Under review as a conference paper at ICLR 2026

COCOPIF: BENCHMARKING CONVERSATIONAL
CODING AND PROGRAMMATIC INSTRUCTION FOLLOW-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Code generation with large language models (LLMs) has become popular to
software development, yet existing benchmarks like HumanEval and LBPP focus
on single-turn task completion. In real-world scenarios, users often engage in multi-
turn interactions, iteratively refining code through instruction-following feedback to
meet complex requirements or constraints. Current benchmarks fail to capture the
dynamic, instruction-driven nature of such workflows. To address this, we introduce
CoCoPIF, a new evaluation pipeline for evaluating LLMs in multi-turn, instruction-
following code generation, by emulating real-world interaction data from ShareGPT
and problems from LiveCodeBench. Our framework dynamically transforms code
problems into multi-turn tasks with verifiable instructions. It features an evaluation
protocol that mirrors user-LLM interaction by iteratively refining model outputs
through targeted feedback. Furthermore, our assessment approach evaluates both
instruction adherence and functional correctness, delivering a reliable measurement
of model performance. CoCoPIF reflects practical coding scenarios, providing a
tool to assess LLMs in realistic, interactive programming contexts.

1 INTRODUCTION

Code generation with LLMs has transformed modern software engineering, powerful tools like
GitHub Copilot (GitHub| 2021)) can assist users in writing, debugging, and optimizing code. Unlike
traditional programming tasks, real-world code generation often unfolds through multi-turn interac-
tions, where users iteratively refine their requirements—requesting specific algorithms, modifying
code block structures, or enforcing coding style constraints. However, existing evaluation benchmarks,
such as HumanEval (Chen et al.,[2021)) and LBPP (Matton et al.,|2024)), are designed for single-turn
code completion, evaluating models on isolated problem-solving without capturing the dynamic,
iterative nature of these interactions. Real-world data from ShareGPT (shal [2025)), a repository of
user-LLM dialogues, indicate that over 70% of programming-related sessions involve multiple turns,
revealing a notable mismatch between current evaluation frameworks and practical LLM usage. This
gap limits their ability to assess LLMs’ performance in realistic programming scenarios.

Another critical aspect of LLM performance is instruction following, as we expect LLMs to generalize
across a wide range of task constraints in a zero-shot setting without task-specific training. In the
context of code generation, strong instruction following capabilities is particularly crucial, as it
ensures models can adhere to precise, often complex constraints. Examples may include utilizing
specific built-in functions, avoiding certain data structures, or conforming to particular coding styles.
However, most existing instruction following benchmarks predominantly focus on generic text
generation, such as creative writing, general reasoning and format adaptation. Moreover, as LLMs are
trained on ever-larger and more diverse datasets, static evaluation benchmarks face an increasing risk
of data contamination. This occurs when models inadvertently memorize test problems or their close
variants, undermining the integrity of performance assessments and inflating perceived capabilities.
These challenges underscore an urgent need for a new evaluation paradigm that not only mirrors
real-world code generation workflows but also incorporates dynamic, contamination-free assessment
methods to ensure reliable and robust evaluations of LLMs in programming tasks.

Under review as a conference paper at ICLR 2026

IInstruction-Following Data Transformationl Interactive Evaluation I Computation and Aggregation of Results I
Rule-based Instructions Checking
' Selection p— % /
I# o Q =
Baseline Solution Instructions Checker — Results

i

gpt-do-mini §Faedback >-’ E
Sk T o B L=

LiveCodeBench CoCoPIF Interactive Evaluation Runtime Testing

Figure 1: Our framework for interactively evaluating instruction-following data transformation.
COCOPIF system generates instructions from a baseline solution, facilitates a feedback-driven
evaluation process, and aggregates results from both instruction and runtime checks to produce a
comprehensive final output.

To address these challenges, we present CoCoPIF—a novel multi-turn instruction-following frame-
work for code generation evaluation, taking inspiration from real-world interaction data in ShareGPT
and code problems from LiveCodeBench (Jain et al., 2024). Our framework is designed to emulate
the iterative nature of user-LLM interactions. It incorporates a dynamic data generation pipeline that
sources up-to-date problems from LiveCodeBench and transforms them into multi-turn instruction-
following tasks, mitigating contamination through the contamination-free nature of LiveCodeBench
and an automated, scalable processes (Figure[I)). Our benchmark features a diverse set of verifiable
instructions, such as replacing for loops with while loops, adding detailed code comments, or
restricting to built-in functions, and enhanced by modern LLMs to produce natural language variations
that mirror authentic user queries. This emphasis on verifiability is critical, as it not only addresses
the frequent inaccuracies in existing model evaluation but also ensures greater reproducibility of our
assessment (Zhou et al., [2023). Moreover, we implement a multi-turn evaluation framework that
allows models to iteratively refine their responses based on targeted feedback, reflecting real-world
user-LLM workflows. To better assess model performance in real-world scenarios, we implement a
dual evaluation metric that integrates instruction comprehension assessment with execution-based
functional correctness testing. We present a detailed comparison in the Table[I] highlighting the
differences between CoCoPIF and several existing benchmarks.

In a nutshell, our contributions are:

* We introduce a multi-turn instruction-following benchmark tailored for code generation,
overcoming the limitations of single-turn frameworks.

* We propose a contamination-free, scalable data generation pipeline that ensures evaluation
integrity through verifiable instructions and multi-expression generation.

* We designed an evaluation protocol based on real user interaction patterns, incorporating a
dual-dimensional assessment that measures instruction adherence and code functionality.

Table 1: Comparison between CoCoPIF and other code and instruction-following benchmarks.

Benchmark Multi- Contamination- Real Dynamic
Turn Free Instruction Feedback
HumanEval (Chen et al., 2021) X X X X
MT-Bench (Zheng et al., 2023 v X X X
CodelF (Yan et al.,|2025) X X X X
Multi-IF (He et al., [2024) v X X X
LiveCodeBench (Jain et al., 2024) X v X X
CoCoPIF v v v v

Under review as a conference paper at ICLR 2026

Interaction Round O

User
Problem: Train Delay

Interaction Round 2

(2 unsolved) %Checker‘

The code you just wrote didn't completely fulfill my requirements.Please

User

In the nation of Atcoder, there are N cities numbered 1 to N, and M trains revise the provided code to meet the following requirements:
numbered 1 to M.Train i departs from city A_i at time S_i and arrives at city difyir ¢ mal 4 riab t

B iattimeT i.... 2 (0 1 I
Please write code to solve this problem. And please remain other requirements in the previous prompt.

@G um LLM
To solve this problem, we need to find the optimal delays such that the sum of Thjs updated code:
these delays is minimized while ensuring that all transfer conditions between Makes data88 the 4th variable in the Train structure
trains are satisfied...... Removes all comments
Code: Code:
gL - M
collections deque O {
. N, M, Q, T;
def main(): cin >> N >> M >> Q > T;
input = sys. .read().split()
= vector<Train> (M);
(i=0;1<M; ++1) {
AAAAAA cin >> trains[i].A >> trains[i].B >> trains[i].S;
Interaction Round 1 SRR CETERS = S5
User %Checker
Please revise the provided code to meet the following requirements: .
4 it Interaction Round 3
b plen User (1 unsolved) %Checker‘

e The code you just made still has these errors.Please revise the provided code to
And please remain other requirements in the previous prompt. meet the following requirements:
t 4l

And please remain other requirements in the previous prompt.

