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Abstract

We propose coactive learning as a model and feedback mechanism for training large language
models (LLMs). The key insight is that users provide implicit feedback whenever they edit
the text y proposed by an LLM. While the edited text ȳ is typically not a gold-standard
example for supervised training, coactive learning merely requires that the edited text ȳ is
an improvement over the proposed text y. Note that such weak implicit preference feedback
ȳ ≻ y is available in many application settings on a per-user basis, thus enabling the
personalization of LLMs. In this paper, we develop the theoretical basis for coactive training
of non-linear models, and we derive CoRLL as the first coactive learning algorithm for
LLMs. Empirical results indicate that CoRLL is effective even for weak and noisy coactive
preference feedback, making it a promising algorithm for training and personalization of
LLMs from feedback that is naturally collected in many use cases.

Keywords: coactive learning, large language models, reinforcement learning from human
preferences

1 Introduction

Large language models (LLMs) are increasingly being used as an interactive tool to assist
humans in writing more effectively. These models can quickly generate text that the human
user can either accept or modify if desired, resulting in significant improvements in the
efficiency and effectiveness of writing. For example, email editors are already beginning
to automatically generate text that users can edit, and there are many applications where
LLMs can write the first draft (e.g., responses to customer complaints, insurance adjuster
reports). However, to produce writing that aligns with user preferences and expertise, such
writing assistants will require substantial personalization and contextual adaptation. This
personalization will ensure the writing style suits the user and the system improves its
task-specific knowledge.

Motivated by this use-case of Human-AI writing collaboration, we propose coactive
learning (Shivaswamy and Joachims, 2012) as a new online-learning model for LLM training
through which users can instruct the system. For a given context x (e.g., customer complaint),
the LLM presents the user with its current best response y (e.g., response to customer
complaint), and the user either accepts y as is, or performs edits to improve it to ȳ. It is
clear that ȳ provides an interesting feedback signal, but in many applications it would be
unjustified to assume that ȳ is a gold-standard response as required by standard supervised
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learning algorithms. A key strength of coactive learning is its ability to learn even if ȳ is
just an incremental improvement over y, which it interprets as pairwise preference feedback
ȳ ≻ y.

In this paper, we derive CoRLL as the first coactive learning algorithm for LLM training,
and we provide a theoretical justification that goes beyond the known results for linear
models (Shivaswamy and Joachims, 2012). CoRLL builds on reinforcement learning from
human feedback (RLHF) which is commonly used to align LLMs with human preferences
(Stiennon et al., 2022; Ouyang et al., 2022). However, conventional RLHF can be viewed as
dueling bandit feedback (Yue et al., 2009), where both y and ȳ are generated from the LLM,
and the user has to actively provides a pairwise preference label between the two (Ouyang
et al., 2022; Ziegler et al., 2019). In coactive learning, the LLM provides a response y and
the user provides an improved response ȳ, implying the preference ȳ ≻ y. This key difference
makes coactive learning with CoRLL an attractive alternative to conventional RLHF, since
users provide such preference feedback as an implicit byproduct of their system interactions
without additional labeling effort.

We conducted experiments on various RLHF benchmarks to compare CoRLL against
conventional RLHF techniques. These tasks include IMDB Positive Sentiment (Maas et al.,
2011), TL;DR summarization (Völske et al., 2017), and Helpful and Harmless Assistant
(HHA) (Bai et al., 2022). To ensure that coactive learning works across model sizes and
tasks, we trained a 124M parameter model for IMDB, a 7B model for TL;DR, and a 13B
model for HHA. We found that coactive learning with CoRLL learns faster than conventional
RLHF (i.e., dueling) across all tasks, including with noisy or weak feedback.

2 Related Work

Fine-tuning LLMs from Human Preferences. Training language models (LLMs) to
optimize human preferences has led to significant breakthroughs in several LLMs (OpenAI,
2023; Touvron et al., 2023a; Team et al., 2023). The most popular method for fine-tuning
models with human preferences is reinforcement learning from human feedback (RLHF)
(Ouyang et al., 2022; Ziegler et al., 2019). Although RLHF is a very effective paradigm for
fine-tuning LLMs, training models with RL can be difficult due to reinforcement learning
being sensitive to hyperparameter tuning and reward hacking issues (Skalse et al., 2022; Ng
et al., 1999). Several ideas have been proposed to address the limitations of generic RL
algorithms when applied to preference feedback tasks (Chang et al., 2023; Wu et al., 2023).
There also have been ideas proposed that optimize human feedback without RL (Zhao et al.,
2023; Yuan et al., 2023; Rafailov et al., 2023; Liu et al., 2023). Unlike these ideas which
focus primarily on how to optimize policies based on preference feedback, we focus on the
feedback strategy itself. Moreover, it has been demonstrated that LLMs can improve their
generation by leveraging language feedback (Scheurer et al., 2023; Chen et al., 2023; Campos
and Shern, 2022), however these works focus on incorporating natural language instructive
feedback (such as ”this is wrong because...”), rather than implicitly collected improvements.

