψ∈Ψ

∑p

i=1

(
F (ψ)∂2i logZ(ψ)

)1/4
+ 2

∣∣∣∂1i logZ(ψ)∂2i logZ(ψ)1/2∣∣∣ .
Lemma D.3. Under A1, A2 and A3, for all ψ ∈ Ψ, we have∣∣∣Epψ⋆∥Pmψ ϕ∥2 − ∥∥Epψϕ∥∥2∣∣∣ ≤ αmσ2

ψ + Cχα
m/4 ∥logZ∥2,∞ ∥ψ − ψ

⋆∥

where

∥logZ∥2,∞ := sup
ψ∈Ψ

∑p

i=1

(
F (ψ)∂2i logZ(ψ)

)1/4
+ 2

∣∣∣∂1i logZ(ψ)∂2i logZ(ψ)1/2∣∣∣
and

F (ψ) := 15∂2i logZ(ψ)
3 + 10∂3i logZ(ψ)

2 + 15∂2i logZ(ψ)∂
4
i logZ(ψ) + ∂6i logZ(ψ)

Proof. We have:

Epψ⋆ (P
m
ψ ϕi)

2 = Epψ⋆ (P
m
ψ ϕi − Epψϕi + Epψϕi)2

= Epψ⋆ (P
mϕi − Epψϕi)2 + 2Epψϕi Epψ⋆P

m(ϕi − Epψϕi)
+ (Eψϕi)2

=⇒ |Epψ⋆ (P
m
ψ ϕi)

2 − (Epψϕi)2| ≤
∣∣∣Epψ⋆ (Pm (ϕi − Epψϕi)

)2∣∣∣︸ ︷︷ ︸
∆1

+ 2
∣∣Epψϕi Epψ⋆Pm (ϕi − Epψϕi

)∣∣︸ ︷︷ ︸
∆2

where

∆1 = Epψ (Pmψ (ϕi − Eψϕi︸ ︷︷ ︸
∆1,1

))2 + Epψ
((
Pmψ ϕi − Epψϕi

)2(dpψ⋆

dpψ
− 1

))
︸ ︷︷ ︸

∆1,2

(a)

≤ α2mEψ(ϕi − Epψϕi)2 + Cχ ∥ψ − ψ⋆∥
(
Epψ (Pm(ϕi − Epψϕi)4

)1/2
(b)

≤ α2mEψ(ϕi − Eψϕi)2 + Cχ ∥ψ − ψ⋆∥
(
EpψPm(ϕi − Epψϕi)2

)1/4 (EpψPm(ϕi − Epψϕi)6
)1/4

(c)

≤ α2mEψ(ϕi − Eψϕi)2 + αm/2Cχ ∥ψ − ψ⋆∥
(
Epψ (ϕi − Epψϕi)2

)1/4 (Epψ (ϕi − Epψϕi)6
)1/4

.

In (a), we used the restricted spectral gap Assumption A3 for ∆1,1, and the Cauchy-Schwarz
inequality combined with Assumption A2 for ∆1,2. In (b), we used the Cauchy-Schwarz once again,
and in (c) we used the fact that Pmψ is a contraction in L6(pψ) and another invocation of the spectral
gap assumption A3 As an aside, note that a simpler result can be obtained by making regularity
assumption on the mapping ψ 7−→ Pmψ . Assuming that ψ 7−→ Pmψ (x) is uniformly Lm-Lipschitz
across x ∈ X for instance (as done in [21, Assumption 5]), the second term ∆1,2 of ∆1 could have
been handled using

∆1,2 ≤ 2Epψ⋆
∥∥Pmψ ϕ− Eψ⋆ϕ

∥∥2 + 2
∥∥Epψϕ− Epψ⋆ϕ

∥∥2
≤ 4(Lm ∥ψ − ψ⋆∥+ σ2

⋆α
2m + 2

∥∥Epψϕ− Epψ⋆ϕ
∥∥2)

≤ 4(Lm ∥ψ − ψ⋆∥+ σ2
⋆α

2m + 2L2 ∥ψ − ψ⋆∥)
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Although this result does not require possibly large constants related to sixth-order moments, it is less
tight in the sense that it does not go to 0 as m→∞. Back to the main proof, and ∆2 in particular.
Applying Lemma C.7 to f := ϕ, we have

∆2 ≤ αmEpψϕi Cχ ∥ψ − ψ⋆∥
(
Epψ (ϕi − Epψϕi)2

)1/2
≤ αmCχ∂1i logZ(ψ)∂2i logZ(ψ)1/2 ∥ψ − ψ⋆∥

Putting everything together, we have:

|Epψ⋆ (P
m
ψ ϕi)

2 − Epψϕ2i | ≤ α2mEpψ (ϕi − Epψϕi)2

+ Cχ ∥ψ − ψ⋆∥
(
αm/2(Epψ (ϕi − log ϕi)

6)1/4(Epψ (ϕi − log ϕi)
2)1/4

+ 2αm∂1i logZ(ψ)∂
2
i logZ(ψ)

1/2
)

≤ α2mEpψ (ϕi − Epψϕi)2

+ Cχα
m/2 ∥ψ − ψ⋆∥

(
(Epψ (ϕi − log ϕi)

6)1/4(Epψ (ϕi − log ϕi)
2)1/4

+ 2
∣∣∣∂1i logZ(ψ)∂2i logZ(ψ)1/2∣∣∣ )

Summing over i, we obtain

|Epψ⋆∥P
m
ψ ϕ∥2 − (Epψϕ)2|

≤
∑p

i=1
|Epψ⋆ (P

m
ψ ϕi)

2 − (Epψϕi)2|

≤ α2m
∑p

i=1
Epψ (ϕi − Epψϕi)2 + Cχα

m/2 ∥logZ∥2,∞ ∥ψ − ψ
⋆∥

≤ α2mσ2
ψ + Cχα

m/2 ∥logZ∥2,∞ ∥ψ − ψ
⋆∥

where

∥logZ∥2,∞ = supψ∈Ψ

∑p

i=1

(
Epψ (ϕi − Epψϕi)6

)1/4 (Epψ (ϕi − Epψϕi)2
)1/4

+ 2
∣∣∣∂1i logZ(ψ)∂2i logZ(ψ)1/2∣∣∣

Similarly to the previous lemma, one can upper bound E(ϕi − Epψϕi)6 using the centered moment
to cumulant formula:

Epψ (ϕi − Eϕi)6 =15∂2i logZ(ψ)
3 + 10∂3i logZ(ψ)

2 + 15∂2i logZ(ψ)∂
4
i logZ(ψ) + ∂6i logZ(ψ)

=: F (ψ)

To get a full description of ∥logZ∥2,∞:

∥logZ∥2,∞ = supψ∈Ψ

∑p

i=1

(
F (ψ)∂2i logZ(ψ)

)1/4
+ 2

∣∣∣∂1i logZ(ψ)∂2i logZ(ψ)1/2∣∣∣ .

We can now use the previous lemmas to obtain an expression on the second moment of the contrastive
divergence gradient estimator, relating it to the one of the stochastic log-likelihood gradient estimator.
Lemma D.4. Under A1, A2 and A3, we have:

E ∥ht(ψ,Xt)∥2≤ 2σ2
⋆ + 2σ2

ψ + 2L2 ∥ψ − ψ⋆∥2 + 4(σ2
ψα

2m+αm/2 ∥logZ∥3,∞ Cχ ∥ψ − ψ⋆∥)

where ∥logZ∥3,∞ := 2max(∥logZ∥1,∞ , ∥logZ∥2,∞).

Proof. We rely on the following decomposition:

ht(ψ,Xt) = (ϕ(Xt)− Epψ⋆ϕ)︸ ︷︷ ︸
∆1,1

+(Epψ⋆ϕ− Epψϕ)︸ ︷︷ ︸
∆1,2

+(Ekmψ (Xt,·)ϕ− ϕ(k
m
ψ (Xt, ·)))︸ ︷︷ ︸

∆2

+ (Epψϕ− Ekmψ (Xt,·)ϕ)︸ ︷︷ ︸
∆3

28



∆1,1 + ∆1,2 form the differentiable stochastic gradient gt of Equation 6. Note that ∆1,1 is mean-
zero, and ∆2 is mean-zero conditionally on Xt. Consequently, E ⟨∆2,∆3⟩ = E ⟨∆2,∆1,1⟩ =
E ⟨∆1,1,∆1,2⟩ = E ⟨∆1,1,∆2⟩ = 0, and the only mixed-terms that remain to be controlled are
E ⟨∆1,1,∆3⟩ and E ⟨∆1,2,∆3⟩. We first control the unmixed terms, and the simple ones first: we
have E ∥∆1,1∥2 = σ2

⋆, as well as E ∥∆1,2∥2 ≤ L2 ∥ψ − ψ⋆∥2. For ∆2, we have:

Ekmψ (x,·) ∥∆2∥2 = Ekmψ (x,·)∥ϕ(kmψ (x, ·))∥2 − ∥Ekmψ (x,·)ϕ(k
m
ψ (x, ·))∥2

= Pmψ ∥ϕ(x)∥2 − ∥Pmψ ϕ(x)∥2

We can invoke Lemmas D.3 and D.1, which guarantee∣∣∣Epψ⋆∥Pmψ ϕ∥2 − ∥∥Epψϕ∥∥2∣∣∣ ≤ α2mσ2
ψ + Cχα

m/2 ∥logZ∥2,∞ ∥ψ − ψ
⋆∥∣∣Epψ⋆Pmψ ∥ϕ∥2 − Epψ∥ϕ∥2

∣∣ ≤ αmCχ ∥logZ∥1,∞ ∥ψ − ψ
⋆∥

to obtain

Epψ⋆Ekmψ (x,·) ∥∆2∥2

= Epψ ∥ϕ∥
2 − ∥Eϕ∥2 + α2mσ2

ψ + Cχα
m/2

(
∥logZ∥1,∞ + ∥logZ∥2,∞

)
∥ψ − ψ⋆∥

= E ∥ϕ− Eϕ∥2 + α2mσ2
ψ + αm/2 ∥logZ∥3,∞ Cχ ∥ψ − ψ⋆∥

where ∥logZ∥3,∞ := 2max(∥logZ∥1,∞ , ∥logZ∥2,∞).

For ∆3, notice that ∆3 is precisely the term ∆1 in Lemma D.3, and we can thus bound it by

Epψ⋆ ∥∆3∥2 ≤ σ2
ψα

2m + αm/2 ∥logZ∥2,∞ Cχ ∥ψ − ψ⋆∥

Finally, we simply bound 2E ⟨∆1,1,∆3⟩ by E ∥∆1,1∥2+E ∥∆3∥2, and 2E ⟨∆1,2,∆3⟩ by E ∥∆1,2∥2+
E ∥∆3∥2. Putting everything together, we have:

E ∥ht(ψ)∥2 = E ∥∆1,1∥2 + E ∥∆1,2∥2 + E ∥∆2∥2 + E ∥∆3∥2 + 2E ⟨∆1,1,∆3⟩+ 2E ⟨∆1,2,∆3⟩
≤ 2E ∥∆1,1∥2 + 2E ∥∆1,2∥2 + E ∥∆2∥2 + 3E ∥∆3∥2

≤ 2σ2
⋆ + 2L2 ∥ψ − ψ⋆∥2 + σ2

ψ + 4(σ2
ψα

2m + αm/2 ∥logZ∥3,∞ Cχ ∥ψ − ψ⋆∥)

≤ 2σ2
⋆ + 2σ2

ψ + 2L2 ∥ψ − ψ⋆∥2 + 4(σ2
ψα

2m + αm/2 ∥logZ∥3,∞ Cχ ∥ψ − ψ⋆∥)

D.2 Proof of the SGD recursion (Lemma 3.1)

We are now ready to provide an SGD-style recursion for the expected squared distance to the optimum
E
[
∥ψt − ψ⋆∥2

]
.