LLM

This C++ code solves the train delay problem by preprocessing trains and LLM
efficiently querying the next possible train using a map-based approach......
Code:
I'm sorry, here's the revised code that meets your requirements:
Code:
std; ode
vector<Train> (M);
AB{S T (i=0;1<M; ++1) {
7 > T cin >> trains[i].A >> trains[i].B >> trains[i].S;
’ trains[i].data88 =
o< e
N, M, Q;

(all solved) %%Checker

Figure 2: An Interaction example produced by Deepseek-V3. The model’s outputs are in the green
boxes, and the feedback by our checker is in yellow box. Some details are omitted for clarity.

2 RELATED WORK

2.1 CODE GENERATION BENCHMARKS

Code generation benchmarks evaluate LLMs’ ability to create functional code from natural language
prompts. HumanEval uses 164 hand-crafted Python problems with the pass@k metric but is limited
by its small scale and Python focus. MBPP (Austin et al., 2021) provides 974 basic Python tasks,
but low test coverage hinders its effectiveness for advanced models. APPS (Hendrycks et al., 2021
offers 10,000 diverse problems from platforms like Codeforces, though public sourcing risks data
leakage. LBPP (Matton et al., [2024) counters contamination with 161 novel Python problems on
complex topics like graph algorithms, but its small size causes variance. LiveCodeBench dynamically
collects nearly 1,000 rigorously tested problems from platforms like LeetCode, ensuring freshness
and relevance to modern programming practices. Due to its lack of data contamination and its
challenging nature, Livecodebench was chosen as the source for the code data in this work.

2.2 INSTRUCTION-FOLLOWING BENCHMARKS

Instruction-following benchmarks evaluate LLMs’ ability to execute zero-shot tasks with precise
adherence to constraints, a critical aspect for real-world applications. FollowEval (Jing et al., 2023)
tests bilingual tasks in reasoning and string manipulation with regex-based validation, but its static

Under review as a conference paper at ICLR 2026

design lacks adaptability. FollowBench (Jiang et al) [2024)) introduces fine-grained constraints
(e.g., style, format) and multi-level testing, combining rule- and model-based evaluations, though
model biases remain. IFEval (Zhou et al., 2023) employs 500 prompts with verifiable instructions
(e.g., keyword inclusion) for objective assessment, yet it overlooks complex constraint interactions.
ComplexBench (Wen et al., 2024)) addresses this by testing 1,150 instructions across lexical, semantic,
and utility constraints, using rule-augmented LLM evaluation. Realinstruct (Ferraz et al.| [2024))
leverages authentic user-Al interactions, though ambiguous constraints can affect consistency. For
code-specific tasks, CodelF evaluates multiple languages (e.g., Python, Java) with metrics like
Complete Satisfaction Rate, offering nuanced insights into constraint adherence.

2.3 MULTI-TURN BENCHMARKS

Extending evaluation to dynamic interactions, multi-turn benchmarks assess LLMs’ ability to maintain
context and adapt over multiple exchanges, reflecting real-world usage. MT-Bench tests 80 two-turn
dialogues across domains like coding and reasoning, using LLMs as judges to reduce subjectivity,
but its small scale limits robustness. BotChat (Duan et al.,[2024) automates dialogue generation from
human seeds, enhancing efficiency, though LLM-based evaluation risks bias. MINT (Wang et al.,
2023) simulates tool-augmented problem-solving with 586 instances, supporting varied feedback
scenarios, but tool integration adds complexity. MT-Bench-101 (Bai et al., 2024} offers 1,388
dialogues across 13 task types, categorized by perceptivity, adaptability, and interactivity, though
its GPT-4-generated (OpenAl et al. 2024) data may introduce bias. Multi-IF extends IFEval to
4,501 multi-turn, multilingual dialogues, ensuring quality through LLM-human hybrid construction,
providing a robust framework for complex instruction following. Our work provides a new perspective,
evaluating model efficiency in multi-turn scenarios by measuring the number of turns required to
complete a code problem, taking into account the unique characteristics of code-related tasks.

3 CoCoPIF

To evaluate code generation and instruction-following capabilities of LLMs, we introduce CoCoPIF, a
high-quality dataset built through a dynamic and automated data curation pipeline. This pipeline lever-
ages contamination-free coding problems, realistic user instructions and automatic transformation
methods to produce multi-turn programming tasks that align with practical user needs.

3.1 SELECTION OF CODING PROBLEMS

To construct a dataset for evaluating code generation and instruction-following capabilities, selecting
appropriate code source data is crucial. Algorithmic problems from platforms like LeetCode, AtCoder,
and CodeForces offer numerous test cases for validation, and align with our goals of assessing code
quality and instruction-following in LLMs. Thus, we chose algorithmic problems as our evaluation
framework, leveraging LiveCodeBench——a dataset designed for code generation. LiveCodeBench
gathers fresh, challenging problems from the aforementioned platforms, minimizing contamination
through regular updates and our automated data transformation process, ensuring adaptability and
dynamism. CoCoPIF comprises of 880 LiveCodeBench problems, each with encrypted test cases
(averaging 21.54 per problem, median 14), enabling reliable evaluation while reducing leakage risks.

3.2 CURATION OF REALISTIC CODE INSTRUCTIONS

To make our instruction data more aligned with practical scenarios, we choose to select our code
instructions from the ShareGPT dataset. ShareGPT, an open-source Chrome extension developed
by Steven Tey and Dom Eccleston in 2022, enables users to share ChatGPT conversation logs,
hosting over 438,000 diverse dialogues available on HuggingFace. We began by conducting an initial
keyword-based screening of the entire ShareGPT conversational dataset to isolate code-related data.
From this, we sampled 500 entries for a thorough manual review to better understand user needs and
perform a preliminary categorization. We discovered that a large part of this data was either noise or
contained instructions that were difficult to verify. Consequently, we utilized GPT-40-mini to perform
a second screening, removing the irrelevant data and applying a more fine-grained classification to
the valid entries. The complete classification results are detailed in the Appendix[A.T] This process
resulted in the instruction categories shown in the Figure

Under review as a conference paper at ICLR 2026

suouonAUN}
pjomf@)l
k5’)/Won;l
NClion_n ot

&
=3 _eé\ 2]
=2 N
&
o
S o
$ 4§
<L W
vl on
[
v keyworg
ari
able_type
Variables &
variable_number ~ DataTypes CO CO PI F Performance ot
constant & Outpyt storage
vatiodle . - s
sl limit
fa/; 0. CP/e de‘/’”e
& S & o a’o(‘\ Copy.
8N L @ 3 %,
o PR) 5.5,
™ S 3 ~
3 < €3 S, o
b <3 % %,
& i NG
5 3 Yy
‘\ o £ e
v %%,
& Z %
&5 L %,
S e 53 %,
SF Fs 2%
£ e 2@
T§8 ©

Figure 3: The instruction categories in CoCoPIF. The inner circle shows the major categories, while

the outer circle details the fine-grained subcategories for each major one. The arc length corresponds
to the proportion of each instruction type in our data.

