One Policy to Run Them All: an End-to-end Learning
Approach to Multi-Embodiment Locomotion

Figure 1: Top — We train a single locomotion policy for multiple robot embodiments in simulation.
Bottom — We can transfer and deploy the policy on three real-world platforms by randomizing the
embodiments and environment dynamics during training.

Abstract: Deep Reinforcement Learning techniques are achieving state-of-the-art
results in robust legged locomotion. While there exists a wide variety of legged
platforms such as quadruped, humanoids, and hexapods, the field is still missing a
single learning framework that can control all these different embodiments easily
and effectively and possibly transfer, zero or few-shot, to unseen robot embod-
iments. We introduce URMA, the Unified Robot Morphology Architecture, to
close this gap. Our framework brings the end-to-end Multi-Task Reinforcement
Learning approach to the realm of legged robots, enabling the learned policy to
control any type of robot morphology. The key idea of our method is to allow the
network to learn an abstract locomotion controller that can be seamlessly shared
between embodiments thanks to our morphology-agnostic encoders and decoders.
This flexible architecture can be seen as a potential first step in building a founda-
tion model for legged robot locomotion. Our experiments show that URMA can
learn a locomotion policy on multiple embodiments that can be easily transferred
to unseen robot platforms in simulation and the real world.

Keywords: Locomotion, Reinforcement Learning, Multi-embodiment Learning

1 Introduction

The robotics community has mastered the problem of robust gait generation in the last few years.
With the help of Deep Reinforcement Learning (DRL) techniques, legged robots can show impres-
sive locomotion skills. There are numerous examples of highly agile locomotion with quadrupedal
robots [1, 2, 3,4, 5, 6], learning to run at high speeds, jumping over obstacles, walking on rough ter-
rain, performing handstands, and completing parkour courses. Achieving these agile movements is
often enabled by training in many parallelized simulation environments and using carefully tuned or
automatic curricula on the task difficulty [7, 8]. Even learning simple locomotion behaviors directly
on real robots is possible but requires far more efficient learning approaches [9, 10]. Similar methods
have been applied to generate robust walking gaits for bipedal and humanoid robots [11, 12, 13].
The learned policies can be effectively transferred to the real world and work in all kinds of ter-
rain with the help of extensive Domain Randomization (DR) [14, 15] during training. Additionally,
techniques like student-teacher learning [1, 16] or the addition of model-based components [17, 18]
or constrains [19, 20, 21] to the learning process can further improve the learning efficiency and
robustness of the policies.

At the same time, new advances in computational power, the availability of large datasets, and the
development of foundation models are opening new frontiers for artificial intelligence, allowing us
to implement and learn more complex and intelligent agent behaviors. Future robots will require
incorporating these models into the control pipeline [22, 23]. However, to fully benefit from founda-
tion models, we need to be able to integrate these high-level policies with the low-level control of the
robots. The long-term objective would be to develop foundation models for locomotion, allowing
zero-shot (or few-shot) deployment to any arbitrary platform. However, to reach this objective, it is
fundamental to adapt the underlying learning system to support different tasks and morphologies.
Therefore, we argue that the Multi-Task Reinforcement Learning (MTRL) problem is a fundamental
topic for the future research of robot locomotion, and, indeed, this formulation has recently attracted
the interest of the community, using both structured [24] and end-to-end learning approaches [25].
MTRL algorithms share knowledge between tasks and learn a common representation space that can
be used to solve all of them [26, 27]. To map differently sized observation and action spaces into
and out of the shared representation space, implementations often resort to padding the observations
and actions with zeros to fit a maximum length [28] or to using a separate neural network head for
each task [26]. These methods allow for efficient training but can be limiting when trying to transfer
to new tasks or environments: for every new robot, the training process has to be repeated from
scratch, as different embodiments require different hyperparameters, reward coefficients, training
curricula, etc. Already in the case of the same robot morphology, e.g. quadrupeds, a trained policy
can not be easily transferred when the number of joints is not the same for the robots. This is even
more evident when trying to reuse the learned gait across different types of morphologies. This issue
is closely related to the fundamental correspondence problem in robotics [29], as the policy has to
learn an internal mapping between the different action and observation spaces and the embodiments
themselves, which define the robots’ kinematics. In practice, the number of joints and feet of a
legged robot determines the size of its action and observation space, which can differ for every new
robot. This often prevents a straightforward transfer of existing policies as the learning architecture
fully depends on the specific robot platform.