Lemma (Restatement of Lemma 3.1). Let ψt be the iterates produced by Algorithm 1. Denote
δt = E

[
∥ψt − ψ⋆∥2

]
, σ⋆ = (Epψ⋆∥ϕ − Epψ⋆ϕ∥2)1/2, and σt = (Epψt ∥ϕ − Epψtϕ∥

2)1/2. Then,
under Assumptions A1, A2 and A3, for all t ≥ 1, we have:

δt ≤ (1− 2ηtµ̃m,t−1 + 2η2tL
2)δt−1 + η2t σ̃

2
m,t−1 + 4αm/2η2t ∥logZ∥2,∞ Cχδ

1/2
t−1

where ∥logZ∥3,∞ is a constant, µ̃m,t := µ− αmσtCχ, and σ̃m,t := (σ2
⋆ + σ2

t + 2σ2
tα

2m)1/2.

Proof. In this proof, we note (Ft)t≥0, the increasing family of σ-algebras generated by the random
variables (Xt)t≥0 ∼ pψ⋆ and the Markov chain samples X̃m

t |Xt, ψt ∼ kmψt(Xt, ·). We decompose
the integrand of δt as follows:

∥ψt − ψ⋆n∥
2
= ∥ProjΨ(ψt−1 − ηtht(ψt−1))− ψ⋆n∥

2

≤ ∥ψt−1 − ηtht(ψt−1)− ψ⋆n∥
2 (By Lemma C.4)

= ∥ψt−1 − ψ⋆∥2 − 2ηt ⟨ht(ψt−1), ψt−1 − ψ⋆n⟩+ η2t ∥ht(ψt−1)∥2
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The first term is (up to an averaging operation) the previous iterate. The middle term will ensure
(provided m is large enough) contraction of the expected distance to the optimum. Finally, the
third term can be described by Lemma D.4, and essentially behaves like the second moment of a
log-likelihood stochastic gradient. Indeed, noting g(ψ) := −Epψ⋆ϕ + Epψϕ the expectation of gt
w.r.t xt (which is the gradient of the negative cross-entropy between pψ and pψ⋆ ), we have:

⟨ht(ψn,t−1), ψt−1 − ψ⋆n⟩ = ⟨g(ψn,t−1), ψt−1 − ψ⋆n⟩+ ⟨(ht(ψn,t−1)− g(ψn,t−1)), ψt−1 − ψ⋆n⟩︸ ︷︷ ︸
∆

and applying Lemma C.7, we get that

ht(ψt−1)− g(ψt−1) = ϕ(km(Xt, ·))− Epψϕ
=⇒ Epψ⋆Ekmψ (Xt,·) [ht(ψt−1)− g(ψt−1)|Ft−1] = Pmψ ϕ− Epψϕ ,

meaning
|E [∆|Ft−1]| ≤

∥∥Epψ⋆Pmψ (ϕ− Epψϕ)
∥∥ ∥ψt−1 − ψ⋆∥

≤ αmCχ(Epψt−1

∥∥∥f − Epψt−1
f
∥∥∥2)1/2 ∥ψ − ψ⋆∥2

≤ αmσt−1Cχ ∥ψ − ψ⋆∥2

On the other hand, by applying Lemma C.8 to g, we have:

⟨g(ψt−1), ψt−1 − ψ⋆⟩ = ⟨g(ψt−1)− g(ψ⋆), ψt−1 − ψ⋆⟩ ≥ µ ∥ψt−1 − ψ⋆∥2

Combining the above results, we obtain:

Epψ⋆Ekmψ (x,·)

[
∥ψt − ψ⋆∥2 |Ft−1

]
≤ (1− 2ηt(µ− αmσt−1Cχ))∥ψt−1 − ψ⋆∥2

+ η2t (2σ
2
⋆ + 2σ2

t−1 + 2L2 ∥ψt−1 − ψ⋆∥2 + 4(σ2
t−1α

2m + αm/2 ∥logZ∥3,∞ Cχ ∥ψt−1 − ψ⋆∥))

And the result follows by integrating over Ft−1.

D.3 Proof of Online CD convergence

We now prove Theorem 3.2. The recursion of Lemma 3.1 is almost identifiable, up to a cross-term
of second order, with the one of an SGD algorithm as presented in the setting of [22, Theorem 1].
To make the identification exact, we use the bound 4αm/2η2t ∥logZ∥3,∞ Cχδ

1/2
t−1 ≤ 2αm/2η2t δt +

2αm/2η2t ∥logZ∥
2
3,∞ C2

χ, yielding the following recursion:

δt ≤ (1− 2ηt(µ− αmσCχ) + 2η2t (L
2+αm/2))δt−1 + (σ2(2 + 2α2m)+αm/2 ∥logZ∥23,∞ C2

χ)η
2
t

where we used the fact that σ̃m,t ≤ σ. This recursion is of the same form as the one studied in [22,
Equation 6, Theorem 1] given by:

δt ⩽
(
1− 2µγt + 2L2γ2t

)
δt−1 + 2σ2γ2t

by identifying:
σ2 ← σ2(2 + 2α2m) + αm/2 ∥logZ∥23,∞ =: σ̃2

m

L2 ← (L2 + αm/2) =: L̃2

µ← µ− αmσCχ =: µ̃m
γt ← ηt

We can use the same unrolling strategy as theirs (the only condition required to proceed is that
µ̃m > L̃, which automatically holds since µ < L), and we obtain

δn ⩽

2 exp
(
4L̃C2φ1−2β(n)

)
exp

(
− µ̃mC4 n1−β

)(
δ0 +

σ̃2
m

L̃2

)
+

4Cσ̃2
m

µ̃mnβ
, if 0 ⩽ β < 1

exp(2L̃2C2)
nµ̃mC

(
δ0 +

σ̃2
m

L̃2

)
+ 2σ̃2

mC
2 φµ̃mC/2−1(n)

nµ̃mC/2
, if β = 1.
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D.4 Proof of online CD with averaging (Theorem 3.3)

We first restate the theorem in its complete form.

Theorem (Contrastive Divergence with Polyak-Ruppert averaging). Let (ψt)t≥0 the sequence of
iterates obtained by running the CD algorithm with a learning rate ηt = Ct−β for β ∈ ( 12 , 1). Define
ψ̄n := 1

n

∑n
i=1 ψi. Then, under the same assumptions as Theorem 3.2 we have, for all n ≥ 1,√

E
∥∥ψn − ψ⋆∥∥2 ≤ 2

√
tr(I(ψ)−1)

n
+O

(
nmax(−( 1

2+
β
4 ),−β,

β
2 −1,−( β2 +m

|logα|
logn ))

)
Where I(ψ⋆) := Covpψ⋆ [ϕ] is the Fisher information matrix of the data distribution. Additionally, if

m > (1−β) logn
2| logα| , we have

√
E
∥∥ψn − ψ⋆∥∥2 ≤ 2

√
tr(I(ψ)−1)

n
+ o

(
n−1/2

)
.

Throughout the proof, we will denote by hn the standard online CD gradient defined in Equation 3:

hn(ψn−1) = −ϕ(Xn) + ϕ(kmψn−1
(·, Xn)), Xn ∼ pψ⋆ , ∀n ∈ N \ {0},

as well as

h(ψn−1) := E [h(ψn−1) |ψn−1] = Epψ⋆ϕ(Xn) + Epψ⋆Ekmψn−1
ϕ(kmψn−1

(Xn, ·)).

We start by establishing some intermediate lemmas.

Lemma D.5. Under Assumptions A1, A2, A3, the online CD iterates produced by Algorithm 1 using
ηt = Ct−β for β ∈ ( 12 , 1) verify

1

n

√∑n

i=1

(
E
[
∥ψi − ψ⋆∥2

])
= O(n− 1

2−
β
2 ).

Proof. Let us note δn = E
[
∥ψn − ψ⋆∥2

]
. Summing the r.h.s of Theorem 3.2, we have

∑n

i=1
δi ≤

∑n

i=1

4Cσ̃2
m

µ̃miβ
+ 2

(
δ0 +

σ̃2
m

L̃2

)∑n

i=1
e4L̃C

2φ1−2β(i)e−
µ̃mC

4 n1−β︸ ︷︷ ︸
A3

=⇒ 1

n

√∑n

i=1
δi ≤

1

n

√
4Cσ̃2

m

µ̃m
φ1−β(n) +

1

n

√(
2(δ0 +

σ̃2
m

L̃2
)A3

)
= O

(
n−

1
2−

β
2

)
.

where A3 is finite if β < 1, and A3 = O(n) otherwise [22].

Lemma D.6. Under Assumptions A1, A2, A3, the online CD iterates produced by Algorithm 1 using
ηt = Ct−β for β ∈ ( 12 , 1) verify

1

n

√∑n

i=1

(
E
[
∥ψi − ψ⋆∥2

])1/2
= O(n− 1

2−
β
4 ).

Proof. Let us note δn = E
[
∥ψn − ψ⋆∥2

]
. Applying

√
x+ y ≤

√
x+
√
y to the r.h.s of Theorem

3.2, we have

∑n

i=1
δ
1/2
i ≤ 2C1/2σ̃m

2µ̃
1/2
m

∑n

i=1
i−β/2 +

√
2
(
δ0 +

σ̃2
m

L̃2

)∑n

i=1
e2L̃

2C2φ1−2β(i)e−
µ̃mC

8 i1−β︸ ︷︷ ︸
A4

=⇒ 1

n

√∑n

i=1
δ
1/2
i ≤ 1

n

√
2C1/2σ̃m

µ̃
1/2
m

φ1−β/2(n) +
1

n

(√
2

(
δ0 +

σ̃2
m

L̃2

)
A4

)1/2

= O
(
n−

1
2−

β
4

)
.

where A4 is finite if β < 1, and A4 = O(n) otherwise [22].

31



Lemma D.7. Under Assumptions A1, A2, A3, the online CD iterates produced by Algorithm 1 using
ηt = Ct−β for β ∈ ( 12 , 1) verify√

E
[∥∥∥ 1

n

∑n

i=1
hi(ψi−1)

∥∥∥2] = O (n β2 −1
)
.

Proof. The result follows from the fact that ht verifies

ht(ψt−1) =
1

ηt
(ψt−1 − ψt) .

