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Abstract

With the growth of 3D applications and the rapid in-
crease in sensor-collected 3D point cloud data, there is a
rising demand for efficient compression algorithms. Most
existing learning-based compression methods handle geom-
etry and color attributes separately, treating them as dis-
tinct tasks, making these methods challenging to apply di-
rectly to point clouds with colors. Besides, the limited ca-
pacities of training datasets also limit their generalizability
across points with different distributions. In this work, we
introduce a test-time unified geometry and color compres-
sion framework for 3D point clouds. Instead of training a
compression model based on specific datasets, we adapt a
pre-trained generative diffusion model to compress original
colored point clouds into sparse sets, termed ’seeds’, us-
ing prompt tuning. Decompression is then achieved through
multiple denoising steps with separate sampling processes.
Experiments on objects and indoor scenes demonstrate that
our method has superior performances compared to exist-
ing baselines for the compression of geometry and color.
Our codes would be released at https://github.
com/Tianxinhuang/DiffCom.git.

1. Introduction

3D point clouds with color attributes are widely used in ap-
plications such as AR [45, 46], VR [4, 12], and autonomous
driving [2, 13, 37]. With advancements in sensor and dis-
play technologies, the scale of 3D point clouds is rapidly in-
creasing, placing greater demands on effective compression
algorithms. Since early works [18, 52, 53], learning-based
methods have become a research focus, demonstrating
strong performance in compressing the geometric structures
of 3D point clouds. More recent studies [25, 44, 51] have
also explored the compression of attributes such as color,
assuming the original coordinates are fully preserved, and
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Figure 1. Differences between our framework and existing point
cloud compression methods. Conventional geometry compression
techniques (a) focus solely on compressing coordinates, leaving
color information unhandled. Attribute compression methods (b)
encode colors into binary codes but retain uncompressed coordi-
nates to assist with color decompression. In contrast, our frame-
work (c) simultaneously optimizes the compression of both coor-
dinates and colors into sparse sets, or ’seeds.” These seeds are en-
coded into binary codes using a non-learning-based method and,
after decoding, are used in a denoising process with a diffusion
model for decompression.

designing networks to recover attributes from encoded fea-
tures and coordinates. However, most existing approaches
still treat geometry [19, 54] and color [39, 44, 51] com-
pression as separate tasks, handled through different frame-
works. Geometry compression frameworks often disre-
gard color information, while attribute compression frame-
works assume uncompressed coordinates. Although some
works [30, 40] have attempted to integrate geometry and
attribute compression within a single framework, their gen-
eralizability remains limited to specific small-scale datasets.
As a result, most existing approaches fail to provide a uni-
fied and generalizable compression method for both geom-
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etry structure and color attribute in 3D point clouds.

Point-E [32] is a 3D generative model capable of gen-
erating 3D point clouds and colors from text descriptions
or images. Benefiting from training on a large collection
of annotated point clouds, Point-E has great generalizabil-
ity across point clouds with diverse categories and distri-
butions. It comprises three diffusion models tailored to
specific tasks: text-to-3D generation, image-to-3D gener-
ation, and point-to-point 3D up-sampling. The genera-
tive up-sampling model reconstructs high-resolution point
clouds and colors from sparse inputs through a denoising
process [16, 32], leveraging rich prior knowledge to achieve
coarse-to-fine transformation.

By learning continuous transformations from noise to
structured points, this diffusion model can generate point
clouds at various resolutions through the denoising process
guided by sparse point sets, with multiple separate sampling
processes, making it potentially applicable for point cloud
compression by retaining only the sparse data needed to re-
construct dense point clouds. Fine-tuning the pre-trained
diffusion model of Point-E [32] is a straightforward ap-
proach to apply it for compression, but it requires substan-
tial time and computational resources to adapt the entire
model to specific datasets. To address this, we introduce
prompt tuning for test-time optimization, adapting gener-
ative diffusion priors to specific point clouds for compres-
sion. Prompt tuning [10, 22, 41] is used to optimize prompts
for frozen diffusion models, aligning generated output more
closely with the ground truth. In our case, sparse point sets
act as prompts and would be optimized accordingly to im-
prove the precision of decompressed dense point clouds.