To tackle this problem and to move to more powerful and general policies that can be used as
locomotion foundation models, we propose a novel MTRL framework that allows simultaneously
learning locomotion tasks with many different morphologies easily and effectively. Our approach is
based on a novel neural network architecture that can handle differently sized action and observation
spaces, allowing the policy to adapt easily to diverse robot morphologies. Furthermore, our method
allows us zero-shot deployment of the policy to unseen robots and few-shot fine-tuning on novel
target platforms. We highlight the effectiveness of our approach, first with a theoretical analysis and
then by training a single locomotion policy on 16 robots, including quadrupeds, hexapods, bipeds,
and humanoids. Finally, we zero-shot transfer the learned policy to two simulated and three real-
world robots, showing the transferability and robustness of our method.

Related Work

Early work on controlling different robot morphologies is based on the idea of using Graph Neural
Networks (GNNs) to capture the morphological structure of the robots [30, 31, 32]. Each node in the
graph represents a joint of a robot, and its state is comprised of the joint’s specific information, e.g.
current position, velocity, etc. Through message passing, the GNN can then aggregate information
from neighboring joints and learn to control the robot as a whole. GNN-based approaches can
control different robots even when removing some of their limbs, but they struggle to generalize
to many different morphologies at once, as every morphology requires a different graph structure.
Furthermore, the local nature of message passing can lead to information bottlenecks in the policies
and the inability to act as a cohesive global controller [33].

Transformer-based architectures have been proposed to overcome the limitations of GNNs by using
the attention mechanism to globally aggregate information of varying numbers of joints [33, 25, 34,
35]. These methods still lack substantial generality as they are limited to morphologies that were
defined a priori. For example, Kurin et al. [33] uses encoder-decoder pairs for each type of joint,
which limits the architecture to a set of predefined joint types and does not allow for components
that only have associated observations but no actions, e.g. the feet of legged robots. Trabucco
et al. [25] defines tokens for each type of observation and joint, which is a more general system, but
those tokens are handcrafted, and there is a different set of joint tokens for every morphology, which
makes generalization between morphologies and to new ones difficult or even impossible.

Besides the GNN- and Transformer-based methods, which consider only environments with 2D-
planar or physically implausible robots, Shafiee et al. [24] recently showed that a single controller
can be trained to control 16 different 3D-simulated quadrupedal robots and to transfer to two of them
in the real world. Their method uses a Central Pattern Generator (CPG) and inverse kinematics to
generate and track trajectories of the four feet of the robots. This approach has the drawback of
discarding the joint-specific information, and the controller can be deployed only on robots with the
same number of feet. Furthermore, Feng et al. [36] and Luo et al. [37] use procedurally generated
quadrupeds in simulation to train a single policy that transfers to unseen real-world quadrupeds.
However, their learning framework assumes that every robot is in the same morphology class, and
their neural network architecture can only deal with robots with the same number of joints. Com-
pared to all the other approaches, our method can handle multiple embodiments from any legged
morphology, can adapt to arbitrary joint configurations with the same network and can be deployed
on real world robots.

2 Multi-embodiment Locomotion with a Single Policy

In MTRL the objective is to learn a single policy my that optimizes the average of the expected
discounted return 7™ (@) over the reward function ™ across M tasks:

T
> oAt (s, a)] , (1
t=0

where 7 is a trajectory given by the state-action pairs (s, a;), v is the discount factor, and T is
the time horizon. In our case, we consider different robot embodiments as separate tasks and train a
policy controlling all robots and optimizing the objective described in (1). We aim to design a policy
where the underlying neural network architecture is independent of the set of possible embodiments.
Therefore, we propose the Unified Robot Morphology Architecture (URMA), which is completely
morphology agnostic, i.e. it can be applied to any type of robot with any number of joints such
that there is no need to define the possible morphologies or joints beforehand. We use URMA to
learn robust locomotion policies, but its formulation is general enough to be applied to any control
task. Figure 2 presents a schematic overview of URMA. In general, URMA splits the observations
of a robot into distinct parts, encodes them with a simple attention encoder [38] with a learnable
temperature [39], and uses our universal morphology decoder to obtain the actions for every joint of
the robot.