To ensure the resulting instructions reflect authentic user intent, the distribution of multi-turn instruc-
tions was matched to that of ShareGPT functional requests. Starting from the instruction pool distilled
from ShareGPT, we used OpenAI’'s GPT-40-mini to classify code-related interactions out of 28 368
programming dialogues (prompts in Appendix §A.8).The resulting categories—each appearing > 100
times, with many surpassing 2 000 occurrences—are summarised in Table[3]

We balanced instruction frequency by weighting categories according to the square root of their
occurrence counts to align with real-world scenarios (Figure 3. Our instruction data still face two
key challenges to ensure quality. First, we may select conflicting instructions. For example, avoiding
for- and while-loops could render some code infeasible. To address this, we identify all conflicting
instruction pairs through manual checks and avoid selecting these conflicting instructions during the
process. Second, irrelevant instructions require filtering, as some instructions in the dataset proved
to be unnecessary for specific problem contexts. For instance, prohibitions against classes became
irrelevant when the coding solution inherently did not involve class implementation. To tackle this,
we developed a two-stage filtering process, which we illustrate on the left side of Figure [I] We
first used GPT-40-mini to generate baseline solutions, and then eliminated instructions that bore no
functional relationship to the actual solution approach.

To incorporate difficulty variation, we randomly assigned 4, 6, or 8 instructions per problem, enabling
differentiation by instruction count and problem complexity. This approach ensures a fine-grained
difficulty stratification. In our experiment, we also analyzed the impact of different instruction
difficulty. For specific results, please refer to the Appendix

3.3 MULTI-TURN TRANSFORMATION

Constructing multi-turn benchmarks requires transforming single-turn source data into realistic
multi-turn interactions, which poses a significant challenge. Existing benchmarks adopt two main
paradigms. The first, exemplified by Multi-IF, employs a question decomposition approach, breaking
complex problems into sequential sub-questions to form multi-turn dialogues. However, this method
lacks authenticity, as real users rarely decompose demands proactively; instead, they refine requests
based on the model’s prior responses, seeking corrections or deeper details. The second paradigm,

Under review as a conference paper at ICLR 2026

represented by MT-Bench, focuses on dependency question construction, ensuring authenticity but
requiring labor-intensive data creation, often resulting in limited quantities or fewer interaction turns.

Manual analysis of 500 sampled dialogues from ShareGPT ([A.T)) showed that over 50% of conversa-
tions exceeding five turns exhibited topic drift, indicating user impatience with a question beyond five
turns. Consequently, we set a maximum of five turns as the evaluation threshold to ensure relevance
and focus in our dataset. We propose a multi-turn construction pipeline that combines features of
existing methods. Unlike Multi-IF, which adds new instructions each turn, our approach presents the
full requirement upfront, mimicking real user interactions. After code generation, runtime verification
identifies errors, and subsequent turns provide feedback for corrections. This is more realistic than
Multi-IF and allows evaluation based on average turns to resolve issues, a practical metric compared
to per-turn instruction satisfaction. Unlike the labor-intensive MT-Bench, our fully automated pipeline
ensures scalability and precise data control. To help understand our pipeline, we’ve included an
example of the transformed data in the Figure 2] for reference.

When a model fails to resolve an issue within five turns, we evaluate the final output’s compliance
with the initial instructions, which reflects the practical user tendency to manually refine the output
and terminate interaction. Otherwise, we record the number of rounds used to complete the task. This
multi-turn evaluation workflow is visualized in the center of Figure

4 EXPERIMENTS

Our experiments can be divided into two parts. The first part involves transforming the original
programming problem data from LiveCodeBench into instruction-following data. The second part
evaluates the number of iterations required to solve the same code instruction-following tasks.

4.1 INSTRUCTION-FOLLOWING DATA TRANSFORMATION

Initially, we employ GPT-40-mini with a temperature setting of 0 to generate deterministic baseline
solutions for a given set of coding problems, cost an estimated 0.5 million tokens. These solutions
undergo rigorous analysis using Abstract Syntax Tree (AST) parsing to identify and filter out irrelevant
or conflicting instructions, ensuring only meaningful instructions remain. Subsequently, we select a
variable number of instructions (4, 6, or 8) per problem, guided by weights derived from ShareGPT.
To enhance natural language diversity and improve instruction expressiveness, we leverage DeepSeek-
v3 to make the selected instructions more natural, resulting in a robust and varied instruction set
tailored for effective code generation and evaluation.

4.2 EXPERIMENT SETUP

Our experiment simulates a multi-turn dialogue where a user refines requirements, testing LLMs’
ability to understand complex instructions, follow detailed constraints, and maintain contextual
consistency. It evaluates four key aspects: initial code generation, constraint adherence across
iterative versions, multi-turn code refinement based on user’s requirements, and the ability to met
new requirements while preserving prior constraints.

We tested the following models: GPT-4.1, GPT-4.1-mini, GPT-40-mini (OpenAI(OpenAl
et al.,[2024)); Claude-3.7-sonnet, Claude-4-sonnet (Anthropic(Anthropicl [2025)); Gemma-3-27b
(Google(Team et al.,[2024)), Gemini-2.5-flash (Google(Team et al., [2023))); Qwen-2.5-coder-32b-
instruct (Qwen(Hui et al., [2024)), Qwen-2.5-32b-instruct (Qwen(Yang et al., [2024)); Deepseek-
v3-0324, Deepseek-v3.1-0821 (Deepseek(DeepSeek-Al et al., [2024))); and Llama-3.3-70b-instruct
(Llama(Touvron et al.l 2023)). For reproducibility, all models were tested with temperature setting to
0 and a maximum of 5 turns, and their token counts are detailed in the Appendix

Proprietary models were accessed via OpenRouter API and open-source models were run using the
vLLM(Kwon et al.,|2023)) framework with HuggingFace weights. Our data was generated through
multi-turn dialogues between a simulated user and an LLM. For each dialogue, a baseline is first
established by having the model solve the problem without any constraints. In up to 5 subsequent
turns, the checker extracts code from the prior response, identifies unsolved instructions, and prompts

'https://openrouter.ai

https://openrouter.ai

Under review as a conference paper at ICLR 2026

the model to revise its code accordingly. A dialogue concludes and is saved as a data point once all
instructions are successfully solved, or the turn limit is reached. See Figure[T]and Appendix [A.4]for
details on the generation pipeline.

Table 2: Detailed performance comparison of major LLMs on CoCoPIF.