Online Learning from Preference Feedback. Comparison feedback is often used
to provide human feedback in settings with complex objectives where deciding which of
two options is easy while providing real-number reward values is hard, such as in assigning
relevance scores to documents, or specifying behaviors in simulated robotics (Christiano

2



Coactive Learning for LLMs

et al., 2023). The most common setting is dueling bandits (Yue et al., 2009), where the
algorithm presents two arms and the user provides a preference between the two. Dueling
bandits algorithms have be extended to continuous, contextual and non-linear problems (e.g.,
Yue and Joachims, 2009; Ailon et al., 2014; Saha et al., 2021). In contrast to dueling bandits,
coactive learning is trained by interpreting the user responses as examples of improvements
to the action taken by the system (Shivaswamy and Joachims, 2015), and has been found
effective in applications ranging from robotics to search engines (e.g., Jain et al., 2013;
Raman et al., 2013). A key theoretical advantage is that coactive learning harvests guided
exploration from the user, while dueling bandits need to explore themselves. This provides
coactive learning with substantially better regret rates than dueling bandits (Shivaswamy
and Joachims, 2015), matching the regret rates of learning algorithms that require the user
provided gold-standard labels y∗.

3 Coactive Learning for LLMs

Coactive learning is a model of interaction between a learner and a human user where
both parties work towards the goal of producing a policy that maximizes the user’s reward
function. While prior work has developed algorithms for coactive learning for linear models
(Shivaswamy and Joachims, 2015), this paper develops a coactive learning approach for
training LLMs. In the context of LLMs, coactive learning arises as a natural form of
interaction in settings where the LLM policy drafts a piece of text yt given a prompt xt,
and the user edits yt to create an improved text ȳt. In making these edits, we assume that
the user is (on average) improving the text with respect to some reward function R∗ known
only to the user. However, the user does not articulate cardinal rewards R∗(xt, yt), and the
only information we receive from the user is the improved response ȳt:

R∗(xt, ȳt) > R∗(xt, yt).

Importantly, the improved response ȳt does not need to be the optimal “gold-standard”
response y∗,

y∗t = argmax
y∈T

R∗(xt, y).

This models the process that users may fix some errors in the text yt provided by the LLM,
but that the users are unlikely to completely rewrite the text to produce the optimal y∗.

Over a sequence of time steps t from 1 to T , the coactive learning algorithm aims to
learn a policy that selects better and better actions yt based on the user feedback it has
received. In particular, at each timestep t the algorithm can field an updated policy πt to
select the action yt. The goal of coactive learning is to produce a sequence of policy updates
π1, ..., πT that has low regret of the following form.

Regret(T ) =
1

T

T∑
t=1

R∗(xt, y
∗
t )−R∗(xt, yt) (1)

This regret compares the reward of the action yt chosen by policy πt against the reward of
the optimal action y∗t at every timestep t. Note that this is a strong form of regret, where
we compare against the action y∗t with optimal reward even though our policy class may not
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contain a policy that returns this action, and even though we never observe any cardinal
feedback on the value of R∗(x, y). Nevertheless, we will see that we can bound this regret.

While coactive learning generates a sequence of preference examples (xt, ȳt ≻ yt), note
that the process of generating these preferences is different from typical RLHF training.
In particular, in typical RLHF training both items to be compared are fixed or sampled
online from the current policy, which results in a Dueling Bandits setting (Yue et al., 2009;
Yue and Joachims, 2009). In coactive learning only yt is chosen by the policy and ȳt is
supplied by the user. This implicitly allows the user to guide exploration, unlike in the
Dueling Bandits setting where exploration is random. We will see in the following that the
preferences produced by coactive learning can be far more informative than preferences
produced by dueling bandits. The first step is to define a measure of feedback quality in
coactive learning.

3.1 Quantifying Coactive Feedback Quality

We can quantify feedback quality by how much improvement ȳ provides over y in terms of
R∗, relative to the maximum y∗. In the simplest case, we say that human feedback is strictly
α-informative when the following inequality is satisfied (Shivaswamy and Joachims, 2015):

R∗(xt, yt)−R∗(xt, yt) ≥ α (R∗(xt, y
∗
t )−R∗(xt, yt))

In the above inequality, α ∈ (0, 1] is an unknown parameter, but we will see that knowledge of
α is not needed to run the learning algorithm. Feedback is such that the reward of yt is higher
than that of yt by a fraction α of the maximum possible reward gain R (xt, y

∗
t )− R (xt, yt).