In this work, we propose the first test-time unified com-
pression framework for both geometry and colors of 3D
point clouds. As shown in Figs. 1-(a) and (b), most existing
geometry and attribute compression methods handle coor-
dinates and color attributes separately, treating them as dis-
tinct tasks. As shown in Fig. 1-(c), our method leverages the
pre-trained up-sampling diffusion model from 3D genera-
tive model Point-E [32] to simultaneously compress coordi-
nates and colors, reducing the point clouds into sparse point
sets, or ’seeds,” via prompt tuning. These seeds could be
further encoded into binary codes and decoded using a non-
learning-based method such as G-PCC [14]. Then, these
seeds are decompressed into full-resolution 3D point clouds
by denoising steps in multiple separate sampling processes.

This approach enables compression and decompression
purely through the strong 3D priors of a pre-trained gen-
erative diffusion model, eliminating the need for additional
dataset-specific training. Prompt tuning during compres-
sion requires only short-term optimization, taking approxi-
mately 3 to 5 minutes on an RTX 4090 Ti for a 160k-point
cloud. Additionally, we introduce a simple patch division
strategy to better handle dense point clouds, effectively bal-

ancing compressed bit length and decompression accuracy.
Our contribution in this work can be summarized as:

* We present a unified geometry and color compression
framework based on a pre-trained diffusion model;

* By introducing prompt tuning for the pre-trained diffu-
sion model, we propose the first test-time compression
and decompression pipeline;

» Experiments on diverse data confirm that our method ef-
fectively handles 3D point clouds with colors, achieving
superior performances compared to existing methods.

2. Related Works
2.1. 3D Generation via Diffusion Models

Following the success of 2D diffusion models in text-to-
image generation [16, 38, 43], 3D generation has gained
significant research interest. To create 3D representations
such as point clouds, meshes, NeRF [28], or 3D Gaussian
primitives [21] from text or image inputs, researchers have
explored two primary approaches. The first approach in-
volves adapting 2D priors for 3D generation [24, 26, 29,
33, 47, 50]. These methods typically optimize specific
3D representations using guidance from 2D diffusion mod-
els from different viewpoints, employing Score Distilla-
tion Sampling (SDS) [33] through rendered images. These
approaches leverage robust 2D pre-trained priors by fine-
tuning view-guided diffusion models based on Stable Dif-
fusion [38]. The second approach [17, 20, 32, 49] in-
volves direct 3D generation by training on large-scale 3D
datasets [5, 7]. These models offer improved efficiency and
perform well with 3D objects, though scene-level genera-
tion still presents challenges due to limited data. Among
these methods, Point-E [32] stands out for its ability to di-
rectly generate colored 3D point clouds from texts, images,
or sparse point clouds, presenting promising potential for
application in 3D point cloud compression.

2.2. Point Cloud Compression

3D point clouds consist of discrete points in 3D space
without inherent topology. Existing point cloud compres-
sion methods can be broadly classified into non-learning-
based and learning-based approaches. Non-learning-based
methods [3] typically use manually defined encoding rules
and data structures, such as octrees [14, 42] and kd-
trees [11]. Learning-based geometry compression meth-
ods, on the other hand, seek to enhance compression
by learning memory-efficient representations. Some ap-
proaches [31, 35, 52, 53] convert point clouds into voxel
representations and use 3D CNNs to encode geometric
structures into binary formats, though this may introduce
precision loss. To mitigate this, point-based compression
frameworks [15, 18, 19, 55] directly operate on points,
avoiding voxelization errors.
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Figure 2. The overall pipeline of our method. During compression, the input point cloud P is first normalized using the calculated center ¢
and radius r, then divided into n patches P, . . ., P, according to the chosen compression level L; using Patch Division. Seeds P!, ..., P"
for each patch are obtained through Weights Aggregation and optimized via prompt tuning using our proposed loss Lo pas computed on
the pre-trained up-sampling diffusion model. Subsequently, L;, patch statistics (including patch resolutions), scales (center ¢ and radius
r), and seeds P. = [P}, ..., P™] are encoded into binary codes, which are then decoded for decompression. During decompression, the
decoded seeds P, are split into patches P?, ... P" using patch division. Each patch P! is up-sampled to its recorded resolution num;
through the diffusion model’s denoising process, yielding PZ. The concatenated output P, = {PZ|i = 1...n} is then denormalized to

produce the final output P, using the recorded scales ¢ and 7.

