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ABSTRACT

We draw an analogy between static friction in classical mechanics and extrapola-
tion error in off-policy RL, and use it to formulate a constraint that prevents the
policy from drifting toward unsupported actions. In this study, we present Fric-
tional Q-learning, a deep reinforcement learning algorithm for continuous con-
trol, which extends batch-constrained reinforcement learning. Our algorithm con-
strains the agent’s action space to encourage behavior similar to that in the replay
buffer, while maintaining a distance from the manifold of the orthonormal action
space. The constraint preserves the simplicity of batch-constrained, and provides
an intuitive physical interpretation of extrapolation error. Empirically, we further
demonstrate that our algorithm is robustly trained and achieves competitive per-
formance across standard continuous control benchmarks.

1 INTRODUCTION

Recently, significant progress has been made in addressing extrapolation error using modern off-
policy reinforcement learning (RL) algorithms, as on-policy methods suffer from inherent limita-
tions in data efficiency. In off-policy learning, the agent trains from a replay buffer that aggregates
past interactions with the environment. However, this setting introduces a fundamental challenge:
extrapolation error arising from distributional shift. When the policy queries state–action pairs that
are absent or underrepresented in the dataset, value estimates become unreliable, leading to inaccu-
rate policy updates and cascading errors.

At the core of this challenge lies the difficulty of reliably estimating the value function for policies
that select actions outside the buffer’s support. Closing this gap has therefore become a central ob-
jective. However, most off-policy research has improved algorithms primarily from the perspective
of exploration rather than distributional mismatch. While extensive exploration helps the agent cover
a broader range of state-action pairs, it can also result in redundant or irrelevant visits to the buffer.
To mitigate this issue, prior works such as Batch-Constrained Q-learning (BCQ) (Fujimoto et al.,
2019) restrict learned policies to remain close to the data distribution without exploration, thereby
reducing the likelihood of selecting out-of-distribution (OOD) actions. While effective, there has
been little effort to formally or intuitively explain why such constraints improve stability.

To provide such intuition, we propose a new perspective: interpreting extrapolation error through the
lens of friction in physical systems. Static friction resists motion on a slope, opposing the tendency
of the body to move toward the horizontal surface, with its strength increasing as the slope angle
grows. Analogously, in off-policy RL, unsupported state–action pairs act like high-friction regions
in the state–action space. This resistance prevents the policy from converging to the true Markov
Decision Process (MDP), which represents the most stable environment. The further the policy
deviates from the data distribution, the greater the resistance (extrapolation error) it encounters.

In the same principle, the shift of visitation distribution between the true MDP and the replay buffer
can be viewed as the angle of a slope. Just as physical friction slows motion and prevents uncon-
trolled drift to equilibrium, expanded policy constraints based on imitation of frictional force can
prevent the policy’s movement toward unsupported regions of the state–action space. In addition to
BCQ, which reduces extrapolation error by pulling the policy toward the replay buffer’s visitation
distribution, we introduce a complementary constraint: pushing the policy away from a heteroge-
neous visitation distribution constructed with orthogonal actions. This dual objective yields a more
robust and stable policy.
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Building on these principles, we introduce Frictional Q-learning, which trains a deterministic actor-
critic architecture (Konda & Tsitsiklis, 1999) guided by a visitation distribution learned through a
contrastive variational autoencoder (cVAE) (Abid & Zou, 2019). FQL optimizes the value function
while enforcing dual constraints: proximity to buffer-supported actions (a) and distance from or-
thogonal heterogeneous actions (v). To model the local action manifold of the buffer, FQL employs
a state-conditioned cVAE, which generates candidate actions aligned with buffer data. The cVAE in-
corporates augmentable orthogonal actions to accelerate convergence toward the true environments.

Our algorithm not only provides an intuitive interpretation of physics-inspired extrapolation error,
but also efficiently finds the state-action space of the optimal policy through convergence in the
buffer distribution space and divergence in the orthogonal space without exploration. As a result,
our algorithm achieves state-of-the-art performance across multiple continuous-control benchmarks
and exceeds the performance of other algorithms, even with high-dimensional work. This suggests
that FQL could learn a competitive policy with the distribution of the replay buffer.

2 RELATED WORK

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) introduced a deterministic actor-
critic framework with policy-gradient updates and soft-target networks. However, policies trained
under DDPG often suffered from instability due to overestimation bias. Twin Delayed DDPG (TD3)
(Fujimoto et al., 2018) addressed this issue by incorporating twin critic networks and delaying target
network updates, effectively reducing bias. While TD3 successfully learned reliable policies in
continuous state–action tasks, exploration remained limited under its deterministic actor.

To overcome this limitation, subsequent work shifted toward stochastic policies that encourage
broader exploration. Soft Actor–Critic (SAC) (Haarnoja et al., 2018) improved policy diversity
and robustness by embedding entropy into soft-policy iteration. Maximum Entropy Reinforcement
Learning via Energy-Based Normalizing Flow (MEow) (Chao et al., 2024) further combined ac-
tor–critic learning with a flow-based policy, enabling multi-modal action distributions and simpli-
fied optimization. Despite these advances, stochastic actor methods are structurally more complex,
computationally expensive, and often highly sensitive to hyperparameter tuning.

