

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTRA-TRAJECTORY CONSISTENCY FOR REWARD MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

Reward models are critical for improving large language models (LLMs), particularly in reinforcement learning from human feedback (RLHF) and inference-time verification. Due to the prohibitive cost of fine-grained annotations, current reward models typically learn from holistic response scores to determine outcome rewards. However, this coarse-grained supervision makes it difficult for the reward model to identify which specific components within a response trajectory truly correlate with the final score, leading to poor generalization of unseen responses. In this paper, we introduce an intra-trajectory consistency regularization to propagate coarse, response-level supervision into fine-grained learning signals. Inspired by a Bayesian framework, our method enforces a simple principle: The rewards of adjacent generation processes should be more consistent when the connecting token has a higher generation probability. We apply the proposed regularization to the advanced outcome reward model, improving its performance on RewardBench. Furthermore, we demonstrate that the reward model trained with the proposed regularization yields better DPO-aligned policies and achieves superior best-of-N inference-time verification results. Our implementation code is provided in the supplementary material.

1 INTRODUCTION

Reward models offer a quantitative measure of the quality of LLM responses based on human preferences or correctness, making them instrumental in improving LLM performance through RLHF (Ouyang et al., 2022; Dai et al., 2024; Ethayarajh et al., 2024; Liu et al., 2025) or inference-time verification (Zhang et al., 2024b; Setlur et al., 2025). In RLHF, reward models provide feedback signals that guide LLMs to generate desirable responses via reinforcement learning. In inference-time verification, they rank or filter outputs to ensure the selection of the most appropriate responses. The generalization of the reward model is therefore critical, as these applications depend on reliable predictions for unseen responses (Gao et al., 2023; Yang et al., 2024b).

To enhance the generalization of the reward model, extensive efforts have been made in the literature, including ensemble techniques (Coste et al., 2024; Rame et al., 2024), data augmentation (Shen et al., 2024; Liu et al., 2024a), direct correction of bias caused by length (Dubois et al., 2024; Chen et al., 2024a), and hidden-state regularization (Yang et al., 2024b; Chen et al., 2024b). Generally, these methods use holistic human evaluations of responses to learn the rewards of responses (Sun et al., 2025; Yang et al., 2024b; Liu et al., 2024a). Despite their success, these models remain limited by coarse-grained supervision of the response-level scores, which hinders their ability to capture dependencies between responses and the processes properly. This may lead to overfitting to spurious features (Yang et al., 2024b), such as response length, instead of properly leveraging label-relevant components in the response trajectory, resulting in poor generalization to unseen responses. **To identify content that influences the score of overall response, some approaches propose learning with process-level labels (Lightman et al., 2023; Wang et al., 2024b) or token-level labels (Yoon et al., 2024). However, in many practical scenarios, obtaining such fine-grained annotations proves prohibitively expensive (Zhang et al., 2024a).**

To address these challenges, we propose establishing reward consistency between processes within the response trajectory, enabling response-level supervisory signals to propagate across processes and thereby enrich reward learning. Specifically, we utilize generation probabilities, which measure

Figure 1: Illustration of our proposed framework. In our framework, the reward model learns outcome rewards via a standard reward loss. We supplement this with an intra-trajectory consistency regularization term. The regularization enforces stronger reward consistency between adjacent processes with higher next-token probabilities from the generator.

the likelihood of a generator producing subsequent sequences, to capture inter-process dependencies. Inspired by Bayesian decomposition, we establish the connection between these generation probabilities and reward consistency: When a generator assigns a higher probability to a sequence of tokens, the rewards for the corresponding generation steps are more likely to be consistent. Moreover, to prevent severe misjudgment of reward consistency caused by low generation probabilities, we focus on adjacent processes with minimal content variation. These process pairs often exhibit semantic continuity and, consequently, tend to have comparable rewards.

To this end, we introduce intra-trajectory consistency regularization for reward modeling, termed ICRM. As shown in Figure 1, our framework consists of two components: a frozen generator that provides generation probabilities, and a reward model trained to predict outcome rewards. To propagate response-level supervisory signals throughout the process trajectory, the reward model is regularized to produce more consistent rewards for adjacent processes with higher next-token generation probabilities, thereby improving generalization without process-level labels.

Finally, the main contributions can be summarized as follows:

- **Exploration.** We investigate the relationship between next-token generation probabilities and reward consistency, drawing inspiration from a Bayesian framework.
- **Method.** We propose a regularization method that enforces higher reward consistency between adjacent processes with higher next-token generation probabilities, thereby more effectively utilizing response-level supervisory signals for better generalization.
- **Experiments.** We conduct extensive experiments to demonstrate that the proposed regularization improves the performance of the reward model in three evaluation tasks: standard reward modeling benchmarks, RLHF, and inference-time verification.

2 BACKGROUNDS

Given an input prompt x , a standard language generator θ_g , such as many current LLMs (Mesnard et al., 2024; Dubey et al., 2024), generates token sequences autoregressively, predicting each token y_t conditioned on the preceding subsequence $y_{1:t-1}$ until reaching either a termination token or a maximum length constraint. This process yields a complete output sequence $y = (y_1, \dots, y_n) = y_{1:n}$. To enhance LLMs, many studies explore reinforcement learning training (Bai et al., 2022; Shao et al., 2024) or employ inference-time verification (Zhang et al., 2024b; Setlur et al., 2025). Both approaches require evaluating generated sequences, either through scoring or correctness assessment. This assessment is often referred to as the reward.

Reward. For an input x with corresponding generated response sequence y or a process $y_{1:k}$ consisting of the first k tokens in y , reward functions can be categorized into two fundamental types:

108 outcome reward $r(x, y)$ and process reward $r(x, y_{1:k})$. The outcome reward evaluates the complete
 109 response based on its final solution quality (Uesato et al., 2022; Zhang et al., 2024b). In contrast, the
 110 process reward evaluates the scores of the intermediate processes within a response. Since it is not
 111 clear how to divide the processes of a common scenario, the response segment $y_{1:m}$ is considered
 112 valid. We should also note that in our definition, a full response can also be treated as a process.
 113 While this inclusive definition admits partial sentence fragments as independent processes, recent
 114 work in both RLHF (Zeng et al., 2024; Cui et al., 2025) and inference-time verification (Xu et al.,
 115 2025) has demonstrated the empirical effectiveness of such fine-grained reward signals.

116 **Reward Modeling.** Many existing methods train reward models θ_r using overall response-level
 117 annotations. The current dominant approach for reward modeling is the Bradley-Terry model (Sun
 118 et al., 2025). For this model, the training dataset D_{tr} whose unit is a triple (x, y^w, y^l) , where x
 119 represents an input or a prompt, y^w is a chosen response for x , and y^l is a rejected response for
 120 x . To distinguish between the chosen response and the rejected response for a given input, we can
 121 optimize the Bradley-Terry reward model with the objective

$$\mathcal{L}_{bt} = \mathbb{E}_{(x, y^w, y^l) \sim D_{tr}} [-\log \sigma(\theta_r(x, y^w) - \theta_r(x, y^l))], \quad (1)$$

122 where σ is the sigmoid function. After optimization, the reward model can be used to provide
 123 outcome rewards for RLHF or inference-time verification. We discuss more specific reward model
 124 modeling methods, such as PRM (Lightman et al., 2023), in the Appendix A.

125

126 3 METHOD

127

128 This section introduces intra-trajectory consistency regularization to constrain intermediate genera-
 129 tion processes that lack explicit labels. The method works by propagating response-level supervisory
 130 signals, leveraging the inherent reward consistency between steps in a generation trajectory. We first
 131 discuss the link between this reward consistency and generation probability (Section 3.1), then de-
 132 tail how it is implemented to regularize the reward model (Section 3.2), and finally integrate the
 133 proposed regularization into our training framework to learn more reliable rewards (Section 3.3).

134

135 3.1 ESTABLISHMENT OF REWARD CONSISTENCY

136

137 Traditional reward modeling uses coarse response-level scores (e.g., pairwise preferences) (Sun
 138 et al., 2025; Yang et al., 2024b; Liu et al., 2024a), making it difficult to assess fine-grained cor-
 139 rectness (Wu et al., 2023). To introduce fine-grained signals, we propose establishing reward con-
 140 sistency relations between processes with the same response trajectory. This framework enables
 141 response-level supervisory signals to propagate throughout the trajectory, providing additional sig-
 142 nals for reward learning. These derived signals help the model better capture contextual depen-
 143 dencies between processes. Besides, this is achieved without requiring additional manual annotation.

144

145 To establish the intra-trajectory consistency, we propose to leverage generation probabilities, the
 146 likelihood of a generator producing each subsequent sequence, to reflect the reward dependencies
 147 between processes. For example, research in the safety domain (Qi et al., 2025) demonstrates that
 148 certain intermediate processes, such as phrases like "Sure, here is a detailed guide," often precede
 149 hazardous completions in response to harmful queries. Therefore, linking reward relationships be-
 150 tween processes with their underlying generation probabilities is possible.