However, these learning-based methods primarily focus
on geometry compression and lack the capability to process
color attributes. In contrast, non-learning-based approaches
such as Draco [11], G-PCC [14], and V-PCC [14] support
both geometry and color compression. Consequently, re-
cent research [25, 39, 44, 51] has increasingly emphasized
attribute compression for normals and colors. Methods
like SparsePCAC [51] and ProgressivePCAC [39] leverage
sparse convolutions to encode attributes based on 3D co-
ordinates, assuming the geometry remains uncompressed
while compressing only colors or normals. Although some
works [30, 40] attempt to compress both geometry and at-
tributes simultaneously, they still require extensive training
on specific datasets to adapt to different point cloud distri-
butions, limiting their generalizability.

In this work, we propose a test-time unified compres-
sion framework for 3D point clouds with colors. Leverag-
ing Point-E’s generative capabilities [32], our method de-
compresses both coordinates and colors through its denois-
ing process while compressing the original point clouds into
sparse sets via prompt tuning. We focus on the lossy com-
pression [25, 35, 53], primarily evaluating our framework’s
performance under constrained encoding bit budgets.

3. Methodology

To accelerate the compression and decompression pro-
cess, we only use the first 7" steps from Point-E’s original
diffusion-based up-sampling model [32] in this work. As
illustrated in Fig. 2, our pipeline consists of Patch Divi-
sion, Compression, Encoding and Decoding, and Decom-
pression.

3.1. Patch Division

Point-E’s original diffusion-based upsampling model [32]
generates only sparse 3,072-point outputs from 1,024-point
input prompts. To extend its capability to higher-resolution
point clouds, we introduce a patch division strategy that seg-
ments the original point cloud into N smaller patches.

As illustrated in Fig. 2, the patch division is performed
via simple voxelization. The input point cloud is partitioned
into patches {P;|i = 1,...,n} using an {3 resolution grid
at level L;. These patches are processed sequentially based
on their xyz coordinates, and the number of points in each
grid {num;|i = 1,...,13} is recorded to preserve resolu-
tion information for decompression. Although the number
of grids appears to grow cubically, our experiments show



that setting [ <= 10 is sufficient for most cases. Please note
that we balance the encoded bits and geometric details by
adjusting the voxelization resolution, where more patches
allows for better preserved details but longer encoded bits.

3.2. Compression Process

Weights Aggregation. In this module, we first employ the
boundary sampling (BDSam) method from [19] to initialize
the seeds for each i-th patch P;, ensuring that the bound-
ary sizes of patches are preserved. During subsequent op-
timization, seeds positioned on the boundaries are detached
to maintain the boundary integrity. To mitigate the signif-
icant loss of local geometry and color information that can
occur during sampling, we propose re-encoding each point
in the initialized seeds P? through weighted interpolation
using k neighboring points from the original dense point
cloud P. This approach aggregates neighboring informa-
tion to enhance the initialization quality. The k weights for
the neighbor of each point in the seeds are initialized as an
approximated one-hot array, where the weight for the origi-
nal neighbor center is 1 and others are 1e~*

Given the initialized sparse seeds P, the KNN operation
is used to obtain their k neighbors P, = Ny (P$, P) from
the original point cloud P, with weights W, € RIF:Ixk,
The refined seeds P, are then computed using a function
g(+) defined as follows:

W
Po=g(We,P) =) §|:|W | - By, (1

During subsequent prompt tuning, we further optimize
W. to more accurately capture the geometry and colors of
the ground truth point cloud. By focusing on weight op-
timization rather than directly adjusting the seeds, we can
maintain seed coordinates and colors within a reasonable
range, promoting stability in the optimization process.
Prompt Tuning. After initialization, we apply prompt tun-
ing as introduced by [22, 41] to refine the seeds. During
prompt tuning, the parameters of Point-E’s diffusion-based
model remain frozen, and only weights W, are optimized
through a loss calculated with the original point cloud P.

Given the i-th patch out of n patches, P;, with corre-
sponding seeds P/, and since the up-sampling model output
is limited to 3072 points, we randomly sample 3072 points
from P; as the input zy ~ RandomSample(P;, 3072) for the
diffusion model. Following [16, 38], the common diffusion
model loss is defined as:

SOlEL @

where ¢t is a time step uniformly sampled from
{1,2,...,T}, and €p(z¢, P!, t) is the noise prediction net-
work conditioned on the seeds P! and time step ¢. The noisy
version x; of the input x at time step ¢ is defined as:

= \/Etl’o + v 1-— Q€. (3)

Lpy = Eggenn(0,1), illle — eo (e, P,

Algorithm 1 The Compression process.

