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ABSTRACT

Compression techniques, such as Knowledge distillation, Pruning, and Quantiza-
tion reduce the computational costs of model inference and enable on-edge ma-
chine learning. The efficacy of compression methods is often evaluated through
the proxy of accuracy and loss to understand similarity of the compressed model.
This study aims to explore the functional divergence between compressed and
uncompressed models. The results indicate that Quantization and Pruning create
models that are functionally similar to the original model. In contrast, Knowl-
edge distillation creates models that do not functionally approximate their teacher
models. The compressed model resembles the dissimilarity of function observed
in independently trained models. Therefore, it is verified, via a functional under-
standing, that Knowledge distillation is not a compression method. Thus, leading
to the definition of Knowledge distillation as a training regulariser given that no
knowledge is distilled from a teacher to a student.

1 INTRODUCTION

The recent growth in size and complexity of neural network models towards billion parameter mod-
els (Muhamed et al., 2021) has fueled unprecedented advancements in various domains such as com-
puter vision (Dehghani et al., 2023) and natural language processing (Hoffmann et al., 2022). While
these complex models boast remarkable performance, their deployment in resource-constrained en-
vironments remains challenging due to their high computational costs (Wu et al., 2019). Knowledge
distillation (Hinton et al., 2015), Pruning (LeCun et al., 1989), and Quantization have emerged as
solutions to bridge the gap between computational efficiency and complexity.

The current understanding of compression techniques is that compressed models approximate the
original function of uncompressed models (Hinton et al., 2015). This assumption results from an
accuracy and loss-based analysis of the compress model. For example, the underpinning notion of
Knowledge distillation involves transferring the knowledge encapsulated in a sophisticated teacher
to a more streamlined student. It is assumed that the student will approximate the teacher’s function
as the student can match or improve performance via Knowledge distillation (Hinton et al., 2015).
However, functional analysis of independent models shows that models trained on the same dataset
with similar accuracy and loss can form very different functional representations (Fort et al., 2019).
As a result, using accuracy and loss alone to gauge functional similarity is unsound as it infers a
symmetric relationship of functional similarity and accuracy, which is not apparent for similarly-
performing independent models. As a result, this paper asks the following questions:

1. Does Knowledge distillation, Quantization or L1 Pruning result in a compressed model that
is functionally similar to the original model?

2. Which compression methods, if any, are the most efficacious for function preservation?
3. How does compression and function preservation scale across multiple architectures and

datasets?

The results show:

• Knowledge distillation cannot be considered a compression method as it results in a student
model that is as functionally dissimilar to the teacher as independently trained models.
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• Different α values do not impact the degree of functional similarity between a student and
a teacher in Knowledge distillation.

• Post hoc Quantization is the best method for functional preservation across all explored
architectures and datasets.

• L1 Pruning is an effective method for functional preservation across datasets and is partially
constrained by the architecture and dataset.

• Compression of a model needs to be viewed from functional proximity rather than just
accuracy as accuracy is a false similarity proxy.

2 BACKGROUND

2.1 KNOWLEDGE DISTILLATION

Knowledge distillation suggests that a student can successfully approximate accurate internal rep-
resentations provided by a singular pre-trained model or an ensemble of the models (Hinton et al.,
2015). In Knowledge distillation, a unidirectional backpropagation updates the student’s weights
while preserving the teacher’s. Embodying a nuanced strategy distilling knowledge from a profi-
cient teacher to a student (Hinton et al., 2015). Knowledge distillation leverages a distillation loss
function and a temperature parameter (T ) to smooth teacher outputs; higher T are said to enable
access to a teacher’s dark knowledge. Additionally, the loss computation incorporates an alpha fac-
tor (α) ranging between zero and one that scales the influence of the student and teacher before
backpropagating the loss. A low α value (close to 0) emphasises student-centric information, and a
high α value (close to 1) tends toward a more substantial reliance on knowledge transfer from the
teacher model. Self distillation has proven helpful in improving the accuracy of a student with the
same architecture as a teacher (Allen-Zhu & Li, 2023). Literature suggests that in Self distillation,
the teacher guides the model to an accuracy that exceeds the teacher’s, by guiding the student to a
flatter minima (Zhang et al., 2022).