Model Problems Avg. IF Pass Test Case Pass@l1
Solved Turns Rate Pass Rate

Llama-3.3-70b-instruct 344 (39.09%) 3.71 53.66% 12.45% 7.51%

Gemma-3-27b 258 (29.32%) 322 4437% 26.53% 16.08%
Qwen2.5-coder-32b-instruct 391 (44.43%) 3.16 59.03% 21.15% 16.51%
Qwen2.5-32b-instruct 286 (32.50%) 3.83 50.34% 26.74% 16.99%
GPT-40-mini 264 (30.00%) 3.94 48.51% 33.53% 22.17%
Gemini-2.5-flash 340(38.64%) 3.57 54.86% 40.56% 31.95%
GPT-4.1-mini 256 (29.09%) 3.96 48.42% 54.89% 42.64%
Deepseek-v3 352 (40.00%) 3.48 54.64% 56.45% 44.78%
GPT-4.1 319 (36.25%) 3.67 5243% 61.78% 52.12%
Claude-3.7-sonnet 366 (41.59%) 3.61 56.44% 74.16% 56.97%
Deepseek-v3.1 386 (43.86%) 3.74 58.75% 64.21% 59.63%
Claude-4-sonnet 428 (48.64%) 3.64 62.64% 76.29% 62.72%

4.3 EVALUATION METRICS AND RESULTS

To better assess model performance in code generation, we adopt a dual-dimensional evaluation
framework with the following key metrics:

Instruction Solving Number: This measures the number of instruction sets successfully solved by
the model within a given problem, directly reflecting its effectiveness. Higher values indicate stronger
instruction-following capabilities.

Average Solving Rounds: This evaluates efficiency by calculating the average number of interaction
rounds needed to solve a problem. Lower values suggest faster and more accurate intent understanding,
enhancing user experience.

To enable a more fine-grained comparison of model instruction completion, we also tested the pass
rate for instructions in problems, which we call the IF pass rate.

Instructionggjye
IF passrate = ———————
Instructiony

where Instructiongy. represents the number of solved instructions, and Instruction,) represents the
total number of instructions in our task.

For code execution performance, in addition to the classic pass@ 1, we also defined a more granular

scoring metric.

Npass

Testcase passrate = ——
Nan

where ngy is the number of all coding testcases, and ny,g is the number of passed testcases. Results

are summarized in Table [2| and Figure E} Meanwhile, we also tested the model’s code execution

performance for each round of responses. Please refer to the Table []for these results.

5 ANALYSIS AND DISCUSSION

5.1 IMPACT OF INSTRUCTION FOLLOWING ON CODE QUALITY

Figure dillustrates the code execution performance of various models across multiple turns, evaluated
using the pass@ 1 metric on CoCoPIF. The radar chart visualizes the performance, where a more
uniform shape indicates robustness to instruction demands. Larger models, like Claude-3.7-sonnet,
maintain high code quality despite instruction demands, while smaller models, like Gemma-3-27B,
show a notable decline in code quality. These results indicate that general-purpose capabilities may
help mitigate interference from instruction-following demands.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Turn 2 Turn 1

GPT-4.1-mini
GPT-40-mini
Claude-3.7-Sonnet
DeepSeek-v3
Gemini-2.5-Flash
GPT-4.1

Llama-3.3-70B-Instruct
Qwen2.5-32b-instruct

' Qwen2.5-Coder-32b-instruct
Gemma-3-27B
Claude-Sonnet-4
DeepSeek-v3.1

Turn 4 Turn 5

Figure 4: Pass@1 performance degradation over successive conversational turns.

1.0

GPT-4.1-mini

GPT-40-mini
Claude-3.7-Sonnet 0.8
DeepSeek-v3

Gemini-2.5-Flash

o
o

GPT-4.1

Llama-3.3-70B-Instruct { . . . y X . X . 039 056 060

I
Ey
33ey uonadwo)

Qwen2.5-32b-instruct { & : - 2 0.13 [z 3 2 : . 3 : 069 057 039 036
Qwen2.5-Coder-32b-instruct

Gemma-3-27B 0.2

Claude-Sonnet-4

DeepSeek-v3.1
0.0

Figure 5: Comparative analysis of instruction completion rates across multiple LLM:s.

5.2 ANALYSIS ON INSTRUCTION DIFFICULTY

Figure B)illustrates the varying difficulty of instruction types from ShareGPT data across all models.
Simple instructions, such as specifying a programming language, have high completion rates, while
complex ones, like specifying the number of functions or the name of the n-th variable, have low
completion rates. This disparity likely arises because models struggle with precise counting or index-
ing, such as identifying the “third variable,” which requires robust internal reasoning. Additionally,
instructions like specifying function counts demand dynamic state tracking, which is challenging in
long code generation. Assigning specific variable names, such as requiring the “second variable to be
var_88,” further complicates matters by necessitating precise mapping and conflict avoidance.

These challenges highlight deficiencies in precise logical control, state tracking and numerical
reasoning. Take DeepSeek-v3 as an example, the input length distribution for the final round
averages 4,380 tokens, with extremes reaching 17,500+ tokens. This places the instruction set in
the long-context regime, contributing to its difficulty. For detailed information, please refer to the
Appendix [A.3|for other models’ response length distribution.

Under review as a conference paper at ICLR 2026

100
coding_style

keyword_if_not
keyword_for_not
keyword_while
keyword_for
global_variable_not
keyword_while_not
keyword_if
global_variable

80

60

40

Number of Forgettings

20

X Q Q X X X &
& & & & ’1«% & & > & & \\“’\, &
2 & ~ o > & & & & < NE; &
K N N X 2 =& AP & & "f’ & (,)o“
R S & < & a° i3 S S & &
* » © & 2 & A S & RS
& & 14 & S I ©
& & & > & o)
o 2 C &
@(? S @
$®
[y

Figure 6: The number and distribution of instruction forgetting phenomena across different models
(lower is better).

5.3 INSTRUCTION FORGETTING PHENOMENON

The instruction forgetting phenomenon refers to cases where the model output in follow-up rounds
ignored some of the instructions stated in the beginning. Take GPT-4.1 as an example, instruction
forgetting is prominent for tasks like removing comments and avoiding i f statements (see Figure [6).
Similarly, GPT-40-mini exhibits similar issues. In contrast, Google’s Gemini-2.5-flash and Gemma-
3-27b models struggle more with while loop instructions but handle comment removal better.
This suggests model-specific forgetting patterns, likely tied to biases in pretraining and fine-tuning
data. We believe this phenomenon is likely related to the differences in pre-training data adopted by
different model families. Further investigation is needed to confirm these findings.

Figure [6also quantifies instruction forgetting across models, with Deepseek-chat-v3 showing the
highest forgetting rate (96 instances) and Claude-4-Sonnet the lowest (4 instances). Simultaneously,
we can clearly observe that instruction forgetting is notably reduced in the two newer models, Claude-
4-Sonnet and DeepSeek-V3.1, compared to their predecessors. This considerable advancement in
instruction adherence strongly suggests that these models have received more targeted fine-tuning
for handling complex tasks. From these results, we can observe that the phenomenon of instruction
forgetting does not appear to be strongly correlated with the model’s code problem-solving ability. In
fact, this might be more related to their instruction-following performance.