1 M
J(0) = MZJ”(O), J"6) = E_

m

Joint encoder Core network Universal decoder

Linear

-Layer Norm
e)™
%
- General observations -
% h (inear)
Q 0
—
s A ¥ Oy
: aEmmm |} —= ==
g q 5
g B .
e B3 v
3 i | ELU
v
Feet encoderl Linear
+
n CENNNIND ‘
£
: — T * T o
; —
2 g 9 S, — @ -—
s ; '
— . Foot description Foot observations "
Attention encoding Action

Figure 2: Overview of URMA. Left — Joint observations and descriptions are encoded and com-
bined into a single joint latent vector through an attention head. Bottom center — Feet observations
and descriptions are encoded in the same way. Top center — Joint latent, feet latent, and general
observations are fed through the core network to get the action latent vector. Right — The universal
morphology decoder encodes the joint descriptions and pairs them with the action latent vector and
the single joint latent vector to produce the action mean and standard deviation for the final action.

To handle observations of any morphology, URMA first splits the observation vector o into robot-
specific and general observations o4, where the former can be of varying size, and the latter has
a fixed dimensionality. For locomotion, we subdivide the robot-specific observations into joint
and feet-specific observations. This split is not necessary but makes the application to locomo-
tion cleaner. In the following text, we describe everything w.r.t. the joint-specific observations, but
the same applies to the feet-specific ones as well. Every joint of a robot is composed of joint-specific
observations o; and a description vector d;, which is a fixed-size vector that can uniquely describe
the joint by using characteristic properties like the joint’s rotation axis, its relative position in the
robot, torque and velocity limits, control range, etc. The description vectors and joint-specific ob-
servations are encoded separately by the Multilayer Perceptrons (MLPs) fg and fy, and are then
passed through a simple attention head, with a learnable temperature 7 and a minimum temperature
€, to get a single latent vector

. <f¢(dj))
*P T+e€
Z'oimszzz'> Zj = ; fw(o')a (2)
J =] ZjeJeXp(fff]e))]

that contains the information of the joint-specific observations of all joints. With the help of the
attention mechanism, the network can learn to separate the relevant joint information and precisely
route it into the specific dimensions of the latent vector by reducing the temperature 7 of the softmax
close to zero. The joint latent vector Zjins is then concatenated with the feet latent vector Zpee and
the general observations o, and passed to the policies core MLP hg to get the action latent vector
Zaction = N (04, Zioints; Zteet). TO Obtain the final action for the robot, we use our universal morphology
decoder, which takes the general action latent vector and pairs it with the set of encoded specific
joint descriptions and the single joint latent vectors to produce the mean and standard deviation of
the actions for every joint, from which the final action is sampled as

a ~ N(Nu(d?7 Zactions Zj), 0w (d;l))7 d? = gu(dj). 3)

To ensure that only fully normalized and well-behaved observations come into the network, we use
LayerNorm [40] after every input layer. The learning process also benefits from adding another
LayerNorm in the action mean network p,,. We argue that this choice improves the alignment of the
different latent vectors entering into p,, better. To ensure a fair comparison, we also use LayerNorms
with the same rationale in the baseline architectures.

Our second contribution is the open-source modular learning framework, which enables us to easily
train robust and transferable locomotion policies for all kinds of legged robots. When adding a new
robot to the training set, only the reward coefficients, controller gains, and domain randomization
ranges have to be adjusted, which can be easily done by slightly modifying the ones from existing

robots in the framework. As the penalty terms in the reward function are not essential for learning
the core locomotion but only shape the resulting gait, we apply a time-dependent fixed-length cur-
riculum 7.(¢t) = min (1) , where t is the current training step, 7 is the curriculum length, and
T is the final penalty coefﬁment This speeds up the learning and makes the coefficient tuning pro-
cess easier and more forgiving, as the policy can handle higher penalties better when it has already
learned to perform basic locomotion.