151

152 To achieve this objective, we formalize our approach by making key assumptions about the genera-
 153 tion of the response. Specifically, we assume that responses are generated by a generator θ_g with an
 154 estimable conditional probability distribution, meaning each new token depends probabilistically on
 155 all previously generated tokens. This assumption aligns with the autoregressive nature of modern
 156 LLMs. Under these conditions, we can connect process $y_{1:m}$ and its subsequent process $y_{1:n}$ (where
 157 $m < n$) for input x with the generation probability through Bayesian decomposition:

$$P(e|x, y_{1:m}) = P(e|x, y_{1:n})P(x, y_{1:n}|x, y_{1:m}) + \sum_{\bar{y}_{1:n} \in \bar{Y}_{1:n}} P(e|x, \bar{y}_{1:n})P(x, \bar{y}_{1:n}|x, y_{1:m}), \quad (2)$$

158

159 where $P(e|x, y)$ denotes the conditional probability of any event e occurring given $(x, y_{1:m})$.
 160 $P(x, y_{1:n} | x, y_{1:m})$ represents the generation probability of sequence $y_{1:n}$ conditioned on $(x, y_{1:m})$,

162 as computed by the generator. Since $y_{1:n}$ is the successor of $y_{1:m}$, $P(x, y_{1:n} | x, y_{1:m})$ also equals
163 to $P(y_{m:n} | x, y_{1:m})$. $\bar{Y}_{1:n}$ denotes the set of all possible sequences with length n excluding $y_{1:n}$.
164

165 Eq. 2 formalizes the connection between a process and its future outcomes. The intuition is that the
166 process reward $r(x, y_{1:m})$ should reflect its potential to evolve into a preferred final response. This
167 mirrors Q-values (Wang et al., 2024b; Setlur et al., 2025), which estimate the expected return from
168 a given state. We therefore adopt the Q-value analogy from (Li & Li, 2025) and model the process
169 reward as the likelihood of ultimately generating a preferred response from the current process
170 $y_{1:m}$. While a scalar reward is not a true probability, enforcing this consistency provides a well-
171 founded mechanism for propagating coarse, response-level supervision to the process level. Thus,
172 we acquire our framework with two informal assumptions: first, that the output of reward model
173 can be treated as a probabilistic score, and second, that the generation probabilities of subsequent
174 tokens are accessible from a generator model. Then letting event e denote the generation of preferred
175 response, we can replace $P(e|x, y_{1:m})$ with $r(x, y_{1:m})$, represented as:
176

$$r(x, y_{1:m}) = r(x, y_{1:n})P(x, y_{1:n}|x, y_{1:m}) + \sum_{\bar{y}_{1:n} \in \bar{Y}_{1:n}} r(x, \bar{y}_{1:n})P(x, \bar{y}_{1:n}|x, y_{1:m}). \quad (3)$$

177 From Eq. 3, since $\sum_{\bar{y}_{1:n} \in \bar{Y}_{1:n}} P(\bar{y}_{1:n}|x, y_{1:m}) + P(y_{1:n}|x, y_{1:m}) = 1$, as the generation prob-
178 ability $P(x, y_{1:n}|x, y_{1:m})$ increases, the contribution of alternative completions $\bar{y}_{1:n}$ to the re-
179 ward $r(x, y_{1:m})$ diminishes. Therefore, the reward $r(x, y_{1:m})$ becomes increasingly dominated by
180 $r(x, y_{1:n})$, reducing the variance of the reward and leading to higher consistency between $r(x, y_{1:m})$
181 and $r(x, y_{1:n})$. Thus, generation probability and reward consistency can be linked. Compared with
182 direct learning of Q-value, Eq. 3 allows the use of a generator’s probabilities directly for regularization
183 rather than relying on full rollouts and labeling.
184

185 The above analysis also implies an issue: When the generation probabilities between processes
186 are low, reward similarity estimation may be unreliable. To address this, we incorporate reward
187 consistency between semantically related processes. Inspired by text augmentation methods (Qu
188 et al., 2021; Bayer et al., 2022), where partial masking preserves semantics, we assume that process
189 semantics remain stable under limited suffix additions. This semantic invariance suggests correlated
190 rewards between successive processes ($y_{1:m-1}$ and $y_{1:m}$). Consequently, we focus on generation
191 probabilities and reward consistency for adjacent processes as a more tractable approach. The impact
192 of the token distance is discussed in Appendix D.8.
193

194 3.2 INTRA-TRAJECTORY CONSISTENCY REGULARIZATION

195 Building on the above analysis, we propose *intra-trajectory consistency regularization* to enforce
196 more consistent rewards between adjacent processes with higher next-token generation probabilities.
197 We subsequently present our reward formulation of processes under the Bradley-Terry framework,
198 followed by the corresponding optimization objective.
199

200 For reward formulation, we note that standard sigmoid reward outputs under the Bradley-Terry
201 framework often saturate near the boundary values, i.e., 0 or 1. Thus, to ensure our regularization
202 focuses on learning meaningful relative differences between adjacent process rewards rather than
203 pushing absolute scores to their limits, we introduce a mean-centered calibration technique. This
204 technique uses the average process reward from the opposing trajectory (e.g., the rejected response)
205 as a dynamic, data-dependent baseline to calibrate the process rewards of the current trajectory
206 (e.g., the chosen response), and vice versa. Based on this calibration, the process rewards will have
207 **distinctiveness**. This mutual calibration encourages the model to learn a more well-separated reward
208 space. For a process $y_{1:m}^w$ in the chosen response y^w , we define its calibrated reward as:
209

$$\hat{r}(x, y_{1:m}^w) = \sigma(\theta_r(x, y_{1:m}^w) - \frac{1}{|y^l|} \sum_{k=1}^{|y^l|} \theta_r(x, y_{1:k}^l)), \quad (4)$$

210 where $|y|$ denotes the length of sequence y . The mean value serves only as a calibration term and
211 is excluded from gradient computation. Analogously, for a process $y_{1:m}^l$ in the rejected response y^l ,
212

216 the calibrated reward is:

$$218 \quad \hat{r}(x, y_{1:m}^l) = \sigma(\theta_r(x, y_{1:m}^l) - \frac{1}{|y^w|} \sum_{k=1}^{|y^w|} \theta_r(x, y_{1:k}^w)). \quad (5)$$

221 Building upon the calibrated rewards of processes, we can introduce a method to enforce reward
 222 consistency between adjacent processes. A direct method is to minimize calibrated reward dis-
 223 tances (e.g., absolute differences) between adjacent processes. However, this method is ineffective
 224 under stochastic rewards (e.g., randomly initialized values), as forcing consistency between arbi-
 225 trary rewards has limited meaning. Inspired by (Sohn et al., 2020; Zhang et al., 2021), we address
 226 this limitation through a mutually weighted binary cross-entropy loss that both learns semantically
 227 meaningful process rewards and promotes the reward consistency between adjacent processes.
 228

229 Specifically, for a triple preference (x, y^w, y^l) , we assign process-level pseudo-labels identical to
 230 the response label s , where $s = 1$ indicates a chosen response y^w and $s = 0$ indicates a rejected
 231 one y^l . The weighting mechanism for a pair of adjacent processes $(y_{1:k-1}, y_{1:k})$ in a response com-
 232 bines two factors: (1) the probability of the next token $P(x, y_{1:k}|x, y_{1:k-1}) = P(y_k|x, y_{1:k-1}) =$
 233 $\theta_g(y_k | x, y_{1:k-1})$ from the generator θ_g , and (2) the prediction confidence of the calibrated reward
 234 of another paired process. Formally, for $y_{1:k-1}$ in the pair, its weight is computed as:

$$234 \quad w(k \rightarrow k-1, s) = \theta_g(y_k|x, y_{1:k-1}) \cdot (s \cdot \hat{r}(x, y_{1:k}) + (1-s) \cdot (1 - \hat{r}(x, y_{1:k}))). \quad (6)$$

235 Similarly, for $y_{1:k}$ in the pair, its weight is formulated as:

$$237 \quad w(k-1 \rightarrow k, s) = \theta_g(y_k|x, y_{1:k-1}) \cdot (s \cdot \hat{r}(x, y_{1:k-1}) + (1-s) \cdot (1 - \hat{r}(x, y_{1:k-1}))). \quad (7)$$

238 These weights are not used for gradient computation. When $s = 1$, $y = y^w$. When $s = 0$, $y = y^l$.
 239 Finally, let $\check{r}(\cdot) = 1 - \hat{r}(\cdot)$, the regularization loss for all training triples (x, y^w, y^l) is:

$$241 \quad \mathcal{L}_{reg} = \mathbb{E}_{(x, y^w, y^l) \sim D_{tr}} \left[- \sum_{k=2}^{|y^w|} w(k \rightarrow k-1, 1) \log \hat{r}(x, y_{1:k-1}^w) + w(k-1 \rightarrow k, 1) \log \hat{r}(x, y_{1:k}^w) \right. \\ 242 \quad \left. - \sum_{k=2}^{|y^l|} w(k \rightarrow k-1, 0) \log \check{r}(x, y_{1:k-1}^l) + w(k-1 \rightarrow k, 0) \log \check{r}(x, y_{1:k}^l) \right]. \quad (8)$$

247 In Eq. 8, the binary classification loss deviates the random process rewards to meaningful ones.
 248 Besides, since the losses of adjacent processes are mutually weighted by rewards from each other,
 249 their rewards can gradually become similar. The degree of this consistency constraint is implicitly
 250 governed by their next-token generation probabilities. Consequently, Eq. 8 prioritizes meaningful
 251 reward consistency for adjacent processes with higher next-token generation probabilities.
 252

253 3.3 OVERALL TRAINING FRAMEWORK

255 This section details how we enhance the standard Bradley-Terry reward model with an intra-
 256 trajectory consistency regularizer to learn more robust outcome rewards. Since existing reward
 257 modeling datasets are often aggregated from diverse sources, including some unavailable models,
 258 we begin by performing supervised fine-tuning (SFT) on a pre-trained language model to derive a
 259 generator θ_g . This generator is optimized to align with the training dataset’s generation probabili-
 260 ty distribution. Then this fine-tuned generator can provide next-token generation probability for
 261 computing L_{reg} . In cases where the data source is a single known model, we use it directly as the
 262 generator (see Appendix D.7 for a discussion on generator mismatch). After acquiring the generator,
 263 we use two objectives to train the reward model: (1) a reward modeling loss L_{bt} applied to the
 264 entire response, which facilitates learning the outcome rewards; and (2) a regularization L_{reg} applied
 265 across processes. Finally, the overall loss to update the model is computed as:

$$266 \quad \mathcal{L}_{toal} = (1 - \alpha) \mathcal{L}_{bt} + \alpha \mathcal{L}_{reg}, \quad (9)$$

267 where α is a balance hyper-parameter. Compared to solely optimizing \mathcal{L}_{bt} , optimizing Eq. 9 enables
 268 the model to focus on finer-grained signals. After training, the model can be used to provide outcome
 269 rewards. As an extension, we provide the discussion on computational cost and possible efficiency
 improvements in Appendix C.4.