In parallel, physics-inspired principles have shaped many directions in RL research. Energy-based
formulations grounded in Boltzmann distributions have been used to define probabilistic policies
(Haarnoja et al., 2017). Particle interactions and repulsive forces promote policy diversity, as in
Stein Variational Policy Gradient (SVPG) (Liu et al., 2017). Diffusion processes and their reverses
enable trajectory generation and planning (Janner et al., 2022), while continuous-time dynamics
have been modeled using stochastic differential equations (SDE), Hamilton–Jacobi–Bellman (HJB)
equations, and partial differential equations (PDE) (Wang & Zhou, 2020; Jia & Zhou, 2022; 2023;
Kim et al., 2021). Hamiltonian and symplectic dynamics have further been leveraged for stable
learning in multi-agent and game-theoretic settings (Balduzzi et al., 2018; Loizou et al., 2020).

Building on batch RL, BCQ provides a principled offline RL approach that mitigates distributional
shift from unsupported actions in the dataset and ensures convergence to an optimal policy. Prior
studies have highlighted the importance of buffer diversity: for instance, de Bruin et al. (2016)
demonstrated that state diversity significantly influences performance, and Isele & Cosgun (2018)
showed that agent performance closely tracks the distribution of the replay buffer relative to the
test distribution. These findings support the view that extrapolation error originates from buffer
distributional shift and plays a central role in off-policy RL performance.

Concretely, BCQ constrains the policy to remain close to actions observed in the dataset. This
is achieved by training a generative model, typically a Variational Autoencoder (VAE) (Kingma
& Welling, 2013), to approximate the behavior policy and generate candidate actions similar to
those in the buffer. A perturbation model then slightly adjusts these generated actions within a
bounded range, allowing for limited policy improvement while avoiding large deviations from the
data distribution. The perturbed candidate actions are evaluated by the Q-function, and the highest-
valued action is selected. While BCQ improves stability and mitigates catastrophic policy failures
in offline settings, its performance heavily depends on the quality of the generative model, requires
careful tuning of the perturbation module, and remains inherently constrained by the buffer without
the ability to explore beyond it.
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3 BACKGROUND

We consider an agent interacting with a continuous environment in discrete time steps, mod-
eled as an MDP (S,A, pM (s′|s, a), r, γ), where S denotes the state space, A the action space,
pM (s′|s, a) the transition dynamics, r(s, a, s′) the reward function, and γ ∈ [0, 1) the discount
factor. At each time step t, the agent observes a state st ∈ S , selects an action at ∈ A, re-
ceives a scalar reward rt = r(st, at, st+1), and transitions to the next state st+1 ∼ pM (· | st, at).
The objective is to learn a policy π : S → P (A) that maximizes the expected discounted return
Rt =

∑∞
i=t γ

i−tr(si, ai, si+1), which balances immediate and long-term rewards via γ.

A policy π induces a state visitation distribution µπ(s) over S . For a given policy, the corresponding
action–value function Qπ(s, a) is the unique fixed point of the Bellman operator T π , which is a
γ-contraction. Replacing T π with the optimality operator T := maxa T π yields the optimal value
function Q⋆(s, a) = maxπ Q

π(s, a), and the greedy selection a⋆ = argmaxaQ
⋆(s, a) recovers an

optimal policy (Bertsekas, 2008):

T Q(s, a) := max
a
T πQ(s, a) = Es′∼p(·|s,a)

[
r(s, a, s′) + γ max

a′
Q(s′, a′)

]
(1)

Q-learning is used as an off-policy algorithm (Precup et al., 2001); it bootstraps its value estimation
with targets that do not depend on the behavior that produced the data. In batch RL, experienced
data, (s, a, r, s′) ∈ B, is stored and sampled in a replay buffer B. For high-dimensional continuous
state–action spaces, the agent adopts a deterministic actor–critic architecture (Konda & Tsitsiklis,
1999). The critic network Qφ(s, a) approximates the value and is trained on mini-batches with a
TD loss and policy gradient (Silver et al., 2014). In contrast, the actor network πω(s) is updated to
maximize the value, effectively learning actions that approximate argmaxaQω(s, a):

L(φ) = 1
2 E(s,a,r,s′)∈B

[(
r + γmax

a′
Qφ−(s′, a′)−Qφ(s, a)

)2]
, φ← φ− α∇φL(φ) (2)

∇ωJ(ω) = Es∈B

[
∇ωπω(s)∇πω(s)Qφ(s, πω(s))

]
, ω ← ω + β∇ωJ(ω) (3)

To regulate overestimation, both target networks Qφ− , Qω− are operated with the ξ-weighted (0 <
ξ ≪ 1) average of current parameters from each main and target network after several time steps.