Theoretical Analysis

To evaluate the benefit of learning shared representations across robot morphologies through
URMA, we extend the multi-task risk bounds from Maurer et al. [41] and D’Eramo et al. [26]
to our morphology-agnostic encoder and decoder. As we will use the Proximal Policy Optimization
(PPO) algorithm in our learning framework, we frame our problem as an evaluation of the perfor-
mance difference between the PPO training on the empirical dataset and the optimal policy update
with infinite samples. In our simplified analysis, we will assume that i. our policy optimization step
can find the policy that minimizes the surrogate loss over the current dataset; ii. the trust region is
small enough such that the surrogate loss and the expected discounted return of the policy are close
enough; iii. the surrogate loss is computed with the true advantage. Given our set of robot embod-
iments gt = (p1,. .., par), the set X € X" of n input samples from the space of observations,
descriptions and actions X' for each of the M tasks and the corresponding set Y € RM™ of advan-
tages A™ divided by the initial probabilities 7y, we can describe the policy learning as finding the
minimizer f , ﬁ, w of the following optimization problem:

(f b)) = (fhw>{nMZZz)ym):fef,hefu,wew}, 4)

m=1 =1
withf e F: X 2R xX, heH : R xX 2 RE xXandw € W: RX x X — R being
the encoder, core and decoder networks, and £ : R x R — [0, 1] the normalized policy optimization
loss function. We quantify the performance of the functions f, h, w with the task-averaged risk

cae(f 1 w) = 37 ZE(XYM [(R(£(X))), V) ()

We define €dvg as the minimum of this risk, with the minimizers f*, h* and w*. We mea-
sure the complexity of some function class Z composed of K functions via the set Z(X) =

{(z1(Xpns)) : 2z € Z} C REMn with the Gaussian complexity [42]

G(2(X)) =

sup Z "/mkzzk(mz) |sz:|) (6)

z2€EZ mki

where v,,; are i.i.d. standard Gaussian random variables.

Furthermore, we define L(Z), as the upper bound of the Lipschitz constant of all z in Z, and the
Gaussian average of Lipschitz quotients

O2Z)= sup E {Supzezw} @)
y.y €Y y#£y’ lly — vl

where 7 is a vector of d i.i.d. standard Gaussian random variables and z € Z : Y — R? with
Y C RRP. Using the definitions above, we can bound the risk €qy,:

Theorem 1. Let p, F, H and W be defined as above and assume 0 € H and w(0) = 0,Vw € W.
Then for 6 > 0 with probability at least 1 — § in the draw of (X, Y) ~ Hn]\le . we have that

1L(€)L(W)L(H)G(7(X)) +(i2L(€)L(W) sup;[|f(X)[[O(H)

earg(f) <

nM) nM
L(¢)L(W) mi G(H L(£)supy, ¢||h(f(X))|lOW 8In(%)
o HOLC)rr;l]rzep #HP) | (©) h,flln](VJ;(NIOC)+ ME;) ehe

®)

For reasonable function classes W, the Gaussian average of Lipschitz quotients O(WV) can be
bounded independently from the number of samples. For most settings, the Gaussian complex-
ity G(F(X)) is O(vVnM). Also the terms sup || f(X)| and sup,, (||h(f(X))|| are O(vV'nM), if
they can be uniformly bounded. Using these assumptions, the URMA policy structure is better
suited for multi-task learning as all the first four terms are O (1/vnd). In comparison, the multi-
head architecture from from D’Eramo et al. [26] requires additional encoder and decoder heads for
every task, and thus, the cost of learning all the encoders and decoders is only O (1/\/r), i.e. itis
not reduced when increasing the number of tasks M, as it is in our case for URMA. In conclusion,
as URMA only uses a single general encoder and decoder for all tasks, it compares favorably to the
typical multi-head approach as it can focus on learning only a single mapping to the shared repre-
sentation space compared to the multi-head architecture which needs to learn M different encodings
and decodings. This leads to the lower sample cost of learning these shared representations.