2.2 QUANTIZATION

Quantization is a form of model compression that has gained significance in overcoming bottle-
necks associated with deploying machine learning models on-edge devices (Gholami et al., 2022).
It is primarily utilised to overcome overwhelming memory and computational requirements at infer-
ence. Post-hoc Quantization is applied after training to a conventional model trained with complete
32-bit floating-point precision (Banner et al., 2019). The full precision model weights and biases
undergo Quantization, which involves a transformative shift towards lower-bit precision, ranging
from 16 to 4-bit integers. Quantization promises many benefits, such as reduced model size and
accelerated inference speed; however, it presents a trade-off as it can result in accuracy degradation
(Gholami et al., 2022). Techniques such as Quantized Aware Training are employed to preserve
crucial information and minimise the compromise on accuracy at lower bit regimes (Banner et al.,
2018).

2.3 MODEL PRUNING

Model Pruning, formerly known as Optimal Brain Damage (ODB), follows the notion that net-
work complexity can be reduced by removing parameters with low saliency, referring to parameters
whose elimination minimally impacts the training error (LeCun et al., 1989). It is observed that
parameters with small magnitudes exhibit lower saliency and, therefore, can be removed (pruned)
from the overall network (LeCun et al., 1989). ODB developed into model Pruning by employing
a magnitude-based weight Pruning method that is more computationally efficient and scales better
to complex networks (Zhu & Gupta, 2018) such as L1 Pruning. In terms of model compression,
structured Pruning (Anwar et al., 2017) is the most viable method to accelerate the hardware perfor-
mances of deep neural networks. L1 unstructured Pruning does not adhere to a particular geometry
constraint, and consequently, additional information is required to denote sparse locations, which
can be a bottleneck for efficient computation (Anwar et al., 2017).
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2.4 FUNCTIONAL SIMILARITY

Fort et al., (2019) explored functional diversity in ensembles by showing the functional landscape
through softmax representations. They reduce the softmax predicted outputs on the test set to a
two-dimensional representation using t-NSE (Van der Maaten & Hinton, 2008) and plot the result-
ing representation. The representation serves as a low dimensional visualization of the functional
similarity between two or more models (Fort et al., 2019).

3 EXPERIMENTAL SETUP

To explore the compression methods functional similarity, three architectures, LeNet (LeCun et al.,
1998), ResNet-50 (He et al., 2016) and MobileNet (Howard et al., 2017) (Table 4 in Appendix),
were trained on CIFAR10 and CIFAR100 (Krizhevsky et al., 2009), with an initial experiment con-
ducted using the LeNet architecture on the MNIST dataset (LeCun et al., 2010) in 4.1. The findings
are evaluated for how compression methods and functional similarity scale with increasing dataset
complexity (Table 5 in Appendix).

Three independent models of the same architecture were trained for each respective architecture and
dataset. Each model was trained for 25 epochs with a batch size of 64, with the final model being
saved. After each epoch, the model was evaluated against the test dataset, and the softmax outputs
were saved. The method presented by Fort et al., 2019 described in 2.4 is employed to show the
functional diversity of compression outcomes. Each compression method was applied independently
to the base model, which is the first independently trained model. The other independent models are
presented in figures for reference.

Self distillation is employed to explore functional similarity of student and teacher models. The
base model is used as the teacher, and the student is the base model at initialisation. The student
has the capacity to match the exact representation of the teacher, allowing for a comprehensive
understanding of the functional relation elicited by distillation. In the Self distillation results, T =
3, and α = [0.1, 0.5, 0.9]. The α values allow observation of functional similarity to the teacher
depending on the proportion of the teacher’s signal used during training. All Self distillation results
were averaged across three random seeds, with each functional similarity shown in the Appendix in
B.0.1 -B.0.2. Quantization was applied as a post hoc method at 16 and 8-bit regimes. For Pruning,
L1 Pruning was employed as a post hoc method on the final model with no fine-tuning; functional
similarity is compared when Pruning [10%, 30%,50%,70%,90%] of the original network.