The term on the right hand side in the above inequality ensures that human feedback yt is not
only better than yt, but also better by a margin α (R∗(xt, y

∗
t )−R∗(xt, yt)). Shivaswamy and

Joachims (2015) provide regret bounds for the weaker condition of α-informative feedback
with slack variables ξt.

R∗(xt, ȳt)−R∗(xt, yt) ≥ α (R∗(xt, y
∗
t )−R∗(xt, yt))− ξt

This definition allows us to model feedback that is noisy, where the ξt capture that some of
preferences may not be α-informative or even point in the wrong direction.

3.2 CoRLL Algorithm for Coactive RLHF

In the following we propose CoRLL, which is the first learning algorithm for training LLMs
based on coactive feedback. The full derivation is given in the Appendix B, and it is based on
a new theoretical results (see Appendix B.1) that bounds the coactive regret from equation 1
in terms of the cumulative loss of a pairwise preference learner. In Appendix B.2 we show
that this pairwise preference learner can be implemented via DPO (Rafailov et al., 2023),
which results in the CoRLL algorithm as detailed in Algorithm 1.

CoRLL starts with an initial policy π1 that gets updated in each iteration, and a reference
policy π0 for DPO regularization. In each iteration t, CoRLL receives a prompt xt from the
user and responds with an answer yt. Ideally, yt is the mode of the current policy πt, and
we approximate this mode via the Monte Carlo sampling in line 5. The user responds to yt
with ȳt, which we use to update the policy πt based on the preference ȳt ≻ yt via a single
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Algorithm 1 CoRLL Algorithm for Coactive RLHF

1: Input: initial policy π1, reference policy π0, number of rounds T
2: D1 = ∅
3: for t ∈ [1..T ] do
4: Receive prompt xt
5: Sample y1...yk ∼ πt(·|xt) and generate response yt = argmaxy∈{y1,...,yk}Rπt(xt, y)
6: Observe improved feedback ȳt
7: Add preference Dt+1 = Dt ∪ {(xt, yt, ȳt, 1)}
8: Update policy πt+1 = DPO(Dt, πt, π0)
9: end for

return πT+1

step of DPO. For efficiency reasons, we typically collect N preferences before executing a
batch of DPO updates.

Beyond the theoretical justification in Appendix B, CoRLL is intuitively appealing. In
particular, it always “exploits” and predicts the mode yt of the current policy πt. For
“exploration” the CoRLL relies on the human user, who is arguably much better at finding
improved ȳ than the random exploration in dueling bandits. This means that in each iteration
CoRLL gathers a highly informative preference that it can use for updates. Note that it
is easy to construct even simple linear learning setting where dueling bandit exploration
slows down linearly with the number of possible y, while the regret of coactive learning is
not affected by either this quantity or the number of model parameters (Shivaswamy and
Joachims, 2015).

4 Experiments

We evaluate the performance of CoRLL on a variety of text generation tasks. First, we
demonstrate that coactive feedback is effective for large and complex tasks with experiments
on the Reddit TL;DR Summarization task (Völske et al., 2017) and the Antropic Helpful &
Harmless Assistant task (Bai et al., 2022). We then explored the behavior of CoRLL for
more detailed ablation experiments on the smaller IMDB Sentiment Generation Maas et al.
(2011) task.

4.1 Generating Coactive Feedback

Interactively generating coactive feedback from humans would be too expensive for our
experiments. We thus generate coactive feedback from an LLM that we call the expert
policy π∗ for the respective task. This expert policy π∗ is trained using DPO with β = 0.1
using the training data provided for the respective task.

Reward R∗. Training the expert via DPO implies that the expert policy π∗ optimizes the
DPO reward R∗

π(x, y) = β log π∗(y|x)− β log π0(y|x) + β logZ(x). We thus use R∗(x, y) =
β log π∗(y|x) − β log π0(y|x) as our reward function, since Z(x) is constant when making
comparisons between different responses to the same prompt x. We use this R∗(x, y) for
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(a) Reward of y (b) Mislabeling Rate

Reddit TL;DR Summarization task.

(c) Reward of y (d) Mislabeling Rate

Helpful and Harmless Assistant task.

Figure 1: Reward and mislabeling rate in 7B+ parameter experiments.

both producing feedback and evaluating the test performance of CoRLL. Note, however,
that CoRLL never observes any cardinal values of R∗(x, y).