3.1 EXTRAPOLATION ERROR

Formally, extrapolation error arises from the distributional shift between the dataset distribution
µB(s) and the state visitation distribution of the current policy µπ(s). In off-policy RL, transitions
(s, a, r, s′) are stored in a replay buffer B, and Bellman backups rely on this fixed dataset. How-
ever, the target policy may query state–action pairs (s′, a′) that are rare or absent from B. When the
neighborhood of (s′, π(s′)) is sparsely represented in the buffer, the backup target depends on un-
supported estimates, and errors can accumulate over successive updates. This compounding effect
leads to systematically biased and inaccurate Q-value estimates. Moreover, the Bellman operator
T π is defined with respect to the empirical transition dynamics pB(s′|s, a) induced by µB(s), which
may be biased relative to the true MDP dynamics pM (s′|s, a):

T πQ(s, a) ≈ Es′∼B
[
r + γQ

(
s′, π(s′)

)]
̸= Es′∼M

[
r + γQ

(
s′, π(s′)

)]
. (4)

Standard deep Q-learning updates sample transitions uniformly fromB, weighting the loss according
to the empirical frequency of (s, a) pairs. If µB(s) ̸= µπ(s), the learned Qφ provides poor estimates
for actions favored by the current policy but rarely represented in B. Reweighting the loss by the
likelihood of the current policy does not resolve the problem if high-probability (s, a) pairs under π
are simply missing from the dataset:

1

|B|
∑

(s,a,r,s′)∈B

∥∥ r + γQφ−
(
s′, π(s′)

)
−Qφ(s, a)

∥∥2 . (5)

As a result, only a restricted subset of policies—those close to the behavior policy—can be evaluated
reliably in the pure off-policy. When the learned policy selects actions far outside the support of B,
training the value function from off-policy data alone can lead to substantial extrapolation error,
undermining both policy evaluation and improvement.
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3.2 STATIC FRICTION

Figure 1: Body of mass m on an inclined plane at angle θ, illustrating force components and static
friction.

Consider a body of mass m resting on a plane inclined at an angle θ relative to the horizontal. The
gravitational force mg acts vertically downward and can be decomposed into two components with
respect to the plane: a tangential component mg sin θ directed downslope, and a normal component
mg cos θ perpendicular to the surface (Newton, 1833).

When (i) θ = 0 (horizontal surface), the tangential component vanishes since mg sin 0 = 0, meaning
no downslope force acts to move the body. In this case, no static friction is required for equilibrium.
For (ii) 0 < θ < π

2 , the tangential component mg sin θ induces a tendency for the body to slide
downslope. Static friction fs counteracts this motion by acting upslope. The body remains at rest
provided that where µs is the coefficient of friction and N = mg cos θ is the normal force:

mg sin θ ≤ fs,max = µsN = µsmg cos θ, (6)

In equilibrium, fs exactly balances mg sin θ. If the inequality is saturated, static friction reaches
its maximum fs,max, beyond which the body begins to slide and kinetic friction takes over. In the
extreme case (iii) θ = π/2 (vertical surface), the normal force vanishes (N = 0). To keep the body
stationary, friction would need to counter the full weight, requiring fs = mg (Coulomb, 1821).

4 ALGORITHM

Off-policy deep RL algorithms often select actions without explicitly accounting for the reliability
of their value estimates. This can lead to extrapolation error, where OOD actions are incorrectly
assigned high values. By contrast, policy evaluation is more reliable within the data-supported
regions of the state–action space. To address this, BCQ constrains the learned policy to remain close
to actions present in the replay buffer B, thereby mitigating extrapolation error by pulling selected
actions toward the buffer-supported distribution (Fujimoto et al., 2019).

We extend this idea by drawing an analogy between extrapolation error and static friction. Specif-
ically, we treat the extrapolation error E as analogous to the resisting force fs in mechanics. To
capture this effect, we expand the batch-constrained framework by introducing a heterogeneous
buffer H, consisting of states s paired with orthonormal actions v (a ⊥ v) relative to the buffer
actions a ∈ B. We define θ and its complement ρ = π/2− θ as indicators of the distributional shift
between B, H, and the true MDP. Under this formulation, the gravitational force mg corresponds
to the extrapolation error Eπ/2(s, a). Minimizing this error reduces to converging θ toward zero,
effectively aligning the policy with the true MDP:

θ = arctan

(
EB(s, a)
EH(s, a)

)
= arctan

(
Eθ(s, a)
Eρ(s, a)

)
, 0 ≤ θ ≤ π

2
. (7)

We train a couple of Q-networks, and receive the minimum of their estimations. This update encour-
ages the agent to remain within familiar regions of the state–action space while explicitly reducing
extrapolation error. The theoretical underpinnings of FQL rely on assumptions about H in finite
MDPs, enabling an explicit quantification of extrapolation error in this extended framework.

4
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4.1 BATCH CONSTRAINED Q-LEARNING

BCQ definesM0 as the true MDP with transition dynamics p0(s
′|s, a) and initial value estimates

Q0(s, a). Given dataset B, we construct a new MDPMθ that shares the same state and action space
asM0, but whose transitions are induced entirely by B and augmented with an initial state sinit.

Specifically, the transition probabilities are pθ(s
′|s, a) = N(s,a,s′)∑

s̃N(s,a,s̃) where N(s, a, s′) counts
the number of times (s, a, s′) appears in B. If no transitions for (s, a) are observed (i.e.,∑
s̃N(s, a, s̃) = 0), the agent transitions to the terminal state sinit with probability 1 and a reward

r(s, a, sinit) equal to the initialized value Q0(s, a) is assigned.

Theorem 1. Q-learning performed by sampling exclusively from B converges to the optimal value
function underMθ.