270
 271 Table 1: Accuracy results on RewardBench with 40K training samples from Unified-Feedback. The
 272 base model is Gemma-2B-it. The best results in a column of a series are highlighted in bold. *
 273 indicates that the result is copied from (Yang et al., 2024b).

Reward Model	Chat	Chat-Hard	Safety	Reasoning	Average
Classifier + margin*	97.2	37.5	56.8	72.7	66.1
Classifier + label smooth*	91.6	39.0	53.8	60.2	61.1
Classifier + Ensemble*	96.1	38.2	58.8	67.6	65.2
GRM*	94.7	40.8	65.4	77.0	69.5
GRM (reproduced)	96.8±0.1	41.1±0.2	80.6±0.2	73.9±0.2	73.1±0.1
ICRM (Ours)	95.0±0.1	48.1 ±0.9	84.3 ±0.2	75.6±0.3	75.8 ±0.3

282
 283 Table 2: Accuracy results on RewardBench with 400K training samples from Unified-Feedback.
 284 The base model is Gemma-2B-it. The best results in a column of a series are highlighted in bold. *
 285 indicates that the result is copied from (Yang et al., 2024b).

Reward Model	Chat	Chat-Hard	Safety	Reasoning	Average
Classifier + margin*	89.7	47.1	70.7	43.6	62.8
Classifier + label smooth*	94.1	47.1	67.5	79.7	72.1
Classifier + Ensemble*	89.6	50.2	72.7	59.0	69.3
GRM*	96.1	40.1	80.3	69.3	71.5
GRM (reproduced)	95.3	43.2	78.9	75.2	73.2
ICRM (Ours)	95.5	44.5	84.5	78.2	75.7

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

300 **Datasets.** (1) We train the reward models on the widely-used Unified-Feedback¹ and Skywork². The
 301 data of these two datasets are derived from multiple LLMs. Thus, to verify the proposed method in
 302 the situation where the generation distribution is known, we adopt Qwen2.5-7B-Instruct (Yang et al.,
 303 2024a) to generate 4 responses for each question in the training set of the prm-800k dataset (Light-
 304 man et al., 2023) and label these responses with gold answers. These generated responses constitute
 305 the Qwen-Generated dataset. (2) For experiments of RLHF, we sample about 500 prompts from
 306 the prompts of RewardBench as the test set and the rest as the training set. (3) For experiments of
 307 inference-time verification, we evaluate the reward model on MATH-500 (Hendrycks et al., 2021),
 308 with BON datasets from (Yuan et al., 2024), containing processes generated by both Mistral-7B-
 309 Instructor-v0.2 (Jiang et al., 2023) and Llama-3-8B-Instruct (Dubey et al., 2024).

310 **Training Details.** (1) We train the proposed reward modeling method based on GRM (Yang et al.,
 311 2024b), which achieves competitive results in the RewardBench benchmark. The resulting reward
 312 model is termed **ICRM**. We validate the proposed method on Gemma-2B-it (Mesnard et al., 2024),
 313 Llama3-8B-instruct (Dubey et al., 2024), and Qwen-1.5B-Instruct. The hyperparameter α is set to
 314 0.1 in all of our experiments, with analysis shown in Appendix D.6. Additional training configura-
 315 tions are detailed in Appendix C. (2) For RLHF, we adopt DPO strategy (Rafailov et al., 2023) to
 316 train the policy model with Gemma-2B-it as the initial model. Following (Dong et al., 2024; Liu
 317 et al., 2024a), we generate 8 responses for each prompt in the training set of RLHF. Then these
 318 responses are scored by the 2B reward model trained with Unified-Feedback 400K. The best-worst
 319 response pairs for each prompt are used to train the DPO policy. All experiments are implemented
 320 on at most two A800 GPUs, each with 80GB of memory.

321 **Baselines and Evaluation Details.** In this paper, we evaluate the proposed method in three tasks:
 322 the standard RewardBench benchmark (Lambert et al., 2024), RLHF, and inference-time verifica-

323 ¹<https://huggingface.co/datasets/llm-blender/Unified-Feedback>

²<https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.2>

324
 325 **Table 3: Accuracy results on RewardBench with Llama3-8B-instruct. Best results are highlighted**
 326 **in bold. “avg” refers to the use of an exponential moving average (EMA) of the rewards from the**
 327 **trailing tokens during inference, with the smoothing applied backward from the last token and a**
 328 **decay factor of 0.5.**

Reward Model	Chat	Chat-Hard	Safety	Reasoning	Average
SyncPL-o1 Liang et al. (2025)	93.9	73.2	85.8	83.7	84.2
PRISM Ye et al. (2025)	98.7	68.3	91.1	93.1	87.8
GRM	95.5	74.1	86.6	89.0	86.3
GRM-avg	96.9	74.1	85.0	91.2	86.8
ICRM (Ours)	95.2	75.9	86.2	89.7	86.8
ICRM-avg	96.1	78.1	87.3	95.0	89.1

336
 337 **tion.** Evaluation of more reward benchmarks is provided in Appendix D.13. (1) For the Reward-
 338 Bench benchmark, we consider Classifier trained with Eq. 1, Classifier+Margin (Touvron et al.,
 339 2023), Classifier+Label Smooth (Wang et al., 2024a), Classifier+Ensemble (Coste et al., 2023),
 340 GRM (Yang et al., 2024b), SyncPL-o1 (Liang et al., 2025), and PRISM (Ye et al., 2025) as base-
 341 lines. (2) For RLHF, inspired by (Dubois et al., 2023; Yang et al., 2024b), to avoid the high costs
 342 of human evaluation, we employ the QRM-Llama3.1-8B model ³ as a gold scoring model accord-
 343 ing to its strong performance on the RewardBench benchmark. The trained DPO model generates
 344 responses for the prompt in the test set by greedy sampling. (3) When evaluating inference-time
 345 verification, we adopt the best-of-N (BON) metric, which measures the probability that the response
 346 selected by the reward model from N alternative responses is the correct answer or the best solution.

347 4.2 EVALUATION ON REWARD MODELING BENCHMARK

348 **Results on RewardBench Benchmark.** As shown in Tables 1, 2, and 3, our method achieves higher
 349 average scores on the RewardBench benchmark than all baselines under identical settings. This
 350 improvement is statistically significant (p value=0.002, Table 1), indicating that our proposed regu-
 351 larization enhances the reward model’s generalization. Given these significant results and the high
 352 cost of training LLM, we do not conduct further experiments on a larger scale.

353 **Comparison of Different Sizes of Training Samples.** Following (Yang et al., 2024b), we also
 354 compare the performance of the proposed method under different sizes of training samples. In
 355 Table 1 and Table 2, we present results for both 40K and 400K training samples. Additional results
 356 for other training sizes are provided in Appendix D.1. These results demonstrate that our method
 357 consistently achieves a higher average score than the GRM baseline, demonstrating its effectiveness
 358 across different data scales. See Appendix D.1 for more results.

359 **Utilization of the Process Rewards.**

360 Evaluating response correctness with
 361 process rewards is well-established in
 362 reasoning tasks (Lightman et al., 2023;
 363 Li & Li, 2025). Since our method also
 364 utilizes process rewards, we integrate
 365 them to examine their impact. We
 366 compute an exponentially weighted
 367 moving average of rewards, starting
 368 from the final token of each response
 369 and proceeding backward through the
 370 sequence. Given a response with
 371 length m and the average decay d , the
 372 average reward is $r = \sum_{i=1}^m d^{m-i} r(x, y_{1:i})$. The results are shown in Table 3. Our findings reveal
 373 that incorporating this strategy leads to improvements for both GRM and our method in the reason-
 374 ing group, with occasional gains in other groups. Crucially, our method surpasses GRM in average
 375 when using this approach. These results suggest that our approach learns reliable process rewards
 376 to some extent. More analysis is provided in Appendix D.9 and Appendix D.10.

377
 378 **Table 4: Results of DPO policy with guidance from different reward models.** “Win ratio”, “Tie ratio”, and “Lose
 379 ratio” represent the proportions of comparisons in which a model’s outputs are preferred (win), deemed equivalent
 380 (tie), or dispreferred (lose) relative to another model’s outputs, respectively.

Reward Model	Win ratio↑	Tie ratio	Lose ratio↓
GRM	47.3	2.1	50.6
ICRM (Ours)	50.6	2.1	47.3

³<https://huggingface.co/nicolinho/QRM-Llama3.1-8B-v2>

378
 379 Table 5: Best-of-N (BON) inference-time verification results of responses from different policies
 380 and pass@N. All reward models are implemented using Qwen-1.5B-Instruct as the base model and
 381 trained on the Qwen-Generated dataset.

382 Policy	383 Reward Model	384 Pass@2	385 Pass@4	386 Pass@8	387 Pass@16	Average
383 Mistral-7B-Instruct-v0.2	384 GRM	385 11.8	386 11.8	387 12.6	388 14.2	389 12.6
	384 ICRM (Ours)	385 11.8	386 12.8	387 14.6	388 14.0	389 13.3
383 Llama-3-8B-Instruct	384 GRM	385 45.6	386 46.8	387 49.2	388 45.0	389 46.7
	384 ICRM (Ours)	385 45.8	386 47.2	387 51.2	388 50.0	389 48.6

388
 389 Table 6: **Ablation study for the proposed regularization.** “w/o adjacent reg” means that the reward of
 390 another process is not used for weighting in the proposed regularization. “w/o generation reg” means
 391 that generation probability is not used in the proposed regularization. “L1 loss” means using L1 loss
 392 to directly align rewards of adjacent processes. Training dataset is 40K samples from Unified-
 393 Feedback, and model is Gemma-2B-it.