1: Input: Divided patches P = [Py, ..., P,], the number of
iterations N, KNN operation Ng(-,-).
2: Down-sample the patches with BDSam to initialized

seeds P.:
=[.P: =

3: Initialize P,

4: fori =1tondo

5. Pflnsert(BDSam(P;,1024))

6: end for

7. P, = Ny (P2, P), Initialize W, € RIF|xk

8: for i = 1 to N;;., do

9:  Randomly select idx ~ Uniform(1, n)

10:  Updating W, by descending gradient:
Vw.Lcpyv (Pidz, §We, Pr)lidz], t)

11: end for

12: Calculate seeds P. = g(W., Py)

13: Output: the optimized seeds P..

Here, o; and &; denote constants selected as in [16].

As point clouds are permutation-invariant [34], alter-
ing the order of individual points does not affect the over-
all 3D shape. Chamfer Distance (CD) [9] is commonly
used to measure shape differences between two point clouds
through point-to-point matching.

From Eq. 2, we observe that the original diffusion model
loss does not account for the permutation invariance of point
clouds, implicitly assuming that the added noise € during
noising and the predicted noise €q (24, P!, t) during denois-
ing follow a consistent permutation. However, two similar
point distributions do not necessarily share the same order.
To address this, we introduce a matching-based CD loss to
relax this problem. The Chamfer Distance is defined as:

1,1 .
Lop(Sg,50) = g(m Z ;IGHSH [z = yll2
g o

“)

where Sy and S, are two point clouds.

Given a time step ¢, following Eq. 3, the noised result at
step t — 1 is calculated as x¢—1 = /ou—_120 ++/1 — Q_1€.
Our proposed Chamfer Diffusion Model Loss is defined as:

Lepum(Piyt) = Lep (-1, Ti—1), )

where T;_ represents the denoised distribution at step ¢ —1,
calculated as:

l—ozt

Te-1 = T-a
— Gt

\/117 (xt - eo (1, Py, )) (6)

Here, Lcopas employs the Chamfer Distance loss to mea-
sure the difference between the noised distribution x;_1 and



the denoised distribution z;_; at step ¢ — 1, mitigating po-
tential issues caused by permutations. As the Zg can also be
: = L — Ot s .
estimated by Tg = L\ﬁ%@’)’ we also try the loss:
Linver = LCD (an -fO) (7)

Their performances are compared in Sec. 4.6. After opti-
mization, W, are transformed into seeds using Eq. | for en-
coding. The full compression pipeline is provided in Alg. 1.

3.3. Encoding and Decoding

The encoding and decoding process aims to achieve a loss-
less transformation between the decompression information
and binary codes. As illustrated in Fig. 2, the features to
be encoded consist of four components: compression level
L;, patch statistics, scales, and seeds. The compression
level and patch statistics are stored as a 1 x 8 bits char and
I3 x 8 bits chars, respectively. Scales, including the point
cloud centers and radius, are saved as 4 x 32 bits floats.
Seeds are concatenated, and compressed using G-PCC [14]
in a lossless manner. In the decoding process, the compres-
sion level, patch statistics, scales, and seeds are sequentially
decoded and prepared for usage in decompression.

3.4. Decompression Process

During decompression, the decoded seeds P, are divided
into patches again using patch division, based on the de-
coded compression level L;. Each patch P! from the i-th
of n patches is then used to generate the output point cloud
P! at a specific resolution num;, estimated from the patch
statistics as shown in Fig. 2.

The decompression fp(-) is carried out through a de-
noising process with multiple sampling steps, as described
in Alg. 2. This process yields P! = fp (P! num;), and the
full decompressed output is P, = [P}, ..., P"].

Finally, the decompressed point cloud is de-normalized
to its original scale using the decoded center ¢ and radius r
as follows:

P,=[P¢ -r+c P 8)

P9 and P denotes coordinates and colors, respectively.

