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ABSTRACT

Reward models are critical for improving large language models (LLMs), particu-
larly in reinforcement learning from human feedback (RLHF) and inference-time
verification. Due to the prohibitive cost of fine-grained annotations, current re-
ward models typically learn from holistic response scores to determine outcome
rewards. However, this coarse-grained supervision makes it difficult for the re-
ward model to identify which specific components within a response trajectory
truly correlate with the final score, leading to poor generalization of unseen re-
sponses. In this paper, we introduce an intra-trajectory consistency regularization
to propagate coarse, response-level supervision into fine-grained learning signals.
Inspired by a Bayesian framework, our method enforces a simple principle: The
rewards of adjacent generation processes should be more consistent when the con-
necting token has a higher generation probability. We apply the proposed regu-
larization to the advanced outcome reward model, improving its performance on
RewardBench. Furthermore, we demonstrate that the reward model trained with
the proposed regularization yields better DPO-aligned policies and achieves su-
perior best-of-N inference-time verification results. Our implementation code is
provided in the supplementary material.

1 INTRODUCTION

Reward models offer a quantitative measure of the quality of LLM responses based on human
preferences or correctness, making them instrumental in improving LLM performance through
RLHF (Ouyang et al., 2022; Dai et al., 2024; Ethayarajh et al., 2024; Liu et al., 2025) or inference-
time verification (Zhang et al., 2024b; Setlur et al., 2025). In RLHF, reward models provide feedback
signals that guide LLMs to generate desirable responses via reinforcement learning. In inference-
time verification, they rank or filter outputs to ensure the selection of the most appropriate responses.
The generalization of the reward model is therefore critical, as these applications depend on reliable
predictions for unseen responses (Gao et al., 2023; Yang et al., 2024b).

To enhance the generalization of the reward model, extensive efforts have been made in the literature,
including ensemble techniques (Coste et al., 2024; Rame et al., 2024), data augmentation (Shen
et al., 2024; Liu et al., 2024a), direct correction of bias caused by length (Dubois et al., 2024; Chen
et al., 2024a), and hidden-state regularization (Yang et al., 2024b; Chen et al., 2024b). Generally,
these methods use holistic human evaluations of responses to learn the rewards of responses (Sun
et al., 2025; Yang et al., 2024b; Liu et al., 2024a). Despite their success, these models remain
limited by coarse-grained supervision of the response-level scores, which hinders their ability to
capture dependencies between responses and the processes properly. This may lead to overfitting to
spurious features (Yang et al., 2024b), such as response length, instead of properly leveraging label-
relevant components in the response trajectory, resulting in poor generalization to unseen responses.
To identify content that influences the score of overall response, some approaches propose learning
with process-level labels (Lightman et al., 2023; Wang et al., 2024b) or token-level labels (Yoon
et al., 2024). However, in many practical scenarios, obtaining such fine-grained annotations proves
prohibitively expensive (Zhang et al., 2024a).

To address these challenges, we propose establishing reward consistency between processes within
the response trajectory, enabling response-level supervisory signals to propagate across processes
and thereby enrich reward learning. Specifically, we utilize generation probabilities, which measure
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Figure 1: Illustration of our proposed framework. In our framework, the reward model learns out-
come rewards via a standard reward loss. We supplement this with an intra-trajectory consistency
regularization term. The regularization enforces stronger reward consistency between adjacent pro-
cesses with higher next-token probabilities from the generator.

the likelihood of a generator producing subsequent sequences, to capture inter-process dependencies.
Through Bayesian decomposition, we establish the connection between these generation probabili-
ties and reward consistency: When a generator assigns a higher probability to a sequence of tokens,
the rewards for the corresponding generation steps are more likely to be consistent. Moreover, to
prevent severe misjudgment of reward consistency caused by low generation probabilities, we focus
on adjacent processes with minimal content variation. These process pairs often exhibit semantic
continuity and, consequently, tend to have comparable rewards.

To this end, we introduce intra-trajectory consistency regularization for reward modeling, termed
ICRM. As shown in Figure 1, our framework consists of two components: a frozen generator that
provides generation probabilities, and a reward model trained to predict outcome rewards. To propa-
gate response-level supervisory signals throughout the process trajectory, the reward model is regu-
larized to produce more consistent rewards for adjacent processes with higher next-token generation
probabilities, thereby improving generalization without process-level labels.

Finally, the main contributions can be summarized as follows:

• Exploration. We investigate the relationship between next-token generation probabilities and
reward consistency, drawing inspiration from a Bayesian framework.

• Method. We propose a regularization method that enforces higher reward consistency between
adjacent processes with higher next-token generation probabilities, thereby more effectively uti-
lizing response-level supervisory signals for better generalization.

• Experiments. We conduct extensive experiments to demonstrate that the proposed regulariza-
tion improves the performance of the reward model in three evaluation tasks: standard reward
modeling benchmarks, RLHF, and inference-time verification.

2 BACKGROUNDS

Given an input prompt x, a standard language generator θg , such as many current LLMs (Mes-
nard et al., 2024; Dubey et al., 2024), generates token sequences autoregressively, predicting
each token yt conditioned on the preceding subsequence y1:t−1 until reaching either a termi-
nation token or a maximum length constraint. This process yields a complete output sequence
y = (y1, . . . , yn) = y1:n. To enhance LLMs, many studies explore reinforcement learning train-
ing (Bai et al., 2022; Shao et al., 2024) or employ inference-time verification (Zhang et al., 2024b;
Setlur et al., 2025). Both approaches require evaluating generated sequences, either through scoring
or correctness assessment. This assessment is often referred to as the reward.

Reward. For an input x with corresponding generated response sequence y or a process y1:k con-
sisting of the first k tokens in y, reward functions can be categorized into two fundamental types:
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outcome reward r(x, y) and process reward r(x, y1:k). The outcome reward evaluates the complete
response based on its final solution quality (Uesato et al., 2022; Zhang et al., 2024b). In contrast, the
process reward evaluates the scores of the intermediate processes within a response. Since it is not
clear how to divide the processes of a common scenario, the response segment y1:m is considered
valid. We should also note that in our definition, a full response can also be treated as a process.
While this inclusive definition admits partial sentence fragments as independent processes, recent
work in both RLHF (Zeng et al., 2024; Cui et al., 2025) and inference-time verification (Xu et al.,
2025) has demonstrated the empirical effectiveness of such fine-grained reward signals.

Reward Modeling. Many existing methods train reward models θr using overall response-level
annotations. The current dominant approach for reward modeling is the Bradley-Terry model (Sun
et al., 2025). For this model, the training dataset Dtr whose unit is a triple (x, yw, yl), where x
represents an input or a prompt, yw is a chosen response for x, and yl is a rejected response for
x. To distinguish between the chosen response and the rejected response for a given input, we can
optimize the Bradley-Terry reward model with the objective

Lbt = E(x,yw,yl)∼Dtr

[
− log σ(θr(x, y

w)− θr(x, y
l))

]
, (1)

where σ is the sigmoid function. After optimization, the reward model can be used to provide
outcome rewards for RLHF or inference-time verification. We discuss more specific reward model
modeling methods, such as PRM (Lightman et al., 2023), in the Appendix A.

3 METHOD

This section introduces intra-trajectory consistency regularization to constrain intermediate genera-
tion processes that lack explicit labels. The method works by propagating response-level supervisory
signals, leveraging the inherent reward consistency between steps in a generation trajectory. We first
discuss the link between this reward consistency and generation probability (Section 3.1), then de-
tail how it is implemented to regularize the reward model (Section 3.2), and finally integrate the
proposed regularization into our training framework to learn more reliable rewards (Section 3.3).