3 Experiments

In this section, we evaluate our method from three different perspectives. First, we assess how
well the model learns to control multiple embodiments in parallel against classical MTRL baselines.
Then, we analyze how well the URMA architecture performs in terms of zero and few-shot transfer.
Finally, we test the deployment capabilities of our learning framework and control architecture on
real robots, allowing us to bridge the sim-to-real gap effectively. For all experiments in simulation,
we will use the following two baselines.

— Multi-Head Baseline. One way of dealing with the issue of different action and observation
space sizes is to use a multi-head architecture with an encoder head for every environment, a shared
core, and a decoder head for every environment [26]. We implement this baseline by using one
shared encoder and decoder for all quadruped robots, one for all humanoid and bipedal robots, and
one for the hexapod. The observations of all robots with identical morphology are arranged in
the same order for the encoder, and the observations for missing joints are simply set to zero, e.g.
humanoids often have different joint configurations. Compared to URMA, this baseline allows for
efficient learning as the morphology-specific heads inherently separate the observations and arrange
them in the correct order from the beginning. However, introducing new joints or completely new
morphologies requires adding new neurons to a head or training a completely new head from scratch.
Every additional head is a new mapping into and out of the shared representation space, which leads
to a higher learning complexity compared to URMA.

— Padding Baseline. Another way to handle differently sized action and observation spaces is
to pad the observations and actions with zeros to fit a maximum length [28]. Therefore, a specific
observation dimension can now represent different things for different robots. We add a one-hot task
ID to the observations to ensure that the policy can distinguish between the robots, as typically done
in MTRL [27]. Compared to URMA, the padding baseline is less complex but has similar issues
when transferring to new morphologies like the multi-head baseline, as a new robot essentially
represents a completely new task, and the policy has a hard time transferring knowledge between
the differently structured observations and actions.

To train our locomotion policy, we use the CPU-based MuJoCo physics simulator [43] for 16 dif-
ferent simulated robots with three learning environments each, resulting in 48 parallel environments
in total. Figure 1 shows all the simulated robots we utilize for training and the three real robots
that we use for deployment in the real world. The set of robots includes nine quadrupeds with three
different joint configurations, five humanoids with five different joint configurations, one biped, and
one hexapod. To leverage the huge amounts of data that we can generate in simulation, we use the
PPO algorithm [44]. We build on the codebase of the DRL library RL-X [45] to implement our
architecture and the baselines in JAX and to run the experiments.

Results

First, we want to evaluate the training efficiency of MTRL in our setting. We train URMA and the
baselines on all robots simultaneously and compare the average return to the single-robot training
setting, where a separate policy is trained for every robot. All policies are trained on 100 million
steps per robot, and every experiment shows the average return over 5 seeds and the corresponding
95% confidence interval. Additionally, we plot the empirical maximum performance when con-
tinuing the training for 1.6B steps on only a single robot as a dashed line. Figure 3 confirms the
advantage in learning efficiency of MTRL over single-task learning, as URMA and the multi-head
baseline learn significantly faster than the average over training only on a single robot at a time.
As expected, early on in training, URMA learns slightly slower than the multi-head baseline due
to the time needed by the attention layers to learn to separate the robot-specific information, which
the multi-head baseline inherently does from the beginning. However, URMA ultimately reaches a
higher final performance. The padding baseline performs noticeably worse than the other two. We
argue that the policy has trouble learning the strong separation in representation space between the
different robots—which is necessary for the differently structured observation and action spaces—
only based on the task ID.

Next, we evaluate the zero-shot and few-shot transfer capabilities of URMA and the baselines on
two robots that were withheld from the training set of the respective policies. We test the zero-shot
transfer on the Unitree A1, a robot whose embodiment is similar to other quadrupeds in the training
set. Figure 3 shows the evaluation for the A1 during a training process with the other 15 robots and
highlights that both URMA and the multi-head baseline can transfer perfectly well to the A1 while
never having seen it during training. The policy trained only on the Al (shown in black) performs
distinctly worse during the 100M training steps as it needs more samples per robot to learn the task.
It eventually catches up to the multi-embodiment zero-shot performance while training for 1.6B
steps directly on the Al.