Producing Coactive Feedback ȳ. To produce coactive feedback ȳ in response to a given
y, we use the following strategy. We first sample l candidate responses ȳ1...ȳl ∼ π∗(y|x)
from the expert. We then sort these candidate ȳi by their true reward R∗(x, ȳi) and select
ȳ to be the first ȳi with reward greater than the reward R∗(x, y) of y. In other words, we
return the minimally informative coactive feedback. In Section 4.4 we vary the strength of
the feedback by selecting ȳi higher up the list.

Feedback Noise. In some cases, none of the yi has a reward larger than that of y. This
allows us to simulate noisy feedback by returning the yi with the largest R∗(x, yi) as coactive
feedback ȳ, even though we have that R∗(x, ȳ) < R∗(x, y) and the preference ȳ ≻ y points
into the wrong direction. We also report learning runs where we avoid this noise by dropping
these contexts from the experiment. We call this the noise-free setting.

Generation. We always randomly generate from policies with temperature T = 1, and
only sample from amongst the most probable 50 tokens at each timestep (Fan et al., 2018).

4.2 Dueling RLHF Baseline

We use the conventional dueling feedback as a baseline. Our dueling feedback procedure is
to randomly generate two responses y and y′ for each prompt x from the current policy πt,
and then simulate a human labeler by generating the preference according to the expert
rewards R∗(x, y) and R∗(x, y′). Note that this feedback is noise free. We use the same DPO
pairwise preference learner for dueling as for CoRLL to avoid confounding due.

4.3 7B+ Parameter Experiments

We first present results on Reddit TL;DR and Anthropic’s Helpful and Harmless Assistant
task with two larger models to evaluate whether CoRLL is effective at learning from weak
coactive feedback, and we compare CoRLL with both noisy and noise-free feedback against
Dueling RLHF. Additional information about the datasets, tasks, and hyperparameters are
available in A.1, A.2, and A.3.
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(a) Reward of y

Best-of-k, α = 0.6.

(b) Reward of y (c) Empirical α

Varying feedback quality.

(d) Reward of y (e) Mislabel Rate

Varying feedback noise, α = 0.6.

Figure 2: Experiments on the IMDB Setting. Coactive in purple-orange, dueling in blue.

Is CoRLL able to learn from coactive feedback? We first consider the case of noise-
free coactive feedback in Figures 1a and 1c. For both tasks, CoRLL produces actions yt with
increasing reward R∗(xt, yt) as training progresses. The speed of learning is substantially
faster than training with dueling feedback, even though CoRLL relies entirely on implicit
feedback that is available as a byproduct of user interactions, while dueling is allowed to ask
for noise-free pairwise labelings of the sampled y and y′.

Is CoRLL robust to labeling noise? Figures 1a and 1c also contain the performance
of CoRLL when the coactive preferences are noisy as the result of our feedback generator
described in Section 4.1. The percentage of noisy preferences – those where the feedback
ȳ is actually worse than y according to R∗ – is plotted in Figures 1b and 1d. We can see
that noise rises as it gets harder to improve on y in later iterations, especially for the Reddit
TL;DR Summarization task. However, CoRLL is able to learn robustly, and its performance
is still better than dueling with noise-free feedback on both tasks.

4.4 IMDB Sentiment Generation Experiments

Our previous experiments demonstrated that coactive learning can learn effectively on
practical problems with weak and noisy feedback, and even learn faster than the conventional
dueling feedback approach. Our next experiments move to the smaller IMDB sentiment
setting in order to explore more fully how CoRLL performs with various levels of feedback
strength, feedback noise, and computational efficiency trade-offs. Experimental parameters
are explained in A.4.

How important is it to approximate the argmax in CoRLL well? In line 5 of
CoRLL in Algorithm 1 the parameter k controls how accurately we approximate the argmax
yt = argmaxy πt(y|xt) that is specified in Theorem 1. In particular, increasing k increases
the value Rπt(yt|xt) of the coactive prediction yt and thus gets closer to the desired argmax.

Figure 2a shows the performance of CoRLL for different values of k. We see a clear
benefit from increasing k, but for this task k = 3 is already sufficient. It is not surprising
that improving the argmax helps. First, even though the current πt is not perfect, a yt
with a larger πt(yt|xt) will often have a larger reward R∗(xt, yt) as well, and thus we make
better predictions if we approximate the argmax better. Second, predicting a yt with a
larger πt(yt|xt) ensures that the coactive feedback ȳt is more informative for updating πt.
In particular, it avoids that πt already correctly orders yt and ȳt, i.e. πt(yt|xt) < πt(ȳt|xt),

7
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such that ȳ does not provide strong information for improving πt. Note that the large-scale
experiments in the previous section used k = 1 due to compute limitations, but we conjecture
that larger values of k would lead to further improvements in performance.