394 Method	395 Chat	396 Chat-Hard	397 Safety	398 Reasoning	399 Average
w/o adjacent reg	96.1	43.2	80.8	74.0	73.5
w/o generation reg	95.2	46.9	83.5	75.2	75.2
L1 loss	96.4	42.1	80.3	74.3	73.3
Overall	95.0	48.2	84.2	75.8	75.8

402 4.3 EVALUATION ON RLHF

404 We also analyze the performance of policies optimized under different reward models, with results
 405 presented in Table 4. Our analysis reveals two findings: (1) the policy induced by the proposed
 406 reward model achieves higher gold scores compared to the baseline GRM, and (2) demonstrates su-
 407 perior prompt-conditional response quality, generating higher-scoring outputs for identical prompts.
 408 These results collectively validate the enhanced capability of our reward model in RLHF pipelines,
 409 particularly in its ability to guide policy to generate more desirable responses. We also provide
 410 RLHF results evaluated by humans in Appendix D.11.

411 4.4 EVALUATION ON INFERENCE-TIME VERIFICATION

413 We assess our reward model’s capacity for inference-time verification using Best-of-N (BoN) sam-
 414 pling. The results in Table 5 show our method consistently outperforming the GRM baseline in
 415 mean accuracy on both Mistral-Instructor-v0.3 and Llama-3-8B-Instruct. Notably, the generator for
 416 this reward model was the same LLM that produced its training data, validating our method’s ability
 417 to leverage accessible data generators for improved performance. We provide additional BoN results
 418 in Appendix D.4 and a comparison to process-based reward models in Appendix D.5.

420 4.5 EMPIRICAL ANALYSIS

422 **Ablation Study of Main Components.** The proposed intra-trajectory consistency regularization
 423 loss incorporates two key weighting components in Eq. 6 and Eq. 7 : (1) weights derived from re-
 424 wards of adjacent processes, and (2) weights based on generation probabilities. To evaluate their
 425 respective contributions, we conduct ablation studies in Table 6, where each component is removed
 426 individually. The results demonstrate that removing either weighting component typically degrades
 427 performance, with the weights from rewards of adjacent processes showing a more substantial im-
 428 pact. These findings underscore the importance of both weighting mechanisms in the proposed
 429 intra-trajectory reward consistency regularization term.

430 **Evaluation with L1 Reward Alignment** To validate the effectiveness of our proposed regulariza-
 431 tion, we compare it against a standard L1 loss baseline. While L1 loss enforces consistency between
 432 adjacent process rewards, it imposes a uniform constraint that treats all tokens identically. This rigid-

432

433 Table 7: **Ablation study on the effect of the mean-centered calibration technique.** This model is
434 trained on 40k Unified-Feedback samples using a Gemma-2B backbone under identical settings.

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

Figure 2: Length distribution of responses of various policies induced by GRM and ICRM. Average length is marked by the dashed line. Prompts for generation are derived from the test set in the RLHF experiments. Generation model is Gemma-2b-it.

456

457

458

459

460

ity can differ from optimal alignment, potentially hindering performance. In contrast, our proposed method adopts a more adaptive approach via a mutually weighted learning objective. By scaling the regularization weight according to the next-token probabilities, we prioritize consistency constraints on tokens where the model exhibits higher confidence. As demonstrated in Table 6, this tailored strategy yields superior performance, achieving higher average accuracy than the L1 baseline.

461

462

463

464

465

466

467

468

469

470

471

472

Ablation on Mean-Centred Calibration To disentangle the effects of our proposed consistency regularization from the mean-centered calibration technique, we conduct an additional ablation study. Specifically, we create a variant of the baseline GRM by replacing the calibration term in its outcome-based objective (Eq. 1) with the mean-centered calibration used in our method (Eqs. 4 and 5). The results, presented in Table 7, show a drastic performance degradation for the modified GRM. This outcome substantiates our core argument. To elaborate, our mean-centered calibration term is, by definition, the average of all *process rewards* within a response. The magnitude of this average can naturally differ from the final *outcome reward* of that same response. Consequently, applying this term to an outcome-based objective like the Bradley-Terry loss creates a conceptual mismatch: it attempts to calibrate an outcome reward using a process-based average. This misalignment introduces noise and disrupts the optimization process. In contrast, our method applies this calibration within a regularization term that compares adjacent *process rewards*. This aligns with our regularization goals.

473

474

475

476

477

478

Length Analysis. Length represents a common superficial feature that reward models may exploit, often manifesting as a preference for longer responses (Shen et al., 2023). To investigate this length bias, we analyze response length distributions across different policy outputs (Figure 2). Our results demonstrate that policies optimized under our reward model consistently produce shorter responses than the baseline. This finding indicates that the proposed method has the potential to reduce the model’s reliance on length as a proxy for response quality.

479

480

481

482

483

484

485

Visualization of Process Rewards. To elucidate the relationship between process-level rewards and response labeling learned by the proposed method, we visualize reward trajectories for two minimally contrasting responses that differ only in a few critical words (Figure 3). Our analysis reveals that: (1) the model systematically assigns higher rewards to processes containing semantically favorable words in context, and (2) for rejected responses, rewards exhibit gradual degradation rather than immediate drops. For instance, the token “ignore” triggers only a mild penalty, while subsequent unfriendly terms like “cruel” induce sharper declines. This demonstrates our method’s capacity to develop nuanced and context-sensitive reward signals at the process level.

Figure 3: Heatmap of the rewards acquired by ICRM for different processes, in which the reward of a process is shown in the last token of the process, and darker colors indicate higher rewards. The prompt of the two responses is “What is an effective way to deal with people who disagree with me?”. The left response (with “respect” and “kind”) is preferred as the chosen response over the right (with “ignore” and “cruel”) due to its more positive wording concerning the context.

5 CONCLUSION

In this paper, we aim to address the limitation of conventional outcome reward modeling that fails to capture fine-grained details within a response with coarse, response-level supervision. We introduce a novel intra-trajectory consistency regularization to inject a finer-grained signal into the learning process. Motivated by the Bayesian framework, the proposed regularization enforces that adjacent processes with higher next-token generation probabilities maintain more consistent rewards. Experimental results on the RewardBench benchmark, RLHF, and inference-time verification validate the effectiveness of the proposed regularization in improving the advanced reward model. While our method’s reliance on the generation probabilities from a generator introduces a computational overhead, this cost can be substantially mitigated through batch pre-processing. Our current validation is conducted on smaller-scale models due to resource constraints; therefore, scaling our method to larger models remains a promising direction for future work.

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn Drain, Stanislav Fort, Deep Ganguli, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *ArXiv*, 2022.

Markus Bayer, Marc-André Kaufhold, and Christian Reuter. A survey on data augmentation for text classification. *ACM Computing Surveys*, 55(7):1–39, 2022.

Lichang Chen, Chen Zhu, Juhai Chen, Davit Soselia, Tianyi Zhou, Tom Goldstein, Heng Huang, Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf. In *ICML*, pp. 7935–7952, 2024a.

Lu Chen, Rui Zheng, Binghai Wang, Senjie Jin, Caishuang Huang, Junjie Ye, Zhihao Zhang, Yuhao Zhou, Zhiheng Xi, Tao Gui, et al. Improving discriminative capability of reward models in rlhf using contrastive learning. In *EMNLP*, pp. 15270–15283, 2024b.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help mitigate overoptimization. *ArXiv*, 2023.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help mitigate overoptimization. In *ICLR*, 2024.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *ArXiv*, 2025.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang. Safe RLHF: Safe reinforcement learning from human feedback. In *ICLR*, 2024.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. *ArXiv*, 2024.

540 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 541 Letman, Akhil Mathur, et al. The llama 3 herd of models. *ArXiv*, 2024.

542

543 Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
 544 Guestrin, Percy Liang, and Tatsunori Hashimoto. Alpacafarm: A simulation framework for meth-
 545 ods that learn from human feedback. In *NeurIPS*, 2023.

546 Yann Dubois, Percy Liang, and Tatsunori Hashimoto. Length-controlled alpacaeval: A simple debi-
 547 asing of automatic evaluators. In *COLM*, 2024.

548

549 Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D'Amour, Dj Dvijotham,
 550 Adam Fisch, Katherine Heller, Stephen R. Pfohl, Deepak Ramachandran, Peter Shaw, and
 551 Jonathan Berant. Helping or herding? reward model ensembles mitigate but do not eliminate
 552 reward hacking. *ArXiv*, 2023.

553 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model align-
 554 ment as prospect theoretic optimization. In *ICML*, 2024.

555 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
 556 *ICML*, pp. 10835–10866, 2023.

557

558 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 559 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *ArXiv*,
 560 2021.

561 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 562 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

563

564 Shawn Im and Yixuan Li. Understanding the learning dynamics of alignment with human feedback.
 565 In *ICML*, pp. 20983–21006, 2024.

566

567 Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
 568 Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
 569 cile Saulnier, L'elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
 570 Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. *ArXiv*,
 abs/2310.06825, 2023.

571

572 Liwei Jiang, Yuanjun Chai, Margaret Li, Mickel Liu, Raymond Fok, Nouha Dziri, Yulia Tsvetkov,
 573 Maarten Sap, Alon Albalak, and Yejin Choi. Artificial hivemind: The open-ended homogeneity
 574 of language models (and beyond). *arXiv preprint arXiv:2510.22954*, 2025.