6 CONCLUSION

We introduce CoCoPIF, an evaluation pipeline designed to overcome the limitations of traditional
single-turn code evaluations. By simulating realistic, multi-turn programming interactions using
a dynamic, contamination-free pipeline with problems from LiveCodeBench and user patterns
from ShareGPT, CoCoPIF assesses a large language model’s ability to iteratively follow complex
instructions while maintaining code functionality. Our experiments reveal that even some powerful
models like Claude-3.7-sonnet struggle with precise logical constraints and exhibit a significant
"instruction forgetting" phenomenon—weaknesses invisible to conventional benchmarks. CoCoPIF
thus provides a more practical framework for evaluating and advancing the capabilities of LLMs in
real-world software development scenarios.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide a detailed description of our data processing for ShareGPT and Livecodebench in Section[3]
and Appendix [A.T}] We outline all model settings, including the API versions and their sources in
Section4.3] We also provide our model temperature in Section 4.2 The full list of prompts used in
our experiments can be found in the Appendix [A.8] To further improve reproducibility, we have also
provided an anonymous code repository, available at https://anonymous.4open.science/r/CoCoPIF-
E99B.

REFERENCES
ShareGPT. https://sharegpt.com/, 2025. Accessed: 2025-05-14.
Anthropic. Claude. https://claude.ai/new, 2025. Accessed: 2025-05-13.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su,
Tiezheng Ge, Bo Zheng, et al. Mt-bench-101: A fine-grained benchmark for evaluating large
language models in multi-turn dialogues. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 7421-7454, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv e-prints, pages arXiv—2107, 2021.

A Liu DeepSeek-Al, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, page 4, 2024.

Haodong Duan, Jueqi Wei, Chonghua Wang, Hongwei Liu, Yixiao Fang, Songyang Zhang, Dahua
Lin, and Kai Chen. Botchat: Evaluating llms’ capabilities of having multi-turn dialogues. In
Findings of the Association for Computational Linguistics: NAACL 2024, pages 3184-3200, 2024.

Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia
Liu, Vivek Subramanian, Tagyoung Chung, Mohit Bansal, and Nanyun Peng. LIm self-correction
with decrim: Decompose, critique, and refine for enhanced following of instructions with multiple
constraints. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages
7773-7812, 2024.

GitHub. Introducing github copilot: your ai pair programmer, jun 2021.
URL https://github.blog/news—-insights/product—-news/
introducing—-github—copilot—-ai-pair—-programmer/.

Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma Mandyam, Hejia Zhang, Chen Zhu, Ning Li,
Tengyu Xu, Hongjiang Lv, et al. Multi-if: Benchmarking llms on multi-turn and multilingual
instructions following. arXiv preprint arXiv:2410.15553, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, 2024.

10

https://anonymous.4open.science/r/CoCoPIF-E99B
https://anonymous.4open.science/r/CoCoPIF-E99B
https://sharegpt.com/
https://claude.ai/new
https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/
https://github.blog/news-insights/product-news/introducing-github-copilot-ai-pair-programmer/

Under review as a conference paper at ICLR 2026

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang,
Xin Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints follow-
ing benchmark for large language models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 4667—4688, 2024.

Yimin Jing, Renren Jin, Jiahao Hu, Huishi Qiu, Xiaohua Wang, Peng Wang, and Deyi Xiong.
Followeval: A multi-dimensional benchmark for assessing the instruction-following capability of
large language models. arXiv preprint arXiv:2311.09829, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

Alexandre Matton, Tom Sherborne, Dennis Aumiller, Elena Tommasone, Milad Alizadeh, Jingyi
He, Raymond Ma, Maxime Voisin, Ellen Gilsenan-McMahon, and Matthias Gallé. On leakage of
code generation evaluation datasets. In Findings of the Association for Computational Linguistics:
EMNLP 2024, pages 13215-13223, 2024.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik
Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,
Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,
Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,
Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,
Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh
Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn
Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,
Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,
Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin

11

Under review as a conference paper at ICLR 2026

Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank
Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna
Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle
Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho
Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,
Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,
Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo
Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer
Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal
Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,
Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024.
URL https://arxiv.org/abs/2410.21276.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin
Hu, Wendy Gao, Jiaxing Xu, et al. Benchmarking complex instruction-following with multiple
constraints composition. Advances in Neural Information Processing Systems, 37:137610-137645,
2024.

Kaiwen Yan, Hongcheng Guo, Xuanqing Shi, Jingyi Xu, Yaonan Gu, and Zhoujun Li. Codeif:
Benchmarking the instruction-following capabilities of large language models for code generation.
arXiv preprint arXiv:2502.19166, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,

Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

12

https://arxiv.org/abs/2410.21276

Under review as a conference paper at ICLR 2026

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

13

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 SHAREGPT DATA ANALYSIS

Initial analysis revealed a long-tail distribution of conversation turns, with outliers exceeding 1,000
turns due to users switching topics without starting new conversations. To address this, we conducted
a statistical analysis of the rounds of interaction between users and models related to code in the
ShareGPT data. As explained in the Section [3] after removing interaction data exceeding 10 rounds,
the cleaned statistical results are shown in the Figure[7} The results indicate that the vast majority of

25764

Figure 7: Interaction round distribution.

user interactions involve multi-round dialogues, where users often engage in continuous exchanges to
better address complex work-related needs. This finding strongly underscores the importance and
necessity of constructing multi-round benchmarks.

Our analysis process can be roughly divided into three steps.

* We performed a statistical analysis on the number of dialogue rounds and used a weighted
sampling method to select 500 dialogues for manual annotation. The analysis revealed that
over 50% of interactions exceeding 5 rounds exhibited topic drift, where the conversation’s
later content became unrelated to the initial topic. This usage pattern was identified as
erroneous and dialogues exceeding 5 rounds accounted for a relatively small proportion of
the total (specific proportions are shown in the histogram). Therefore, we concluded that
constructing our evaluation data within 5 rounds is sufficient to ensure data quality.

* Following the process described in Section 3] we utilized GPT-40-mini for a second screen-
ing. This step involved removing irrelevant data and applying a more fine-grained classifica-
tion to the valid entries.