A similar quantity was handled in the case of standard SGD [22, Theorem 3], and the only condition
needed to reuse their steps is that (ψt)t≤n satisfies an upper bound of the same form as the one [22,
Theorem 1] derived. This is precisely the nature of our bound of ψt estblished in Theorem 3.2, with
µ̃m, σ̃m, L̃. Borrowing on their result, we have:√

E
[∥∥∥ 1

n

∑n

i=1
hi(ψi−1)

∥∥∥2] ≤ 4σ̃mβ

C1/2nµ̃m
φβ/2(n) +

4β

Cnµ̃
1/2
m

(
δ0 +

σ̃2
m

L̃2

)1/2
A2

+
1

nµ̃
1/2
m

(
1

C
+ 2L̃

)
δ
1/2
0 +

2L̃

nµ̃
1/2
m

2C1/2σ̃m

µ̃
1/2
m

φ1−β(n)
1/2

+
4L̃

nµ̃
1/2
m

(
δ0 +

σ̃2
m

L̃2

)1/2
A

1/2
2

where µ̃m, σ̃m and L̃ are defined in 3.2, and

A2 =
∑n

k=1
e

−µ̃mC
16 k1−β+16L̃4

1C
4φ1−2β(k)

Lemma D.8. Under Assumptions A1, A2, A3, the online CD iterates produced by Algorithm 1 using
ηt = Ct−β for β ∈ ( 12 , 1) verify

1

n

n∑
i=1

√
E
[
∥ψi − ψ⋆∥4

]
= O(n−β).

Proof. We proceed as in the proof of [22, Theorem 3], first establishing a recurrence for
E
[
∥ψi − ψ⋆∥4

]
, and then unrolling it. We have

E
[
∥ψn − ψ∗∥4 | Fn−1

]
⩽ ∥ψn−1 − ψ∗∥4 + 6η2n ∥ψn−1 − ψ∗∥2 E

[
∥hn (ψn−1)∥2 | Fn−1

]
+ η4nE

[
∥hn (ψn−1)∥4 | Fn−1

]
− 4ηn ∥ψn−1 − ψ∗∥2 ⟨ψn−1 − ψ∗,E [hn]⟩

+ 4η3n ∥ψn−1 − ψ∗∥E
[
∥hn (ψn−1)∥3 | Fn−1

]
.

The second and fourth terms will be controlled using results from our previous sections. For simplicity,
we don’t attempt to relate the moments of ∥hn∥4 as precisely as before. Instead we use:

Epψ⋆
[
∥hn∥k

]
≤ 2k−1

(
Epψ⋆Ekmpψn−1

[
∥ϕ(kmψn−1

(Xn, ·))∥k
]
+ Epψ⋆

[
∥ϕ(Xn)∥k

])

And let us note τ =
(
supψ∈Ψ Epψ ∥ϕ∥

8
)1/8

. We have, for k ≥ 4,

Epψ⋆Ekmpψn−1

∥ϕ(kmψn−1
(Xn, ·))∥k ≤ Epψn−1

∥ϕ∥k + Cχ(Epψn−1
(∥ϕ∥k − Epψn−1

∥ϕ∥k)2)1/2∥ψn−1 − ψ⋆∥

≤ τk + 2Cχτ
k∥ψn−1 − ψ⋆∥
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Where we used the fact that Pmψn−1
is a contraction, and (E ∥ϕ∥k)1/k is an increasing function of k.

On the other hand, we simply have Epψ⋆∥ϕ(Xn, ·)∥k ≤ τk. Plugging this into the previous equation,
we obtain

E
[
∥ψn − ψ∗∥4 | Fn−1

]
⩽ ∥ψn−1 − ψ∗∥4

+ 6η2n ∥ψn−1 − ψ∗∥2
(
4τ2 + 4Cχτ

2 ∥ψn−1 − ψ⋆∥
)

+ η4n(16τ
4 + 16Cχτ

4 ∥ψn−1 − ψ⋆∥)
− 4ηn ∥ψn−1 − ψ∗∥2 ⟨ψn−1 − ψ∗,E [hn|Fn−1]⟩
+ 4η3n ∥ψn−1 − ψ∗∥

(
8τ3 + 8Cχτ

3 ∥ψn−1 − ψ⋆∥
)

To simplify the recursion, we use the four following inequalities:

τ2η2n ∥ψn−1 − ψ⋆∥3 ≤
1

2
(τ2η2n(∥ψn−1 − ψ⋆∥2 + τ2η2n ∥ψn−1 − ψ⋆∥4)

τ4η4n ∥ψn−1 − ψ⋆∥ ≤ (τ4η4n +
1

4
τ4η4n ∥ψn−1 − ψ⋆∥4))

η3nτ
3 ∥ψn−1 − ψ⋆∥ ≤

1

2
(η2nτ

2 ∥ψn−1 − ψ⋆∥2 + 16η4nτ
4

τ3η3n ∥ψn−1 − ψ⋆∥2 ≤
1

2
(η4nτ

4 + ∥ψn−1 − ψ⋆∥2 η2nτ2)

Injecting them in our recursion, we obtain:

E
[
∥ψn − ψ∗∥4 | Fn−1

]
⩽ ∥ψn−1 − ψ∗∥4

+ 12η2n ∥ψn−1 − ψ∗∥2 τ2

+ 12Cχτ
2η2n∥ψn−1 − ψ⋆∥2

+ 12Cχτ
2η2n∥ψn−1 − ψ⋆∥4

+ 16η4nτ
4

+ 16Cχη
4
nτ

4

+ 4Cχη
4
nτ

4 ∥ψn−1 − ψ⋆∥4

− 4ηnµ̃m ∥ψn−1 − ψ∗∥4

+ 16η2nτ
2 ∥ψn−1 − ψ∗∥2

+ 16η4nτ
4

+ 16η4nCχτ
4

+ 16η2nCχτ
2 ∥ψn−1 − ψ⋆∥2 ,
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which, after further simplifications, yields

E
[
∥ψn − ψ∗∥4 | Fn−1

]
≤ ∥ψn−1 − ψ⋆∥4 (1− 4ηnµ̃m + 12Cχη

2
nτ

2 + 4Cχτ
4η4n)

+ η2n ∥ψn−1 − ψ⋆∥2 (28(1 + Cχ)τ
2) + 32η4n(τ

4(1 + Cχ))

≤ ∥ψn−1 − ψ⋆∥4 (1− 4ηnµ̃m + 12(1 + Cχ)η
2
nτ

2 + 4(1 + Cχ)τ
4η4n)

+ 28η2n ∥ψn−1 − ψ⋆∥2 ((1 + Cχ)τ)
2 + 32η4n(1 + Cχ)τ)

4

≤ ∥ψn−1 − ψ⋆∥4 (1− 4ηnµ̃m + 12η2n((1 + Cχ)τ)
2 + 4((1 + Cχ)τ)

4η4n)

+ 28η2n ∥ψn−1 − ψ⋆∥2 ((1 + Cχ)τ)
2 + 32η4n(1 + Cχ)τ)

4

≤ ∥ψn−1 − ψ⋆∥4 (1− 4ηnµ̃m + 12η2n(2(1 + Cχ)τ)
2 + 16η2n(2(1 + Cχ)τ)

3

+ 4(2(1 + Cχ)τ)
4η4n) + 20η2n ∥ψn−1 − ψ⋆∥2 (2(1 + Cχ)τ)

2 + 16η4n(2(1 + Cχ)τ)
4

≤ ∥ψn−1 − ψ⋆∥4 (1− 4ηnµ̃m + 12η2n(2(1 + Cχ)τ + L)2 + 16η2n(2(1 + Cχ)τ + L)3

+ 4(2(1 + Cχ)τ + L)4η4n) + 20η2n ∥ψn−1 − ψ⋆∥2 (2(1 + Cχ)τ)
2 + 16η4n(2(1 + Cχ)τ)

4

≤ ∥ψn−1 − ψ⋆∥4 (1− 4ηnµ̃m + 12η2nL̃
2
1 + 16η2nL̃

3
1 + 4L̃4

1η
4
n)

+ 20η2n ∥ψn−1 − ψ⋆∥2 τ̃21 + 16η4nτ̃
4
2

where we defined τ̃1 := 2(1 + Cχ)τ and L̃1 := 2(1 + Cχ)τ + L. This recursion is of the form of
the one studied in [22, Equation 32] (note that by design, L̃ ≥ µ̃m.) The steps performed to bound
E
[
∥ψi − ψ⋆∥4

]
thus follow from their derivations, and we obtain:

1

n

√∑n

i=1
E ∥ψi−1 − ψ⋆∥4

⩽
Cτ̃21
2n

(
C1/2φ1−3β/2(n) + µ̃−1/2

m φ1−β(n)
)

+

√
20C1/2τ̃1

2n
A1 exp

(
24L̃4

1C
4
)(

δ0 +
µ̃mE ∥θ0 − θ∗∥4

20Cτ̃21
+ 2τ̃21C

3µ̃m + 8τ̃21C
2
)1/2

= O
(
n−β

)
,

where
A1 =

∑n

k=1
e

−µ̃C
16 k1−β+16L̃4

1C
4φ1−2β(k)

and we have A(1) < +∞ if β < 1, and A(1) = O(n) otherwise.

Lemma D.9. For all ψ ∈ Ψ, we have:∥∥Cov [ϕ(kmψ (Xn, ·))
]
− Covpψ [ϕ(Xn)]

∥∥
F

≤ αmCχ(τ̄1/2 + 2∥ logZ∥4,∞σ)∥ψ − ψ⋆∥+ α2mC2
χσ

2 ∥ψ − ψ⋆∥2 .

where τ̄ := supψ∈Ψ Epψ
[∥∥ϕϕ⊤ − Epψ [ϕϕ⊤]

∥∥2
F

]
< +∞ and ∥ logZ∥4,∞ := supψ∈Ψ ∥Eψϕ∥ ≤

supψ∈Ψ

∑d

i=1
∂2i logZ(ψ)

2.

Proof. We have

Cov
[
ϕ(kmψ (Xn, ·))

]
= Epψ⋆P

m
ψ

[
ϕϕ⊤

]
−
(
Epψ⋆ [P

m
ψ ϕ]

) (
Epψ⋆ [P

m
ψ ϕ]

⊤)
Looking at the second moment first, we have

Epψ⋆
[
Pmψ ϕϕ

⊤]− Epψϕϕ⊤ = Epψ⋆P
m
ψ (ϕϕ⊤ − Epψϕϕ⊤)︸ ︷︷ ︸

∆1

.

Applying lemma C.7 to the Rd2 -valued function f given by fij := ϕiϕj − Epψϕiϕj ,

∥∆1∥F ≤ ∥ψ − ψ
⋆∥αmCχ

√
Epψ

[∥∥ϕϕ⊤ − Epψϕϕ⊤
∥∥2
F

]
≤ τ̄1/2αmCχ ∥ψ − ψ⋆∥ .
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We now investigate the first moment. We have

Epψ⋆
[
Pmψ ϕ

]
= Epψ⋆

[
Pmψ ϕ

]
− Epψ [ϕ]︸ ︷︷ ︸

∆2,1

+ Epψnϕ

=⇒ (Epψ⋆P
m
ψ ϕ)(Epψ⋆P

m
ψ ϕ)

⊤ − EpψϕEpψϕ⊤︸ ︷︷ ︸
∆2

= ∆2,1∆
T
2,1 +∆2,1Epψϕ⊤ + Epψϕ∆⊤

2,1

and thus, applying Lemma C.7 on ∆2,1, we have:

∥∆2∥F ≤
∥∥∆2,1∆

⊤
2,1 +∆2,1Epψ

[
ϕ⊤
]
+ Epψ [ϕ] ∆⊤

2,1

∥∥
F

≤ ∥∆2,1∆
⊤
2,1∥F + 2 ∥∆2,1∥ ∥Epψ [ϕ] ∥

≤ α2mσ2C2
χ ∥ψ − ψ⋆∥

2
+ 2 ∥logZ∥4,∞ αmCχσ ∥ψ − ψ⋆∥ ,

where we used that ∥∆2,1∆
⊤
2,1∥F = ∥∆2,1∥2. We can now combine our two matrix moment bounds

to obtain ∥∥Cov [ϕ(kmψ (Xn, ·))
]
− Covpψ [ϕ(Xn)]

∥∥
F
= ∥∆1 +∆2∥F

≤ αmCχ(τ̄1/2 + 2∥ logZ∥4,∞σ)∥ψ − ψ⋆∥+ α2mC2
χσ

2 ∥ψ − ψ⋆∥2 .