4. Experiments
4.1. Dataset and Implementation Details

To comprehensively evaluate our method, we conduct uni-
fied compression experiments on colored point clouds from
point cloud object models [23] and indoor scenes [6], as
well as geometry compression experiments [ 19]. Unlike the
voxelized 8iVFB dataset [8], we construct evaluation data
by randomly sampling 160k colored points from objects and
indoor scenes following 3QNet [19], which we believe bet-
ter represents real-world point cloud distributions.

Algorithm 2 Decompression Process fp (P!, num;)

1: Input: Patch centers P!, target resolution num;, con-
stant o (as defined in Point-E [32]), Gaussian noise €.
Calculate the number of iterations:
N, = round(num;/3072)
Initialize P! = ||
fori=1to N, do

Sample z7 = /ar P! + /1 — are

Denoise the sampled x7:

fort =T to1do

Update Ty = \/% Tt — %Gg(ﬂft,P;,t))

10: if t > 1 then

R I AN A

11: Add noise zy = x; + o€
12: else

13: Set xg = x4

14: end if

15:  end for

16:  Append xg to P!

17: end for

18: Output: Decompressed results P!

Our implementation is based on PyTorch, with seeds op-
timized using the Adam optimizer at a learning rate of le-
3 for approximately 1000 iterations during prompt tuning,
without requiring re-training on specific datasets. Addi-
tional implementation details are available in the supple-
mentary. To validate our method’s effectiveness, we in-
clude comparisons with representative non-learning meth-
ods, Draco [11] and G-PCC [14], as baselines. Although
methods like CNet [30] claim to compress both geome-
try and color attributes, they do not provide open-source
repositories or pretrained models. Therefore, we construct
learning-based baselines for unified compression by man-
ually integrating geometry and attribute compression meth-
ods. Specifically, we use widely used open-source geometry
compression methods, PCGCv2 [52] and SparsePCGC [54]
to compress coordinates, and the latest open-source at-
tribute compression framework ProgressivePCAC [39] to
compress colors. The encoded bits from both components
are then combined to form a unified representation.

4.2. Metrics

Following prior work [35, 52, 53], we evaluate compression
bit rate using bits per point (bpp) and reconstruction quality
using Peak Signal-to-Noise Ratio (PSNR). The bpp metric,
defined as the average number of encoding bits per point, is
calculated as:

bpp = N )

where L is the size of the compressed binary, and N is the
number of points in the compressed point cloud. For geom-
etry evaluation, inspired by [19, 48], PSNR is defined as:
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Figure 3. Qualitative comparisons on 3D objects with colors.

(10)

PSNR = 10log;, (maxxesl |z — x||2> 7

Dis(Sl, SQ)

where S7 and So represent the ground truth and decom-
pressed point clouds, respectively, and & is the nearest
neighbor of z in S;. Dis(S7,52) is the two-way aver-
age distance between S; and S2, measured by either point-
to-point or point-to-plane errors. We denote PSNR cal-
culated from point-to-point or point-to-plane distances as
PSNRp, and PSN Rp,, respectively.
For color evaluation, PSNR is defined as:

2552
Di5(01,02)> ’ (11)

where C; and Cy are the color attributes of S; and Ss.
The color distance Dis(C4, Cs) is calculated as the average
color difference between each point and its nearest neighbor
in YUV space. The PSNR for colors is noted as PSNRp,.
Since PSNR varies with bpp as encoded information
changes, we utilize BD-PSNR as a quantitative metric
to assess our method’s relative improvement over oth-
ers, following [I, 35]. BD-PSNR based on PSNRp,
and PSN Rp, reflects geometry performances, while that
based on PSN Rp, assesses color compression quality.

PSNR = 101log,, <

4.3. Comparisons on Colored Objects

In this section, we evaluate the performance of our method
on 3D objects with color attributes. Quantitative results
are shown in Table 1, where performance is measured us-
ing BD-PSNR to capture relative improvements over other
colored point cloud compression baselines. Please note
that our method does not have a direct entry in Table 1
since BD-PSNR represents relative improvements, with
’+” and ’-’ indicating increases and decreases compared
to existing methods, respectively.

The results show significant improvements in geometry
metrics PSNR-D1 and PSNR-D2 over existing baselines,
while maintaining slightly improved performance on color
metrics. Qualitative comparisons are shown in Fig. 3. Non-
learning-based methods like Draco and G-PCC often ex-
hibit regular distortions due to direct octree-based quanti-
zation and coordinate encoding, while the PCGCv2+PCAC
baseline constructed for comparison displays artifacts such
as holes. In contrast, our method produces smooth decom-
pressed results with lower bpp.