* After the model completed its classification, we performed a manual sampling check on
each category. During this check, we merged or deleted some categories that the model had
misclassified, which accounted for a small number, specifically 1.75% of the total. The final
classification results are illustrated in Figure[S]

Building on the observation that effective evaluation data can be constrained within five turns, we
inspected whether rule-verifiable instructions remain salient in such truncated dialogues. Among the
500 manually annotated dialogues, 312 (62.4%) contained at least one turn that explicitly requested
a code-level property that can be checked automatically (e.g., “add unit tests”, “make this snippet
PEP-8 compliant”, “catch the IndexError on line 12”). Crucially, 83% of these verifiable requests
appeared in turns 24, i.e., after the user had supplied the original snippet and before the fifth-turn
threshold where topic drift becomes dominant. This temporal concentration supports our design
choice of a five-turn cap: it retains the lion’s share of verifiable instructions while excising the noisy,
topic-drifted tail. Furthermore, we found that dialogues with exactly three turns exhibited the highest

14

Under review as a conference paper at ICLR 2026

Classification Results for Specified Categories

5000 4995

4690

4000

3000

Count

2000

1520

1032
1000 880 883

238

=1 292 311 364

& & Q@ & & & & o X x §
& & & & &S . . & 9 & & P e o & & & D &% @ % e
L q:\{p o .‘P@/ @;\ e@u ';@'1 Q\)c \@ *\w\\ o5 f‘b/ K & & &S & oS OO’A &5 & a\\;) a@q & 5
v & O S § & & R) s D o RS S
PG @ ¢ O T S Sy S 2 & & 3 & & L &
@ & PSS A A & & EE e > & S
& R & F & & > ECE) v) Q@V @
& TS & € 30* & & &
& @ & @

Category

Figure 8: Distribution of different instruction types on ShareGPT.

density of verifiable requests—1.8 per dialogue on average—suggesting that a three-turn format
may strike an optimal balance between context richness and annotation cost for future benchmark
construction.

A.2 CODE EXECUTION RESULTS

In our experiment, we also recorded the execution results of the code generated by the model in each
round, with the specific outcomes presented in the Table [}

A.3 INSTRUCTION DIFFICUTY ANALYSIS

It is insufficient to assess the difficulty of different types of instructions based solely on completion
rates. We should also consider completion efficiency, which can be measured by the number of turns
required to resolve different instructions. For the average number of rounds used by different models
for different instructions, please refer to Figure[9] The instructions selected in this section are all
those that have exhibited instances of instruction forgetting.

We also analyzed the token distribution of the total context length in the final-round input across
different models to support our argument in the text. The distribution is shown in Figure [10] and
Figure @ It can be observed that some smaller models, such as Llama and Qwen, tend to generate
longer outputs, which also reflects their efficiency in solving problems.

A.4 DETAILS OF EXPERIMENT SETTING

Here, we will elaborate on how we filter out valid instructions based on predefined rules and how we
provide feedback to the model during evaluation. Since all our instructions are carefully selected,
they can be automatically validated.

Constraint checking combines regular expressions and Abstract Syntax Tree (AST) parsing. For
Python code, we use the ast module; for C++ and Java, we use clang and javalang, respectively,
ensuring accurate structural analysis. Taking keyword_if as an example, we first categorize the code
generated by the model into three types: Python, Java, and C++. After classification, we use regular
expressions to remove comments and string literals. Then, within the remaining code, we apply regex
checks again to verify the presence of if statements.

15

Under review as a conference paper at ICLR 2026

Table 3: Categories of coding instructions with examples.

Category Group

Category

Example

Variables &

keyword_variable_include
keyword_variable_number

Modify code to use var87 as a variable name.
Revise code to position talb18 as the 4th variable.

Data Types keyword_variable_type Update code to define the 3rd variable as f1oat.
constant_variable Update code to include a constant variable.
constant_variable_not Refactor code to remove constant variables.
global_variable Revise code to use a global variable.
global_variable_not Modify code to avoid global variables.
keyword_for Refactor code to include a for loop.

Control keyword_for_not Update code to exclude for loops.

Structures keyword_while Modify code to include at least one while loop.

keyword_while_not
keyword_if
keyword_if_not

Adjust code to omit while loops.
Revise code to include an i f statement.
Modify code to avoid if statements.

Functions &

keyword_function
keyword_function_not

Update code to include 3 functions.
Revise code to exclude functions.

Classes keyword_function_one Adjust your code to include function.
keyword_class Modify code to include 6 class (es).
keyword_class_not Refactor code to remove classes.
keyword_class_one Refactoring your code to integrate class.
function_parameters_max Limit function parameters to 3.
function_parameters_min Ensure no function has fewer than 2 parameters.

Programming built_in_function Restrict function usage to built-in functions.

Lang & Built-ins

coding_language

Revise code to be written in Java.

Code Style &
Standards

coding_style
coding_style_include
code_lines

Adjust code to exclude comments.
Refactor code to include comments.
Revise code to have at most 60 lines.

Performance &
Output

time_limit
storage_limit
output_format

Modify code to run within 2048 ms.
Optimize code to use less than 10240 KB.
Adjust code to output in { Output } format.

Table 4: Problem solving rounds performance (Scorepqss).

Model Round1 Round2 Round3 Round4 Round5 Round6
GPT-4.1 554.88 583.16 566.05 543.65 544.75 543.63
GPT-4.1-mini 632.71 547.25 496.83 486.28 487.01 483.05
GPT-40-mini 399.16 338.16 29991 298.10 285.13 295.09
Claude-3.7-sonnet 643.96 660.18 630.01 623.87 641.20 652.59
Gemma-3-27b 463.62 310.93 282.49 267.19 236.13 233.43
Gemini-2.5-flash 601.83 413.95 380.26 367.21 358.85 356.89
Qwen2.5-coder-32b-instruct 459.66 267.00 206.36 195.04 189.42 186.14
DeepSeek-v3 593.68 586.23 574.78 569.39 567.51 565.05
DeepSeek-v3.1 605.68 586.23 556.78 499.39 493.51 492.77
Llama-3.3-70b-instruct 346.74 177.51 134.44 116.90 107.47 109.60
Qwen2.5-32b-instruct 434.51 294.24 246.67 249.72 234.28 235.29
Claude-4-sonnet 693.96 680.18 678.01 676.87 672.20 671.31

To evaluate code functionality, we execute generated code with a 5-second timeout and 64MB memory
limit in isolated subprocesses, capturing output, errors, execution time, memory usage, and test case
pass rates. To ensure efficient evaluation, we set a 90-second total time limit per code.

For more technical details on other instructions, please refer to our released code.

16

Under review as a conference paper at ICLR 2026

Average Window Length (turns)

Probability density (per 1000 tokens)

5 B GPT-4.1-mini
Hm GPT-40-mini
B Claude-3.7-Sonnet
EEE DeepSeek-v3
B Gemini-2.5-Flash

4 == GPT-4.1
B Llama-3.3-70B-Instruct
B Qwen2.5-32b-instruct
s Qwen2.5-Coder-32b-instruct

3 - Gemma-3-27B

Claude-Sonnet-4
DeepSeek-v3.1

2

1

0

N & & & < & & S NS
&7 & 65\ °@> ’ &7 &7 q\o‘ S
&oc’ &7 &7 & & @ &) i
& *q\ © 6\4\ N & > ¢ 6°’b
@ 2 A Q’b\’ & S
S N

Keyword

Figure 9: Turns required to resolve different instructions.