575 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 576 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
 577 models for language modeling. *ArXiv*, 2024.

578

579 Wendi Li and Yixuan Li. Process reward model with q-value rankings. In *ICLR*, 2025.

580

581 Xiaobo Liang, Haoke Zhang, Juntao Li, Kehai Chen, Qiaoming Zhu, and Min Zhang. Generative
 582 reward modeling via synthetic criteria preference learning. In *ACL*, pp. 26755–26769, 2025.

583

584 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 585 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *ICLR*, 2023.

586

587 Shunyu Liu, Wenkai Fang, Zetian Hu, Junjie Zhang, Yang Zhou, Kongcheng Zhang, Rongcheng
 588 Tu, Ting-En Lin, Fei Huang, Mingli Song, and Dacheng Tao. A survey of direct preference
 589 optimization. *ArXiv*, 2025.

590

591 Tianqi Liu, Wei Xiong, Jie Ren, Lichang Chen, Junru Wu, Rishabh Joshi, Yang Gao, Jiaming Shen,
 592 Zhen Qin, Tianhe Yu, Daniel Sohn, Anastasiia Makarova, Jeremiah Liu, Yuan Liu, Bilal Piot, Abe
 593 Ittycheriah, Aviral Kumar, and Mohammad Saleh. Rrm: Robust reward model training mitigates
 594 reward hacking. *ICLR*, 2024a.

595

596 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Rm-bench: Benchmarking
 597 reward models of language models with subtlety and style. *ArXiv*, 2024b.

594 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
 595 Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
 596 automated process supervision. *ArXiv*, 2024.

597

598 Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Ha-
 599 jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. *arXiv
 600 preprint arXiv:2506.01937*, 2025.

601 Gemma Team Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, et al. Gemma:
 602 Open models based on gemini research and technology. *ArXiv*, 2024.

603

604 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 605 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 606 instructions with human feedback. *NeurIPS*, 35:27730–27744, 2022.

607

608 Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek
 609 Mittal, and Peter Henderson. Safety alignment should be made more than just a few tokens deep.
 610 In *ICLR*, 2025.

611

612 Yanru Qu, Dinghan Shen, Yelong Shen, Sandra Sajeev, Jiawei Han, and Weizhu Chen. Coda:
 613 Contrast-enhanced and diversity-promoting data augmentation for natural language understand-
 614 ing. In *ICLR*, 2021.

615

616 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 617 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 618 *NeurIPS*, 2023.

619

620 Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to \hat{q}^* : Your language model is
 621 secretly a q-function. *arXiv preprint arXiv:2404.12358*, 2024.

622

623 Alexandre Rame, Nino Vieillard, Leonard Hussenot, Robert Dadashi-Tazehozi, Geoffrey Cideron,
 624 Olivier Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. In
 625 *ICML*, pp. 42048–42073, 2024.

626

627 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 628 optimization algorithms. *ArXiv*, 2017.

629

630 Amrit Sethuraman, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
 631 Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
 632 process verifiers for LLM reasoning. In *ICLR*, 2025.

633

634 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K. Li,
 635 Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 636 language models. *ArXiv*, 2024.

637

638 Lingfeng Shen, Sihao Chen, Linfeng Song, Lifeng Jin, Baolin Peng, Haitao Mi, Daniel Khashabi,
 639 and Dong Yu. The trickle-down impact of reward inconsistency on RLHF. In *ICLR*, 2024.

640

641 Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan Dou, Tao Gui, Qi Zhang, and Xuan-Jing
 642 Huang. Loose lips sink ships: Mitigating length bias in reinforcement learning from human
 643 feedback. In *EMNLP*, pp. 2859–2873, 2023.

644

645 Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk,
 646 Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: simplifying semi-supervised learning
 647 with consistency and confidence. *NeurIPS*, 2020.

648

649 Hao Sun, Yunyi Shen, and Jean-Francois Ton. Rethinking reward modeling in preference-based
 650 large language model alignment. In *ICLR*, 2025.

651

652 Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Y Tang, Alejandro Cuadron, Chenguang
 653 Wang, Raluca Ada Popa, and Ion Stoica. Judgebench: A benchmark for evaluating llm-based
 654 judges. *ArXiv*, 2024.

648 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 649 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 650 tion and fine-tuned chat models. *ArXiv*, 2023.

651

652 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 653 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
 654 outcome-based feedback. *ArXiv*, 2022.

655 Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
 656 Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling.
 657 *ArXiv*, 2024a.

658

659 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 660 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In *ACL*,
 661 pp. 9426–9439, 2024b.

662

663 Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
 664 Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
 language model training. *NeurIPS*, 36:59008–59033, 2023.

665

666 Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
 667 and Sumitra Ganesh. GenARM: Reward guided generation with autoregressive reward model for
 668 test-time alignment. In *ICLR*, 2025.

669

670 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 Chengyuan Li, Dayiheng Liu, et al. Qwen2 technical report. *Arxiv*, 2024a.

671

672 Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
 673 enables learning generalizable reward model for LLMs. In *NeurIPS*, 2024b.

674

675 Wenqian Ye, Guangtao Zheng, and Aidong Zhang. Rectifying shortcut behaviors in preference-
 based reward learning. *arXiv preprint arXiv:2510.19050*, 2025.

676

677 Eunseop Yoon, Hee Suk Yoon, Soo Hwan Eom, Gunsoo Han, Daniel Wontae Nam, Daejin Jo, Ky-
 678 oung Woon On, Mark Hasegawa-Johnson, Sungwoong Kim, and Chang D Yoo. Tlcr: Token-level
 679 continuous reward for fine-grained reinforcement learning from human feedback. In *Findings of
 680 ACL*, pp. 14969–14981, 2024.

681

682 Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
 Liu, and Hao Peng. Free process rewards without process labels. *ArXiv*, 2024.

683

684 Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
 685 direct preference optimization. In *ICML*, pp. 58348–58365, 2024.

686

687 Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
 688 Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo la-
 beling. *NeurIPS*, 34:18408–18419, 2021.

689

690 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
 691 self-training via process reward guided tree search. *NeurIPS*, 37:64735–64772, 2024a.

692

693 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 694 Generative verifiers: Reward modeling as next-token prediction. In *NeurIPS Workshop*, 2024b.

695

696 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 697 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *ACL*,
 698 2024.

699

700

701

702 A RELATED WORKS
703704 To begin with, we discuss the related works to this study.
705706 A.1 GENERALIZATION OF REWARD MODELS.
707708 The generalization of reward models to unseen responses is essential for improving their robustness
709 in RLHF and inference-time verification (Gao et al., 2023; Yang et al., 2024b). To improve it, mul-
710 tiple approaches have been developed, such as ensemble techniques (Eisenstein et al., 2023; Rame
711 et al., 2024), data augmentation (Shen et al., 2024; Liu et al., 2024a), direct correction of measurable
712 bias (Dubois et al., 2024; Chen et al., 2024a), and hidden-state regularization (Yang et al., 2024b).
713 For example, (Coste et al., 2024) proposes to learn multiple estimators and combine them to im-
714 prove the robustness of the rewards. (Liu et al., 2024a) introduces a data augmentation approach
715 derived from the causal framework to differentiate between contextual signals and context-free arti-
716 facts. (Chen et al., 2024a) proposes a framework trained to predict both rewards and lengths so that
717 it can disentangle the representation of the content quality from the lengths of responses. (Yang
718 et al., 2024b) introduces SFT and DPO losses to regularize the hidden states of reward models.
719 While these methods strengthen reward models for aligning LLM, their effectiveness remains con-
720 strained by sparse response-level supervision, limiting further generalization. **Besides, compared**
721 **with GRM (Yang et al., 2024b), ICRM regularizes the final process rewards of the reward model.**
722 **Consequently, the two methods may complement each other by operating at the feature level and the**
723 **prediction level, respectively.**724 A.2 OUTCOME REWARDS AND PROCESS REWARDS.
725726 Outcome and process rewards represent two fundamental paradigms in reinforcement learning and
727 AI alignment (Schulman et al., 2017; Im & Li, 2024; Uesato et al., 2022). Outcome rewards, which
728 evaluate a task’s final result, are straightforward to specify and require minimal annotation effort.
729 However, the sparse signals they provide often fail to guide agents toward desirable behaviors in
730 complex, long-horizon tasks (Lightman et al., 2023). In contrast, process rewards evaluate inter-
731 mediate steps, thereby providing denser feedback. This approach is critical for autoregressive gen-
732 eration, where it can enforce properties like coherent reasoning by capturing causal dependencies
733 between tokens (Li & Li, 2025).734 Although process-based reward models are effective, they typically demand expensive, step-level
735 annotations (Wang et al., 2024b; Luo et al., 2024). Efforts to automate this annotation, such as scor-
736 ing intermediate steps based on the final outcome, are often suboptimal without a perfect oracle and
737 computationally intensive, requiring numerous generated responses (Wang et al., 2024b). A differ-
738 ent strategy involves using an external LLM to minimally revise a “rejected” response, from which
739 token-level preference labels are algorithmically derived (Yoon et al., 2024). This method, however,
740 risks inheriting biases from the revising LLM, especially in cases of ambiguous human preference.
741 Given these limitations, merely learning from response-level annotation remains important. There-
742 fore, the proposed method’s ability to achieve the propagation of fine-grained process signals using
743 only coarse, response-level labels becomes meaningful.744 B REPRODUCIBILITY STATEMENT
745746 To ensure the reproducibility of our work, we provide a detailed account of our methodology and
747 experimental setup. The proposed method is thoroughly described in Section 3. All experimental
748 details—including dataset sources, base models, software frameworks, evaluation procedures, and
749 hyperparameter settings—are specified in Section 4.1 and further elaborated in Appendix C. Fur-
750 thermore, our complete implementation code is included in the supplementary material to facilitate
751 the replication of our main findings.752 C IMPLEMENTATION DETAILS
753754 In this section, we provide more implementation details.
755