3.1 ESTABLISHMENT OF REWARD CONSISTENCY

Traditional reward modeling uses coarse response-level scores (e.g., pairwise preferences) (Sun
et al., 2025; Yang et al., 2024b; Liu et al., 2024a), making it difficult to assess fine-grained cor-
rectness (Wu et al., 2023). To introduce fine-grained signals, we propose establishing reward con-
sistency relations between processes with the same response trajectory. This framework enables
response-level supervisory signals to propagate throughout the trajectory, providing additional sig-
nals for reward learning. These derived signals help the model better capture contextual dependen-
cies between processes. Besides, this is achieved without requiring additional manual annotation.

To establish the intra-trajectory consistency, we propose to leverage generation probabilities, the
likelihood of a generator producing each subsequent sequence, to reflect the reward dependencies
between processes. For example, research in the safety domain (Qi et al., 2025) demonstrates that
certain intermediate processes, such as phrases like ”Sure, here is a detailed guide,” often precede
hazardous completions in response to harmful queries. Therefore, linking reward relationships be-
tween processes with their underlying generation probabilities is possible.

To achieve this objective, we formalize our approach by making key assumptions about the genera-
tion of the response. Specifically, we assume that responses are generated by a generator θg with an
estimable conditional probability distribution, meaning each new token depends probabilistically on
all previously generated tokens. This assumption aligns with the autoregressive nature of modern
LLMs. Under these conditions, we can connect process y1:m and its subsequent process y1:n (where
m < n) for input x with the generation probability through Bayesian decomposition:

P (e|x, y1:m) = P (e|x, y1:n)P (x, y1:n|x, y1:m) +
∑

ȳ1:n∈Ȳ1:n

P (e|x, ȳ1:n)P (x, ȳ1:n|x, y1:m), (2)

where P (e|x, y) denotes the conditional probability of any event e occurring given (x, y1:m).
P (x, y1:n | x, y1:m) represents the generation probability of sequence y1:n conditioned on (x, y1:m),
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as computed by the generator. Since y1:n is the successor of y1:m, P (x, y1:n | x, y1:m) also equals
to P (ym:n | x, y1:m). Ȳ1:n denotes the set of all possible sequences with length n excluding y1:n.

Eq. 2 formalizes the connection between a process and its future outcomes. The intuition is that the
process reward r(x, y1:m) should reflect its potential to evolve into a preferred final response. This
mirrors Q-values (Wang et al., 2024b; Setlur et al., 2025), which estimate the expected return from
a given state. We therefore adopt the Q-value analogy from (Li & Li, 2025) and model the process
reward as the likelihood of ultimately generating a preferred response from the current process y1:m.
While a scalar reward is not a true probability, enforcing this consistency provides a well-founded
mechanism for propagating coarse, response-level supervision to the process level. Our framework
rests on two assumptions: first, that the reward model’s output can be treated as a probabilistic score,
and second, that the generation probabilities of subsequent tokens are accessible from a generator
model. Then letting event e denote the generation of preferred response, we can replace P (e|x, y1:m)
with r(x, y1:m), represented as:

r(x, y1:m) = r(x, y1:n)P (x, y1:n|x, y1:m) +
∑

ȳ1:n∈Ȳ1:n

r(x, ȳ1:n)P (x, ȳ1:n|x, y1:m). (3)

From Eq. 3, since
∑

ȳ1:n∈Ȳ1:n

P (ȳ1:n|x, y1:m) + P (y1:n|x, y1:m) = 1, as the generation prob-

ability P (x, y1:n|x, y1:m) increases, the contribution of alternative completions ȳ1:n to the re-
ward r(x, y1:m) diminishes. Therefore, the reward r(x, y1:m) becomes increasingly dominated by
r(x, y1:n), reducing the variance of the reward and leading to higher consistency between r(x, y1:m)
and r(x, y1:n). Thus, generation probability and reward consistency can be linked. Compared with
direct learning of Q-value, Eq. 3 allows the use of a generator’s probabilities directly for regulariza-
tion rather than relying on full rollouts and labeling.

The above analysis also implies an issue: When the generation probabilities between processes
are low, reward similarity estimation may be unreliable. To address this, we incorporate reward
consistency between semantically related processes. Inspired by text augmentation methods (Qu
et al., 2021; Bayer et al., 2022), where partial masking preserves semantics, we assume that process
semantics remain stable under limited suffix additions. This semantic invariance suggests correlated
rewards between successive processes (y1:m−1 and y1:m). Consequently, we focus on generation
probabilities and reward consistency for adjacent processes as a more tractable approach. The impact
of the token distance is discussed in Appendix D.9.

3.2 INTRA-TRAJECTORY CONSISTENCY REGULARIZATION

Building on the above analysis, we propose intra-trajectory consistency regularization to enforce
more consistent rewards between adjacent processes with higher next-token generation probabilities.
We subsequently present our reward formulation of processes under the Bradley-Terry framework,
followed by the corresponding optimization objective.

For reward formulation, we note that standard reward outputs under the Bradley-Terry framework
often saturate near the boundary values (0 or 1). To ensure our regularization focuses on learn-
ing meaningful relative differences between adjacent process rewards rather than pushing absolute
scores to their limits, we introduce a mean-centered calibration technique. This technique uses
the average process reward from the opposing trajectory (e.g., the rejected response) as a dynamic,
data-dependent baseline to calibrate the process rewards of the current trajectory (e.g., the chosen re-
sponse), and vice versa. This mutual calibration encourages the model to learn a more well-separated
reward space. For a process yw1:m in the chosen response yw, we define its calibrated reward as:

r̂(x, yw1:m) = σ(θr(x, y
w
1:m)− 1

|yl|

|yl|∑
k=1

θr(x, y
l
1:k)), (4)

where |y| denotes the length of sequence y. The mean value serves only as a calibration term and
is excluded from gradient computation. Analogously, for a process yl1:m in the rejected response yl,
the calibrated reward is:

r̂(x, yl1:m) = σ(θr(x, y
l
1:m)− 1

|yw|

|yw|∑
k=1

θr(x, y
w
1:k)). (5)
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Building upon the calibrated rewards of processes, we can introduce a method to enforce reward
consistency between adjacent processes. A direct method is to minimize calibrated reward dis-
tances (e.g., absolute differences) between adjacent processes. However, this method is ineffective
under stochastic rewards (e.g., randomly initialized values), as forcing consistency between arbi-
trary rewards has limited meaning. Inspired by (Sohn et al., 2020; Zhang et al., 2021), we address
this limitation through a mutually weighted binary cross-entropy loss that both learns semantically
meaningful process rewards and promotes the reward consistency between adjacent processes.

Specifically, for a triple preference (x, yw, yl), we assign process-level pseudo-labels identical to
the response label s, where s = 1 indicates a chosen response yw and s = 0 indicates a rejected
one yl. The weighting mechanism for a pair of adjacent processes (y1:k−1, y1:k) in a response com-
bines two factors: (1) the probability of the next token P (x, y1:k|x, y1:k−1) = P (yk|x, y1:k−1) =
θg(yk | x, y1:k−1) from the generator θg , and (2) the prediction confidence of the calibrated reward
of another paired process. Formally, for y1:k−1 in the pair, its weight is computed as:

w(k → k − 1, s) = θg(yk|x, y1:k−1) · (s · r̂(x, y1:k) + (1− s) · (1− r̂(x, y1:k))). (6)

Similarly, for y1:k in the pair, its weight is formulated as:

w(k − 1 → k, s) = θg(yk|x, y1:k−1) · (s · r̂(x, y1:k−1) + (1− s) · (1− r̂(x, y1:k−1))). (7)

These weights are not used for gradient computation. When s = 1, y = yw. When s = 0, y = yl.
Finally, let r̆(·) = 1− r̂(·), the regularization loss for all training triples (x, yw, yl) is:

Lreg = E(x,yw,yl)∼Dtr
[−

|yw|∑
k=2

w(k → k − 1, 1) log r̂(x, yw1:k−1) + w(k − 1 → k, 1) log r̂(x, yw1:k)

−
|yl|∑
k=2

w(k → k − 1, 0) log r̆(x, yl1:k−1) + w(k − 1 → k, 0) log r̆(x, yl1:k)].