How does CoRLL perform for different levels of feedback quality? Figure 2b
shows the learning performance of CoRLL for multiple levels of feedback quality, from just
barely informative to always returning the sample candidate that has the largest R∗. In
particular, we approximate the reward of the optimal response y∗ with the highest reward
among the 25 candidates from the expert, and then pick the lowest-scoring candidate that
is α-informative. Figure 2c plots the resulting feedback quality of the selected ȳ in terms
of their estimated α. Note that this estimate inflates the value of α, since even the best
candidate is likely to have lower reward than the true y∗ with maximum R∗.

As the plots in Figure 2b show, better feedback does lead to faster learning, but CoRLL
is able to learn effectively at all levels of feedback quality. Note that even at the lowest
feedback quality, CoRLL is still competitive with dueling, even though dueling requires
additional labeling while CoRLL uses implicit feedback that is naturally available.

How sensitive is CoRLL to noise in the preference feedback? Our final experiment
investigates the impact of noise on performance. For this experiment, we modified the
coactive feedback generation procedure by artificially injecting mislabeled preferences. In
particular, with probability ϵ we check whether any of the k = 25 candidates for ȳ generated
by the expert policy has worse reward R∗ than the current y. If this is the case, then
we select the best response which is below the policy’s reward R∗(x, y), thus generating a
mislabeled preference for CoRLL. If no candidate was below the threshold, we return the
worst response.

Figure 2d shows the learning performance of CoRLL for different levels of noise, and
Figure 2e shows how the fraction of mislabeled preferences increases as learning progresses.
The results show that CoRLL is robust to label noise, even if it reaches up to ∼18% mislabeled
preferences. This makes CoRLL a promising candidate for real-world applications, where
feedback quality is hard to control.

5 Conclusion and Future Work

This paper introduced coactive learning as new mechanism for training LLMs. Coactive
learning takes advantage of implicit feedback that users provide through their system
interactions without the need for additional human labeling, which provides a viable path
for personalizing LLMs. We derive the first algorithm for coactive training of LLM, called
CoRLL, and provide the theoretical basis for the design choices it makes. Beyond this
theoretical characterization, we also provide empirical evidence across three benchmarks
that CoRLL can be effective at training LLM even with week preference feedback, and often
learns faster than conventional RLHF training with explicitly labeled preference feedback.

This work opens up a wide range of new research directions for training LLMs from
implicit feedback. These include many other design choices for better approximating
the argmax and for designing the pairwise preference learner, which may lead to further
performance improvements. Furthermore, it is interesting to incorporate other forms of
feedback into the coactive learning framework, like a combination of coactive and dueling
feedback.

8



Coactive Learning for LLMs

Broader Impact Statement

Aligning LLMs to human preferences has been at the core of many of the practices which
make LLMs more usable, such as instruction following and RLHF. This paper makes progress
in LLM personalization in two main ways. Firstly, it shows that human edit data can be
a valuable source of feedback that does not incur the additional labeling effort of dueling
feedback. Secondly, it shows how passively collected edit data can improve performance in
writing assistance tasks.

Increasing the value of data and data labeling can have a variety of impacts (Tucker et al.,
2020). For example, increasing the value of passively collected data makes it more valuable
for model developers to have users, and likely provides an advantage for large companies
with more users and AI systems. Additionally, increased data collection can have negative
privacy impacts, and if coactive feedback were to be collected it is important to make sure
that users understand that their data may be used for personalization. Large language
models trained using the standard negative log likelihood objective can memorize and leak
training data Carlini et al. (2021), and interesting future work could analyze whether or not
this also occurs with DPO and other RLHF algorithms.

More data-efficient personalization on the other hand can make it easier for developers of
AI systems to customize AI systems to increase their value for specific users, making it easier
to improve the performance of a system for that particular user in a way which is unlikely
to be particularly helpful for the censorship-enhancing properties of better alignment (see
section 7.3 of (Bai et al., 2022)). Of course, if such personalization is used to remove safety
features (Jain et al., 2023) then it can increase the risks of broadly deployed LLMs. We
encourage companies using this method to implement procedures protecting against misuse.
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Appendix A. Experimental Appendix

A.1 7B+ Parameter Experiment Hyperparameters

In the 7B+ experiments, wherever DPO is used we follow Rafailov et al. (2023) and set the
learning rate to 5e-7, use Adam for optimization (Kingma and Ba, 2017), and warm up the
learning rate from 0 to its full value over the first 10% of the data. Additionally, all learned
policies are LoRA adapters (Hu et al., 2022) with r = 8, α = 64, and dropout 0.1 in order
to fit the reference, expert, and learned policies on a single GPU. We sample l = 5 from the
expert policy to generate coactive feedback, and we sample k = 1 from the learned policy πt
to approximate the argmax in CoRLL.