Training on all 16 robots Zero-shot on Unitree A1

P p———————————— 50
e o

5 5 40
D 40 k]

= = 30
[(]

g 820
@ 20 9]

z z10

0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment steps per robot le8 Environment steps per robot le8
Zero-shot and fine-tuning on MAB Silver Badger 20 Zero-shot with foot observation dropout

I
o

w

o

=

w
o

Average return
N
o
Average return
N
o

i

jr——— 10 M
0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0
Environment steps per robot leg Environment steps per robot le8
URMA Multi-Head Baseline = Padding Baseline

= Single-robot training == Single-robot training at 1.6B steps

Figure 3: Top left — Average return of the three architectures during training on all 16 robots com-
pared to the single-robot training setting. Top right — Zero-shot transfer to the Unitree A1 while
training on the other 15 robots. Bottom left — Zero-shot transfer to the MAB Robotics Silver Badger
while training on the other 15 robots and fine-tuning on only the Silver Badger afterward. Bottom
right — Zero-shot evaluation on all 16 robots while removing the feet observations.

To investigate an out-of-distribution embodiment, we use the same setup as for the Al and evaluate
zero-shot on the MAB Robotics Silver Badger robot, which has an additional spine joint in the
trunk and lacks feet observations, and then fine-tune the policies for 20 million steps only on the
Silver Badger itself. Figure 3 shows that URMA can handle the additional joint and the missing feet
observations better than the baselines and is the only method capable of achieving a good gait at the
end of training. After starting the fine-tuning (gray vertical line), URMA maintains the lead in the
average return due to the better initial zero-shot performance.

To further assess the adaptability of our approach, we evaluate the zero-shot performance in the
setting where observations are dropped out, which can easily happen in real-world scenarios due
to sensor failures. To test the additional robustness in this setting, we train the architectures on
all robots with all observations and evaluate them on all robots while completely dropping the feet
observations. Figure 3 confirms the results from the previous experiment with the Silver Badger and
shows that URMA can handle missing observations better than the baselines.

Finally, we deploy the same URMA policy on the real Unitree A1, MAB Honey Badger, and MAB
Silver Badger quadruped robots. Figure 1 show the robots walking with the learned policy on
pavement, grass, and plastic turf terrain with slight inclinations. Due to the extensive DR during
training, the single URMA policy trained on 16 robots in simulation can be zero-shot transferred
to the three real robots without any further fine-tuning. While the Unitree Al and the MAB Silver
Badger are in the training set, the network is not trained on the MAB Honey Badger. Despite the
Honey Badger’s gait not being as good as the other two robots, it can still locomote robustly on the
terrain we tested, proving the generalization capabilities of our architecture and training scheme.

Limitations. While our method is the first end-to-end approach for learning multi-embodiment
locomotion, many open challenges remain. On one side, our generalization capabilities rely mostly
on the availability of data, therefore zero-shot transfer to embodiments that are completely out of the
training distribution is still problematic. This issue could be tackled by exploiting other techniques
in the literature, such as data augmentation and unsupervised representation learning, to improve our
method’s generalization capabilities. Furthermore, we currently omit exteroceptive sensors from the
observations, which can be crucial to learning policies that can navigate in complex environments
and fully exploit the agile locomotion capabilities of legged robots. Lastly, as humanoid robots only
recently started to be available for reasonable prices, we could not test the deployment on one of
these platforms yet. Better modelling, more reward engineering or additional randomization might
be necessary to ensure their real-world transfer.