—— GPT-4.1-mini
~—— GPT-40-mini
—— Claude-3.7-Sonnet

—— DeepSeek-v3

—— Gemini-2.5-Flash

— GPT-4.1

~ Llama-3.3-70B-Instruct
—— Qwen2.5-32b-instruct

~—— Qwen2.5-Coder-32b-instruct
—— Gemma-3-27B

—— Claude-Sonnet-4

~——— DeepSeek-v3.1

0.30

°
o
b

o
N
3

015

0.10

°
°
&

0.00

0 2000 4000 6000 8000 10000
Tokens length

Figure 10: Final round tokens distribution (0-10k).

A.5 TOKEN COUNT IN EXPERIMENT

Here, to facilitate the reproducibility of the experiments, we provide the total token counts used for

all models in our experiments, as shown in the Tableﬂ

A.6 THE INFLUENCE OF INSTRUCTIONS AND QUESTION DIFFICULTY ON EACH OTHER

Since our dataset has difficulty classifications for instruction sets (4, 6, and 8 instructions), and the
LivecodeBench data itself also includes difficulty classifications for the problems, investigating the
mutual influence of these two difficulty dimensions becomes an interesting point. We analyze the code

17

Under review as a conference paper at ICLR 2026

0.30

° o °
o} S 5

Probability density (per 1000 tokens)
°

GPT-4.1-mini
GPT-40-mini
Claude-3.7-Sonnet
DeepSeek-v3
Gemini-2.5-Flash
GPT-4.1
Llama-3.3-70B-Instruct
Qwen2.5-32b-instruct
Qwen2.5-Coder-32b-instruct
Gemma-3-27B
Claude-Sonnet-4
DeepSeek-v3.1

0.05 \
N
0.00 y = -
0 10000 20000 30000 40000 50000
Tokens length
Figure 11: Final round tokens distribution.
Table 5: Token count summary.
Model TurnO Turnl Turn2 Turn3 Turn4 Turn5 Total Tokens
GPT-4.1-mini 2,893,405 (880) 2,373,016 (873) 1,821,892 (701) 1,395,392 (652) 1,001,049 (633) 511,243 (624) 9,995,997
GPT-40-mini 2,882,244 (880) 2,339,212 (879) 1,767,672 (708) 1,326,185 (644) 927,609 (627) 511,353 (616) 9,754,275
Claude 3.7 Sonnet 3,323,630 (880) 2,662,097 (843) 2,035,051 (661) 1,544,448 (588) 1,076,544 (545) 430,239 (514) 11,072,009
DeepSeek v3 3,111,537 (880) 2,456,677 (823) 1,829,241 (649) 1,351,863 (551) 973,747 (518) 415,113 (498) 10,138,178
Gemini 2.5 Flash 2,320,363 (880) 1,828,190 (818) 1,360,611 (610) 1,045,799 (563) 767,764 (550) 442,725 (540) 7,765,452
GPT-4.1 2,473,299 (880) 1,990,849 (861) 1,466,476 (640) 1,105,167 (588) 785,463 (568) 467,807 (561) 8,289,061
Llama 3.3 70B 4,092,643 (880) 2,926,704 (880) 1,948,855 (688) 1,300,960 (600) 858,866 (561) 444,016 (536) 11,572,044
Qwen 2.5 32B 2,851,011 (880) 2,174,289 (880) 1,527,872 (679) 1,109,153 (617) 771,020 (601) 492,886 (594) 8,926,231
Qwen 2.5 Coder 32B 3,027,046 (880) 2,191,476 (714) 1,575,748 (560) 1,137,660 (520) 765,829 (499) 392,555 (489) 9,090,314
Gemma3 27B 1,970,598 (880) 1,495,326 (730) 1,099,774 (575) 825,266 (535) 592,059 (513) 412,435 (503) 6,395,458
Claude-Sonnet-4 3,163,255 (880) 2,505,647 (880) 1,866,589 (645) 1,412,178 (581) 1,001,346 (546) 432,088 (522) 10,381,103
DeepSeek-v3.1 3,834,712 (880) 3,072,138 (875) 2,401,579 (689) 1,899,652 (612) 1,452,262 (579) 459,179 (554) 13,119,522

quality across different instruction difficulty levels, as well as examine instruction completion rates
based on varying code difficulty levels. The results are shown in the Figure[12] [13] [T4]

Considering the relationship between code quality and instruction difficulty in models, we found
that the difficulty of instructions (4, 6, or 8 instructions) has a significant impact on the quality of
code generated by most models. However, GPT-4.1 is an exception. We observed that GPT-4.1 is
minimally affected by instruction difficulty, indicating that GPT-4.1 is well-suited for such tasks.

We observed no clear connection between code problem difficulty and instruction-following ef-
fectiveness, as the Figure [T4] shows this metric seems largely unrelated to model performance or

capability.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1.0

0.8

0.6

Pass Rate

0.4

0.2

0.0

Turn 0 Turn 1 Turn 2 Turn 3 Turn 4 Turn 5
Turn
—e— GPT-4.1-mini (avg) —e— Claude-3.7-Sonnet (avg) —&— Gemini-2.5-Flash (avg)
—e— GPT-40-mini (avg) —o— DeepSeek-v3 (avg) —e— GPT-4.1 (avg)

Figure 12: The Impact of instruction difficulty on pass@]1 varies across different models (Groupl).

0.7

0.6

05

o
IS

Pass Rate

I
w

0.2

0.1

b

Tum 0 Turn 1 Tumn 2 Tumn 3 Tum 4 Tumn s

Turn
—e— Llama-3.3-70B-Instruct (avg) ~ —e— Qwen2.5-Coder-32b-instruct (avg) —e— Claude-Sonnet-4 (avg)
—e— Qwen?2.5-32b-instruct (avg) —e— Gemma-3-27B (avg) —e— DeepSeek-v3.1 (avg)

Figure 13: The impact of instruction difficulty on pass@1 varies across different models (Group?2).

19

Under review as a conference paper at ICLR 2026

0. 65 1 —8— Score range
@ \Weighted average score
- 0. 60 A .
o
5
a3
- 0.55
N 4 *
K
£
S
= 0.504
*
0. 45
> ~ X e X N X, X X N D N
. A . :
&5 « ¥ X > e & g N & A
N 3 P & 3 X) X o
o ’ i o & & & & &
PAd &7 Y & o N P N S o) 22
N & it g < N
Q\’b %2 b/.-ﬁ. a@’, t’obm)
K * i1
> &
@

Figure 14: The standardized Score_if of different models is influenced by the difficulty of the coding
problem.

A.7 LLMS USAGE IN OUR WORK

We hereby pledge that, regarding the use of LLMs in this work, we only used them for minor text
refinement, apart from their evaluation purposes in the experiments.

A.8 PROMPTS IN OUR EXPERIMENTS

Here we provide examples of the prompts used to generate baseline solutions and the experiment
prompts.

20

Under review as a conference paper at ICLR 2026

Baseline Solution Generating Prompt

Prompt:

System:You are an expert Python programmer. You will be given a question (problem
specification) and will generate a correct Python program that matches the specification and
passes all tests. Your code should not only handle the test cases but also any possible input.
The test cases are merely provided to facilitate your understanding of the problem.