A.2 Summarization Task

The first task is the Reddit TL;DR summarization task (Völske et al., 2017). In this
task a forum post from Reddit is given as a prompt x, and a summary y of the post
is provided as the response. We trained the expert using DPO on an altered dataset
which created a preference dataset by sampling summaries from multiple models (Stiennon
et al., 2022), resulting in an average reward of R∗ ≈ 0.444. The final dataset consists
of 123k high-quality posts and preferences after filtering, retrieved from Huggingface as
openai/summarize_from_feedback’s comparisons dataset. We truncated all prompts
(including “ TL;DR: ”) to 462 tokens, and responses to 50 tokens. We used the 7B Llama
2 (Touvron et al., 2023b) model meta/llama-2-7b-hf as the initial policy and reference
policy for this task. Reported rewards are based on 400 held-out test prompts.

A.3 Helpfulness Task

The second task is the Helpful and Harmless Assistant (Bai et al., 2022), which consists
of dialogues between a human and an automated assistant. We again trained the expert
using DPO, resulting in an average reward of R∗ ≈ 0.158. We retrieved the dataset from
Huggingface as anthropic/hh-rlhf) by focusing only on the dialogues which were evaluated
for helpfulness, then filtering the dataset so that all prompts (the shared portion between
the chosen and rejected dialogues) had 300 or fewer tokens and all responses had 100 or
fewer tokens, resulting in roughly 55k dialogues. We used the 13B Llama 2 (Touvron et al.,
2023b) model meta/llama-2-13b-hf as the initial policy and reference policy for this task.
Reported rewards are based on 320 held-out test prompts.

A.4 IMDB Hyperparameters and Setup

We perform these ablation experiments on the IMDB Sentiment Generation task (Maas et al.,
2011), which consists of generating a positive sentiment movie review y given a prompt x that
is a partial movie review. We train the expert on the standard dataset using DPO following
the setup in (Rafailov et al., 2023) and generated comparisons from a model πref (774M
parameter gpt2-large model (Radford et al., 2019) retrieved from Huggingface) using the
first 64 tokens as a prompt x and generating 64 more as the response y. However, we found
that comparing using only a sentiment classifier resulted in an expert which would append
the same text to all prompts, so we added a preference for fluency by scoring according
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to R∗(x, y) = log Pr(+ve sentiment|x, y) + 3 log πref(y|x), where the sentiment classifier was
lvwerra/distilbert-imdb from Huggingface.

In order to decrease the computational requirements of the experiments to enable multiple
trials and ablations, this experiment uses the 124M parameter gpt2 model (Radford et al.,
2019) retrieved from Huggingface as the reference policy π0, and trained another copy for
coactive learning. Expert and policy training used a learning rate of 1e-5, and a batch size
of 64. If not mentioned otherwise, we approximate the argmax with l = 9 samples, draw
k = 25 samples to generate coactive feedback with α = 0.6 as described below, and we use
noisy feedback.

Appendix B. Theoretical Appendix

B.1 Regret Bound for Coactive Learning

Using the definition of noisy α-informative feedback we can provide a theoretical characteri-
zation of how effectively coactive learning can learn a good policy. The resulting bound on
the coactive learning regret from equation 1 informs the design of the CoRLL algorithm we
develop in Section 3.2.

The coactive regret bound we derive is a reduction to a pairwise classification learner
Apair(D) that ingests a number of training preferences Dt = ((x1, y1, y

′
1, p1), ..., (xt, yt, y

′
t, pt)

and outputs a scoring function ht : X × Y −→ ℜ. xt is a context and yt and y′t are two
responses. pt ∈ {+1,−1} is the feedback of whether or not y′t is preferred over yt. The loss
used to evaluate this learner is

∆(x, y, y′|h)=

{
R∗(x, y′)−R∗(x, y), if h(x, y) ≥ h(x, y′)

R∗(x, y)−R∗(x, y′), otherwise
(2)

Note that this loss is low when y and y′ have similar reward, even if classifier h cannot
accurately rank them. If we have an algorithm Apair that for given sequence of (xt, yt, y

′
t, pt)

produces a sequence of ht that has sublinear cumulative loss

∆̄(T |Apair) =

T∑
t=1

∆(xt, yt, y
′
t|ht), (3)

then this translates into the following bound on the regret of coactive learning.