4 Conclusion

We presented URMA, a open-source framework to learn robust locomotion for different types of
robot morphologies end-to-end with a single neural network architecture. Our flexible learning
framework and the efficient encoders and decoders allow URMA to learn a single control policy for
16 different embodiments from three different legged robot morphologies. We highlight URMAs
learning efficiency in a theoretical analysis of its task-averaged risk bound and compare it to prior
work. In practice, URMA reaches higher final performance on the training with all robots, shows
higher robustness to observation dropout, and better zero-shot capabilities to new robots compared
to MTRL baselines. Furthermore, we deploy the same policy zero-shot on two known and one
unseen quadruped robot in the real world. We argue that this multi-embodiment learning setting can
be easily extended to more complex scenarios and can serve as a basis for locomotion foundation
models that can act on the lowest level of robot control. Finally, the URMA architecture is general
enough to be applied to not only any robot embodiment but also any control task, making task
generalization, also for non-locomotion tasks, an interesting avenue for future research.

References

[1] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[2] G.B. Margolis and P. Agrawal. Walk these ways: Tuning robot control for generalization with
multiplicity of behavior. In Conference on Robot Learning, pages 22-31. PMLR, 2023.

[3] S. Choi, G. Ji, J. Park, H. Kim, J. Mun, J. H. Lee, and J. Hwangbo. Learning quadrupedal
locomotion on deformable terrain. Science Robotics, 8(74):eade2256, 2023.

[4] K. Caluwaerts, A. Iscen, J. C. Kew, W. Yu, T. Zhang, D. Freeman, K.-H. Lee, L. Lee, S. Sal-
iceti, V. Zhuang, et al. Barkour: Benchmarking animal-level agility with quadruped robots.
arXiv preprint arXiv:2305.14654, 2023.

[5] Z.Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. In Conference on Robot Learning (CoRL), 2023.

[6] X.Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. In Robo-
Letics: Workshop on Robot Learning in Athletics@ CoRL 2023, 2023.

[7] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pages 91-100. PMLR,
2022.

[8] G. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via reinforce-
ment learning. In Robotics: Science and Systems, 2022.

[9] L. Smith, I. Kostrikov, and S. Levine. A walk in the park: Learning to walk in 20 minutes with
model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

[10] L. Smith, Y. Cao, and S. Levine. Grow your limits: Continuous improvement with real-world
1l for robotic locomotion. arXiv preprint arXiv:2310.17634, 2023.

[11] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst. Blind bipedal stair traversal via sim-
to-real reinforcement learning. In Robotics: Science and Systems, 2021.

[12] A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik. Adapting rapid motor adapta-
tion for bipedal robots. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1161-1168. IEEE, 2022.

[13] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath. Real-world humanoid
locomotion with reinforcement learning. arXiv:2303.03381, 2023.

[14] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803-3810. IEEE, 2018.

[15] L. Campanaro, S. Gangapurwala, W. Merkt, and I. Havoutis. Learning and deploying robust
locomotion policies with minimal dynamics randomization. arXiv preprint arXiv:2209.12878,
2022.

[16] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
Robotics: Science and Systems XVII, 2021.

[17] F. Jenelten, J. He, F. Farshidian, and M. Hutter. Dtc: Deep tracking control-a unifying ap-
proach to model-based planning and reinforcement-learning for versatile and robust locomo-
tion. arXiv preprint arXiv:2309.15462, 2023.

[18] M. Kasaei, M. Abreu, N. Lau, A. Pereira, and L. P. Reis. A cpg-based agile and versatile
locomotion framework using proximal symmetry loss. arXiv preprint arXiv:2103.00928, 2021.

[19] 1. Lee, L. Schroth, V. Klemm, M. Bjelonic, A. Reske, and M. Hutter. Evaluation of constrained
reinforcement learning algorithms for legged locomotion. arXiv preprint arXiv:2309.15430,
2023.

[20] Y. Kim, H. Oh, J. Lee, J. Choi, G. Ji, M. Jung, D. Youm, and J. Hwangbo. Not only rewards but
also constraints: Applications on legged robot locomotion. IEEE Transactions on Robotics,
2024.

[21] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi. Agile but safe: Learning collision-free
high-speed legged locomotion. arXiv preprint arXiv:2401.17583, 2024.

[22] Y. Ouyang, J. Li, Y. Li, Z. Li, C. Yu, K. Sreenath, and Y. Wu. Long-horizon locomo-
tion and manipulation on a quadrupedal robot with large language models. arXiv preprint
arXiv:2404.05291, 2024.