Lemma D.10. Under Assumptions A1, A2, A3 it holds that√
E
[∥∥∥ 1

n

∑n

i=1
f ′′(ψ⋆)−1(h(ψi−1)− hi(ψi−1))

∥∥∥2] ≤ 2

√
tr(I(ψ⋆)−1)

n

+

∥∥I(ψ⋆)−2
∥∥1/2
F

n

(
(M + αmCχ(τ̄

1/2 + 2∥ logZ∥4,∞σ))1/2
(∑n

i=1
δ
1/2
i−1

)1/2
+ α2mC2

χσ
2
(∑n

i=1
δi−1

)1/2)
where M := supψ∈Ψ

∥∥∇3 logZ(ψ)
∥∥
op(∥·∥F ,∥·∥F )

< +∞.

Proof.
f ′′(ψ⋆)−1(h(ψn−1)− hn(ψn−1))

= f ′′(ψ⋆)−1 (ϕ(Xn)− Epψ⋆ϕ)︸ ︷︷ ︸
∆1,n

+f ′′(ψ⋆)−1 (ϕ(kmψn−1
(Xn))− Epψ⋆Ekmψn−1

ϕ(kmψn−1
(Xn, ·)))︸ ︷︷ ︸

∆2,n

= f ′′(ψ⋆)−1∆1,n + f ′′(ψ⋆)−1∆2,n

Noting ∆ the l.h.s of Lemma D.10, we have, summing over [n], and using Minkowski’s inequality,

∆ ≤ 1

n

√
E
∥∥∥∑n

i=1
f ′′(ψ⋆)−1∆1,i

∥∥∥2 + 1

n

√
E
∥∥∥∑n

i=1
f ′′(ψ⋆)−1∆2,i

∥∥∥2
Note that this step was made possible because we are looking at the square-root of the variance, which
is unlike the recursion in Lemma 3.1. This allows to separate the terms and use fewer intermediaries
than in the proof of Lemma 3.1.
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Since both ∆1,n and ∆2,n are martingale differences with respect to the filtrationFn−1, the covariance
terms vanish, and we have

∆ ≤ 1

n

√∑n

i=1
E
[
∥f ′′(ψ⋆)−1∆1,i∥2

]
+

1

n

√∑n

i=1
E
[
∥f ′′(ψ⋆)−1∆2,i∥2

]
≤ 1

n

√∑n

i=1
tr(f ′′(ψ⋆)−1E

[
∆1,i∆⊤

1,if
′′(ψ⋆)−1)

]
+

1

n

√∑n

i=1
tr(f ′′(ψ⋆)−1E

[
∆2,i∆⊤

2,if
′′(ψ⋆)−1)

]
≤
√

tr(I(ψ⋆)−1)

n
+

1

n

√∑n

i=1
tr(f ′′(ψ⋆)−1Cov

[
ϕ(kmψi−1

(xi))
]
f ′′(ψ⋆)−1)

≤
√

tr(I(ψ⋆)−1)

n
+

1

n

(∑n

i=1
tr(f ′′(ψ⋆)−1(Covpψ⋆ϕ+ (Covpψi−1

ϕ− Covpψ⋆ϕ)

+ (Cov ϕ(kmψi−1
(xi))− Covpψi−1

ϕ))f ′′(ψ⋆)−1)
)1/2

≤ 2

√
tr(I(ψ⋆)−1)

n
+

√
tr(I(ψ⋆)−2)

n

(∑n

i=1
∥(Covpψn−1

ϕ− Covpψ⋆ϕ∥F

+ ∥Cov ϕ(kmψ (xi))− Covpψ ϕ)∥F
)1/2

(a)

≤ 2

√
tr(I(ψ⋆)−1)

n
+

√
tr(I(ψ⋆)−2)

n

(
(M + αmCχ(τ̄

1/2 + 2∥ logZ∥4,∞σ)1/2)×√∑n

i=1
∥ψi−1 − ψ⋆∥+ αmCχσ

√∑n

i=1
∥ψi−1 − ψ⋆∥2

)
(b)

≤ 2

√
tr(I(ψ⋆)−1)

n
+

√
tr(I(ψ⋆)−2)

n

(
(M + αmCχ(τ̄

1/2 + 2∥ log z∥4,∞σ))1/2
√∑n

i=1
δ
1/2
i

+αmCχσ
√∑n

i=1
δi

)

In (a) we used Lemma D.10, the cyclicity of the trace, tr(A⊤B) ≤ ∥AB∥F ≤ ∥A∥F ∥B∥F, and
the fact that since Covpψi−1

[ϕ(xi)] = ∇2
ψL(ψi−1), by analycity of L, there exists a constant

M := supψ∈Ψ

∥∥∇3 logZ(ψ)
∥∥
op(∥·∥,∥·∥F )

such that

∥∇2
ψL(ψi−1)−∇2

ψL(ψ⋆)∥F ≤M ∥ψi−1 − ψ⋆∥ .

In (b) we used Jensen’s inequality to get E [∥ψi−1 − ψ⋆∥] ≤
√

E
[
∥ψi−1 − ψ⋆∥2

]
= δ

1/2
i−1.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. It holds that:

f ′′(ψ⋆)(ψn−1 − ψ⋆) = f ′(ψn−1)− f ′(ψ⋆) + (f ′′(ψ⋆)(ψn−1 − ψ⋆)− f ′(ψn−1) + f ′(ψ⋆))

= hn(ψn−1)− f ′(ψ⋆) + (f ′′(ψ⋆)(ψn−1 − ψ⋆)− f ′(ψn−1) + f ′(ψ⋆))

+ (f ′(ψn−1)− h̄(ψn−1)) + (h(ψn−1)− hn(ψn−1)).
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Applying on both sides: (a) a summation over i ∈ [n], (b) a multiplication by f ′′(ψ⋆)−1, (c)√
E[∥ · ∥2], and using Minkowski’s inequality on the r.h.s, we obtain√

E
[∥∥∥ 1

n

∑n

i=1
ψi − ψ⋆

∥∥∥2] ≤√E
[∥∥∥ 1

n

∑n

i=1
f ′′(ψ⋆)−1hi(ψi−1)

∥∥∥2]︸ ︷︷ ︸
(i)

+

√
E
[∥∥∥ 1

n

∑n

i=1
f ′′(ψ⋆)−1(f ′′(ψ⋆)(ψi−1 − ψ⋆)− f ′(ψi−1)

∥∥∥2]︸ ︷︷ ︸
(ii)

+

√
E
[∥∥∥ 1

n

∑n

i=1
f ′′(ψ⋆)−1(f ′(ψi−1)− h̄(ψi−1))

∥∥∥2]︸ ︷︷ ︸
(iii)

+

√
E
[∥∥∥ 1

n

∑n

i=1
f ′′(ψ⋆)−1(h(ψi−1)− hi(ψi−1))

∥∥∥2]︸ ︷︷ ︸
(iv)

.

(i) and (ii) have direct analogues in the proofs of prior work [22] on the convergence of (unbiased)
SGD with Polyak-Ruppert averaging, and will be bounded similarly. (iii) captures the bias of the
CD algorithm, while (iv) captures the variance.

Bounding (i) Using Lemma D.7, we have (i) = O(n
β
2 −1).

Bounding (ii) Since logZ(ψ) is analytic, there exists some constant M ′ such that

∥f ′′(ψ⋆)(ψi−1 − ψ⋆)− f ′(ψi−1)∥ ≤M ′∥ψi−1 − ψ⋆∥2.

Thus, we have:

(ii) ≤ M ′

n

√
E
[(∑n

i=1
∥ψi − ψ⋆∥2

)2]
≤ M ′

n

n∑
i=1

√
E
[
∥ψi − ψ⋆∥4

]
= O(n−β)

where the second-to-last inequality used Minkowski’s inequality, and the last applied Lemma D.8.

Bounding (iii) By Minkowski’s inequality, we have:

(iii) ≤ 1

n

∑n

i=1

√
E
[∥∥f ′(ψn−1)− h̄(ψn−1)

∥∥2]
Moreover, using lemma C.7, we have:∥∥f ′(ψn−1)− h̄(ψn−1)

∥∥ =
∥∥∥Epψn−1

ϕ− Epψ⋆Ekmψn−1
ϕ
∥∥∥

≤ αm
√

Epψn−1

∥∥∥ϕ− Epψn−1
ϕ
∥∥∥2Cχ ∥ψn−1 − ψ⋆∥

≤ αmσCχ ∥ψn−1 − ψ⋆∥ .

We thus obtain

(iii) ≤ αmCχ

n

∑n

i=1
(E ∥ψi−1 − ψ⋆∥2)1/2 =

αmCχ

n

∑n

i=1
δ
1/2
i−1.

Recalling that δi satisfies Theorem 3.2, we have that δ
1
2
n = O(n−β/2), and we thus have

∑n
i=1 δ

1/2
i =

O(n1−
β
2 ). By squaring the result of Lemma D.6, we have

∑n
i=1 δ

1/2
i = O(n−1− β

2 ), and thus, we

obtain that (iii) = O(αmn−β/2) = O(n−( β2 +m
|logα|
logn )).
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Bounding (iv) We have

(iv)

(a)

≤ 2

√
tr

(
I(ψ⋆)−1

)
n

+

∥∥I(ψ⋆)−2
∥∥1/2
F

n

(
(M + αmCχ(τ̄ + 2∥ logZ∥4,∞σ))1/2

√∑n

i=1
δ
1/2
i−1

+αmCχσ
√∑n

i=1
δi−1

)
(b)

≤ 2

√
tr

(
I(ψ⋆)−1

)
n

+O(n− 1
2−

β
4 ).

Where in (a), we used Lemma D.10 and in (b), we used Lemma D.6 and D.5.

Final bound Putting everything together, we have that:√
E
∥∥ψn − ψ⋆∥∥2 ≤ 2

√
tr(I(ψ)−1)

n
+O(nmax(−( 1

2+
β
4 ),−β,

β
2 −1,−( β2 +m

|logα|
logn ))).

If, furthermore, m > (1−β) logn
2| logα| , we have

max

(
−
(
1

2
+
β

4

)
,−β, β

2
− 1,−

(
β

2
+m
|logα|
log n

))
< −1

2
,

which concludes the proof.

E L2 approximation by auxiliary gradient updates

In this section, we consider different gradient update schemes starting from some random initialization
θinit, and control the L2 distance between the different updates and the deterministic target ψ∗ ∈ Ψ.