Theorem 1 (Coactive Learning Regret Bound). The coactive learning algorithm that always
plays the policy πt equal to

yt = argmax
y

ht(xt, y)

and receives noisy α-informative feedback ȳt has regret bounded by

1

T

T∑
t=1

R∗(xt, y
∗
t )−R∗(xt, yt) ≤

1

αT

T∑
t=1

ξt +
∆̄(T |Apair)

αT
,

if h1, ..., hT is produced by a pairwise preference learner Apair with cumulative loss ∆̄(T |Apair)
on the sequence of pairwise preferences (x1, ȳ1, y1, 1), ..., (xT , yT , ȳT , 1).
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Proof We bound the coactive learning regret as follows:

1

T

T∑
t=1

R∗(xt, y
∗
t )−R∗(xt, yt) ≤

1

αT

T∑
t=1

(R∗(xt, ȳt)−R∗(xt, yt)) +
1

αT

T∑
t=1

ξt (4)

=
1

αT

T∑
t=1

∆(xt, yt, ȳt|ht) +
1

αT

T∑
t=1

ξt (5)

=
1

αT
∆̄(T |Apair) +

1

αT

T∑
t=1

ξt (6)

The first inequality holds due to the definition of noisy α-informative feedback. The next
equality holds since ht(xt, yt) ≥ ht(xt, ȳt), because yt is chosen to maximize ht. The final
equality corresponds to the definition of ∆̄(T |Apair).

This theorem generalizes the results of Shivaswamy and Joachims (2015) to general
pairwise preference learners. We recover the results of Shivaswamy and Joachims (2015)
for linear learners by recognizing that ∆̄(T |Apair) ≤ 2R||w∗||

√
T for a linear perceptron

learner Apair, where R∗(x, y) = w∗ · ϕ(x, y) is the true reward function. This bound for
linear learners illustrates that coactive learning can be much faster than dueling bandit
learning. Note that the coactive regret bound does not depend on the number of actions
or the number of parameters, while it is easy to construct examples where linear dueling
bandits need excessive amounts of exploration in settings where both are large – as is the case
in LLMs. While we cannot expect a similar closed-form bound for complex deep-learning
models, Theorem 1 tells us what matters in the design of a pairwise classification learner,
and we will use it as the theoretical basis of our coactive learning algorithm for LLMs.

B.2 Derivation of CoRLL Algorithm

The theoretical analysis and discussion from the previous sections motivates a coactive
learning algorithm for general policy learning that is outlined in Algorithm 2.

Algorithm 2 Generic Coactive Learning Algorithm

1: Input: initial policy π1, number of rounds T
2: D1 = ∅
3: for t ∈ [1..T ] do
4: Receive prompt xt
5: Generate response yt = argmaxy ht(xt, y)
6: Observe improved feedback ȳt
7: Add preference Dt+1 = Dt ∪ {(xt, yt, ȳ1, 1)}
8: Update model ht+1 ← Apair(Dt+1)
9: end for

return πT+1(x) ≡ argmaxy hT+1(x, y)
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At each time step t, the algorithm receives a prompt xt, generates a response yt =
argmaxy ht(xt, y), observes improved feedback ȳt, then adds the triple (xt, yt, ȳt, 1) to dataset
Dt+1. Finally, the algorithm uses a pairwise preference learner Apair(Dt+1) to update the
scoring function to ht+1.

However, naively implementing this algorithm for LLMs faces a number of challenges
which require careful design decisions. First, we need to connect the observed preferences
to the underlying reward in a way that is sensible for LLMs. Second, we need to design
a pairwise preference learner Apair that can be used for updating the LLM. And, third,
computing yt = argmaxy ht(xt, y) is intractable in LLMs given the exponentially-sized space
of y, and we need to have an efficient approximation. We elaborate on our design choices in
the following, which leads to our proposed Coactive RL algorithm for LLM – named CoRLL
– as specified in Algorithm 1.

B.3 Pairwise Preference Model

Theorem 1 shows how the cumulative loss in equation 2 can be used to bound the coactive
learning regret. Note that this loss contains the unknown cardinal rewards R∗(x, y′) and
R∗(x, y), and that the value of the loss depends on their difference. We thus need to connect
the difference in reward to the preference label p we observe as part of our training data
(x, y, y′, p). We propose to make this connection via the Bradley-Terry model (Bradley and
Terry, 1952), where the probability of P (p = 1|x) (i.e., y′ ≻ y) given prompt x is given by

P (p = 1|x) = σ
(
R∗(x, y′)−R∗(x, y)

)
. (7)

σ is the sigmoid function σ(x) = 1/(1+exp(−x)). A key feature of this model is its connection
to how we typically represent probabilistic policies π(y|x) in an LLM. In particular, the
standard choice of model is to use a softmax at the output layer to transform the scores
h(x, y) of the network into probabilities.

π(y|x) = exp(h(x, y))∑
y′ exp(h(x, y

′))
(8)

Note that this model is identical to the Bradley-Terry model in equation 7, if we restrict
the policy to any pair of actions y and y′. In particular, the relative probability of policy π
selecting y over y′ is equal to the sigmoid of their differences in h.