The tabular extrapolation error in BCQ can then be expressed as the difference between the value
function Qπ

θ underMθ and Qπ
0 under the true MDPM0:

Eθ(s, a) =
∑
s′

(
p0(s

′|s, a)− pθ(s
′|s, a)

)(
r(s, a, s′) + γ

∑
a′

π(a′|s′)Qπ
θ (s

′, a′)
)

+
∑
s′

p0(s
′|s, a)γ

∑
a′

π(a′|s′)Eθ(s′, a′) (8)

Lemma 1. For all reward functions, Eπθ = 0 if and only if pθ(s′|s, a) = p0(s
′|s, a) for all s′ and all

(s, a) with µπ(s) > 0 and π(a|s) > 0.

Lemma 1 implies that a policy derived fromMθ must be supported in the same regions of transition
probabilities as the true MDP to guarantee convergence. Recovering the true dynamics requires
infinitely many samples in stochastic MDPs, whereas in deterministic MDPs, a single transition
suffices.

Theorem 2. For a deterministic MDP and all reward functions, Eπθ = 0 if and only if the policy π is
batch-constrained. Moreover, if B is coherent, such a policy must exist whenever s0 ∈ B.

For BCQ, we require the replay buffer B to be coherent. We define a buffer B as coherent if its
set of transitions can be arranged into valid trajectories under the environment’s dynamics, without
requiring states or actions outside of B. This condition is satisfied, for example, when the data are
collected as complete trajectories, or when B contains every state that may be visited.

Theorem 3. Under the Robbins–Monro stochastic approximation conditions on the learning rate α
and standard sampling requirements, BCQ converges to the optimal value function Q∗.

If B is coherent in a deterministic MDP, BCQ converges to the optimal batch-constrained policy π∗B,
which lies strictly within the support of B and satisfies Qπ∗B(s, a) ≥ Qπ(s, a),∀π ∈ ΠB, s, a ∈ B.

Theorem 4. For a deterministic MDP and coherent bufferB, along with the Robbins-Monro stochas-
tic convergence conditions on the learning rate β and standard sampling requirements on B, BCQ
converges to Qπ

B(s, a), where π∗(s) = argmaxa s.t. (s,a)∈B QπB(s, a)

BCQ ensures convergence by constraining the policy to buffer-supported actions, thereby outper-
forming any behavioral policy whenever s0 ∈ B (starting from any state within the batch). This
guarantee holds without additional assumptions on state–action visitation, aside from coherence.

Q(s, a)← (1− α)Q(s, a) + α

(
r + γ max

a′ s.t. (s′,a′)∈B
Q(s′, a′)

)
(9)

Although BCQ sets B as a fixed replay buffer, its theoretical guarantees naturally extend to off-policy
RL settings, where the buffer is updated concurrently through environment interaction. However, the
BCQ introduces a perturbation model to increase the diversity of distribution for the actor without
a prohibitive number of samples from the generative model. Empirically, we did not reflect the
perturbation model because we consider that it could be replaced with a sample of an improved
replay buffer, and it could hinder the training of the actor on off-policy RL.

5
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4.2 FRICTIONAL Q-LEARNING

While a batch-constrained policy ensures the convergence of Eθ(s, a), our algorithm achieves more
robust convergence by additionally considering Eρ(s, a). To connect these transition probabilities to
the known framework, we treat θ as the visitation distribution of the orthogonal pair (a, v), assuming
reflection symmetry such that pθ(s′|s, a) = pρ(s

′|s, v), where a ⊥ v.

Here, heterogeneity is induced by the degree to which the MDP experiences v. The true transi-
tion p0(s

′|s, a) corresponds to the optimal MDP M0, while the most heterogeneous case Mπ/2

corresponds to transitions under pπ/2(s′|s, v).

Theorem 5. For all reward functions, Eπρ converges to a biased non-zero, fixed point if pθ(s′|s, v) ̸=
p0(s

′|s, a), ∀ s′ ∈ S with µπ(s) > 0, π(a|s) > 0, and π(v|s) > 0.

Since transition probability is a function of θ and symmetric in (a, v), we can express the extrapola-
tion error as:

Eρ(s, a) =
∑
s′

(
p0(s

′|s, a)− pθ(s
′|s, v)

)(
r(s, a, s′) + γ

∑
a′

π(a′|s′)Qπ
ρ (s

′, a′)
)

+p0(s
′|s, a)γ

∑
a′

π(a′|s′)Eρ(s′, a′) (10)

Theorem 5 implies that if π is trained not only to be batch-constrained but also to maintain a pre-
scribed distance from the transition dynamics of an MDP defined by (s, v), then π can converge to
the true MDPM0.

Lemma 2. LetA ⊂ Rn be a continuous action space with n ≥ 2 and rank(A) = k. For any a ∈ A,
there exist orthonormal vectors v1, . . . , vk−1 ∈ A such that (a, vi) ̸= 0 for all i ∈ {1, . . . , k − 1}.
A trivial orthonormal vector v can always be obtained via a basis shift within the space. Furthermore,
v can couple k−1 distinct state–action pairs (s, v0), . . . , (s, vk−1), which enables data augmentation
in a cVAE framework.

4.2.1 CONTRASTIVE VARIATIONAL AUTOENCODER

We define the target dataset as Dt = {xi = (si, ai)}ni=1 and construct a background dataset Db =
{bi,j = (si, vi,j)} i=1,...,n

j=1,...,k−1
, |Db| = n(k − 1), where each vi,j is orthonormal to ai.