4.4. Comparisons on Indoor Scenes

To further assess our method’s performance on real scanned
point cloud data, we evaluate it on indoor scenes from Scan-
Net [6]. Qualitative and quantitative comparisons are shown
in Fig. 4 and Table 2, respectively. As illistrated in Fig. 4,
our method produces smoother results closer to the ground
truth with lower bpp. The results in Table 2 demonstrate
that our method still achieves obvious improvements over
existing baseline models, revealing its generalizability from
object-level to scene-level point clouds.

4.5. Comparison on Geometry Compression

Although our method is designed to simultaneously com-
press the geometry and colors of point clouds, it can also
be applied to pure geometry compression by assigning con-
stant colors, such as white or black, to the input point
clouds. In this section, we conduct a simple comparison
between our method and several representative geometry
compression approaches by setting the point cloud colors
to white. The quantitative results are shown in Table 3.
The results demonstrate that our method outperforms
existing geometry compression baselines while requir-
ing no dataset-specific training, unlike methods such as
3QNet [19] and PCGCv2 [52]. These improvements can
be attributed to the strong generalization capability of the
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Table 1. Quantitative comparisons on Colored Objects. Items in
the table denote the relative improvements of our method over
other methods measured with BD-PSNR. ’+’ and ’-’ indicates
performance increases and decreases, respectively.

diffusion-based up-sampling model in Point-E [32], which
reconstructs continuous surfaces from optimized sparse
points, or ’seeds.” By encoding only the seeds for compres-
sion, our method eliminates the need for additional encoded
features, as required by methods like 3QNet [19], resulting
in shorter compressed binary codes.

Ablation study for different components To assess the
impact of our proposed components, we conduct an abla-
tion study in Table 4. The terms *Decom®*, *Weights*,
and *Tuning* refer to the decompress, weights aggrega-
tion, and prompt tuning described in Sec. 3, respectively.
*Seeds* denotes using seeds directly as the results without
decompression. Performance is evaluated using BD-PSNR
of our method against G-PCC, calculated with PSN Rp1,
PSNRpo,and PSN Rps. The results indicate that remov-
ing any component decreases overall performance, confirm-
ing that each component contributes to the final outcome.



Objects ‘ 3QNet PCGCv2 G-PCC SparsePCGC

D1 +5.44(31.74%) +25.43(69.36%) +5.18(27.34%) +9.26(43.57%)
eros D2 +1.87(8.09%) +13.93(59.85%) +4.17(16.01%) +5.87(22.52%)

D1 +7.80(38.40%) +37.48(76.12%) +3.90(21.40%) +6.51(33.67%)
kitten |D2 +8.67(31.40%) +29.01(74.08%) +5.64(19.85%) +1.72(5.86%)

D1 +2.15(14.98%) +20.03(63.13%) +2.30(16.52%) +8.34(50.15%)
boy01 |D2 +2.18(10.09%) +10.22(51.89%) +2.32(10.88%) +10.05(38.71%)

D1 +0.64(4.29%) +21.08(60.57%) +5.43(32.15%) +6.56(34.86%)
julius |D2 -2.12(10.00%) +7.61(40.55%) +5.46(22.87%) +0.41(1.58%)

D1 +3.80(23.07%) +24.91(71.26%) +4.84(29.04%) +9.18(49.36%)
pig |D2 +5.42(21.24%) +15.99(66.24%) +7.29(27.64%) +7.95(28.62%)

D1 +2.62(16.77%) +21.34(67.34%) +2.18(13.98%) +8.71(52.02%)
biggirl [D2 +3.50(15.73%) +14.09(54.67%) +2.58(10.85%) +10.20(39.42%)

D1 +0.04(0.28%) +8.25(37.97%) +4.20(27.76%) +7.34(37.82%)
pierrot |D2 +0.43(1.76%) -0.42(2.49%) +4.45(22.45%) +1.43(4.89%)

DI +0.42(2.90%) +19.50(57.31%) +1.45(9.72%) +4.17(23.81%)
nicolo [D2 -1.90(9.42%) +7.14(34.26%) +0.16(0.75%) -4.04(15.85%)