Notation. Recall the notation that X1, . . . , Xn
i.i.d.∼ pψ∗ , B = n/N and for ψ ∈ Ψ, Kψ(x) ∼

kmψ (x, • ). We also write, for m ∈ N ∪ {∞},

Km
1;ψ(x) , . . . , K

m
n;ψ(x)

i.i.d.∼ kmψ (x, • )

Let θinit be some Ψ-valued random initialization that is possibly correlated with X1, . . . , Xn. We
capture the effect of correlation through the following quantities: For ϵ > 0 and ν > 2, let

ϑinitn,m(ϵ) := P

(∥∥∥∑n
i=1 E

[
ϕ
(
Km
θinit

(Xi)
) ∣∣Xi, θinit]− E

[
ϕ
(
Km
θinit

(X′
i)
) ∣∣ θinit]∥∥∥

n
> ϵ

)
,

and εinitn,m;ν(ϵ) :=

√
ϵ2 + κ2ν;m

(
ϑinitn,m(ϵ)

) 2
ν−2 .

We also consider the i.i.d. samples, drawn independently of X1, . . . , Xn and on a given ψ ∈ Ψ, as

Xψ
1 , . . . , X

ψ
n

i.i.d.∼ pψ .

For notational clarity, we shall use θm,B to denote parameters arising from an one-step update, where
the subscripts m,B represent performing the one-step update with length-m Markov chains and with
batch size B. This is to be distinguished from ψt elsewhere in the text, which denotes the parameter
from the actual multi-step CD algorithm and the subscript t denotes the t-th CD iterate.

Gradient update schemes. We consider five different updates. Let X ′
1 be an i.i.d. copy of X1

drawn independently of all other random variables. The SGD-with-replacement update is given by

θSGDw
m,B := F SGDw

m,B (θinit) , where F SGDw
m,B (ψ) := ψ − η

B

∑
i∈Sw

(
ϕ(Xi)− ϕ

(
Km
i;ψ(Xi)

))
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and Sw is a uniformly drawn size-B subset of [n]. The SGD-without-replacement update, after
renormalizing the learning rate, is given by the N -fold function composition

θSGDo
m,B := F SGDo

m,B;N ◦ . . . ◦ F SGDo
m,B;1(θ

init) ,

where F SGDo
m,B;j(ψ) := ψ − η

NB

∑
i∈Soj

(
ϕ(Xi)− ϕ

(
Km
i;ψ(Xi)

))
for each j ∈ [N ] ,

and Soj ’s are disjoint size-B random subsets of [n], defined by (So1 , . . . , S
o
N ) = π([n]) for a uniformly

drawn element π of the permutation group on n objects. The full-batch gradient update is given by

θGD
m := FGD

m (θinit) , where FGD
m (ψ) := ψ − η

n

∑
i≤n

(
ϕ(Xi)− ϕ

(
Km
i;ψ(Xi)

))
.

The full-batch gradient update with an infinite-length Markov chain is given by

θGD
∞ := FGD

∞ (θinit) , where FGD
∞ (ψ) := ψ − η

n

∑
i≤n

(
ϕ(Xi)− ϕ(Xψ

1 )
)
.

The population gradient update with an infinite-length Markov chain is given by

θpop := fpop(θinit) , where fpop(ψ) := ψ − η E
[
ϕ(X1)− ϕ(Xψ

1 )
]
,

where we use the lowercase f to emphasize that fpop is a deterministic function.

The forthcoming results are summarized below:

θSGDw
m,B

Lemma E.1
≈ θGD

m

Lemma E.2
≈ θGD

∞
Lemma E.3
≈ θpop

Lemma E.4
≈ ψ∗ .

Lemma E.1. Let Fn be the sigma algebra generated by {Xi,K
m
i;θinit(Xi) | 1 ≤ i ≤ n}. Then

E
[
θSGDw
m,B − θGD

m

∣∣ θinit,Fn] = 0 almost surely .

Moreover, under A1 and A7, we have

E
∥∥θSGDw
m,B − θGD

m

∥∥2 ≤ 4η2(σ2 + κ2ν;m)

B
I{B<n} .

Proof of Lemma E.1. Write A := (A1, . . . , An), where

Ai :=
(
ϕ(Xi)− ϕ

(
Km
i;θinit(Xi)

))
− E

[
ϕ(X1)− ϕ

(
Km
i;θinit(X1)

)]
.

Since Sw is uniformly drawn from all size-B subsets of [n] and independently of all other variables,
we have that almost surely

E
[
θSGDw
m,B − θGD

m

∣∣ θinit,Fn] = E
[
η

B

∑
i∈Sw Ai −

η

n

∑
i≤nAi

∣∣∣A] = 0 .

To prove the remaining bound, we note that the above relation implies θSGDw
m,B − θGD

m is zero-mean.
By the law of total variance, we have

E
∥∥θSGDw
m,B − θGD

m

∥∥2 = Tr Cov
[
θSGDw
m,B − θGD

m

]
= TrECov

[
θSGDw
m,B − θGD

m

∣∣ θinit,Fn]
= η2 TrE

[
E
[(

1

B

∑
i∈Sw Ai

)(
1

B

∑
i∈Sw Ai

)⊤ ∣∣∣A]− ( 1

n

∑
i≤nAi

)(
1

n

∑
i≤nAi

)⊤ ]
.

To compute the covariance, recall that Sw is a uniformly drawn size-B subset of [n] with B = n/N .
Let PN ([n]) be the collection of all partitions of [n] into N size-B subsets. We can generate Sw by
the following two-step process:

(i) Uniformly draw a partition P ′ = (P ′
1, . . . , P

′
N ) from PN ([n]);

(ii) Uniformly sample an index K from [N ] and set Sw = P ′
K .
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Then we have, almost surely

E
[(

1

B

∑
i∈Sw Ai

)(
1

B

∑
i∈Sw Ai

)⊤ ∣∣∣A]− ( 1

n

∑
i≤nAi

)(
1

n

∑
i≤nAi

)⊤
=

1

|PN ([n])|
∑

P ′∈PN ([n])

(
1

N

∑
k≤N

1

B2

∑
i,j∈P ′

k

AiA
⊤
j −

1

n2

∑
i,j≤nAiA

⊤
j

)
=

1

|PN ([n])|
∑

P ′∈PN ([n])

(
1

NB2

∑
k≤N

∑
i,j∈P ′

k

AiA
⊤
j −

1

N2B2

∑
k,l≤N

∑
i∈P ′

k,j∈P
′
l

AiA
⊤
j

)
=

1

|PN ([n])|
∑

P ′∈PN ([n])

(
N − 1

N2B2

∑
k≤N

∑
i,j∈P ′

k

AiA
⊤
j −

1

N2B2

∑
k ̸=l

∑
i∈P ′

k,j∈P
′
l

AiA
⊤
j

)
.

By noting that Ai’s are exchangeable, we obtain

E
∥∥θSGDw
m,B −θGD

m

∥∥2 = η2TrE
[
N − 1

NB
A1A

⊤
1 +

(N − 1)(B − 1)

NB
A1A

⊤
2 −

N − 1

N
A1A

⊤
2

]
= η2TrE

[
N − 1

NB
A1A

⊤
1 −

N − 1

NB
A1A

⊤
2

]
=

η2(N − 1)

NB

(
E∥A1∥2 − E⟨A1, A2⟩

)
(a)

≤ 2η2

B
E∥A1∥2

=
2η2

B
E
∥∥∥(ϕ(X1)− E[ϕ(X1)]

)
−
(
ϕ
(
Km
i;θinit(X1)

)
− E

[
ϕ
(
Km
i;θinit(X1)

)])∥∥∥2
≤ 4η2

B

(
Tr Cov[ϕ(X1)] + Tr Cov

[
ϕ
(
Km
i;θinit(X1)

)])
(b)

≤
4η2(σ2 + κ2ν;m)

B
.

In (a), we have used a Cauchy-Schwarz inequality; in (b), we have used A1 and A7. Finally we note
that if B = n, θSGDw

m,B = θGD
m almost surely, which implies the desired bound.

Lemma E.2. Denote An as the sigma algebra generated by θinit, X1, . . . , Xn. Under A1, A2, A3
and A7, we have that for any ϵ > 0 and ν > 2,

E
∥∥E[θGD

m − θGD
∞
∣∣An]∥∥2 ≤ η2

(
αmσCχ

√
E∥θinit − ψ∗∥2 + εinitn,m;ν(ϵ)

)2
,

E ∥θGD
m − θGD

∞ ∥2 ≤ η2
((
αmσCχ

√
E∥θinit − ψ∗∥2 + εinitn,m;ν(ϵ)

)2
+

κ2ν;m + σ2

n

)
.

Proof of Lemma E.2. The main challenge arises from the possible correlation between θinit and
X1, . . . , Xn. First note that for any ϵ > 0, ν > 2 and a real-valued random variable Y , by Hölder’s
inequality, we have

E[Y 2] = E
[
Y 2 I{Y≤ϵ} + Y 2 I{Y >ϵ}

]
≤ ϵ2 + E[Y 2I{Y >ϵ}] ≤ ϵ2 + (E[Y ν ])2/νP(Y > ϵ)(ν−2)/ν . (15)

Also note the useful inequality that for two real-valued random vectors (possibly correlated) V1, V2,
we have

E[∥V1 + V2∥2] ≤ E[(∥V1∥+ ∥V2∥)2] ≤ E∥V1∥2 + 2
√

(E∥V1∥2)(E∥V2∥2) + E∥V2∥2

=
(√

E∥V1∥2 +
√

E∥V2∥2
)2
. (16)

Now to control the first quantity of interest, by using a triangle inequality, we have

E
∥∥E[θGD

m − θGD
∞
∣∣An]∥∥2 = E

∥∥∥E[ η
n

∑
i≤n

(
ϕ
(
Km
i;θinit(Xi)

)
− ϕ

(
Xθinit

i

)) ∣∣∣An]∥∥∥2
(16)
≤ η2

(√
E[∆2

1] +
√
E[∆2

2]
)2

,
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where

∆1 :=
∥∥∥E[ 1

n

∑
i≤n

(
ϕ
(
Km
i;θinit(Xi)

)
− E

[
ϕ
(
Km
i;θinit(X

′
1)
) ∣∣ θinit]) ∣∣∣An]∥∥∥

=
∥∥∥ 1

n

∑
i≤n

(
E
[
ϕ
(
Km
i;θinit(Xi)

) ∣∣ θinit, Xi

]
− E

[
ϕ
(
Km
i;θinit(X

′
1)
) ∣∣ θinit])∥∥∥ ,

∆2 :=
∥∥∥E[ 1

n

∑
i≤n

(
E
[
ϕ
(
Km
i;θinit(X

′
1)
) ∣∣ θinit]− ϕ(Xθinit

i

)) ∣∣∣An]∥∥∥
=
∥∥∥E[ϕ(Km

1;θinit(X ′
1)
)
− ϕ

(
Xθinit

1

) ∣∣ θinit]∥∥∥ ,
and X ′

1 is an i.i.d. copy of X1 and in particular independent of θinit. ∆1 is controlled via (15):

E[∆2
1] ≤ ϵ2 + (E[∆ν

1 ])
2/ν
P(∆1 > ϵ)ν/(ν−2)

(a)