(8)

In Eq. 8, the binary classification loss deviates the random process rewards to meaningful ones.
Besides, since the losses of adjacent processes are mutually weighted by rewards from each other,
their rewards can gradually become similar. The degree of this consistency constraint is implicitly
governed by their next-token generation probabilities. Consequently, Eq. 8 prioritizes meaning-
ful reward consistency for adjacent processes with higher next-token generation probabilities. We
compare the L1 loss that minimizes absolute differences between process rewards in Appendix D.5.

3.3 OVERALL TRAINING FRAMEWORK

This section details how we enhance the standard Bradley-Terry reward model with an intra-
trajectory consistency regularizer to learn more robust outcome rewards. Since existing reward
modeling datasets are often aggregated from diverse sources, including some unavailable models,
we begin by performing supervised fine-tuning (SFT) on a pre-trained language model to derive a
generator θg . This generator is optimized to align with the training dataset’s generation probabil-
ity distribution. Then this fine-tuned generator can provide next-token generation probability for
computing Lreg . In cases where the data source is a single known model, we use it directly as the
generator (see Appendix D.8 for a discussion on generator mismatch). After acquiring the generator,
we use two objectives to train the reward model: (1) a reward modeling loss Lbt applied to the en-
tire response, which facilitates learning the outcome rewards; and (2) a regularization Lreg applied
across processes. Finally, the overall loss to update the model is computed as:

Ltoal = (1− α)Lbt + αLreg, (9)

where α is a balance hyper-parameter. Compared to solely optimizing Lbt, optimizing Eq. 9 enables
the model to focus on finer-grained signals. After training, the model can be used to provide outcome
rewards. As an extension, we provide the discussion on computational cost and possible efficiency
improvements in Appendix C.4.
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Table 1: Accuracy results on RewardBench with 40K training samples from Unified-Feedback. The
base model is Gemma-2B-it. The best results in a column of a series are highlighted in bold. *
indicates that the result is copied from (Yang et al., 2024b).

Reward Model Chat Chat-Hard Safety Reasoning Average

Classifier + margin* 97.2 37.5 56.8 72.7 66.1
Classifier + label smooth* 91.6 39.0 53.8 60.2 61.1

Classifier + Ensemble* 96.1 38.2 58.8 67.6 65.2
GRM* 94.7 40.8 65.4 77.0 69.5

GRM (reproduced) 96.8±0.1 41.1±0.2 80.6±0.2 73.9±0.2 73.1±0.1

ICRM (Ours) 95.0±0.1 48.1±0.9 84.3±0.2 75.6±0.3 75.8±0.3

Table 2: Accuracy results on RewardBench with 400K training samples from Unified-Feedback.
The base model is Gemma-2B-it. The best results in a column of a series are highlighted in bold. *
indicates that the result is copied from (Yang et al., 2024b).

Reward Model Chat Chat-Hard Safety Reasoning Average

Classifier + margin* 89.7 47.1 70.7 43.6 62.8
Classifier + label smooth* 94.1 47.1 67.5 79.7 72.1

Classifier + Ensemble* 89.6 50.2 72.7 59.0 69.3
GRM* 96.1 40.1 80.3 69.3 71.5

GRM (reproduced) 95.3 43.2 78.9 75.2 73.2

ICRM (Ours) 95.5 44.5 84.5 78.2 75.7

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. (1) We train the reward models on the widely-used Unified-Feedback1 and Skywork2. The
data of these two datasets are derived from multiple LLMs. Thus, to verify the proposed method in
the situation where the generation distribution is known, we adopt Qwen2.5-7B-Instruct (Yang et al.,
2024a) to generate 4 responses for each question in the training set of the prm-800k dataset (Light-
man et al., 2023) and label these responses with gold answers. These generated responses con-
stitute the Qwen-Generated dataset. (2) For experiments of RLHF, we sample about 500 prompts
from the prompts of RewardBench as the test set and the rest as the training set. (3) For exper-
iments of inference-time verification, we evaluate the reward model on MATH-500 (Hendrycks
et al., 2021), with BON datasets from (Yuan et al., 2024), containing processes generated by both
Mistral-Instructor-v0.3 (Jiang et al., 2023) and Llama-3-8B-Instruct (Dubey et al., 2024).

Training Details. (1) We train the proposed reward modeling method based on GRM (Yang et al.,
2024b), which achieves competitive results in the RewardBench benchmark. The resulting reward
model is termed ICRM. We validate the proposed method on Gemma-2B-it (Mesnard et al., 2024),
Llama3-8B-instruct (Dubey et al., 2024), and Qwen-1.5B-Instruct. The hyperparameter α is set to
0.1 in all of our experiments, with analysis shown in Appendix D.7. Additional training configura-
tions are detailed in Appendix C. (2) For RLHF, we adopt DPO strategy (Rafailov et al., 2023) to
train the policy model with Gemma-2B-it as the initial model. Following (Dong et al., 2024; Liu
et al., 2024a), we generate 8 responses for each prompt in the training set of RLHF. Then these
responses are scored by the 2B reward model trained with Unified-Feedback 400K. The best-worst
response pairs for each prompt are used to train the DPO policy. All experiments are implemented
on at most two A800 GPUs, each with 80GB of memory.

Baselines and Evaluation Details. In this paper, we evaluate the proposed method in three tasks:
the standard RewardBench benchmark (Lambert et al., 2024), RLHF, and inference-time verifica-

1https://huggingface.co/datasets/llm-blender/Unified-Feedback
2https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.2
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Table 3: Accuracy results on RewardBench with training data from Skywork+Unified-Feedback
40K and Llama3-8B-instruct. Best results are highlighted in bold. “avg” refers to the use of an
exponential moving average (EMA) of the rewards from the trailing tokens during inference, with
the smoothing applied backward from the last token and a decay factor of 0.5.

Reward Model Chat Chat-Hard Safety Reasoning Average

GRM 95.5 74.1 86.6 89.0 86.3
GRM-avg 96.9 74.1 85.0 91.2 86.8

ICRM (Ours) 95.2 75.9 86.2 89.7 86.8
ICRM-avg 96.1 78.1 87.3 95.0 89.1

tion. Evaluation of more reward benchmarks is provided in Appendix D.14. (1) For the Reward-
Bench benchmark, we consider Classifier trained with Eq. 1, Classifier+Margin (Touvron et al.,
2023), Classifier+Label Smooth (Wang et al., 2024a), Classifier+Ensemble (Coste et al., 2023), and
GRM (Yang et al., 2024b) as baselines. (2) For RLHF, inspired by (Dubois et al., 2023; Yang et al.,
2024b), to avoid the high costs of human evaluation, we employ the QRM-Llama3.1-8B model 3

as a gold scoring model according to its strong performance on the RewardBench benchmark. The
trained DPO model generates responses for the prompt in the test set by greedy sampling. (3) When
evaluating inference-time verification, we adopt the best-of-N (BON) metric, which measures the
probability that the response selected by the reward model from N alternative responses is the correct
answer or the best solution.

4.2 EVALUATION ON REWARD MODELING BENCHMARK

Results on ReardBench Benchmark. As shown in Tables 1, 2, and 3, our method achieves higher
average scores on the RewardBench benchmark than all baselines under identical settings. This
improvement is statistically significant (p value=0.002, Table 1), indicating that our proposed regu-
larization enhances the reward model’s generalization. Given these significant results and the high
cost of training LLM, we do not conduct further experiments on a larger scale.

Comparison of Different Sizes of Training Samples. Following (Yang et al., 2024b), we also
compare the performance of the proposed method under different sizes of training samples. In
Table 1 and Table 2, we present results for both 40K and 400K training samples. Additional results
for other training sizes are provided in Appendix D.1. These results demonstrate that our method
consistently achieves a higher average score than the GRM baseline, demonstrating its effectiveness
across different data scales. See Appendix D.1 for more results.