[23] W. Song, H. Zhao, P. Ding, C. Cui, S. Lyu, Y. Fan, and D. Wang. Germ: A generalist robotic
model with mixture-of-experts for quadruped robot. arXiv preprint arXiv:2403.13358, 2024.

[24] M. Shafiee, G. Bellegarda, and A. Ijspeert. Manyquadrupeds: Learning a single locomotion
policy for diverse quadruped robots. arXiv preprint arXiv:2310.10486, 2023.

[25] B. Trabucco, M. Phielipp, and G. Berseth. Anymorph: Learning transferable polices by in-
ferring agent morphology. In International Conference on Machine Learning, pages 21677—
21691. PMLR, 2022.

[26] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, J. Peters, et al. Sharing knowledge
in multi-task deep reinforcement learning. In 8th International Conference on Learning
Representations,{ICLR} 2020, Addis Ababa, Ethiopia, April 26-30, 2020, pages 1-11. In-
ternational Conference on Learning Representations, ICLR, 2020.

[27] A. Hendawy, J. Peters, and C. D’Eramo. Multi-task reinforcement learning with mixture of
orthogonal experts. In The Twelfth International Conference on Learning Representations,
2023.

[28] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094-1100. PMLR, 2020.

[29] C. L. Nehaniv and K. Dautenhahn. The correspondence problem. In Imitation in animals and
artifacts, pages 41-61. MIT Press, 2002.

[30] T. Wang, R. Liao, J. Ba, and S. Fidler. Nervenet: Learning structured policy with graph neural
networks. In International conference on learning representations, 2018.

[31] W. Huang, I. Mordatch, and D. Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pages
4455-4464. PMLR, 2020.

[32] J. Whitman, M. Travers, and H. Choset. Learning modular robot control policies. IEEE
Transactions on Robotics, 2023.

[33] V. Kurin, M. Igl, T. Rocktédschel, J. Bohmer, and S. Whiteson. My body is a cage: the role
of morphology in graph-based incompatible control. In International Conference on Learning
Representations (ICLR), 2021.

[34] A. Gupta, L. Fan, S. Ganguli, and L. Fei-Fei. Metamorph: learning universal controllers with
transformers. In International Conference on Learning Representations. ICLR, 2022.

10

[35] B. Li, H. Li, Y. Zhu, and D. Zhao. Mat: Morphological adaptive transformer for universal
morphology policy learning. IEEE Transactions on Cognitive and Developmental Systems,
2024.

[36] G. Feng, H. Zhang, Z. Li, X. B. Peng, B. Basireddy, L. Yue, Z. Song, L. Yang, Y. Liu,
K. Sreenath, et al. Genloco: Generalized locomotion controllers for quadrupedal robots. In
Conference on Robot Learning, pages 1893—1903. PMLR, 2023.

[37] Z.Luo, Y. Dong, X. Li, R. Huang, Z. Shu, E. Xiao, and P. Lu. Moral: Learning morphologically
adaptive locomotion controller for quadrupedal robots on challenging terrains. IEEE Robotics
and Automation Letters, 2024.

[38] D. Bahdanau, K. H. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. In 3rd International Conference on Learning Representations, ICLR 2015,
2015.

[39] J. Lin, X. Sun, X. Ren, M. Li, and Q. Su. Learning when to concentrate or divert attention:
Self-adaptive attention temperature for neural machine translation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2985-2990. Asso-
ciation for Computational Linguistics, Oct.-Nov. 2018.

[40] J.L.Ba,J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[41] A.Maurer, M. Pontil, and B. Romera-Paredes. The benefit of multitask representation learning.
Journal of Machine Learning Research, 17(81):1-32, 2016.

[42] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463—482, 2002.

[43] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2072
IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE,
2012.

[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[45] N. Bohlinger and K. Dorer. RI-x: A deep reinforcement learning library (not only) for robocup.
In Robot World Cup, pages 228—-239. Springer, 2023.

11

	Introduction
	Multi-embodiment Locomotion with a Single Policy
	Experiments
	Conclusion