≤ ϵ2 +
(
E
∥∥∥ϕ(Km

1;θinit(X1))− E
[
ϕ(Km

1;θinit(X
′
1))
∣∣∣ θinit]∥∥∥ν)2/ν

×P
( ∥∥∑

i≤n
(
E
[
ϕ
(
Km
i;θinit

(Xi)
) ∣∣ θinit, Xi]− E

[
ϕ
(
Km
i;θinit

(X′
1)
) ∣∣ θinit])∥∥

n
> ϵ

) ν−2
ν

(b)

≤ ϵ2 + κ2ν;m
(
ϑinitn,m(ϵ)

) ν−2
ν

=
(
εinitn,m;ν(ϵ)

)2
. (17)

In (a), we have plugged in the definition of ∆1 and applied a Jensen’s inequality with respect to the
empirical average; in (b), we have used A7 to bound the ν-th moment term as(

E
∥∥∥ϕ(Km

1;θinit(X1))− E
[
ϕ(Km

1;θinit(X
′
1))
∣∣∣ θinit]∥∥∥ν)1/ν

=
(
E
[
E
[∥∥∥ϕ(Km

1;θinit(X1))− E
[
ϕ(Km

1;θinit(X
′
1))
∣∣∣ θinit]∥∥∥ν ∣∣∣ θinit] ])1/ν

≤ supψ∈Ψ

(
E
[∥∥∥ϕ(Km

1;ψ(X1))− E
[
ϕ(Km

1;ψ(X
′
1))
]∥∥∥ν ])1/ν

= supψ∈Ψ

(
E
[∥∥∥ϕ(Km

1;ψ(X1))− E
[
ϕ(Km

1;ψ(X1))
]∥∥∥ν ])1/ν ≤ κν;m

and recalled the definitions of ϑinitn,m and εinitn,m;ν . On the other hand,

E[∆2
2] = E

∥∥∥ ∫
Rd
ϕ(x)(Km

1;θinitpψ∗)(x)dx− E
[
ϕ(Xθinit

1 )
∣∣θinit]∥∥∥2

(a)
= E

∥∥∥ ∫
Rd

(Km
1;θinitϕ)(x) pψ∗(x)dx− Epθinit [ϕ ]

∥∥∥2
(b)
= E

∥∥∥ ∫
Rd

(
Km

1;θinit

(
ϕ− Epθinit [ϕ ]

))
(x)× pψ∗(x)dx

∥∥∥2
(c)
= E

∥∥∥ ∫
Rd

(
Km

1;θinit

(
ϕ− Epθinit [ϕ ]

))
(x)× (pψ∗(x)− pθinit(x))dx

∥∥∥2
(d)
=

∑d

l=1
E
( ∫

Rd

(
Km
t1;θinit

(
ϕ− Epθinit [ϕ ]

))
(x)⊤el × pθinit(x)×

pψ∗ (x)− pθinit (x)

pθinit(x)
dx
)2

(e)

≤
∑d

l=1
E
[( ∫

Rd

((
Km
t1;θinit

(
ϕ− Epθinit [ϕ ]

))
(x)⊤el

)2
pθinit(x)dx

×
∫
Rd

(
pψ∗ (x)− pθinit (x)

pθinit(x)

)2
pθinit(x)dx

)2]
(f)

≤
∑d

l=1
E
(
α2m Tr Cov

[
ϕ(Xθinit

1 )
∣∣ θinit]χ2(pψ∗ , pθinit)

)2
(g)

≤ α2mσ2C2
χ E∥θinit − ψ∗∥2 .

In (a), we have used that (Kf)(x) =
∫
K(x, y)f(y)dy; in (b), we have used that the Markov

operator leaves the constant function invariant; in (c), we used that K1;θinit leaves pθinit invariant; in
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(d), we denoted (el)l≤d as the standard basis vectors ofRd and multiplied and divided by pθinit(x);
in (e), we have used a Cauchy-Schwarz inequality; in (f), we have used the definition of the spectral
gap α in A3; in (g), we have used A1 and A2. Combining the bounds gives the first inequality that

E
∥∥E[θGD

m −θGD
∞
∣∣An]∥∥2 ≤ η2

(
αmσCχ

√
E∥θinit − ψ∗∥2 + εinitn,m;ν(ϵ)

)2
.

Now we handle the second quantity by conditioning on θinit and perform a bias-variance decomposi-
tion:

E ∥θGD
m − θGD

∞ ∥2 = η2 E
[
E
[∥∥∥ 1

n

∑
i≤n

(
ϕ
(
Km
i;θinit(Xi)

)
− ϕ(Xθinit

i )
)∥∥∥2 ∣∣∣An] ]

= η2(QB +QV ) ,

where

QB := E
∥∥∥E[ 1

n

∑
i≤n

(
ϕ
(
Km
i;θinit(Xi)

)
− ϕ(Xθinit

i )
) ∣∣∣An]∥∥∥2 ,

QV := E
[
Tr
(

Cov
[
1

n

∑
i≤n ϕ

(
Km
i;θinit(Xi)

)∣∣∣An]+ Cov
[
1

n

∑
i≤n ϕ(X

θinit

i )
∣∣∣θinit])] .

Note that the covariance terms separate because Xθinit

i is independent of Km
i;θinit(Xi) conditioning

on θinit. η2QB is exactly the quantity controlled above, so it suffices to bound the variance term
QV . By explicitly computing the second covariance term while noting that Xθinit

1 , . . . , Xθinit

n are
conditionally i.i.d. given θinit and Km

i;θinit(Xi)’s are conditionally independent across 1 ≤ i ≤ n

given An, we have

QV =

∑
i≤n E[Tr Cov[ϕ(Km

i;θinit
(Xi)) | θinit, Xi]]

n2
+

E
[
Tr Cov[ϕ(Xθinit

1 )|θinit]
]

n

(a)
=

E[Tr Cov[ϕ(Km
1;θinit (X1)) | θinit, X1]]

n
+

E
[
Tr Cov[ϕ(Xθinit

1 )|θinit]
]

n

≤
κ2ν;m + σ2

n
,

where we have used A4, A7 and A1 in the last line. Combining the bounds, we obtain that

E ∥θGD
m − θGD

∞ ∥2 = η2(QB +QV )

≤ η2
((
αmσCχ

√
E∥θinit − ψ∗∥2 + εinitn,m;ν(ϵ)

)2
+

κ2ν;m + σ2

n

)
.

Lemma E.3. Under A1, E ∥θGD
∞ − θpop∥2 ≤ 4η2σ2

n .

Proof of Lemma E.3. Since both FGD
∞ and fpop involve infinite-length Markov chains, the initializa-

tions do not matter and we can decouple the stochasticity of Xi and Ki;θinit . In particular,

E ∥θGD
∞ − θpop∥2 = η2 E

∥∥∥ 1

n

∑
i≤n

(
ϕ(Xi)− ϕ

(
Xθinit

i

))
− E

[
ϕ(X1)− ϕ

(
Xθinit

1

)]∥∥∥2
≤ η2

(
Q′

1 + 2
√
Q′

1Q
′
2 +Q′

2

)
,

where

Q′
1 := E

∥∥∥ 1

n

∑
i≤n

(
ϕ(Xi)− E[ϕ(X1)]

)∥∥∥2 =
Tr Cov[ϕ(X1)]

n
=

Tr∇2
θ logZ(ψ

∗)

n
≤ σ2

n
,

Q′
2 := E

∥∥∥ 1

n

∑
i≤n

(
ϕ(Xθinit

i )− E
[
ϕ
(
Xθinit

1

)])∥∥∥2
=

E
[
Tr Cov[ϕ(Xθinit

1 )|θinit]
]

n
=

E
[
Tr∇2

θ logZ(θ
init)

]
n

≤ σ2

n
.

In the computations above, we have used the relation ∇2
θ logZ(θ) = CovX∼pθ [ϕ(X)] and the

assumption supθ∈Ψ tr(∇2
θ logZ(θ)) = σ2 from A1. This implies the desired bound.

42



Lemma E.4. Under A1, E ∥θpop − ψ∗∥2 ≤
(
1− 2µη + L2η2

)
E ∥θinit − ψ∗∥2 .

Proof of Lemma E.4. Recall that

fpop(θ′) = θ − η E
[
ϕ(X1)− ϕ(Xθ′

1 )
]
= θ − η

(
∇ψ logZ(ψ∗)−∇ψ logZ(θ′)

)
.

By construction, fpop is deterministic and fpop(ψ∗) = ψ∗. By plugging in the recursions and
expanding the square, we get that

E
∥∥θpop − ψ∗∥∥2 = E

∥∥fpop(θinit)− fpop(ψ∗)
∥∥2

= E
∥∥(θinit − ψ∗)− η(∇ψ logZ(θinit)−∇ψ logZ(ψ∗))

∥∥2
= E

∥∥θinit − ψ∗∥∥2 − 2η E
[〈
θinit − ψ∗ , ∇ψ logZ(θinit)−∇ψ logZ(ψ∗)

〉]
+ η2 E

∥∥∇ψ logZ(θinit)−∇ψ logZ(ψ∗)
∥∥2

≤ E
∥∥θinit − ψ∗∥∥2 − 2µη E

∥∥θinit − ψ∗∥∥2 + L2η2 E
∥∥θinit − ψ∗∥∥2 .

In the last line, we have recalled infψ∈Ψ λmin(∇2
ψ logZ(ψ)) = µ and

supθ∈Ψ λmax(∇2
ψ logZ(ψ)) = L by A1 and applied Lemma C.8. Combining the coefficients gives

the desired statement.

F Proofs for offline SGD

We prove Theorem B.1 (which directly implies Theorem 4.3) and Theorem B.2 in this section. The
key ingredient of both proofs is Lemma F.1 below, which provides an iterative error bound for
the SGD-with-replacement scheme by combining different approximation bounds in Appendix E.
Throughout this section, we denote δSGDw

t,j := E
∥∥ψSGDw

t,j − ψ∗
∥∥2.

Lemma F.1. Under A1, A2, A3, A4 and A7, we have that for 1 ≤ j ≤ N − 1,

√
δSGDw
t,j ≤

(
1− ηt

(
µ− αmσCχ −

L2

2
ηt

))√
δSGDw
t,j−1 + ηt

(
εSGDw
n,m,t;ν(ϵ) +

5σ + 5κν;m√
B

)
,

where 1− ηt
(
µ− αmσCχ − L2

2 ηt
)
> 0 .

Proof of Lemma F.1. We first remark that in view of Lemma C.4, the projection step in Algorithm 2
does not increase δSGDw

t,j , so it suffices to bound δSGDw
t,j as if projection is not performed on ψsGDw

t,j .
To apply the results from Appendix E, we identify θinit = ψSGDw

t,j−1 and η = ηt, which allows us to
write ψSGDw

t,j = θSGDw
m,B . This also implies E∥θinit − ψ∗∥2 = δSGDw

t,j−1 and εinitn,m;ν(ϵ) ≤ εSGDw
ν;n,m,t(ϵ).