User:

Problem: 2UP3DOWN

Takahashi is in a building with 100 floors. He uses the stairs for moving up two floors or less
or moving down three floors or less, and uses the elevator otherwise. Does he use the stairs to
move from floor X to floor Y?

Input:

The input is given from Standard Input in the following format: X Y

Output:

If Takahashi uses the stairs for the move, print Yes; if he uses the elevator, print No.
Constraints

-1< XY <100

-X#Y

- All input values are integers.

Sample Input 1:

14

Sample Output 1:

No

The move from floor 1 to floor 4 involves going up three floors, so Takahashi uses the elevator.
Sample Input 2:

99 96

Sample Output 2:

Yes

The move from floor 99 to floor 96 involves going down three floors, so Takahashi uses the
stairs.

Sample Input 3:

100 1

Sample Output 3:

No

Test Cases:

Input 1: 14

Output 1: No

Input 2: 99 96

Output 2: Yes

Input 3: 100 1

Output 3: No

Please write code to solve this problem.

Important requirements: 1. Write a COMPLETE Python program, not just a function. 2.
Include proper input handling code to read data directly (don’t assume variables are pre-
defined). 3. Call your main function directly at the end of the program. 4. Include all
necessary imports. 5. The program should be ready to run without any modifications.

The test cases are provided to help you understand the problem, but your solution must work
for all valid inputs.

21

Under review as a conference paper at ICLR 2026

Experiment Prompt Example

Prompt:

System:You are an expert Python programmer. You will be given a question (problem
specification) and will generate a correct Python program that matches the specification and
passes all tests. Your code should not only handle the test cases but also any possible input.
The test cases are merely provided to facilitate your understanding of the problem.

User:

Problem: 2UP3DOWN

Takahashi is in a building with 100 floors. He uses the stairs for moving up two floors or less
or moving down three floors or less, and uses the elevator otherwise. Does he use the stairs to
move from floor X to floor Y?

Input:

The input is given from Standard Input in the following format: X Y

Output:

If Takahashi uses the stairs for the move, print Yes; if he uses the elevator, print No.
Constraints

-1< XY <100

-X#Y

- All input values are integers.

Sample Input 1:

14

Sample Output 1:

No

The move from floor 1 to floor 4 involves going up three floors, so Takahashi uses the elevator.
Sample Input 2:

99 96

Sample Output 2:

Yes

The move from floor 99 to floor 96 involves going down three floors, so Takahashi uses the
stairs.

Sample Input 3:

100 1

Sample Output 3:

No

Test Cases:

Input 1: 14

Output 1: No

Input 2: 99 96

Output 2: Yes

Input 3: 100 1

Output 3: No

Please write code to solve this problem.

Important requirements: 1. Write a COMPLETE Python program, not just a function. 2.
Include proper input handling code to read data directly (don’t assume variables are pre-
defined). 3. Call your main function directly at the end of the program. 4. Include all
necessary imports. 5. The program should be ready to run without any modifications.

The test cases are provided to help you understand the problem, but your solution must work
for all valid inputs.

22

Under review as a conference paper at ICLR 2026

Experiment Prompt Example

(continue)
Assistant:
Here is a complete Python program that solves the problem as described:

def main () :
import sys

Read input from standard input
input_data = sys.stdin.read() .strip()
X, Y = map(int, input_data.split())

Calculate the difference between the two floors
difference = Y - X

Determine if Takahashi uses the stairs or the elevator
if (1 <= difference <= 2) or (-3 <= difference <= -1):
print ("Yes")
else:
print ("No")

if __name_ == "_ _main_ ":
main ()
Explanation:

1. **Input Handling**: The program reads input directly from standard input, which is
suitable for competitive programming and other environments where input is provided in this
manner.

2. **Logic**: It calculates the difference between the two floors (Y - X) and checks if
this difference falls within the ranges that allow the use of stairs: - Moving up 1 or 2 floors
(difference of 1 or 2). - Moving down 1, 2, or 3 floors (difference of -1, -2, or -3).

3. **Output™*: It prints "Yes" if Takahashi can use the stairs and "No" otherwise.

4. **Execution**: The ‘main() function is called at the end of the program to ensure it runs
when the script is executed.

This program is ready to run and will handle all valid inputs as specified in the problem
constraints.

User:

Please revise the provided code to meet the following requirements:

. Please revise your code to be written in Java.

. Could you modify your code to ensure it contains at least one for loop?

. It would be appreciated if you could adjust your code to run within 2629 milliseconds.

. Please revise yourcode to exclude any function in the implementation.

. We recommend updating your code to utilize item47 as a variable name.

. It would be appreciated if you could adjust your code to make the 3rd variable a tuple.

. All Your function should have at least 3 parameters.

8.We recommend refactoring your code to produce output in the [output | format.

And please remain other requirements in the previous prompt.

Nk~ W -

23

Under review as a conference paper at ICLR 2026

Experiment Prompt Example

(continue)
Assistant:
Here is the revised Java program that meets your requirements:

import java.util.Scanner;

public class TwoUpThreeDown {
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);

// Read input values
int X = scanner.nextInt ();

int Y = scanner.nextInt ();

// Create a tuple-like structure using an array

int[] itemd47 = new int[2];
itemd7[0] = X;
itemd7[1] = Y;

// Calculate the difference

int difference = item47([1] - item47([0];
String result = "No"; // Default to "No"
for (int 1 = 0; i < 1; i++) {
if ((1 <= difference && difference <= 2) || (-3 <=
difference && difference <= -1)) {
result = "Yes";

}
}

// Output the result in the specified format
System.out.println("[" + result + " 1");

scanner.close () ;

}

Explanation of Changes:

1. **No Functions**: The code is structured without any additional functions, as per your
request.

2. **Tuple-like Structure**: Instead of using a tuple, an array named ‘item47° is used to hold
the two floor values, simulating a tuple.

3. **For Loop**: A for loop is included to satisfy the requirement, although it only iterates
once.

4. #*Qutput Format**: The output is formatted as ‘[result]* to match your specifications.
5. **Performance**: The code is simple and efficient, ensuring it runs well within the time
limit of 2629 milliseconds.

This Java program is ready to run and will handle all valid inputs as specified in the problem
constraints.

24

	Introduction
	Related Work
	Code generation benchmarks
	Instruction-following benchmarks
	Multi-turn benchmarks

	[height=0.7em, width=1.2em]images/icon2.png CoCoPIF
	Selection of coding problems
	Curation of realistic code instructions
	Multi-turn transformation

	Experiments
	Instruction-following data transformation
	Experiment setup
	Evaluation metrics and results

	Analysis and Discussion
	Impact of instruction following on code quality
	Analysis on instruction difficulty
	Instruction forgetting phenomenon

	Conclusion
	Appendix
	ShareGPT data analysis
	Code Execution Results
	Instruction Difficuty Analysis
	Details of Experiment Setting
	Token Count in Experiment
	The influence of instructions and question difficulty on each other
	LLMs usage in our work
	Prompts in our Experiments