Each observation is generated from two independent latent variables via a nonlinear decoder f : a
salient variable s̄ ∼ N (0, I) capturing the structure of interest, and an irrelevant variable z ∼
N (0, I) capturing nuisance variation. With Gaussian encoders qs̄ϕ and qzϕ, the evidence lower bounds
for a target sample xi and a background sample bi,j are:
Lt(xi) = Eqs̄ϕqzϕ

[
log fθ(ai|si, s̄, z)

]
− β (KL

[
qs̄ϕ(s̄|xi) ∥ p(s̄)

]
−KL

[
qzϕ(z|xi) ∥ p(z)

]
) (11)

Lb(bi,j) = Eqzϕ
[
log fθ(vi,j |si, 0, z)

]
− β KL

[
qzϕ(z|bi,j) ∥ p(z)

]
. (12)

We further incorporate a total-correlation term TC(s̄, z):

TC(s̄, z) = log
Dψ(s̄, z)

1−Dψ(s̄, z)
,

where the discriminator Dψ promotes statistical independence between s̄ and z. The overall training
objective, with hyperparameter β > 0 balancing KL divergence against reconstruction fidelity, is:

max
ϕ

1

n

n∑
i=1

[
Lt(xi)− TC

(
qs̄ϕ(xi), q

z
ϕ(xi)

)]
+

1

n(k − 1)

n∑
i=1

k−1∑
j=1

Lb(bi,j). (13)

All networks are trained jointly using mini-batch stochastic gradient descent. Biases are removed,
and ReLU activations are employed so that an input of 0 remains unchanged throughout the compu-
tation. The contrastive architecture separates salient and irrelevant factors, then cVAE projects the
transition dynamics ofMθ into a latent space by contrasting a ∈ B with its orthogonal counterpart
v. Moreover, orthonormal bases provide background samples for cVAE, serving as a form of data
augmentation to improve generalization.
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4.2.2 BATCH-CONSTRAINED CONTRASTIVE REINFORCEMENT LEARNING

Algorithm 1 Frictional Q-learning (FQL)

Initialize critic networks Qφ1
, Qφ2

with random parameters φ1, φ2

Initialize actor network µω with random parameters ω
Initialize contrastive VAE Gζ = {qs̄ϕ, qzϕ, fθ} with random parameters ζ
Initialize target networks φ−

1 ← φ1, φ
−
2 ← φ2, ω

− ← ω
Initialize replay buffer B
for m = 1 to M do

Initialize a random process N for action exploration
Receive initial observation state sinit
for t = 1 to T do

Select action at = µω(st) +Nt according to the current policy and exploration noise
Execute at, compute orthonormal action vt, observe reward rt and next state st+1

Store (st, at, rt, st+1) in B
Sample minibatch (si, ai, vi, ri, si+1) of N transitions from B
Set yi+1 = max

d∈{1,...,c}
min

ℓ∈{1,2}
Qφ−

ℓ

(
si+1, ã

(d)
i+1

)
, {ã(d)i+1}kd=1 ∼ fθ(si+1, s̄, z)

Update critics :

LQ(φ1, φ2) =
1

N

n∑
i=1

2∑
ℓ=1

(
Qφℓ

(si+1, ai+1)− yi

)2
Update actor:

Jµ(ω) = − 1

N

n∑
i=1

Qφ1

(
si, ãi+1

)
, ãi+1 ∼ fθ(si, s̄, z)

Update cVAE with vi = vi, j∗ , j∗ = argmin
j∈{1,...,k}

Qφ1
(s, vi,j)

LG(ζ) =
1

N

n∑
i=1

[
Lt(si, ai) − TC

(
qs̄ϕ(si, ai), q

z
ϕ(si, ai)) + Lb

(
si, vi)

]
Update targets:

φ−
ℓ ← τ φℓ + (1− τ)φ−

ℓ , ℓ = 1, 2, ω− ← τ ω + (1− τ)ω−

end for
end for

FQL can be viewed as an off-policy, batch-constrained, contrastive RL algorithm. The cVAE gen-
erates candidate actions ã aligned with the actions in the replay buffer B. A critic with double Q-
networks (Fujimoto et al., 2018) evaluates these candidates, selecting the maximum-valued action
for the current state while also providing cVAE with the most undervalued orthonormal candidates.

To preserve the batch-constrained property, we introduce a state-conditioned marginal density
P G
B (a|s), which quantifies how likely an action a is in state s relative to the state–action pairs

in the replay buffer B. A policy defined as π⋆(s) = argmaxa P
G
B (a|s) avoids extrapolation errors

by restricting action choices to those supported by the data. We approximate this density using a
cVAE Gζ(s), and treat sampled actions ã ∼ Gζ(s) as surrogates for policy estimation:

π(s) = argmax
i∈{1,...,m}

Qφ

(
s, ãi

)
, {ãi}mi=1∼ fθ(s, s̄, z) (14)

Here, the latent variables s̄, z ∼ N (0, I) are decoded together with the current state s to produce
candidate actions ã = Gζ(s, s̄, z). The policy is then obtained by sampling multiple candidates and
selecting the one with the highest estimated return from the Q-network Qφ.
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5 RESULTS