43



By adding and subtracting the auxiliary gradient updates followed by expanding the square, we obtain

δSGDw
t,j = E

∥∥θSGDw
m,B − θGD

m + θGD
m − θGD

∞ + θGD
∞ − θpop + θpop − ψ∗∥∥2

(a)
= E

∥∥θSGDw
m,B − θGD

m

∥∥2 + E
∥∥θGD
m − θGD

∞
∥∥2 + E

∥∥θGD
∞ − θpop

∥∥2 + E
∥∥θpop − ψ∗∥∥2

+ 2E
〈
θSGDw
m,B − θGD

m , θGD
m − θGD

∞
〉
+ 2E

〈
θSGDw
m,B − θGD

m , θGD
∞ − θpop

〉
+ 2E

〈
E
[
θSGDw
m,B − θGD

m

∣∣ θinit,Fn] , θpop − ψ∗〉+ 2E
〈
θGD
m − θGD

∞ , θGD
∞ − θpop

〉
+ 2E

〈
E
[
θGD
m − θGD

∞
∣∣An] , θpop − ψ∗〉+ 2E

〈
θGD
∞ − θpop , θpop − ψ∗〉

(b)

≤
4η2t (σ

2 + κ2ν;m)
√
B

I{B<n} + η2t

((
αmσCχ

√
δSGDw
t,j−1 + εSGDw

n,m,t;ν(ϵ)
)2

+
κ2ν;m + σ2

n

)
+

4η2t σ
2

n
+ (1− 2µηt + L2η2t )δ

SGDw
t,j−1

+ 2
2ηt

√
σ2 + κ2ν;m
√
B

I{B<n}ηt
(
αmσCχ

√
δSGDw
t,j−1 + εSGDw

n,m,t;ν(ϵ) +

√
κ2ν;m + σ2

√
n

)
+ 2

2ηt
√
σ2 + κ2ν;m
√
B

I{B<n}
2ηtσ√
n

+ 0

+ 2ηt

(
αmσCχ

√
δSGDw
t,j−1 + εSGDw

n,m,t;ν(ϵ) +

√
κ2ν;m + σ2

√
n

)
2ηtσ√
n

+ 2ηt

(
αmσCχ

√
δSGDw
t,j−1 + εSGDw

n,m,t;ν(ϵ)
)√

(1− 2µηt + L2η2t )δ
SGDw
t,j−1

+ 2
2ηtσ√
n

√
(1− 2µηt + L2η2t )δ

SGDw
t,j−1

(c)

≤
(
1− 2µηt + Lη2t + η2tα

2mσ2C2
χ + 2ηtα

mσCχ

√
1− 2µηt + L2η2t

)
× δSGDw

t,j−1

+ 2

(
η2tα

mσCχε
SGDw
n,m,t;ν(ϵ) +

2η2t (
√
σ2 + κ2ν;m + σ)αmσCχ

√
B

+ ηtε
SGDw
n,m,t;ν(ϵ)

√
1− 2µηt + L2η2t +

2ηtσ
√

1− 2µηt + L2η2t
√
n

)
×
√
δSGDw
t,j−1

+ η2t

(
4(σ2 + κ2ν;m)

B
+
(
εSGDw
n,m,t;ν(ϵ)

)2
+

5κ2ν;m + 9σ2

B
+

4
√
σ2 + κ2ν;m εSGDw

n,m,t;ν(ϵ)
√
B

+
8σ

√
σ2 + κ2ν;m

B
+

4σεSGDw
n,m,t;ν(ϵ)√

B

)
=: (A1)× δSGDw

t,j−1 + (A2)×
√
δSGDw
t,j−1 + (A3) .

In (a), we have expanded the square, used Fn defined in Lemma E.1 and An defined in Lemma E.2,
and noted that θpop − ψ∗ is almost surely constant given θinit; in (b), we have applied Lemmas
E.1, E.2, E.3 and E.4 under A1, A2, A3, A4 and A7, and used

√
a+ b ≤

√
a +
√
b for a, b ≥ 0;

in (c), we have grouped the terms by powers of δSGDw
t,j−1 , bounded the indicator function from above

by 1 and used B ≤ n to replace n in the denominator by B. While the computation above is
complicated, we remark that the key steps are taking the conditional expectations for the cross-
terms in (b), which gives us a tighter bound than directly applying a triangle inequality of the form
E∥Y1 + Y2∥2 ≤ (

√
E∥Y1∥2 +

√
E∥Y2∥2). To further simplify the bounds, we seek to bound each
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coefficient by a square, which yields

(A1) =
(
ηtα

mσCχ +
√

1− 2µηt + Lη2t

)2
,

(A2) ≤ 2
(
ηtα

mσCχ +
√
1− 2µηt + Lη2t

)
× ηt

(
εSGDw
n,m,t;ν(ϵ) +

4σ + 2κν;m√
B

)
,

(A3) ≤ η2t
((
εSGDw
n,m,t;ν(ϵ)

)2
+

8σ2 + 4κ2ν;m√
B

εSGDw
n,m,t;ν(ϵ) +

21σ2 + 17κ2ν;m

B

)
≤ η2t

(
εSGDw
n,m,t;ν(ϵ) +

5σ + 5κν;m√
B

)2
.

This implies

δSGDw
t,j ≤ (A1)× δSGDw

t,j−1 + (A2)×
√
δSGDw
t,j−1 + (A3)

≤
((
ηtα

mσCχ +
√
1− 2µηt + Lη2t

)√
δSGDw
t,j−1 + ηt

(
εSGDw
n,m,t;ν(ϵ) +

5σ + 5κν;m√
B

))2
.

Now note that since µ ≤ L by the definitions in A1, 2µηt − L2η2t ≤ 2Lηt − L2η2t ≤ 1. By using√
1− x ≤ 1− x

2 for all x ≤ 1, we get that√
1− 2µηt + L2η2t ≤ 1− µηt +

L2

2
η2t .

Substituting this into the earlier bound and taking a square-root, we obtain the desired bound that√
δSGDw
t,j ≤

(
1− ηt

(
µ− αmσCχ −

L2

2
ηt

))√
δSGDw
t,j−1 + ηt

(
εSGDw
n,m,t;ν(ϵ) +

5σ + 5κν;m√
B

)
.

Moreover, since L ≥ µ by definition from A1, we have

1− ηt
(
µ− αmσCχ −

L2

2
ηt

)
=
(
L
√
2
ηt − 1

)2
+ (
√
2L− µ)ηt + αmσCχηt > 0 ,

which finishes the proof.

F.1 Proof of Theorem B.1

Under A1, A2, A3, A4 and A7, Lemma F.1 implies√
δSGDw
t,j ≤

(
1− µ̃mCt−β +

L2C2

2
t−2β

)√
δSGDw
t,j−1 + Ct−β σSGDw

n,T

for 1 ≤ t ≤ T and 1 ≤ j ≤ N , where we have used µ̃m = µ− αmσCχ, ηt = Ct−β and

εSGDw
n,m,t;ν(ϵ) +

5σ + 5κν;m√
B

≤ εSGDw
n,m,T ;ν(ϵ) +

5σ + 5κν;m√
B

= σSGDw
n,T .

By an induction on j = 1, . . . , N , we have√
δSGDw
t,N ≤

(
1− µ̃mCt−β +

L2C2

2
t−2β

)N√
δSGDw
t,0

+ CσSGDw
n,T t−β

∑N

j=1

(
1− µ̃mCt−β +

L2C2

2
t−2β

)j−1

.

By noting that δSGDw
t,0 = δSGDw

t−1,N almost surely for t ≥ 2 and using another induction on t = 1, . . . , T ,√
δSGDw
T,N ≤ Q0

√
δSGDw
0,0 + CσSGDw

n,T

∑T

t=1
QtAt t

−β , (18)

where

Qt :=
∏T

s=t+1

(
1− µ̃mCs−β +

L2C2

2
s−2β

)N
and At :=

∑N

j=1

(
1− µ̃mCt−β +

L2C2

2
t−2β

)j−1

.

Note that by Lemma F.1, we also have that 1− µ̃mCt−β +
L2C2

2
t−2β > 0. This allows us to apply

Lemma C.3 to obtain

κ0 ≤ exp
(
1−Nµ̃mCφ1−β(T + 1) +

NL2C2

2
φ1−2β(T + 1)

)
= ET,N1 .
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To control
∑T
t=1QtAtt

−β , recall that β ∈ [0, 1], µ̃m > 0, L
2C2

2 > 0, and that

ET,N2 = exp
(
− Nµ̃mC

2
φ1−β(T + 1) + 2NL2C2φ1−2β(T + 1)

)
.

We can now apply Lemma C.3: If β ̸∈ { 12 , 1}, then

∑T

t=1
QtAt t

−β ≤ 22β+1

µ̃mC
e
µ̃mC

2(1−β)
N

(T+1)β +
3β(1 + µ̃mC)N−1(T + 2)β

L2C2
ET,N2 .

If β = 1
2 , i.e. 2β = 1, we have

∑T

t=1
QtAt t

−β ≤ 4

µ̃mC
e

µ̃mCN

(T+1)1/2 + 2N(1 + µ̃mC)
N−1φ 1

2−L2C2N (T + 1)ET,N2 .

If β = 1, we get that

∑T

t=1
QtAt t

−β ≤ 4

µ̃mC
+

3N
(
1 + L2C2

2

)N−1
e2L

2C2N log(T + 1)

(T + 1)(µ̃mCN)/2

Substituting the bounds into (18), we get the desired bound that
√
δSGDw
T,N is upper bounded by

ET,N1

√
δSGDw
0,0 + CσSGDw

n,T

(
4e

µ̃mCN

(T+1)1/2

µ̃mC
+ 2N(1 + µ̃mC)

N−1φ 1
2−L2C2N (T + 1)ET,N2

)
for β =

1

2
,

ET,N1

√
δSGDw
0,0 + CσSGDw

n,T

(
4

µ̃mC
+

3N
(
1 + L2C2

2

)N−1
e2L

2C2N log(T + 1)

(T + 1)(µ̃mCN)/2

)
for β = 1 ,

ET,N1

√
δSGDw
0,0 + CσSGDw

n,T

(
22β+1

µ̃mC
e
µ̃mC

2(1−β)
N

(T+1)β +
3β(1 + µ̃mC)N−1(T + 2)β

L2C2
ET,N2

)
otherwise .

F.2 Proof of Theorem B.2

Recall that δSGDo
t,j := E

∥∥ψSGDo
t,j − ψ∗

∥∥2. To apply the results from Appendix E to ψSGDo
t,j , we

condition on Sot , which in particular fixes Sot,j , the last size-B subset of [n] chosen. We then identify
θinit = ψSGDo

t,j−1 , η = ηt and the dataset used as Dot,j := (Xi : i ∈ Sot,j), which allows us to identify
ψSGDo
t,j = θGD

m , the full-batch gradient descent update using Dot,j . Meanwhile, we note that almost
surely θGD

m = θSGDw
m,B , the SGD-with-replacement iterate that uses the full dataset Dot,j . Observe

that the proof of Lemma F.1 holds with δSGDo
t,j−1 replaced by any random initialization θinit possibly

correlated with X1, . . . , Xn, which allows us to obtain√
δSGDo
t,j ≤

(
1− ηt

(
µ− αmσCχ −

L2

2
ηt

))√
δSGDo
t,j−1 + ηt

(
εSGDw
n,m,t;ν(ϵ) +

5σ + 5κν;m√
B

)
.

Since the error recursion for δSGDo
t,j is identical to that of δSGDw

t,j in Lemma F.1, the proof of
Theorem 4.3 follows directly, thereby yielding an identical result for δSGDo

T,N as with δSGDw
T,N in

Theorem 4.3.

G Proofs for tail probability bounds in offline SGD

We present the proofs for results in Appendix B.3 that control the tail probability terms ϑSGDw
ν;n,m,T and

εSGDw
ν;n,m,T .