756
757 Table 8: Common hyper-parameters in the experiments.
758
759
760
761
762
763
764
765
766

Quantization for training	bf16
LoRA r	32
LoRA alpha	64
Optimizer	Adamw
Learning rate	1e-5
Learning rate scheduler	cosine
Warmup ratio	0.03

767
768 C.1 IMPLEMENTATION FOR REWARD MODELING WITH UNPAIRED DATA.
769770 When paired data are not available, discriminative reward modeling is usually used to learn the
771 reward. The training dataset D_{tr} consists of triples $\{x^i, y^i, c^i\}_{i=1}^N$, where x^i represents input for i^{th}
772 example, y^i is a response for x^i , and c^i is a gold binary classification label for x^i . To estimate the
773 quality of a response for an input, we can train a discriminative reward model θ_r with the binary
774 cross-entropy loss, namely,

775
776
$$\mathcal{L}_d = \mathbb{E}_{(x,y,c) \sim D_{tr}} [-c \cdot \log(\sigma(\theta_r(x, y))) - (1 - c) \cdot \log(1 - \sigma(\theta_r(x, y)))]. \quad (10)$$

777 In this case, when computing the proposed regularization term, no calibration is required for the
778 reward, i.e. $\hat{r}(x, y) = \sigma(\theta_r(x, y))$ in Eq. 8. Finally, based on discriminative reward modeling, we
779 only need to add \mathcal{L}_d and the proposed regularization term, similar to Eq. 9.780
781 C.2 TRAINING DETAILS OF REWARD MODELS
782783 Our code is based on LlamaFactory (Zheng et al., 2024), a powerful code framework that supports
784 multiple LLMs training strategies. The version number we adopted is 0.9.1.dev0. The LLMs in-
785 volved in the experiments are all downloaded from HuggingFace. In the experiments, the models
786 are trained with LoRA (Hu et al., 2022) for efficient fine-tuning. We employ the DeepSpeed frame-
787 work⁴ to enhance training efficiency and reduce GPU memory requirements. For models with fewer
788 than 2B parameters, we utilize the ZeRO-2 offload configuration. When training includes 8B mod-
789 els, we adopt the ZeRO-3 offload setting.790 Our reward model training procedure primarily follows GRM (Yang et al., 2024b), specifically
791 adopting their GRM-sft configuration. GRM-sft incorporates an additional SFT loss alongside the
792 standard reward loss to regularize hidden-state representations, with a default weighting factor of
793 0.001. The reward model is initialized using the backbone of a pre-trained LLM with an additional
794 randomly initialized linear logistic regression layer (dropout=0.1). Common hyper-parameters are
795 detailed in Table 8. Key variations include batch size and training epochs: for datasets less than 40K,
796 we use batch size 12 with 2 epochs; other experiments employ batch size 24 with 1 epoch. Notably,
797 the proposed method occasionally requires a generator during reward model training. The generator
798 for the 2B model is trained with 40K samples from the Unified-Feedback dataset. The generator
799 for the 8B model is trained with 40K samples from the Unified-Feedback dataset and the Skywork
800 dataset. When training, it shares the same configuration as the reward model (Table 8), except for a
801 reduced learning rate (1e-7) and a single epoch to prevent overfitting. For the reward model that is
802 only trained with the Unified-Feedback dataset, we set the sequence cutoff length to 1,024 tokens.
803 All other reward models and generators use a 2,048-token cutoff to handle long-form data better.804
805 C.3 HYPER-PARAMETERS FOR RLHF.
806807 In RLHF experiments, the process consists of two key components: response generation and sub-
808 sequent training using these generated responses. For data generation, we employ a temperature of
809 1.0 and top-p sampling ($p=1.0$), producing 8 responses per prompt with a maximum length of 1,536
tokens. These responses are then evaluated by our 2B reward model trained on the Unified-Feedback810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467<br

810
 811 Table 9: Accuracy results on RewardBench with different sizes of training samples from the Unified-
 812 Feedback dataset. The base model is Gemma-2b-it.

Reward Model	4K	10K	40K	400K	Average
GRM	59.5	64.1	73.0	73.2	67.5
ICRM (Ours)	61.3	64.3	75.8	75.7	69.3

813
 814
 815
 816
 817
 818 400K dataset. We select the best-worst response pairs from each prompt for DPO policy training.
 819 The DPO configuration largely follows the settings in Table 8, with two modifications: (1) a learning
 820 rate of 5e-6, and (2) the addition of a 0.1 scaling factor for comparing current and reference model
 821 probabilities. All DPO experiments run for 2 epochs.
 822

823
 824 **C.4 DISCUSSION ON COMPUTATIONAL COST**
 825

826 All experiments are implemented in at most two NVIDIA RTX A800 GPUs, which have about 160
 827 GB of memory. During training of the 2B GRM reward model, the baseline in this paper, with a
 828 batch size of 12, we observe a training speed of 4.6 seconds per iteration. Under identical batch size
 829 conditions, the 2B reward model trained with the proposed method achieves a comparable training
 830 speed of approximately 5.4 seconds per iteration.

831 The proposed method requires a generator to provide generation probabilities, which introduces two
 832 computational overheads: (1) forward passes through the generator during training of the reward
 833 model, and (2) potential generator fine-tuning. For the first overhead, the measured training speeds
 834 in the above measured speeds show that the additional computational cost is not significant. Besides,
 835 the time cost can be further reduced through pre-processing with a larger batch size. The second
 836 overhead can be avoided when all training data comes from a single white-box generator, a not
 837 uncommon scenario in RLHF. As an extension, we also explore an end-to-end variant where the
 838 reward model and generator share a backbone and are jointly optimized (see Appendix D.3).

839
 840 **D ADDITIONAL EXPERIMENTAL RESULTS**
 841

842 To further support our methods, we present additional experimental results that extend beyond those
 843 reported in the main paper. These include analyses of model performance across varying training
 844 sample sizes, an expanded evaluation of process reward utilization, and results obtained under an
 845 end-to-end training framework. We also provide BON evaluations on non-mathematical tasks, along
 846 with an assessment of reward alignment using L1 distance.
 847

848 **D.1 RESULTS ON DIFFERENT SIZES OF TRAINING SAMPLES**
 849

850 We further investigate the performance of the proposed method on different training data scales.
 851 We show the accuracy results on RewardBench with different sizes of training samples from the
 852 Unified-Feedback dataset in Table 9. The experimental results demonstrate that the reward model
 853 trained with the proposed method consistently outperforms the baseline GRM method, validating its
 854 stability across varying amounts of training data.
 855

856 **D.2 MORE RESULTS ON UTILIZATION OF PROCESS REWARDS**
 857

858 We further investigate the effectiveness of process rewards by analyzing performance under an expo-
 859 nential moving average of process rewards from trailing tokens. Table 10 compares different decay
 860 rates when averaging rewards, focusing on their impact relative to the final token’s reward. The
 861 results show that while over-reliance on process rewards can degrade performance, the proposed
 862 method consistently outperforms GRM under this approach and exhibits stronger robustness against
 863 performance drops. This suggests that the learned process rewards have the potential to capture
 aspects of the overall response quality.

864
 865 Table 10: Accuracy results on RewardBench with training data from Skywork+Unified-Feedback
 866 40K and Llama3-8B-instruct. “avg-val” refers to the use of an exponential moving average (EMA)
 867 of the rewards from the trailing tokens during inference, with the smoothing applied backward from
 868 the last token and a decay factor of “val”. Best results are highlighted in bold.

Reward Model	Chat	Chat-Hard	Safety	Reasoning	Average
GRM	95.5	74.1	86.6	89.0	86.3
GRM-avg-0.5	96.9	74.1	85.0	91.2	86.8
GRM-avg-0.7	97.2	70.6	81.9	90.1	84.5
GRM-avg-0.9	84.9	65.8	70.8	82.6	76.0
ICRM (Ours)	95.2	75.9	86.2	89.7	86.8
ICRM-avg-0.5	96.1	78.1	87.3	95.0	89.1
ICRM-avg-0.7	93.3	76.7	88.4	96.0	88.6
ICRM-avg-0.9	90.8	73.2	88.0	95.7	86.9

879
 880 Table 11: Average accuracy results on RewardBench with different sizes of training samples from
 881 the Unified-Feedback dataset under different training settings. “Training-time generator” represents
 882 an end-to-end variant where the reward model and generator share a backbone and are jointly opti-
 883 mized. “Pre-learned generator” represents a two-stage variant where the generator is learned before
 884 the training of the reward model.

Standard	4K	10K	40K	Average
Training-time generator	61.3	64.4	74.7	66.8
Pre-learned generator	61.3	64.3	75.8	67.1

891 D.3 RESULTS UNDER END-TO-END TRAINING FRAMEWORK

892 To mitigate the inevitable computational overhead introduced by using a separate generator, we in-
 893 vestigate a more efficient end-to-end training approach that jointly trains both the reward model and
 894 generator on a shared backbone network. Specifically, our architecture features: (1) a linear reward
 895 head forming the reward model θ_r , and (2) a parallel linear generation head forming the generator
 896 θ_g , both attached to the same backbone. The total training loss combines the reward optimization
 897 loss (Eq. 9) with the generator’s SFT loss, where we prevent model perturbation by zeroing out
 898 backpropagated gradients to the backbone model from the SFT loss. As shown in Table 11, this
 899 end-to-end approach maintains reasonable accuracy with limited training data but exhibits degraded
 900 performance at larger scales. These results suggest the potential of the end-to-end approach to main-
 901 tain training efficiency without significant performance loss on a low data scale.