We evaluated the proposed FQL method on high-dimensional continuous control tasks from Mu-
JoCo (Todorov et al., 2012) via the Gymnasium benchmark suite (Towers et al., 2024), a widely
adopted robotic simulation platform for reinforcement learning research. Our evaluation focuses on
both stability and sample efficiency, with particular focus on extrapolation error. We compare FQL
against a diverse set of actor–critic baselines covering both stochastic and deterministic policies.
Each algorithm was trained independently with five different random seeds to account for stochas-
ticity in initialization and environment dynamics using an NVIDIA RTX A6000 (48GB). For each
environment, we report mean episode returns every 10,000 steps, along with standard deviations
across seeds. Baselines were reproduced using Stable-Baselines3 (SB3) (Raffin et al., 2021); for
MEow, which is not implemented in SB3, we used the official code from the original authors. All
hyperparameters not explicitly mentioned follow the original implementations in SB3’s refinement.
Training required approximately 5.6 hours per million steps for the critic and 6.1 hours per million
steps for the augmentation process, with each GPU running all seed sessions concurrently.

5.1 COMPARISON
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Figure 2: Average return (solid line) and standard deviation (shaded area) across five independent
runs with different random seeds in continuous-control environments.

Performance was assessed with three complementary metrics: Step, Seed, and Final. Step denotes
the maximum of the five-seed average evaluated at each timestep, Seed is the mean of the maxi-
mum values obtained from each seed, and Final corresponds to the mean performance at the last
evaluation step. While excelling in a single metric does not establish state-of-the-art performance,
achieving strong results across all three metrics indicates robustness and superiority. Full numeric
results are provided in Appendix 3.

As shown in Figure 2, FQL outperformed baseline methods across multiple tasks with a large
margin, achieving state-of-the-art performance on Walker2D-v4 and Humanoid-v4. Notably,
Humanoid-v4 is typically considered favorable for stochastic policies but challenging for determin-
istic ones, highlighting FQL’s strength. By contrast, on lower-dimensional tasks such as Hopper-v4,
performance decreased, which we attribute to the limited effectiveness of evaluating only a few can-
didates for the constraint and background datasets. On HalfCheetah-v4, where state–action samples
are more reliably collected, FQL underperformed relative to DDPG, although the margin was small
and narrower than that between DDPG and the next best algorithm, SAC. Across all environments,
FQL demonstrated rapid convergence and stable long-term performance.

Due to the stochasticity of its latent variables, FQL achieves exploration behavior similar to stochas-
tic actors, while retaining the efficiency and stability of a deterministic framework. Furthermore,
FQL exhibited markedly narrower standard deviations across metrics compared to baselines in tasks
where it reached state-of-the-art results. We attribute such robustness to the inherent mathematical
stability of batch-constrained Q-learning.

Finally, our expanded frictional constraints with orthonormal vectors were easily satisfied using a
state-conditioned network. The final buffer distributions confirmed that the action a and orthonormal
vector v remained fully separated, as shown in Appendix 5. This contrasted sharply with results
obtained using a zero vector as the heterogeneous action, validating our assumption that orthonormal
vectors provide an appropriate and effective choice for constructing heterogeneous actions.
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5.2 ABLATION
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Figure 3: Average return (solid line) and standard deviation (shaded area) across five runs with
different seeds, showing the sensitivity of FQL performance to the β parameter, which balances
salient and irrelevant feature distributions.
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Figure 4: Average return (solid line) and standard deviation (shaded area) across five runs with differ-
ent seeds, comparing Critic-based and Augmentation-based methods for incorporating orthonormal
vectors.

Additionally, we conducted an ablation study to evaluate the sensitivity of the cVAE architecture and
the effectiveness of orthonormal vectors under different hyperparameter settings and design choices.

Beta. Figure 3 shows that no single β value consistently yielded the best performance across all
tasks. Instead, each environment exhibited a task-specific optimal β. For instance, in HalfCheetah-
v4, only the appropriate β value avoided sudden instability or performance degradation, whereas
other values led to divergence or poor returns. These results suggest that training does not necessarily
require forcing salient and irrelevant features to converge to an isotropic normal distribution, but
rather benefits from task-dependent tuning of β.

Method. We compared two strategies for incorporating orthonormal vectors: (i) evaluating them
through the Critic and (ii) treating them as background samples with Augmentation. As shown in
Figure 4, the Critic-based approach proved generally more effective and stable than Augmentation,
with faster convergence and reduced variance across tasks except for Hopper-v4.

6 CONCLUSION

We introduce FQL, which applies the concept of static friction to mitigate extrapolation error in
batch-constrained Q-learning through a contrastive generative model. FQL provides both an intu-
itive analogy and an effective framework for continuous control tasks in off-policy RL. Our theoret-
ical analysis shows that the proposed constraints lead to convergence toward the optimal policy, and
empirical results demonstrate consistent improvements over strong stochastic baselines. FQL not
only enhances performance but also improves robustness and stability, highlighting the potential of
physics-inspired formulations to address fundamental challenges in RL. Nonetheless, the stochastic-
ity of the state-conditioned generative distribution can occasionally destabilize training and hinder
the critic’s ability to evaluate candidate actions reliably. Developing stabilization techniques for this
component will be an important direction for future work. All experimental results, proofs, and
hyperparameter details are provided in the Appendix.
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A PROOFS

A.1 EQUATION 7

Definition 1. A buffer is defined as (s, a, s′) ∈ B and a heterogeneous buffer as (s, v, s′) ∈ H,
unless s′ is terminal.
Definition 2. The extrapolation error of B, denoted Eθ(s, a), is defined as the static frictional force
mg sin θ.
Definition 3. The maximum heterogeneous extrapolation error is defined as Eπ/2(s, a) = mg.
Definition 4. The extrapolation error ofH, denoted E(π/2−θ)(s, a), is defined as mg sin(π/2− θ).