Proof of Lemma B.3. For δ > 0, let Nδ be the δ-covering number of Ψ, which satisfies Nδ ≤(
rΨ(1 + 2/δ)

)p
(Example 5.8, [50]). Note also that by the Jensen’s inequality applied to E[ • |X1]

and Assumption A6, there exist some σm, ζm > 0 such that, for any z ∈ Rp with ∥z∥ ≤ ζm,

E[ez
⊤(E[ϕ(Km

ψ∗ (X1))|X1]−E[ϕ(Km
ψ∗ (X1))])] ≤ E[ez

⊤(ϕ(Km
ψ∗ (X1))−E[ϕ(Km

ψ∗ (X1))])] ≤ eσ
2
m∥z∥2/2 .
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Meanwhile under A5, recycling the proof of Lemma 3.1 of [21] shows that if Cmδ/
√
p < σ2

mζm,

P

(
sup
ψ∈Ψ

∥∥∥ 1

n

∑n

i=1
E
[
ϕ
(
Km
ψ (Xi)

)∣∣Xi

]
− E

[
ϕ(Km

ψ (Xi))
]∥∥∥ > 3Cmδ

)
≤ 2Nδp exp

(
− nC2

mδ
2

2pσ2
m

)
≤ 2(rΨ)

p exp
(
p log(1 + 2δ−1)− nC2

mδ
2

2pσ2
m

)
.

Since the probability above is an upper bound to ϑSGDw
n,m,T (3Cmδ), we get that if Cmδ/

√
p < σ2

mζm,(
εSGDw
ν;n,m,T (3Cmδ)

)2
= 9C2

mδ
2 + κ2ν;m

(
ϑSGDw
n,m,T

(
Cmδ
√
p

)) ν−2
ν

≤ 9C2
mδ

2 + κ2ν;m2
2(ν−2)
ν (rΨ)

(ν−2)p
ν exp

(
(ν − 2)p

ν
log(1 + 2δ−1)− n(ν − 2)C2

mδ
2

2νpσ2
m

)
.

Recall that by assumption, logn
n <

σ2
mζ

2
m

p+ν−2 . We now choose

δ =
σm

Cm

√
p
(
p+

2ν

ν − 2

)
× logn

n
=

σm

Cm

√
p× (ν − 2)p+ 2ν

ν − 2
× logn

n
,

which implies

inf
ϵ>0

(
εSGDw
ν;n,m,T (ϵ)

)2
≤
(
εSGDw
ν;n,m,T (3Cmδ)

)2
≤ 9σ2

mp((ν − 2)p+ 2ν) logn

(ν − 2)n
+ κ2ν;m2

ν−2
ν (rΨ)

(ν−2)p
ν (1 + 2δ−1)

(ν−2)p
ν exp

(
− (ν − 2)p+ 2ν

2ν
log n

)
≤ 9σ2

mp((ν − 2)p+ 2ν) logn

(ν − 2)n

+ κ2ν;m2
ν−2
ν (rΨ)

(ν−2)p
ν

(
1 +

2Cm(ν − 2)1/2

σmp1/2((ν − 2)p+ 2ν)1/2

√
n

√
logn

) (ν−2)p
ν

n−
(ν−2)p+2ν

2ν

≤ 9σ2
mp((ν − 2)p+ 2ν) logn

(ν − 2)n

+ κ2ν;m2
ν−2
ν (rΨ)

(ν−2)p
ν

(
1 +

2Cm(ν − 2)1/2

σmp1/2((ν − 2)p+ 2ν)1/2

) (ν−2)p
ν

n
(ν−2)p

2ν − (ν−2)p+2ν
2ν

≤
(

9σ2
mp((ν − 2)p+ 2ν)

ν − 2
+ κ2ν;m2

(ν−2)
ν (rΨ)

(ν−2)p
ν

(
1 +

2Cm(ν − 2)1/2

σmp1/2((ν − 2)p+ 2ν)1/2

) (ν−2)p
ν

)
logn

n
.

Taking a squareroot across and using
√
a+ b ≤

√
a+
√
b for a, b > 0 gives the desired bound. The

limiting result follows by substituting this bound into Theorem B.1.

Proof of Lemma B.4. Let δ > 0 and Nδ be defined as in the proof of Lemma B.3, with Nδ ≤(
rΨ(1 + 2/δ)

)p
. Let (ψl)Nδl=1 be the centers of the covering δ-balls. The covering-ball argument of

the proof of Lemma 3.1 of [21] shows that

ϑSGDw
n,m,T (3Cmδ) ≤ P

(
sup
ψ∈Ψ

∥∥∥ 1

n

∑n

i=1
E
[
ϕ
(
Km
ψ (Xi)

)∣∣Xi

]
− E

[
ϕ(Km

ψ (Xi))
]∥∥∥ > 3Cmδ

)
≤

∑Nδ

l=1
P

(∥∥∥ 1

n

∑n

i=1
E
[
ϕ
(
Km
ψl
(Xi)

)∣∣Xi

]
− E

[
ϕ(Km

ψl
(Xi))

]∥∥∥ ≥ Cmδ) .
By a Markov’s inequality followed by the Burkholder’s inequality applied to an average of i.i.d. sum-
mands (see e.g. [51] for ν > 2), there exists a constant Cν > 0 depending only on ν such that

ϑSGDw
n,m,T (3Cmδ) ≤

∑Nδ

l=1

E
∥∥∥∑n

i=1
E
[
ϕ
(
Km
ψl

(Xi)
)∣∣Xi]− E

[
ϕ(Km

ψl
(Xi))

]∥∥∥ν
nνCνmδ

ν

≤
∑Nδ

l=1

E
∥∥E[ϕ(Km

ψl
(X1)

)∣∣Xi]− E
[
ϕ(Km

ψl
(X1))

]∥∥ν
nν/2Cνmδ

ν

≤
Nδκ

ν
ν;m

nν/2Cνmδ
ν
≤

(rΨ)p(1 + 2δ−1)pκνν;m

nν/2Cνmδ
ν

,
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where we have used assumption A4 in the last line. This implies(
εSGDw
ν;n,m,T (3Cmδ)

)2
= 9C2

mδ
2 + κ2ν;m

(
ϑSGDw
n,m,T (3Cmδ)

)(ν−2)/ν

≤ 9C2
mδ

2 + κνν;m(rΨ)
(ν−2)p
ν C−(ν−2)

m × (1 + 2δ−1)
(ν−2)p
ν

n
ν−2
2 δν−2

.

Choosing δ = n
− (ν−2)ν

2(ν2+(ν−2)p) ≤ 1, we get that

inf
ϵ>0

(
εSGDw
ν;n,m,T (ϵ)

)2
≤
(
εSGDw
ν;n,m,T (3Cmδ)

)2
≤ 9C2

mn
− (ν−2)ν

ν2+(ν−2)p + κνν;m(rΨ)
(ν−2)p
ν C−(ν−2)

m 3
(ν−2)p
ν n

− (ν−2)ν

ν2+(ν−2)p

=
(
9C2

m + κνν;m(rΨ)
(ν−2)p
ν C−(ν−2)

m 3
(ν−2)p
ν

)
n
− (ν−2)ν

ν2+(ν−2)p .

Taking a squareroot across and using
√
a+ b ≤

√
a+
√
b for a, b > 0 gives the desired bound. The

limiting result follows by substituting this bound into Theorem B.1.

Proof of Lemma B.5. By a Markov’s inequality and a Jensen’s inequality with respect to the empirical
average, we have

ϑSGDw
n,m,T (ϵ) ≤ sup

t∈[T ],j∈[N ]

∑n
i=1 E

∥∥∥E[ϕ(Km
ψSGDw
t−1,j

(Xi)
)∣∣∣Xi, ψSGDw

t−1,j

]
− E

[
ϕ
(
Km
ψSGDw
t−1,j

(X′
1)
)∣∣∣ψSGDw

t−1,j

]∥∥∥
nϵ

=: sup
t∈[T ],j∈[N ]

∑n
i=1 Atji

nϵ
.

Meanwhile by a triangle inequality and the ergodicity assumption, we have

Atji ≤ E
∥∥∥E[ϕ(Km

ψSGDw
t−1,j

(Xi)
)∣∣∣Xi, ψ

SGDw
t−1,j

]
− E

[
ϕ
(
X
ψSGDw
t−1,j

1

)∣∣∣ψSGDw
t−1,j

]∥∥∥
+ E

∥∥∥E[ϕ(XψSGDw
t−1,j

1

)∣∣∣ψSGDw
t−1,j

]
− E

[
ϕ
(
Km
ψSGDw
t−1,j

(X ′
1)
)∣∣∣ψSGDw

t−1,j

]∥∥∥
≤ 2C̃K α̃

m .

This implies ϑSGDw
n,m,T (ϵ) ≤ 2C̃K α̃

mϵ−1, and therefore(
εSGDw
ν;n,m,T (ϵ)

)2 ≤ ϵ2 + 2
ν−2
ν κ2ν;m(C̃K)

ν−2
ν α̃

(ν−2)m
ν ϵ−

ν−2
ν .

Choosing ϵ = α̃(ν−2)m/(3ν−2) gives

infϵ>0

(
εSGDw
ν;n,m,T (ϵ)

)2 ≤ (1 + 2
ν−2
ν κ2ν;m(C̃K)

ν−2
ν

)
α̃

2(ν−2)m
3ν−2 .

Taking a squareroot across and using
√
a+ b ≤

√
a+
√
b for a, b > 0 gives the desired bound. The

limiting result follows by substituting this bound into Theorem B.1.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As a theory paper, we believe that our work does not breach the code of
conduct. With this work, we aim to advance the understanding of statistically efficient
algorithms, a domain which has the potential to improve the overall computational efficiency
of machine learning algorithms.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

52

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We believe that our work will not have the negative impacts mentioned
(e.g., disinformation, surveillance, fairness, privacy, security considerations). We believe
that advancing the domain of statistical effiency has the potential to improve the overall
computational efficiency of machine learning algorithms, which, all else left equal, could
constitute a positive societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Since our work does not include experiments nor data, and only analyzes
existing models, we do not believe that our work requires any specific guidelines.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release any assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

55


	Introduction 
	Contrastive Divergence in Unnormalized Exponential Families
	Non-asymptotic analysis of Online CD
	Preliminaries and Assumptions
	Results
	Parametric convergence of online CD
	Towards statistical optimality with averaging


	Non-asymptotic analysis of offline CD
	Background: Asymptotic consistency of offline CD
	Nonasymptotic consistency of offline CD
	Non-asymptotic near-optimal consistency
	Proof of main theorem

	Consistency of offline CD: beyond subexponential tails.

	Related Work
	Discussion
	Notations
	Additional results for offline SGD
	An explicit finite-sample bound for SGDw
	Results for SGDo
	Explicit tail control

	Auxiliary Tools
	Properties of 
	Contraction and integrability results
	Miscellaneous

	Proofs for Online CD
	Auxiliary Lemmas for Online CD
	Proof of the SGD recursion (Lemma 3.1)
	Proof of Online CD convergence
	Proof of online CD with averaging (Theorem 3.3)

	L2 approximation by auxiliary gradient updates
	Proofs for offline SGD
	Proof of thm:SGDw:full
	Proof of thm:SGDo

	Proofs for tail probability bounds in offline SGD