4 RESULTS

4.1 MNIST

Table 1: Percentage deviation of base model test accuracy 99.15% on MNIST

Self distillation with α Quantization L1 Pruning
Architecture 0.1 0.5 0.9 16-bit 8-bit 10% 30% 50% 70% 90%

LeNet -0.178 ( ±0.057) -0.124 (±0.042) -0.215 (±0.076) -0.07 -0.05 -0.07 -0.08 -0.01 -1.04 -22.55
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Figure 1: MNIST Functional Land-
scape for LeNet. B: Base model, P:
Pruning, D: Self distillation, Q: Quan-
tization; I: Independently trained model
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The test accuracy deviation from the base model given the application of each compression method
is shown in Table 1. It is evident from the table that each compression method has a minute impact
on the model’s accuracy - showing that compression methods can be utilised without compromis-
ing accuracy provided by the original model. Only when the Pruning reaches 90% of the network
there is reduction in accuracy above 2%. However, MNIST is a particularly trivial learning task,
and, therefore, this is unsurprising. It can be observed, in Figure 1, that Quantization and Pruning
(while accuracy deviation remains below 2%) remain the most similar to the base model functional
representation. Self distillation, however, is as dissimilar to the base model as the independent mod-
els across all α values. The functional comparison suggests that distillation cannot be considered a
compression method.

4.2 CIFAR10

Findings from MNIST are further explored on the CIFAR10 dataset. The base models for LeNet,
ResNet-50 and MobileNet architectures achieved test accuracy’s of 63.38%, 67.37% and 68.70 %,
respectively.

Table 2: Percentage deviation of base model test accuracy on CIFAR10

Self distillation with α Quantization L1 Pruning
Architecture 0.1 0.5 0.9 16-bit 8-bit 10% 30% 50% 70% 90%

LeNet 8.74 (±0.65) 8.93 (±0.45) 8.57 (±0.72) -0.62 -0.33 -0.25 -0.60 -2.95 -14.56 -78.466
ResNet-50 -0.74 (±1.16) -3.41 (±1.35) 0.09 (±0.9) 0.00 -0.56 -0.08 0.48 -0.03 -0.04 -85.30
MobileNet -18.25 (±0.56) -20.08 (±0.77) -21.15 (±1.48) 0.02 0.07 -16.84 -83.70 -85.43 -83.84 -85.40
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(b) ResNet-50
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(c) MobileNet

Figure 2: CIFAR10 Functional Landscape. B: Base model, P: Pruning, D: Self distillation, Q:
Quantization; I: Independently trained model

The CIFAR10 test accuracy percentage deviation results shown in Table 2 provide insights into
which compression methods are best for each model. It is evident that all models see an equal
fluctuation in accuracy when Quantization is applied. Interestingly, the L1 Pruning results show that
different architectures respond uniquely to Pruning. This suggests that some architectures have more
redundant information held than others, allowing for a harsher Pruning regime to be implemented.

While the efficacy of the compression methods varies between the different architectures, the func-
tional landscapes in Figure 2 indicate insights that mirror those witnessed on MNIST in Figure
1. The Quantized models remain close to the base models functional representation, and likewise
for the pruned models of LeNet and ResNet-50. Notably, when 70% of the network is pruned for
LeNet, and there is decrease of almost 15% in accuracy, the functional similarity remains close to
the base model. Yet again, with Self distillation, the functional behaviour mimics that of the inde-
pendent models - reiterating that the teacher does not pass any information that enables the student
to approximate the function of the teacher.

4.3 CIFAR100

The final exploration was completed on CIFAR100, with the base test accuracy on the LeNet,
ResNet-50 and MobileNet being 33%, 37% and 29.12% respectively.
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Table 3: Percentage deviation of base model test accuracy on CIFAR100

Self distillation with α Quantization L1 Pruning
Architecture 0.1 0.5 0.9 16-bit 8-bit 10% 30% 50% 70% 90%