Replacing mg by Eπ/2(s, a) allows us to eliminate mg and derive the following relations: Eθ(s, a) =
Eπ/2(s, a) sin θ and E(π/2−θ)(s, a) = Eπ/2(s, a) sin (π/2− θ). Thus,

Eθ(s, a)
E(π/2−θ)(s, a)

=
mg sin θ

mg sin(π/2− θ)
= tan θ

Taking the inverse trigonometric function yields θ = arctan
(

Eθ(s,a)
E(π/2−θ)(s,a)

)
∈ [0, π/2]

A.2 THEOREM 5

Theorem 5. For all reward functions, Eπρ converges to a biased non-zero, fixed point if pθ(s′|s, v) ̸=
p0(s

′|s, a), ∀ s′ ∈ S with µπ(s) > 0, π(a|s) > 0, and π(v|s) > 0.

Since the transition probability is a function of θ and symmetric in (a, v), we can express the extrap-
olation error transformation as:

Eρ(s, a) = Qπ
0 (s, a)−Qπ

ρ (s, a)

=
∑
s′

p0(s
′|s, a)

(
r(s, a, s′) +

∑
a′

π(a′|s′)Qπ
0 (s

′, a′)

)

−
∑
s′

pρ(s
′|s, a)

(
r(s, a, s′) +

∑
a′

π(a′|s′)Qπ
ρ (s

′, a′)

)

=
∑
s′

(
p0(s

′|s, a)− pρ(s
′|s, a)

)(
r(s, a, s′) +

∑
a′

π(a′|s′)Qπ
ρ (s

′, a′)

)
+ p0(s

′|s, a)γ
∑
a′

π(a′|s′)Eρ(s′, a′)

=
∑
s′

(
p0(s

′|s, a)− pρ(s
′|s, a)

)(
r(s, a, s′) +

∑
a′

π(a′|s′)Qπ
ρ (s

′, a′)

)
+ p0(s

′|s, a)γ
∑
a′

π(a′|s′)Eρ(s′, a′)

=
∑
s′

(
p0(s

′|s, a)− pθ(s
′|s, v)

)(
r(s, a, s′) + γ

∑
a′

π(a′|s′)Qπ
ρ (s

′, a′)
)

+ p0(s
′|s, a)γ

∑
a′

π(a′|s′)Eρ(s′, a′)

Remark 1. For a discounted MDP with γ ∈ [0, 1) and bounded rewards |r(s, a, s′)| ≤ Rmax,
consider a fixed policy π and define the extrapolation error Eρ(s, a) = Qπ

0 (s, a)−Qπ
ρ (s, a) where

Qπ
0 is evaluated with the true kernel p0(·|s, a) and Qπ

ρ with an approximate kernel pρ(·|s, a). Then,

∥Eρ∥∞ ≤
2 sups,a TV

(
p0(s

′|s, a), pρ(s′|s, a)
)

(1− γ)2
Rmax

12
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Furthermore, the angular constraint satisfies

θ ≤ arctan
sups,a TV

(
p0(s

′|s, a), pθ(s′|s, a)
)

sups,a TV
(
p0(s′|s, a), pρ(s′|s, a)

) ≤ π

4

The theorem introduces an upper bound on the angle that quantifies the discrepancy in terms of
total variation ratios. The bound saturates at π/4 when the transition probability of an action and
its orthogonal counterpart exhibit identical deviations from the buffer distribution. Unlike classi-
cal bounds, this angle-based constraint is independent of both the discount factor γ and the re-
ward scale Rmax. By extending the constraint to orthogonal actions, the result directly captures
model–environment mismatch as a dynamical constraint. This provides a theoretical guarantee that
extrapolation error can be stably controlled up to π/4 purely through buffer design and action-space
constraints, without reliance on environment-specific scaling factors.

Proof. We start from the standard Bellman error decomposition where b(s, a) :=
∑
s′

(
p0 −

pρ
)
(s′|s, a)

(
r(s, a, s′)+γV π

ρ (s′)
)

. Since |r(s, a, s′)| ≤ Rmax and |V π
ρ (s)| ≤ Rmax/(1−γ), each

term satisfies
∣∣r(s, a, s′) + γV π

ρ (s′)
∣∣ ≤ Rmax

1−γ . Hence |b(s, a)| ≤ ∥p0(s′|s,a)−pρ(s′|s,a)∥1

1−γ Rmax =

2TV
(
p0(s

′|s,a),pρ(s′|s,a)
)

1−γ Rmax. Writing the error equation in operator form Eρ = (I − γP0Π)−1b

where P0Π is the policy-induced Markov operator. Since ∥P0Π∥∞ = 1, the Neumann series gives∥∥(I − γP0Π)−1
∥∥
∞ ≤

1
1−γ

A.3 LEMMA 2

Lemma 2. LetA ⊂ Rn be a continuous action space with n ≥ 2 and rank(A) = k. For any a ∈ A,
there exist orthonormal vectors v1, . . . , vk−1 ∈ A such that (a, vi) ̸= 0 for all i ∈ {1, . . . , k − 1}.
We define the action space A over a continuous range [x, y]. This space can be shifted to A′ =
[x− S, y − S] = [(x− y)/2, (y − x)/2] = [−r, r] where S = (x+ y)/2 and r = (y − x)/2.