Utilization of the Process Rewards. Evaluating response correctness through process rewards
is well-established in reasoning tasks (Lightman et al., 2023; Li & Li, 2025). Since our method
also utilizes process rewards, we integrate them to examine their impact. We compute an
exponentially weighted moving average of rewards, starting from the final token of each re-
sponse and proceeding backward through the sequence. Given a response with length m and

Table 4: Results of DPO policy with guidance from dif-
ferent reward models. “Win ratio”, “Tie ratio”, and “Lose
ratio ” represent the proportions of comparisons in which
a model’s outputs are preferred (win), deemed equivalent
(tie), or dispreferred (lose) relative to another model’s out-
puts, respectively.

Reward Model Win ratio↑ Tie ratio Lose ratio↓
GRM 47.3 2.1 50.6

ICRM (Ours) 50.6 2.1 47.3

the average decay d, the average re-
ward is r =

∑m
i=1 d

m−ir(x, y1:i).
The results are shown in Table 3.
Our findings reveal that incorporating
this strategy leads to improvements for
both GRM and our method in the rea-
soning group, with occasional gains in
other groups. Crucially, our method
consistently surpasses GRM when us-
ing this approach. These results sug-
gest that our approach learns reliable
process rewards to some extent. More
analysis is provided in Appendix D.10
and Appendix D.11.

3https://huggingface.co/nicolinho/QRM-Llama3.1-8B-v2
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Table 5: Best-of-N (BON) inference-time verification results of responses from different polices
and pass@N. All reward models are implemented using Qwen-1.5B-Instruct as the base model and
trained on the Qwen-Generated dataset.

Policy Reward Model Pass@2 Pass@4 Pass@8 Pass@16 Average

Mistral-Instructor-v0.3 GRM 11.8 11.8 12.6 14.2 12.6
ICRM (Ours) 11.8 12.8 14.6 14.0 13.3

Llama-3-8B-Instruct GRM 45.6 46.8 49.2 45.0 46.7
ICRM (Ours) 45.8 47.2 51.2 50.0 48.6

Table 6: Ablation study for the proposed regularization. “w/o adjacent reg” means that the reward
of another process is not used for weighting in the proposed regularization. “w/o generation reg”
means that generation probability is not used in the proposed regularization. Training dataset is 40K
samples from Unified-Feedback, and model is Gemma-2B-it.

Method Chat Chat-Hard Safety Reasoning Average

w/o adjacent reg 96.1 43.2 80.8 74.0 73.5
w/o generation reg 95.2 46.9 83.5 75.2 75.2

Overall 95.0 48.2 84.2 75.8 75.8

4.3 EVALUATION ON RLHF

We also analyze the performance of policies optimized under different reward models, with results
presented in Table 4. Our analysis reveals two findings: (1) the policy induced by the proposed
reward model achieves higher gold scores compared to the baseline GRM, and (2) demonstrates su-
perior prompt-conditional response quality, generating higher-scoring outputs for identical prompts.
These results collectively validate the enhanced capability of our reward model in RLHF pipelines,
particularly in its ability to guide policy to generate more desirable responses. We also provide
RLHF results evaluated by humans in Appendix D.12.

4.4 EVALUATION ON INFERENCE-TIME VERIFICATION

We assess our reward model’s capacity for inference-time verification using Best-of-N (BoN) sam-
pling. The results in Table 5 show our method consistently outperforming the GRM baseline in
mean accuracy on both Mistral-Instructor-v0.3 and Llama-3-8B-Instruct. Notably, the generator for
this reward model was the same LLM that produced its training data, validating our method’s ability
to leverage accessible data generators for improved performance. We provide additional BoN results
in Appendix D.4 and a comparison to process-based reward models in Appendix D.6.

4.5 EMPIRICAL ANALYSIS

Ablation Study. The proposed intra-trajectory consistency regularization loss incorporates two key
weighting components in Eq. 6 and Eq. 7 : (1) weights derived from rewards of adjacent processes,
and (2) weights based on generation probabilities. To evaluate their respective contributions, we
conduct ablation studies in Table 6, where each component is removed individually. The results
demonstrate that removing either weighting component typically degrades performance, with the
weights from rewards of adjacent processes showing a more substantial impact. These findings
underscore the importance of both weighting mechanisms in the proposed intra-trajectory reward
consistency regularization term.

Length Analysis. Length represents a common superficial feature that reward models may exploit,
often manifesting as a preference for longer responses (Shen et al., 2023). To investigate this length
bias, we analyze response length distributions across different policy outputs (Figure 2). Our results
demonstrate that policies optimized under our reward model consistently produce shorter responses
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Figure 2: Length distribution of responses of various policies induced by GRM and ICRM. Average
length is marked by the dashed line. Prompts for generation are derived from the test set in the
RLHF experiments. Generation model is Gemma-2b-it.

An effective way to deal with people

who disagree with you is to respect

their view and use kind words

(a) A chosen response

An effective way to deal with people

who disagree with you is to ignore

their view and use cruel words

(b) A rejected response

Figure 3: Heatmap of the rewards acquired by ICRM for different processes, in which the reward of
a process is shown in the last token of the process, and darker colors indicate higher rewards. The
prompt of the two responses is “What is an effective way to deal with people who disagree with
me?”. The left response (with “respect” and “kind”) is preferred as the chosen response over the
right (with “ignore” and “cruel”) due to its more positive wording concerning the context.

than the baseline. This finding indicates that the proposed method has the potential to reduce the
model’s reliance on length as a proxy for response quality.

Visualization of Process Rewards. To elucidate the relationship between process-level rewards
and response labeling learned by the proposed method, we visualize reward trajectories for two
minimally contrasting responses that differ only in a few critical words (Figure 3). Our analysis
reveals that: (1) the model systematically assigns higher rewards to processes containing semanti-
cally favorable words in context, and (2) for rejected responses, rewards exhibit gradual degradation
rather than immediate drops. For instance, the token ”ignore” triggers only a mild penalty, while
subsequent unfriendly terms like ”cruel” induce sharper declines. This demonstrates our method’s
capacity to develop nuanced and context-sensitive reward signals at the process level.

5 CONCLUSION

In this paper, we aim to address the limitation of conventional outcome reward modeling that fails to
capture fine-grained details within a response with coarse, response-level supervision. We introduce
a novel intra-trajectory consistency regularization to inject a finer-grained signal into the learning
process. Motivated by principles from a Bayesian framework, the proposed regularization enforces
that adjacent processes with higher next-token generation probabilities maintain more consistent
rewards. Experimental results on the RewardBench benchmark, RLHF, and inference-time verifi-
cation validate the effectiveness of the proposed regularization in improving the advanced reward
model. While our method’s reliance on the generation probabilities from a generator introduces
a computational overhead, this cost can be substantially mitigated through batch pre-processing.
Our current validation is conducted on smaller-scale models due to resource constraints; therefore,
scaling our method to larger models remains a promising direction for future work.
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Markus Bayer, Marc-André Kaufhold, and Christian Reuter. A survey on data augmentation for text
classification. ACM Computing Surveys, 55(7):1–39, 2022.

Lichang Chen, Chen Zhu, Jiuhai Chen, Davit Soselia, Tianyi Zhou, Tom Goldstein, Heng Huang,
Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf.
In ICML, pp. 7935–7952, 2024a.

Lu Chen, Rui Zheng, Binghai Wang, Senjie Jin, Caishuang Huang, Junjie Ye, Zhihao Zhang, Yuhao
Zhou, Zhiheng Xi, Tao Gui, et al. Improving discriminative capability of reward models in rlhf
using contrastive learning. In EMNLP, pp. 15270–15283, 2024b.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. ArXiv, 2023.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. In ICLR, 2024.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. ArXiv, 2025.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe RLHF: Safe reinforcement learning from human feedback. In ICLR, 2024.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
ArXiv, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, et al. The llama 3 herd of models. ArXiv, 2024.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori Hashimoto. Alpacafarm: A simulation framework for meth-
ods that learn from human feedback. In NeurIPS, 2023.