D1 -1.22(7.86%) +8.62(34.96%) +4.09(27.29%) +7.53(38.86%)
duck |D2 -0.79(3.28%) +1.28(6.51%) +4.77(23.26%) +1.40(4.84%)

D1 +3.64(21.85%) +23.59(60.82%) +5.50(30.13%) +6.04(31.66%)
star D2 +3.61(13.78%) +15.78(60.60%) +9.18(31.51%) +2.83(9.38%)

D1 +2.53(14.64%) +21.02(59.88%) +3.91(23.53%) +7.36(39.58%)
Aver (D2 +2.09(7.94%) +11.46(44.61%) +4.60(18.61%) +3.78(14.00%)

Table 3. Quantitative comparisons on geometry compression.
Items denote the relative improvements of our method over other
methods measured with BD-PSNR.

Seeds Decom Weights Tuning| DI D2 D3

v -0.99 +5.49 -2.97
v v +8.27 +8.67 +0.91
v v v +8.37 +8.67 +0.97
v v v v |+8.88 +9.40 +1.42

Table 4. Ablation Study for proposed components. Performances
are evaluated with BD-PSNR of our method against G-PCC.

Ablation study for tuning losses In this work, we intro-
duce the Chamfer Diffusion Model Loss Lo pas to replace
the original MSE-based diffusion model loss Lpys. To as-
sess its effectiveness, we compare various losses for prompt
tuning, as shown in Table 5. The results, measured us-
ing BD-PSNR, evaluate our method against G-PCC. Here,
Linvers Lpar, and Lopyy refer to the inverse loss, diffu-
sion model loss, and Chamfer diffusion model loss, respec-
tively, as described in Sec. 3. As shown in Table 5, our
proposed Lo pps achieves the best performance in prompt
tuning, while L, and Lpjs even perform worse than the
framework without prompt tuning on certain metrics. This
confirms the permutation-invariance of point clouds limits
Lpas’s effectiveness for point generation, whereas our pro-
posed loss effectively addresses this limitation.

Metrics \ No tuning Linver Lpar Lopas(ours)

D1 +5.90 +8.42 +6.19 +8.88
D2 +5.92 +8.70 +6.36 +9.40
D3 -2.81  +0.62 -2.49 +1.42

Table 5. Ablation Study for losses of prompt tuning. Performances
are evaluated with BD-PSNR of our method against G-PCC.

4.7. Discussion about the Efficiency

In this section, we present a brief comparison of the effi-
ciency of our method with other baselines, as shown in Ta-
ble 6. While our method requires more time for compres-
sion due to prompt tuning, the preprocessing and decom-
pression times remain affordable, and our approach requires
no training on specific datasets while offering strong robust-
ness. These characteristics make our method well-suited
for offline applications such as cultural heritage digitization.
Additionally, the efficiency of test-time prompt tuning could
be further enhanced using techniques like Mixed Precision
Training [27] or tensor/model parallelism [36], potentially
reducing its computational overhead.

Methods Pre-process Compress Decompress Training
Non-Learning Draco 0 0.30s 0.10s 0
G-PCC 0 0.50s 0.06s 0
Learning PCGCv2+PCAC| 3.36s 1.55s 3.37s days
Ours 0.76s 4 min 6.05s 0

Table 6. Efficiency Comparison.

5. Conclusion

In this work, we proposed a unified test-time compres-
sion framework for both geometry and color in 3D point
clouds, leveraging priors from a pre-trained generative dif-
fusion model. Unlike conventional methods that treat ge-
ometry and color compression as separate tasks, our ap-
proach integrates both using Point-E [32]’s upsampling
model. By generating sparse ’seeds’ through prompt tun-
ing, our method enables high-fidelity decompression with-
out dataset-specific training. Experimental results demon-
strate that our framework achieves superior compression
performance across diverse datasets.

Limitation

As discussed in Sec. 4.7, while our method eliminates the
need for training, prompt tuning results in a longer compres-
sion time compared to existing learning-based approaches.
However, it remains applicable for offline storage of 3D
assets, while its efficiency may also be further improved
through parallelism or mix-precision techniques. Moreover,
to the best of our knowledge, as the first test-time compres-
sion framework for colored point clouds, our method offers
significant potential for further exploration.
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