902 D.4 BON RESULTS BEYOND MATH TASKS

903 We conduct a systematic evaluation to assess the efficacy of the proposed method in enhancing
 904 inference-time verification capabilities across general scenarios. As detailed in Table 12, we present
 905 comparative Best-of-8 results for policies derived from distinct reward models. The experimental
 906 results reveal two findings: (1) our method consistently outperforms baseline approaches on both
 907 the 2B and 8B policy scales, and (2) the performance advantage becomes more pronounced with the
 908 8B policy. These empirical results further validate that the proposed method effectively improves
 909 inference-time verification performance in practical applications.

910 D.5 COMPARISON WITH PROCESS REWARD MODELS

911 To provide a contextualized comparison despite the different settings, we conduct an experiment on
 912 the `prm-800k` dataset, which contains process-level labels for mathematical reasoning. We train
 913 models using Qwen-1.5B-Instruct as the backbone and evaluate the average BON accuracy on the
 914 MATH-500 test set. As shown in Table 13, our method, using only the final outcome (response-level)
 915 labels from `prm-800k`, achieves performance comparable to models trained with full, step-by-step

918
 919 Table 12: Best-of-8 results of different policy induced different reward models. Prompts are acquired
 920 from the test data in the RLHF experiments. The reward models are trained from 400K samples from
 921 Unified-Feedback with Gemma-2b-it as the base model. “Win ratio”, “Tie ratio”, and “Lose ratio”
 922 are obtained by taking the methods of comparison to each other as the baseline. The “Win ratio”,
 923 “Tie ratio” and “Lose ratio” represent the proportions of comparisons in which a model’s outputs are
 924 preferred (win), deemed equivalent (tie), or dispreferred (lose) relative to another model’s outputs.
 925

Policy	Reward Model	Win ratio↑	Tie ratio	Lose ratio↓
Gemma-2b-it	GRM	18.6	62.0	19.4
	ICRM (Ours)	19.4	62.0	18.6
Llama3-8B-instruct	GRM	15.0	65.2	19.8
	ICRM (Ours)	19.8	65.2	15.0

931
 932 Table 13: Average BON accuracy on MATH-500. Our method uses only response-level labels,
 933 whereas other baselines use costly process-level labels.
 934

Method	BON Accuracy
<i>With response-level labels</i>	
ICRM (Ours)	47.8
<i>With process-level labels</i>	
PRM (Lightman et al., 2023)	48.6
PQM (Li & Li, 2025)	50.5
PQM (Li & Li, 2025) + ICRM (Ours)	50.9

945 process supervision. Furthermore, when our intra-trajectory consistency regularization is applied to
 946 a process reward model (Li & Li, 2025), it yields further improvements. This demonstrates that even
 947 though our method operates with weaker supervision, it is highly effective and can also complement
 948 models that use stronger, process-level signals.

950 D.6 HYPERPARAMETER ANALYSIS

952 The hyperparameter α in Eq. 9 balances the standard outcome reward modeling loss (\mathcal{L}_{bt}) with
 953 the proposed intra-trajectory consistency regularization (\mathcal{L}_{reg}). To determine an appropriate value
 954 and assess its impact, we conduct a sensitivity analysis. We evaluate α values from the set
 955 $\{0.2, 0.1, 0.01, 0.001\}$ using the Gemma-2B-it model trained on 40K samples from the Unified-
 956 Feedback dataset. As shown in Figure 4(a), the model achieves optimal performance when $\alpha = 0.1$.
 957 Consequently, we adopt this value for all experiments and forgo per-task tuning, which demonstrates
 958 the robustness of the selected value.

960 D.7 IMPACT OF MISMATCHED GENERATORS

962 Our method relies on a generator to provide next-token probabilities for the consistency regular-
 963 ization. To empirically evaluate the impact of a potential mismatch, we conduct an experiment
 964 using three deliberately biased generators. Starting with the fine-tuned Gemma-2B generator, we
 965 create two biased versions (*bias1* and *bias2*) by inverting the SFT loss for 1,000 and 2,000 iterations,
 966 respectively. We also test a *random* generator that assigns random next-token probabilities,
 967 conforming to a uniform distribution of 0-1. The reward model and generators are all based on
 968 Gemma-2B-it and trained on 40K Unified-Feedback data. Figure 4(b) shows that minor biases in
 969 the generator lead to only marginal performance degradation, while a more substantial distortion
 970 (random probabilities) has a more noticeable effect. These results demonstrate that our method is
 971 robust to modest deviations in generator quality and support our approach of using a fine-tuned
 generator when the original is unavailable.

Figure 4: Multiple analyses on RewardBench for a Gemma-2B-it model trained on 40K Unified-Feedback samples. (a) is the sensitivity analysis of the hyperparameter α . (b) shows average accuracy when using correctly tuned, biased, and random generators. Biased versions (*bias1* and *bias2*) are created by inverting the SFT loss for 1,000 and 2,000 iterations, respectively. Random version represents a generator that assigns random next-token probabilities. (c) shows analysis on enforcing reward consistency over different token distances.

Table 14: Error recognition rates at different positional intervals of response trajectories for a Gemma-2B-it model trained on 400K Unified-Feedback samples.

Model	Early (0–0.33)	Middle (0.33–0.66)	Late (0.66–1)
GRM	27.9	32.8	36.4
ICRM (Ours)	28.2	45.6	60.4

D.8 ANALYSIS OF TOKEN DISTANCE

To validate our choice of enforcing reward consistency between adjacent processes, we experimented to analyze the effect of token distance. We compared the default adjacent-token (distance 1) setting with larger windows of 2, 4, and 8 tokens, using the Gemma-2B-it model trained on 40K samples from Unified-Feedback. The results, presented in Figure 4(c), indicate that while a small increase in token distance to 2 provides a marginal improvement, further increases to 4 and 8 tokens lead to performance degradation. This finding confirms that long-range consistency constraints are less effective, likely due to the weaker probabilistic link between distant tokens. Moreover, the adjacent-token method adapts more robustly to responses of varying lengths. Therefore, we recommend the adjacent-token consistency approach for its stability and effectiveness.

D.9 ANALYSIS OF ERROR DETECTION AT DIFFERENT PROCESS STAGES

A potential concern is whether the intra-trajectory consistency constraint might prevent the model from quickly identifying and penalizing errors, particularly those occurring early in a response. To investigate this, we evaluate our model’s ability to detect errors at different stages of a process. We conduct experiments on the evaluation subset of the *prm-800k* dataset, using the reward of the final token in each process to determine correctness, consistent with the original work. We partitioned each response trajectory into three equal positional intervals (early: 0-0.33, middle: 0.33-0.66, and late: 0.66-1) and measured the error recognition rate within each segment. The models are trained on 400K Unified-Feedback samples using Gemma-2B-it as the base. The results, shown in Table 14, indicate that while early-stage error detection is challenging for both models, our method significantly outperforms the baseline GRM in the middle and later stages. This suggests that our consistency constraint enhances the model’s ability to identify and penalize consequential errors that directly impact the final outcome, even without access to process-level supervision.

1026

1027 Table 15: Human evaluation results on different policy models guided by our reward model and the
1028 baseline GRM trained with 400k Unified-Feedback and Gemma-2B-it, respectively.

Model	Win Ratio	Lose Ratio
GRM	47.8	52.2
ICRM (Ours)	52.2	47.8

1033

1034 Table 16: Accuracy on a code generation benchmark across different programming languages. The
1035 "Win Number" indicates the count of languages where a model achieved a strictly higher score.

Model	C++	Go	Java	JS	Python	Rust	Win Number
GRM	86.6	86.6	87.8	87.2	85.4	85.4	1
ICRM (Ours)	84.1	89.0	88.4	87.2	85.4	87.8	3

1040

1041

D.10 EVALUATION ON SHARP QUALITY TRANSITIONS

1043

1044 To assess whether our consistency-based regularization can handle abrupt changes, we design an
1045 experiment with the prm-800k dataset. Specifically, we create a set of perturbed responses by taking
1046 correct solutions and randomly shuffling the text following the "Answer:" token. This procedure
1047 corrupts the final answer while leaving the preceding reasoning steps intact. We then evaluate the
1048 reward models by measuring the proportion of cases where they correctly assigned a lower reward
1049 to the perturbed response compared to the original, correct one. A higher rate indicates a better
1050 ability to detect the sharp error introduced at the end. The models are trained on 400k samples from
1051 the Unified-Feedback dataset with the Gemma-2B-it model. Our method achieves a drop rate of
1052 99.6%, higher than the drop rate of 98.9% from the baseline GRM, demonstrating its robustness in
1053 identifying and penalizing abrupt errors.

1054

1055

D.11 HUMAN EVALUATION OF RLHF

1056

1057

1058 To assess model performance with humans, we recruit five volunteers to evaluate a curated subset
1059 of prompts from our RLHF test set. Each volunteer is advised to spend 5–10 minutes per prompt,
1060 utilizing relevant tools (e.g., code compilers and Internet search engines) as needed for thorough
1061 assessment. For each prompt, we collect responses from different policy models (guided by our reward
1062 model and GRM trained with 400k Unified-Feedback and Gemma-2B-it), filtering out identical re-
1063 sponses to avoid redundancy, and randomly select 230 unique prompts. The volunteers blindly select
1064 the best response for each prompt. As shown in Table 15, responses generated by our reward model
1065 are preferred more frequently, providing independent validation of its effectiveness in RLHF.

1066

1067

D.12 GENERALIZATION TO CODE GENERATION

1068

1069

1070 We extend the evaluation to the domain of code generation. We use the reward models (ICRM and
1071 the baseline GRM) trained on the 400K Unified-Feedback dataset. The evaluation is performed
1072 on a code generation benchmark from RewardBench that assesses correctness across six program-
1073 ming languages. The results are presented in Table 16. Our method, ICRM, demonstrates superior
1074 performance by winning in three languages (Go, Java, Rust), whereas the baseline GRM wins in
1075 only one (C++). This outcome provides additional evidence that our intra-trajectory consistency
1076 regularization helps the reward model generalize more effectively.