Yann Dubois, Percy Liang, and Tatsunori Hashimoto. Length-controlled alpacaeval: A simple debi-
asing of automatic evaluators. In COLM, 2024.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, Dj Dvijotham,
Adam Fisch, Katherine Heller, Stephen R. Pfohl, Deepak Ramachandran, Peter Shaw, and
Jonathan Berant. Helping or herding? reward model ensembles mitigate but do not eliminate
reward hacking. ArXiv, 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model align-
ment as prospect theoretic optimization. In ICML, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
ICML, pp. 10835–10866, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. ArXiv,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Shawn Im and Yixuan Li. Understanding the learning dynamics of alignment with human feedback.
In ICML, pp. 20983–21006, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv,
abs/2310.06825, 2023.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. ArXiv, 2024.

Wendi Li and Yixuan Li. Process reward model with q-value rankings. In ICLR, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR, 2023.

Shunyu Liu, Wenkai Fang, Zetian Hu, Junjie Zhang, Yang Zhou, Kongcheng Zhang, Rongcheng
Tu, Ting-En Lin, Fei Huang, Mingli Song, and Dacheng Tao. A survey of direct preference
optimization. ArXiv, 2025.

Tianqi Liu, Wei Xiong, Jie Ren, Lichang Chen, Junru Wu, Rishabh Joshi, Yang Gao, Jiaming Shen,
Zhen Qin, Tianhe Yu, Daniel Sohn, Anastasiia Makarova, Jeremiah Liu, Yuan Liu, Bilal Piot, Abe
Ittycheriah, Aviral Kumar, and Mohammad Saleh. Rrm: Robust reward model training mitigates
reward hacking. ICLR, 2024a.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Rm-bench: Benchmarking
reward models of language models with subtlety and style. ArXiv, 2024b.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
automated process supervision. ArXiv, 2024.

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. arXiv
preprint arXiv:2506.01937, 2025.

Gemma Team Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, et al. Gemma:
Open models based on gemini research and technology. ArXiv, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NeurIPS, 35:27730–27744, 2022.

Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek
Mittal, and Peter Henderson. Safety alignment should be made more than just a few tokens deep.
In ICLR, 2025.

Yanru Qu, Dinghan Shen, Yelong Shen, Sandra Sajeev, Jiawei Han, and Weizhu Chen. Coda:
Contrast-enhanced and diversity-promoting data augmentation for natural language understand-
ing. In ICLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
NeurIPS, 2023.

Alexandre Rame, Nino Vieillard, Leonard Hussenot, Robert Dadashi-Tazehozi, Geoffrey Cideron,
Olivier Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. In
ICML, pp. 42048–42073, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, 2017.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. In ICLR, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K. Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. ArXiv, 2024.

Lingfeng Shen, Sihao Chen, Linfeng Song, Lifeng Jin, Baolin Peng, Haitao Mi, Daniel Khashabi,
and Dong Yu. The trickle-down impact of reward inconsistency on RLHF. In ICLR, 2024.

Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan Dou, Tao Gui, Qi Zhang, and Xuan-Jing
Huang. Loose lips sink ships: Mitigating length bias in reinforcement learning from human
feedback. In EMNLP, pp. 2859–2873, 2023.

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk,
Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: simplifying semi-supervised learning
with consistency and confidence. NeurIPS, 2020.

Hao Sun, Yunyi Shen, and Jean-Francois Ton. Rethinking reward modeling in preference-based
large language model alignment. In ICLR, 2025.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Y Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Ada Popa, and Ion Stoica. Judgebench: A benchmark for evaluating llm-based
judges. ArXiv, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. ArXiv, 2022.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling.
ArXiv, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In ACL,
pp. 9426–9439, 2024b.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. NeurIPS, 36:59008–59033, 2023.

Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
and Sumitra Ganesh. GenARM: Reward guided generation with autoregressive reward model for
test-time alignment. In ICLR, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, et al. Qwen2 technical report. Arxiv, 2024a.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
enables learning generalizable reward model for LLMs. In NeurIPS, 2024b.

Eunseop Yoon, Hee Suk Yoon, Soo Hwan Eom, Gunsoo Han, Daniel Wontae Nam, Daejin Jo, Ky-
oung Woon On, Mark Hasegawa-Johnson, Sungwoong Kim, and Chang D Yoo. Tlcr: Token-level
continuous reward for fine-grained reinforcement learning from human feedback. In Findings of
ACL, pp. 14969–14981, 2024.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. ArXiv, 2024.

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
direct preference optimization. In ICML, pp. 58348–58365, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo la-
beling. NeurIPS, 34:18408–18419, 2021.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. NeurIPS, 37:64735–64772, 2024a.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. In NeurIPS Workshop, 2024b.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In ACL,
2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORKS

To begin with, we discuss the related works to this study.

A.1 GENERALIZATION OF REWARD MODELS.

The generalization of reward models to unseen responses is essential for improving their robustness
in RLHF and inference-time verification (Gao et al., 2023; Yang et al., 2024b). To improve it, mul-
tiple approaches have been developed, such as ensemble techniques (Eisenstein et al., 2023; Rame
et al., 2024) , data augmentation (Shen et al., 2024; Liu et al., 2024a), direct correction of mea-
surable bias (Dubois et al., 2024; Chen et al., 2024a), and hidden-state regularization (Yang et al.,
2024b). For example, (Coste et al., 2024) proposes to learn multiple estimators and combine them to
improve the robustness of the rewards. (Liu et al., 2024a) introduces a data augmentation approach
derived from the causal framework to differentiate between contextual signals and context-free arti-
facts. (Chen et al., 2024a) proposes a framework trained to predict both rewards and lengths so that it
can disentangle the representation of the content quality from the lengths of responses. (Yang et al.,
2024b) introduces SFT and DPO losses to regularize the hidden states of reward models. While
these methods strengthen RMs for AI alignment, their effectiveness remains constrained by sparse
response-level supervision, limiting further generalization.

A.2 OUTCOME REWARDS AND PROCESS REWARDS.

Outcome and process rewards represent two fundamental paradigms in reinforcement learning and
AI alignment (Schulman et al., 2017; Im & Li, 2024; Uesato et al., 2022). Outcome rewards, which
evaluate a task’s final result, are straightforward to specify and require minimal annotation effort.
However, the sparse signals they provide often fail to guide agents toward desirable behaviors in
complex, long-horizon tasks (Lightman et al., 2023). In contrast, process rewards evaluate inter-
mediate steps, thereby providing denser feedback. This approach is critical for autoregressive gen-
eration, where it can enforce properties like coherent reasoning by capturing causal dependencies
between tokens (Li & Li, 2025).

Process-based reward models are effective but typically demand expensive, step-level annota-
tions (Wang et al., 2024b; Luo et al., 2024). Efforts to automate this annotation, such as scoring
intermediate steps based on the final outcome, are often suboptimal without a perfect oracle and
computationally intensive, requiring numerous generated responses (Wang et al., 2024b). A differ-
ent strategy involves using an external LLM to minimally revise a ”rejected” response, from which
token-level preference labels are algorithmically derived (Yoon et al., 2024). This method, however,
risks inheriting biases from the revising LLM, especially in cases of ambiguous human preference.
Given these limitations, response-level annotation remains the standard, underscoring a critical need
for methods that can derive fine-grained process signals from this coarser level of supervision.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a detailed account of our methodology and
experimental setup. The proposed method is thoroughly described in Section 3. All experimental
details—including dataset sources, base models, software frameworks, evaluation procedures, and
hyperparameter settings—are specified in Section 4.1 and further elaborated in Appendix C. Fur-
thermore, our complete implementation code is included in the supplementary material to facilitate
the replication of our main findings.

C IMPLEMENTATION DETAILS

In this section, we provide more implementation details.

C.1 IMPLEMENTATION FOR REWARD MODELING WITH UNPAIRED DATA.