π(y′|x)
π(y|x) + π(y′|x)

= σ
(
h(x, y′)− h(x, y)

)
This means that we can train h(x, y) to approximate the true reward R∗(x, y) up to an
additive constant by fitting h to the pairwise preferences under the Bradley-Terry model.
Note that this is sufficient, since our loss in equation 2 only considers differences in reward,
which are invariant under additive translation.

B.4 Pairwise Preference Learner Apair

The model developed in the previous section links the preference feedback to the underlying
score function h(x, y) and the policy π(y|x) it implies. This connection suggests an obvious
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choice for the pairwise preference learner. In the simplest case, we can use maximum
likelihood estimation to learn h and the corresponding softmax policy π via

L(h;D) =
∑

(xt,yt,y′t,pt)∈D

log σ
(
pt(h(xt, y

′
t)− h(x, yt))

)
. (9)

If there is no model misspecification and the data is sufficient for h(x, y) to identify R∗(x, y),
the resulting policy π(y|x) over all actions y will reflect the true differences in reward. But
even if the learned h(x, y) is imperfect and the differences h(x, y′)−h(x, y) are only accurate
up to a precision ϵ,

|h(x, y′)− h(x, y)− (R∗(x, y′)−R∗(x, y))| ≤ ϵ, (10)

the increase in the loss from equation 2 is bounded by

∆(x, y, y′|h)−∆(x, y, y′|R∗) ≤ ϵ (11)

for this h. This verifies that the pairwise classification approach is a promising strategy
for minimizing the cumulative loss ∆̄(T |Apair), which we in turn identified as a sufficient
condition for effective coactive learning.

However, optimizing the likelihood in equation 9 directly is known to lead to language
models π that are degenerate in the fluency and quality of language they produce. To
counteract this degeneration, the standard procedure is to regularize against a base LLM π0.

max
π

Ex∼D,y∼π [R
∗(x, y)]− βDKL(π||π0)

Direct Preference Optimization (DPO) (Rafailov et al., 2023), which we will employ in
CoRLL, exploits that the optimal solution of this optimization problem is

π(y|x) = 1

Z(x)
π0(y|x) exp

(
1

β
R∗(x, y)

)
,

where Z(x) is the function such that
∑

y∈T π(y|x) = 1. Conversely, any policy π is implicitly
optimal for the reward

Rπ(x, y) = β log
π(y|x)
π0(y|x)

+ β logZ(x).

We thus substitute Rπ(x, y) into the maximimum likelihood objective from equation 9 to
arrive at the objective we optimize in CoRLL.

L(π;D) =
∑

(xt,yt,y′t,pt)∈D

log σ

(
pt(log

π(xt, y
′
t)

π0(xt, y′t)
− log

π(xt, yt)

π0(xt, yt)
)

)

To optimize this objective in Algorithm 1, we perform one gradient step on a batch1 of N
(typically 64) preferences using Adam (Kingma and Ba, 2017).

1. For efficiency reasons, we sample responses for as many prompts as our GPUs will allow, add them to a
buffer, and then whenever the buffer has N preferences we do the gradient step for DPO. This means
that the preferences in a gradient step may be collected from slightly different policies.
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B.5 Approximating the Argmax

LLMs have an response space which is exponential in the length of generation, making
the computation of yt = argmaxy ht(xt, y) in the generic coactive learning algorithm 2
intractable. To handle this intractability in CoRLL, we approximate the argmax by sampling
k times from the current policy πt and then picking the action that has the highest Rπ under
the current policy. This can be seen in line 5 of Algorithm 1.

We argue that this is a reasonable substitute, since we are training the policy via DPO
to select y with large reward. In particular, if any two actions y and y′ differ in in their
reward Rπ by some δ = Rπ(x, y)−Rπ(x, y

′), the policy π is exponentially in δ more likely
to sample y (relative to the reference policy π0)

log
π(y|x)/π0(y|x)
π(y′|x)/π0(y′|x)

= δ/β. (12)

This means that even just sampling from π is likely to produce actions that are close to
argmaxy Rπ(x, y).

Furthermore, even if the response yt is not equal to the argmax, Theorem 1 still holds
for the sampled yt as long as ht(xt, yt) > ht(xt, ȳt). And even if that is violated, it merely
means the we do not get informative feedback, since the feedback ȳ ≻ y already aligns with
the current ht(xt, ȳt) > ht(xt, yt) and thus does not uncover inaccuracies in ht. We will
evaluate this empirically in Section 4.4.

This completely specifies CoRLL as summarized in Algorithm 1.
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