Next, we scale any orthonormal vector v ∈ [−1,+1] by r, obtaining rv = [−r,+r]. Hence, after
shifting the space and scaling the vectors, we can always guarantee the existence of orthonormal
vectors rv ∈ A′.

During FQL training, the algorithm computes the shift S , applies scaling and shifting to normalize
the action space, and then recovers the shift when mapping actions back to the environment.
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B EXPERIMENT

B.1 HYPERPARAMETER

Tables 1 and 2 summarize the common and environment-specific hyperparameters used in our ex-
periments. The latent dimension of the cVAE is set to twice the action dimension.

Table 1: Common hyperparameters used in all experiments

Parameter Value
Shared optimizer Adam
Actor Learning rate 3× 10−4

cVAE Learning rate 1× 10−3

Discount factor 0.99
Replay buffer size 106

Number of hidden layers (All networks) 2
Number of hidden units per layer (Actor & Critic) 256
Number of hidden units per layer (cVAE) 512
Network Bias (cVAE) False
Number of samples per minibatch 256
Nonlinearity ReLU
Target update interval 2
Gradient steps 1

Table 2: Environment-specific hyperparameters for FQL

Environment State Dim Action Dim Critic Learning rate Beta β

Hopper-v4 11 3 3e-4 5.0
HalfCheetah-v4 17 6 1e-3 2.0
Walker2D-v4 17 6 1e-3 2.0
Ant-v4 105 8 1e-3 0.0
Humanoid-v4 348 17 3e-4 0.0
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B.2 DISTRIBUTION

Figure 5 presents a density histogram of the replay buffer for Humanoid-v4 trained with FQL, com-
paring original actions (blue) and their orthonormal counterparts (orange). The results reveal clear
distributional differences between heterogeneous action pairs. Importantly, each orthonormal action
is not aligned with a single coordinate axis but is instead constructed to satisfy orthogonality with
respect to the original action.
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Figure 5: Density distribution of replay buffer actions (blue) and orthonormal actions (orange) in
Humanoid-v4.
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B.3 PERFORMANCE

Table 3 compares evaluation metrics across algorithms and environments. The best performing
algorithm is marked in bold and underlined, and the second-best is underlined.

Table 3: Comparison of evaluation metrics across algorithms and environments

Algorithm Metric Hopper-v4 HalfCheetah-v4 Walker2D-v4 Ant-v4 Humanoid-v4

FQL
Step 3399.07 ± 134.65 15884.54 ± 731.41 5634.72 ± 135.34 5939.56 ± 814.53 6486.43 ± 144.90
Seed 3834.90 ± 100.50 16138.97 ± 591.28 5810.95 ± 165.41 6220.44 ± 637.83 6713.75 ± 103.89
Final 2560.17 ± 792.37 15764.84 ± 478.06 5144.50 ± 1264.19 5543.07 ± 1108.04 6369.02 ± 193.65

SAC
Step 3312.25 ± 295.90 15476.83 ± 244.64 5554.61 ± 452.25 6139.32 ± 180.33 6302.05 ± 412.21
Seed 3834.12 ± 130.31 15652.44 ± 118.17 5639.36 ± 456.15 6413.75 ± 183.03 6463.46 ± 322.07
Final 2256.28 ± 541.97 15100.17 ± 818.84 4815.50 ± 1698.39 5378.26 ± 1017.06 5682.62 ± 327.95

MEOW
Step 3260.83 ± 234.36 9157.70 ± 887.61 3147.91 ± 2881.89 6116.25 ± 461.82 5939.99 ± 729.92
Seed 3565.67 ± 131.83 9914.46 ± 756.97 3499.34 ± 2531.89 6361.68 ± 160.68 6609.30 ± 693.20
Final 2692.54 ± 467.78 7241.62 ± 3722.44 1916.23 ± 2524.40 5752.51 ± 575.51 4650.22 ± 1168.05

TD3
Step 3718.06 ± 55.87 15342.75 ± 627.81 5247.39 ± 708.99 6832.46 ± 212.72 6355.69 ± 488.14
Seed 3797.88 ± 58.92 15663.80 ± 706.26 5335.39 ± 693.30 6944.11 ± 172.92 6524.20 ± 401.63
Final 3140.13 ± 678.48 15120.68 ± 517.59 5104.41 ± 787.84 6800.51 ± 136.22 5373.53 ± 1879.89

DDPG
Step 2447.75 ± 412.87 16172.92 ± 1024.99 2440.47 ± 676.74 1482.48 ± 1110.05 3789.23 ± 535.20
Seed 3553.73 ± 41.82 16363.82 ± 949.05 3812.20 ± 538.97 2512.60 ± 1037.49 4816.93 ± 326.80
Final 1567.25 ± 244.41 15836.04 ± 508.79 1744.66 ± 436.61 -157.27 ± 691.26 2618.13 ± 749.56
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