When paired data are not available, discriminative reward modeling is usually used to learn the
reward. The training dataset Dtr consists of triples {xi, yi, ci}Ni=1, where xi represents input for ith
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Table 7: Common hyper-parameters in the experiments.

Quantization for training bf16
LoRA r 32

LoRA alpha 64
Optimizer Adamw

Learning rate 1e-5
Learning rate scheduler cosine

Warmup ratio 0.03

Table 8: Accuracy results on RewardBench with different sizes of training samples from the Unified-
Feedback dataset. The base model is Gemma-2b-it.

Reward Model 4K 10K 40K 400K Average

GRM 59.5 64.1 73.0 73.2 67.5
ICRM (Ours) 61.3 64.3 75.8 75.7 69.3

example, yi is a response for xi, and ci is a gold binary classification label for xi. To estimate the
quality of a response for an input, we can train a discriminative reward model θr with the binary
cross-entropy loss, namely,

Ld = E(x,y,c)∼Dtr
[−c · log(σ(θr(x, y)))− (1− c) · log(1− σ(θr(x, y)))]. (10)

In this case, when computing the proposed regularization term, no calibration is required for the
reward, i.e, r̂(x, y) = σ(θr(x, y)) in Eq. 8. Finally, based on discriminative reward modeling, we
only need to add Ld and the proposed regularization term, similar to Eq. 9.

C.2 TRAINING DETAILS OF REWARD MODELS

Our code is based on LlamaFactory (Zheng et al., 2024), a powerful code framework that supports
multiple LLMs training strategies. The version number we adopted is 0.9.1.dev0. The LLMs in-
volved in the experiments are all downloaded from HuggingFace. In the experiments, the models
are trained with LoRA (Hu et al., 2022) for efficient fine-tuning. We employ the DeepSpeed frame-
work4 to enhance training efficiency and reduce GPU memory requirements. For models with fewer
than 2B parameters, we utilize the ZeRO-2 offload configuration. When training includes 8B mod-
els, we adopt the ZeRO-3 offload setting.

Our reward model training procedure primarily follows GRM (Yang et al., 2024b), specifically
adopting their GRM-sft configuration. GRM-sft incorporates an additional SFT loss alongside the
standard reward loss to regularize hidden-state representations, with a default weighting factor of
0.001. The reward model is initialized using the backbone of a pre-trained LLM with an additional
randomly initialized linear logistic regression layer (dropout=0.1). Common hyper-parameters are
detailed in Table 7. Key variations include batch size and training epochs: for datasets less than 40K,
we use batch size 12 with 2 epochs; other experiments employ batch size 24 with 1 epoch. Notably,
the proposed method occasionally requires a generator during reward model training. The generator
for the 2B model is trained with 40K samples from the Unified-Feedback dataset. The generator
for the 8B model is trained with 40K samples from the Unified-Feedback dataset and the Skywork
dataset. When training, it shares the same configuration as the reward model (Table 7), except for a
reduced learning rate (1e-7) and a single epoch to prevent overfitting. For the reward model that is
only trained with the Unified-Feedback dataset, we set the sequence cutoff length to 1,024 tokens.
All other reward models and generators use a 2,048-token cutoff to handle long-form data better.

4https://github.com/deepspeedai/DeepSpeed?tab=readme-ov-file
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C.3 HYPER-PARAMETERS FOR RLHF.

In RLHF experiments, the process consists of two key components: response generation and sub-
sequent training using these generated responses. For data generation, we employ a temperature of
1.0 and top-p sampling (p=1.0), producing 8 responses per prompt with a maximum length of 1,536
tokens. These responses are then evaluated by our 2B reward model trained on the Unified-Feedback
400K dataset. We select the best-worst response pairs from each prompt for DPO policy training.
The DPO configuration largely follows the settings in Table 7, with two modifications: (1) a learning
rate of 5e-6, and (2) the addition of a 0.1 scaling factor for comparing current and reference model
probabilities. All DPO experiments run for 2 epochs.

C.4 DISCUSSION ON COMPUTATIONAL COST

All experiments are implemented in at most two NVIDIA RTX A800 GPUs, which have about 160
GB of memory. During training of the 2B GRM reward model, the baseline in this paper, with a
batch size of 12, we observe a training speed of 4.6 seconds per iteration. Under identical batch size
conditions, the 2B reward model trained with the proposed method achieves a comparable training
speed of approximately 5.4 seconds per iteration.

The proposed method requires a generator to provide generation probabilities, which introduces two
computational overheads: (1) forward passes through the generator during training of the reward
model, and (2) potential generator fine-tuning. For the first overhead, the measured training speeds
in the above measured speeds show that the additional computational cost is not significant. Besides,
the time cost can be further reduced through pre-processing with a larger batch size. The second
overhead can be avoided when all training data comes from a single white-box generator, a not
uncommon scenario in RLHF. As an extension, we also explore an end-to-end variant where the
reward model and generator share a backbone and are jointly optimized (see Appendix D.3).

D ADDITIONAL EXPERIMENTAL RESULTS

To further support our methods, we present additional experimental results that extend beyond those
reported in the main paper. These include analyses of model performance across varying training
sample sizes, an expanded evaluation of process reward utilization, and results obtained under an
end-to-end training framework. We also provide BON evaluations on non-mathematical tasks, along
with an assessment of reward alignment using L1 distance.

D.1 RESULTS ON DIFFERENT SIZES OF TRAINING SAMPLES

We further investigate the performance of the proposed method on different training data scales.
We show the accuracy results on RewardBench with different sizes of training samples from the
Unified-Feedback dataset in Table 8. The experimental results demonstrate that the reward model
trained with the proposed method consistently outperforms the baseline GRM method, validating its
stability across varying amounts of training data.

D.2 MORE RESULTS ON UTILIZATION OF PROCESS REWARDS

We further investigate the effectiveness of process rewards by analyzing performance under an ex-
ponential moving average of process rewards from trailing tokens. Table 9 compares different decay
rates when averaging rewards, focusing on their impact relative to the final token’s reward. The
results show that while over-reliance on process rewards can degrade performance, the proposed
method consistently outperforms GRM under this approach and exhibits stronger robustness against
performance drops. This suggests that the learned process rewards have the potential to capture
aspects of the overall response quality.

D.3 RESULTS UNDER END-TO-END TRAINING FRAMEWORK

To mitigate the inevitable computational overhead introduced by using a separate generator, we in-
vestigate a more efficient end-to-end training approach that jointly trains both the reward model and
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Table 9: Accuracy results on RewardBench with training data from Skywork+Unified-Feedback
40K and Llama3-8B-instruct. “avg-val” refers to the use of an exponential moving average (EMA)
of the rewards from the trailing tokens during inference, with the smoothing applied backward from
the last token and a decay factor of “val”. Best results are highlighted in bold.

Reward Model Chat Chat-Hard Safety Reasoning Average

GRM 95.5 74.1 86.6 89.0 86.3
GRM-avg-0.5 96.9 74.1 85.0 91.2 86.8
GRM-avg-0.7 97.2 70.6 81.9 90.1 84.5
GRM-avg-0.9 84.9 65.8 70.8 82.6 76.0
ICRM (Ours) 95.2 75.9 86.2 89.7 86.8
ICRM-avg-0.5 96.1 78.1 87.3 95.0 89.1
ICRM-avg-0.7 93.3 76.7 88.4 96.0 88.6
ICRM-avg-0.9 90.8 73.2 88.0 95.7 86.9

Table 10: Average accuracy results on RewardBench with different sizes of training samples from
the Unified-Feedback dataset under different training settings. “Training-time generator” represents
an end-to-end variant where the reward model and generator share a backbone and are jointly opti-
mized. “Pre-learned generator” represents a two-stage variant where the generator is learned before
the training of the reward model.