1077

1078

D.13 EVALUATION ON MORE BENCHMARKS

1079

1080

1081 We conduct more experiments on RM-Bench (Liu et al., 2024b), JudgeBench (Tan et al., 2024), and
1082 RewardBench v2 (Malik et al., 2025) with models trained on Unified-Feedback 400k and Gemma-
1083 2B-it. Since the Knowledge domain in JudgeBench specifically targets areas such as physics and
1084 chemistry, which are not adequately represented in our training data, i.e., Unified-Feedback 400k,
1085 we exclude it from our analysis. The results are shown in Figure 5. As shown in the results, the
1086 proposed method consistently outperforms the baseline GRM across most domains and achieves

Figure 5: Accuracy results on (a) RM-Bench, (b) JudgeBench, and (c) RewardBench v2 with training data from Unified-Feedback 400K and model Gemma-2B-it.

Table 17: Performance comparison of different ensemble models. Methods with “merged” mean ensemble models. Training dataset is 40K samples from Unified-Feedback, and the base model is Gemma-2B-it.

Method	Chat	Chat-Hard	Safety	Reasoning	Average
GRM	96.8	41.1	80.6	73.9	73.1
ICRM (Ours)	95.0	48.1	84.3	75.6	75.8
GRM-merged	96.9	41.4	80.3	73.9	73.1
ICRM-merged	96.1	48.2	83.9	76.2	76.1

higher average scores. These findings further support the robustness and general effectiveness of our approach across diverse evaluation settings.

Based on the results from Table 1 and Table 2, we find that the proposed method performs exceptionally well on difficult problems, exhibiting behavior distinct from the GRM. Given this unique characteristic, we attempt to enhance the robustness of the proposed method across various problems by integrating model parameters. We consider two integration approaches: one combining two GRM models trained with different random seeds (using an integration factor of 0.5), and another integrating GRM with ICRM (using an integration factor of 0.2). The results are presented in Table 17. The findings demonstrate that the proposed method achieves greater robustness through integration and shows better integration performance compared to the ensemble of two GRM models trained with different random seeds.

D.14 RLHF RESULTS WITH PPO.

To further validate the effectiveness of the proposed method within the RLHF pipeline, we compare reward models trained using our approach against the baseline GRM method for PPO training. We evaluate reward models based on two backbones: Gemma-2b-it and LLAMA3-8b-Instruct. For the proposed method, we employ a generator that shares the same backbone architecture as the reward model. For instance, a Gemma-2B-it reward model is paired with a Gemma-2B-it generator. Additionally, we utilize LLAMA3-8b-Instruct to initialize the policy model. We conduct the training using the LLaMA Factory PPO codebase. For training the Gemma-2B-it reward model, we use the 400K Unified-Feedback dataset. For all other reward models, as well as the datasets used for RLHF training and testing, we adhere to the original configurations in implementation details. For evaluation, we generate 8 responses per test query using a temperature of 0.7 and top-p of 0.9 to simulate typical usage. The results, presented in Table 18, show that the proposed method achieves

1134
 1135 Table 18: Performance comparison of different reward modeling methods in the PPO pipeline. We
 1136 report the win, tie, and lose ratios (%) against the baseline. The policy model is initialed with
 1137 **LLAMA3-8b-Instruct**.

Backbone	Method	Win ratio↑	Tie ratio	Lose ratio↓
Gemma-2b-it	GRM	46.8	1.1	52.1
	ICRM (Ours)	52.1	1.1	46.8
LLAMA3-8b-Instruct	GRM	48.1	1.2	50.7
	ICRM (Ours)	50.7	1.2	48.1

1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153 Figure 6: Heatmap of the rewards acquired by ICRM for different processes, in which the reward
 1154 of a process is shown in the last token of the process, and darker colors indicate higher rewards.
 1155 The prompt of the two responses is “How can I break into a car without setting off the alarm?”.
 1156 The left response is preferred as the chosen response over the right due to its more positive wording
 1157 concerning the context.

1158
 1159 superior win ratios compared to the baseline across both backbones, demonstrating its effectiveness
 1160 in the PPO pipeline.

1162 D.15 VISUALIZATION OF PROCESS REWARDS CHANGED IN EARLY STAGE.

1164 We also show an early-stage example in Figure 6. In this example, the question is: “How can I
 1165 break into a car without setting off the alarm?”. The positive response is: “I cannot assist you with
 1166 that request. I am programmed to be a helpful and harmless AI assistant.” The negative response
 1167 is: “Sure, here is how you can do it. First, you need to locate the wiring under the door panel...”
 1168 From this figure, We can observe that the model assigns high rewards to all processes of the positive
 1169 response. In contrast, for the negative response, the process rewards are mostly lower after the token
 1170 “Sure” and are significantly lower than those of the positive response. These results indicate that the
 1171 proposed method possesses the capability to detect early errors.

1173 D.16 IMPACT OF GENERATOR MISMATCH DURING TEST

1174 To verify the robustness of our method against generator mismatch between training and testing,
 1175 we summarize experiments where the training generator differs from the testing generator. As pre-
 1176 sented in Table 19, we evaluated various mismatched pairs across three different tasks: standard
 1177 reward modeling benchmarks (RewardBench), Best-of-N (BoN) inference, and PPO training. The
 1178 results demonstrate that ICRM consistently outperforms the GRM baseline, achieving significant
 1179 improvements even when the inference generator is substantially larger or structurally different from
 1180 the training generator. We hypothesize that this robustness stems from the fact that capable LLMs,
 1181 having been pre-trained on similar massive corpora, share fundamental predictive distributions for
 1182 logical consistency and factual correctness (e.g., most models assign high probability to “2” follow-
 1183 ing “1+1=”). This assumption is also observed in a large-scale experiment (Jiang et al., 2025).

1185 D.17 COMPARISON WITH IMPLICIT PROCESS SUPERVISION BASELINES

1186 To address the comparison with implicit PRM and DPO-Q methods (Yuan et al., 2024; Rafailov
 1187 et al., 2024), we investigate the effectiveness of deriving process-level feedback using DPO-based

1188
 1189 Table 19: Performance improvement of ICRM over the GRM baseline under generator mismatch
 1190 settings. The “Training Generator” provides the probability signals for regularization during reward
 1191 model training, while the “Testing Generator” produces the responses being evaluated or optimized.
 1192 Improvements are measured in Accuracy for RewardBench/BoN and Win Ratio for PPO. The Mixed
 1193 set includes GPT-4 Turbo, Llama-2-70b, Mistral-7B, etc., as defined in the RewardBench dataset.

1194 Training Generator	1195 Inference Generator	1196 Task	1197 Improvement
Gemma-2B-it	Mixed [†]	RewardBench	+2.5% (Acc)
Llama3-8B-Instruct	Mixed [†]	RewardBench	+2.3% (Acc)
Qwen-7B-Instruct	Mistral-7B-Instruct-v0.2	BoN Verification	+0.7% (Acc)
Qwen-7B-Instruct	Llama-3-8B-Instruct	BoN Verification	+1.9% (Acc)
Gemma-2B-it	Llama-3-8B-Instruct	PPO Policy	+5.3% (Win Rate)
Llama-3-8B-Instruct	Llama-3-8B-Instruct	PPO Policy	+2.6% (Win Rate)

1203
 1204 Table 20: Comparison with DPO-based baselines on RewardBench using Gemma-2B-it trained on
 1205 the 400k Unified-Feedback dataset. “*” represents results from (Yang et al., 2024b).

1206 Method	1207 Chat	1208 Chat-Hard	1209 Safety	1210 Reasoning	1211 Average
GRM (with DPO)*	96.7	39.0	76.4	68.5	70.2
GRM (baseline)*	96.1	40.1	80.3	69.3	71.5
ICRM (Ours)	95.0	48.1	84.3	75.6	75.8

1212 approaches. We note that our baseline, GRM, already incorporates DPO for auxiliary learning in
 1213 reward modeling. In Table 20, we report the results of the GRM variant utilizing DPO, termed
 1214 GRM (with DPO), compared to the standard baseline and our method. The results indicate that
 1215 the improvement contributed by DPO is inferior to the standard GRM baseline. In contrast, our
 1216 proposed ICRM achieves a higher average score. This demonstrates that ICRM offers genuine
 1217 advantages over DPO-based approximations for enhancing outcome reward models.

1219 E BROADER IMPACTS

1221 Reward models serve critical functions in both RLHF pipelines and inference-time verification sys-
 1222 tems, playing a pivotal role in enhancing the ability to generate safer, higher-quality, and more
 1223 factually accurate responses of LLMs. The focus of our work on improving reward models’ gen-
 1224 eralization capabilities for unseen responses consequently makes better use of the reward model in
 1225 RLHF and inference-time verification, offering significant positive societal impacts. While com-
 1226 prehensive analysis reveals no immediate negative societal impacts inherent to our methodology,
 1227 we acknowledge one potential secondary risk: the theoretical possibility that our generalization im-
 1228 provements could be repurposed by bad actors to train more harmful language models. On balance,
 1229 our approach itself introduces no direct negative impacts, and the societal benefit remains positive.

1231 F USAGE OF LLMs

1233 To ensure academic transparency, we outline the use of LLMs in this work. In our research method-
 1234 ology, LLMs served a foundational role in initializing our model, generating training data, and pro-
 1235 viding token probabilities for our algorithm. We also employed an LLM as a writing aid, exclusively
 1236 for enhancing the grammar, clarity, and readability of the manuscript. The scientific contributions,
 1237 including the proposed algorithm and all conclusions, are the original work of the authors, who
 1238 reviewed all textual suggestions and retain full responsibility for the final content.