LeNet 15.64 (±1.56) 15.71 (±0.51) 15.63 (±1.56) 0.00 -0.16 -0.13 -0.7 -4 -32.31 -85.62
ResNet-50 -5.20 (±3.89) 0 (±2.55) 1.56 (±2.43) -0.08 -0.16 0.05 -0.16 -1.45 -96.97 -97.34
MobileNet -26.66 (±1.17) -25.63 (±2.66) -27.35 (±3.40) 0.17 -0.03 -36.26 -95.74 -96.01 -96.43 - 96.57
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Figure 3: CIFAR100 Functional Landscape. B: Base model, P: Pruning, D: Self distillation, Q:
Quantization; I: Independently trained model

Figure 3 consolidates indications provided by the MNIST and CIFAR10 results. Firstly, Quantiza-
tion is the most universally applicable method for compressing a network whilst retaining functional
similarity and accuracy across various architectures. Secondly, Pruning is an effective strategy for
maintaining functional similarity when withstanding severe degradation in accuracy. Additionally,
different architectures have varying sensitivity to L1 Pruning. Findings from Tables 2 and 3 offer
a potentially more efficient pathway to Pruning by using less complex proxy datasets on specific
architectures to gain insights into how sensitive an architecture is to Pruning. As a result, this will
allow less resource expenditure to find the appropriate compression for an architecture at scale. Fi-
nally, while some architectures can realise accuracy gains due to distillation, Knowledge distillation
cannot be considered a compression method as it does not approximate the function of the teacher.
The student is repeatedly as functionally dissimilar to the base model as the independent models
across all architectures and datasets.

5 CONCLUSION

The results presented in this paper create a new paradigm for considering compression methods.
Through this paradigm, Quantization and L1 Pruning can be defined as compression methods, as
the resulting compressed model strongly resembles the function of the base model, notwithstanding
significant fluctuations in the accuracy from the base model. Not only do Quantization and L1 Prun-
ing cluster around the base model, they are much closer than independent models are to one another,
further validating that the function of the base model is maintained during the application of these
compression methods. In instances where a robust model is going to be compressed, it would be apt
to first employ Quantization followed by Pruning instead of a Knowledge distillation method. The
same results show that Knowledge distillation produces students as functionally dissimilar to their
teacher as independently trained models. The implication is that to consider Knowledge distillation,
a compression method is inaccurate from a functional perspective. Consequently, Knowledge dis-
tillation should be perceived as a form of regularised training. Additionally, it could also be argued
that the name Knowledge distillation is misleading and, therefore, should be revisited and explored
to understand what is truly happening in the distillation process. The findings ultimately raise ques-
tions over the feasibility of transfer knowledge between neural networks as this work suggests that
it is not possible with current Knowledge distillation methods.
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A APPENDIX - ARCHITECTURE AND DATASET COMPLEXITY

Table 4: Architecture Features

MODEL TRAINABLE PARAMETERS SIZE(MB)

LeNet 225,034 0.879
MobileNet V1 3,736,906 14.34
ResNet-50 24,634,980 94.18

Table 5: Dataset Features

DATASET INPUT DIMENSIONS INSTANCES NUMBER OF CLASSES

MNIST 1 x 28 x 28 70,000 10
CIFAR10 3 x 32 x 32 60,000 10
CIFAR100 3 x 32 x 32 60,000 100

B APPENDIX - SELF DISTILLATION FUNCTIONAL PATHWAYS
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Figure 4: MNIST Functional Landscape for Self distillation on LeNet Architecture Across Random
Seeds 2,24 and 42
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Figure 5: CIFAR10 Functional Landscape for Self distillation on ResNet Architecture Across Ran-
dom Seeds 2,24 and 42
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Figure 6: CIFAR10 Functional Landscape for Self distillation on MobileNet Architecture Across
Random Seeds 2,24 and 42
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Figure 7: CIFAR100 Functional Landscape for Self distillation on LeNet Architecture Across Ran-
dom Seeds 2,24 and 42

8



Published as a conference paper at ICLR 2024

10 5 0 5 10

10

5

0

5

10

Base
Independant

 = 0.1
 = 0.5
 = 0.9
 = 0.1
 = 0.5
 = 0.9
 = 0.1
 = 0.5
 = 0.9

Initialisation

Figure 8: CIFAR100 Functional Landscape for Self distillation on MobileNet Architecture Across
Random Seeds 2,24 and 42
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