Standard 4K 10K 40K Average

Training-time generator 61.3 64.4 74.7 66.8
Pre-learned generator 61.3 64.3 75.8 67.1

generator on a shared backbone network. Specifically, our architecture features: (1) a linear reward
head forming the reward model θr, and (2) a parallel linear generation head forming the generator
θg , both attached to the same backbone. The total training loss combines the reward optimization
loss (Eq. 9) with the generator’s SFT loss, where we prevent model perturbation by zeroing out
backpropagated gradients to the backbone model from the SFT loss. As shown in Table 10, this
end-to-end approach maintains reasonable accuracy with limited training data but exhibits degraded
performance at larger scales. These results suggest the potential of the end-to-end approach to main-
tain training efficiency without significant performance loss on a low data scale.

D.4 BON RESULTS BEYOND MATH TASKS

We conduct a systematic evaluation to assess the efficacy of the proposed method in enhancing
inference-time verification capabilities across general scenarios. As detailed in Table 11, we present
comparative Best-of-8 results for policies derived from distinct reward models. The experimental
results reveal two findings: (1) our method consistently outperforms baseline approaches on both
the 2B and 8B policy scales, and (2) the performance advantage becomes more pronounced with the
8B policy. These empirical results further validate that the proposed method effectively improves
inference-time verification performance in practical applications.

D.5 EVALUATION WITH L1 REWARD ALIGNMENT

While a standard L1 loss could be used to enforce consistency between adjacent process rewards,
it imposes an overly restrictive, uniform constraint that treats all tokens identically. This rigidity
can hinder model performance by forcing direct reward alignment where it may not be optimal.
In contrast, the proposed regularization method adopts a more flexible and nuanced approach. The
proposed method employs a mutually weighted learning objective. The regularization is weighted by
the model’s confidence, assigning greater importance to tokens with higher next-token probabilities.
This focuses the consistency pressure on more certain parts of the generation. As shown in Table 12,
this tailored approach yields superior performance. Our method achieves a higher average accuracy
than the L1 baseline, validating the effectiveness of our flexible reward consistency regularization.
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Table 11: Best-of-8 results of different policy induced different reward models. Prompts are acquired
from the test data in the RLHF experiments. The reward models are trained from 400K samples from
Unified-Feedback with Gemma-2b-it as the base model. “Win ratio”, “Tie ratio”, and “Lose ratio”
are obtained by taking the methods of comparison to each other as the baseline. The “Win ratio”,
“Tie ratio” and “Lose ratio” represent the proportions of comparisons in which a model’s outputs are
preferred (win), deemed equivalent (tie), or dispreferred (lose) relative to another model’s outputs.

Policy Reward Model Win ratio↑ Tie ratio Lose ratio↓

Gemma-2b-it GRM 18.6 62.0 19.4
ICRM (Ours) 19.4 62.0 18.6

Llama3-8B-instruct GRM 15.0 65.2 19.8
ICRM (Ours) 19.8 65.2 15.0

Table 12: Ablation study for the proposed regularization with L1 reward alignment. Training dataset
is 40K samples from Unified-Feedback, and the base model is Gemma-2B-it.

Loss Type Chat Chat-Hard Safety Reasoning Average

L1 loss 96.4 42.1 80.3 74.3 73.3
Ours 95.2 46.9 83.5 75.2 75.2

D.6 COMPARISON WITH PROCESS REWARD MODELS

To provide a contextualized comparison despite the different settings, we conduct an experiment on
the prm-800k dataset, which contains process-level labels for mathematical reasoning. We train
models using Qwen-1.5B-Instruct as the backbone and evaluate the average BON accuracy on the
MATH-500 test set. As shown in Table 13, our method, using only the final outcome (response-level)
labels from prm-800k, achieves performance comparable to models trained with full, step-by-step
process supervision. Furthermore, when our intra-trajectory consistency regularization is applied to
a process reward model (Li & Li, 2025), it yields further improvements. This demonstrates that even
though our method operates with weaker supervision, it is highly effective and can also complement
models that use stronger, process-level signals.

D.7 HYPERPARAMETER ANALYSIS

The hyperparameter α in Eq. 9 balances the standard outcome reward modeling loss (Lbt) with
the proposed intra-trajectory consistency regularization (Lreg). To determine an appropriate value
and assess its impact, we conduct a sensitivity analysis. We evaluate α values from the set
{0.2, 0.1, 0.01, 0.001} using the Gemma-2B-it model trained on 40K samples from the Unified-
Feedback dataset. As shown in Figure 4(a), the model achieves optimal performance when α = 0.1.
Consequently, we adopt this value for all experiments and forgo per-task tuning, which demonstrates
the robustness of the selected value.

D.8 IMPACT OF MISMATCHED GENERATORS

Our method relies on a generator to provide next-token probabilities for the consistency regular-
ization. To empirically evaluate the impact of a potential mismatch, we conduct an experiment
using three deliberately biased generators. Starting with the fine-tuned Gemma-2B generator, we
create two biased versions (bias1 and bias2) by inverting the SFT loss for 1,000 and 2,000 itera-
tions, respectively. We also test a random generator that assigns random next-token probabilities,
conforming to a uniform distribution of 0-1. The reward model and generators are all based on
Gemma-2B-it and trained on 40K Unified-Feedback data. Figure 4(b) shows that minor biases in
the generator lead to only marginal performance degradation, while a more substantial distortion
(random probabilities) has a more noticeable effect. These results demonstrate that our method is
robust to modest deviations in generator quality and support our approach of using a fine-tuned
generator when the original is unavailable.
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Table 13: Average BON accuracy on MATH-500. Our method uses only response-level labels,
whereas other baselines use costly process-level labels.

Method BON Accuracy

With response-level labels
ICRM (Ours) 47.8

With process-level labels
PRM (Lightman et al., 2023) 48.6
PQM (Li & Li, 2025) 50.5
PQM (Li & Li, 2025) + ICRM (Ours) 50.9

0.2 0.15 0.1 0.05 0.010.001
(a) Hyperparameter 
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Figure 4: Multiple analyses on RewardBench for a Gemma-2B-it model trained on 40K Unified-
Feedback samples. (a) is the sensitivity analysis of the hyperparameter α. (b) shows average accu-
racy when using correctly tuned, biased, and random generators. Biased versions (bias1 and bias2)
are created by inverting the SFT loss for 1,000 and 2,000 iterations, respectively. Random version
represents a generator that assigns random next-token probabilities. (c) shows analysis on enforcing
reward consistency over different token distances.

D.9 ANALYSIS OF TOKEN DISTANCE

To validate our choice of enforcing reward consistency between adjacent processes, we experi-
mented to analyze the effect of token distance. We compared the default adjacent-token (distance
1) setting with larger windows of 2, 4, and 8 tokens, using the Gemma-2B-it model trained on 40K
samples from Unified-Feedback. The results, presented in Figure 4(c), indicate that while a small
increase in token distance to 2 provides a marginal improvement, further increases to 4 and 8 to-
kens lead to performance degradation. This finding confirms that long-range consistency constraints
are less effective, likely due to the weaker probabilistic link between distant tokens. Moreover, the
adjacent-token method adapts more robustly to responses of varying lengths. Therefore, we recom-
mend the adjacent-token consistency approach for its stability and effectiveness.

D.10 ANALYSIS OF ERROR DETECTION AT DIFFERENT PROCESS STAGES

A potential concern is whether the intra-trajectory consistency constraint might prevent the model
from quickly identifying and penalizing errors, particularly those occurring early in a response. To
investigate this, we evaluate our model’s ability to detect errors at different stages of a process.
We conduct experiments on the evaluation subset of the prm-800k dataset, using the reward of
the final token in each process to determine correctness, consistent with the original work. We
partitioned each response trajectory into three equal positional intervals (early: 0-0.33, middle: 0.33-
0.66, and late: 0.66-1) and measured the error recognition rate within each segment. The models are
trained on 400K Unified-Feedback samples using Gemma-2B-it as the base. The results, shown in
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Table 14: Error recognition rates at different positional intervals of response trajectories for a
Gemma-2B-it model trained on 400K Unified-Feedback samples.

Model Early (0–0.33) Middle (0.33–0.66) Late (0.66–1)

GRM 27.9 32.8 36.4
ICRM (Ours) 28.2 45.6 60.4

Table 15: Human Evaluation Results on different policy models guided by our reward model and
the baseline GRM trained with 400k Unified-Feedback and Gemma-2B-it, respectively.

Model Win Ratio Lose Ratio

GRM 47.8 52.2
ICRM (Ours) 52.2 47.8

Table 14, indicate that while early-stage error detection is challenging for both models, our method
significantly outperforms the baseline GRM in the middle and later stages. This suggests that our
consistency constraint enhances the model’s ability to identify and penalize consequential errors that
directly impact the final outcome, even without access to process-level supervision.

D.11 EVALUATION ON SHARP QUALITY TRANSITIONS

To assess whether our consistency-based regularization can handle abrupt changes, we design an
experiment with the prm-800k dataset. Specifically, we create a set of perturbed responses by taking
correct solutions and randomly shuffling the text following the ”Answer:” token. This procedure
corrupts the final answer while leaving the preceding reasoning steps intact. We then evaluate the
reward models by measuring the proportion of cases where they correctly assigned a lower reward
to the perturbed response compared to the original, correct one. A higher rate indicates a better
ability to detect the sharp error introduced at the end. The models are trained on 400k samples from
the Unified-Feedback dataset with the Gemma-2B-it model. Our method achieves a drop rate of
99.6%, higher than the drop rate of 98.9% from the baseline GRM, demonstrating its robustness in
identifying and penalizing abrupt errors.

D.12 HUMAN EVALUATION OF RLHF

To assess model performance with humans, we recruit five volunteers to evaluate a curated subset
of prompts from our RLHF test set. Each volunteer is advised to spend 5–10 minutes per prompt,
utilizing relevant tools (e.g., code compilers and Internet search engines) as needed for thorough
assessment. For each prompt, we collect responses from different policy models (guided by our
reward model and the baseline GRM trained with 400k Unified-Feedback and Gemma-2B-it), filter-
ing out identical responses to avoid redundancy. The volunteers blindly select the best response for
each prompt. As shown in Table 15, responses generated by our reward model are preferred more
frequently, providing independent validation of its effectiveness in RLHF.

D.13 GENERALIZATION TO CODE GENERATION

We extend the evaluation to the domain of code generation. We use the reward models (ICRM and
the baseline GRM) trained on the 400K Unified-Feedback dataset. The evaluation is performed
on a code generation benchmark from RewardBench that assesses correctness across six program-
ming languages. The results are presented in Table 16. Our method, ICRM, demonstrates superior
performance by winning in three languages (Go, Java, Rust), whereas the baseline GRM wins in
only one (C++). This outcome provides additional evidence that our intra-trajectory consistency
regularization helps the reward model generalize more effectively.
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Table 16: Accuracy on a code generation benchmark across different programming languages. The
”Win Number” indicates the count of languages where a model achieved a strictly higher score.

Model C++ Go Java JS Python Rust Win Number

GRM 86.6 86.6 87.8 87.2 85.4 85.4 1
ICRM (Ours) 84.1 89.0 88.4 87.2 85.4 87.8 3

Cha
t

Math Cod
e

Sa
fet

y

Av
era

ge

(a) RM-Bench

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Re
aso

nin
g

Math Cod
e

Av
era

ge

(b) JudgeBench

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

Fac
tua

lity
Foc

us
Math

Pre
cis

e I
F

Sa
fet

y
Tie

s

Av
era

ge

(c) RewardBench v2

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

GRM Ours

Figure 5: Accuracy results on (a) RM-Bench, (b) JudgeBench, and (c) RewardBench v2 with train-
ing data from Unified-Feedback 400K and model Gemma-2B-it.

D.14 EVALUATION ON MORE BENCHMARKS

We conduct more experiments on RM-Bench (Liu et al., 2024b), JudgeBench (Tan et al., 2024), and
RewardBench v2 (Malik et al., 2025) with models trained on Unified-Feedback 400k and Gemma-
2B-it. Since the Knowledge domain in JudgeBench specifically targets areas such as physics and
chemistry, which are not adequately represented in our training data, i.e., Unified-Feedback 400k,
we exclude it from our analysis. The results are shown in Figure 5. As shown in the results, the
proposed method consistently outperforms the baseline GRM across most domains and achieves
higher average scores. These findings further support the robustness and general effectiveness of
our approach across diverse evaluation settings.

Based on the results from Table 1 and Table 2, we find that the proposed method performs excep-
tionally well on difficult problems, exhibiting behavior distinct from the GRM. Given this unique
characteristic, we attempt to enhance the robustness of the proposed method across various prob-
lems by integrating model parameters. We consider two integration approaches: one combining two
GRM models trained with different random seeds (using an integration factor of 0.5), and another in-
tegrating GRM with ICRM (using an integration factor of 0.2). The results are presented in Table 17.
The findings demonstrate that the proposed method achieves greater robustness through integration
and shows better integration performance compared to the ensemble of two GRM models trained
with different random seeds.

D.15 ABLATION ON MEAN-CENTERED CALIBRATION

To disentangle the effects of our proposed consistency regularization from the mean-centered cal-
ibration technique, we conduct an additional ablation study. Specifically, we create a variant of
the baseline GRM by replacing the calibration term in its outcome-based objective (Eq. 1) with the
mean-centered calibration used in our method (Eqs. 4 and 5). The results, presented in Table 18,
show a drastic performance degradation for the modified GRM. This outcome substantiates our core
argument. To elaborate, our mean-centered calibration term is, by definition, the average of all
process rewards within a response. The magnitude of this average can naturally differ from the fi-
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Table 17: Performance comparison of different ensemble models. Methods with “merged” mean
ensemble models. Training dataset is 40K samples from Unified-Feedback, and the base model is
Gemma-2B-it.

Method Chat Chat-Hard Safety Reasoning Average

GRM 96.8 41.1 80.6 73.9 73.1
ICRM (Ours) 95.0 48.1 84.3 75.6 75.8

GRM-merged 96.9 41.4 80.3 73.9 73.1
ICRM-merged 96.1 48.2 83.9 76.2 76.1

Table 18: Ablation study on the effect of the mean-centered calibration technique. This model is
trained on 40k Unified-Feedback samples using a Gemma-2B backbone under identical settings.

Method Accuracy
ICRM (Ours) 75.8
GRM (baseline) 73.1
GRM with mean-centered calibration 44.2

nal outcome reward of that same response. Consequently, applying this term to an outcome-based
objective like the Bradley-Terry loss creates a conceptual mismatch: it attempts to calibrate an out-
come reward using a process-based average. This misalignment introduces noise and disrupts the
optimization process. In contrast, our method applies this calibration within a regularization term
that compares adjacent process rewards. This aligns with our regularization goals.

E BROADER IMPACTS

Reward models serve critical functions in both RLHF pipelines and inference-time verification sys-
tems, playing a pivotal role in enhancing the ability to generate safer, higher-quality, and more
factually accurate responses of LLMs. The focus of our work on improving reward models’ gen-
eralization capabilities for unseen responses consequently makes better use of the reward model in
RLHF and inference-time verification, offering significant positive societal impacts. While com-
prehensive analysis reveals no immediate negative societal impacts inherent to our methodology,
we acknowledge one potential secondary risk: the theoretical possibility that our generalization im-
provements could be repurposed by bad actors to train more harmful language models. On balance,
our approach itself introduces no direct negative impacts, and the societal benefit remains positive.

F USAGE OF LLMS

To ensure academic transparency, we outline the use of LLMs in this work. In our research method-
ology, LLMs served a foundational role in initializing our model, generating training data, and pro-
viding token probabilities for our algorithm. We also employed an LLM as a writing aid, exclusively
for enhancing the grammar, clarity, and readability of the manuscript. The scientific contributions,
including the proposed algorithm and all conclusions, are the original work of the authors, who
reviewed all textual suggestions and retain full responsibility for the final content.
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