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Abstract

Polysemanticity is pervasive in language models and remains a major challenge
for interpretation and model behavioral control. Leveraging sparse autoencoders
(SAEs), we map the polysemantic topology of two small models (Pythia-70M
and GPT-2-Small) to identify SAE feature pairs that are semantically unrelated
yet exhibit interference within models. We intervene at four loci (prompt, token,
feature, neuron) and measure induced shifts in the next-token prediction distribu-
tion, uncovering polysemantic structures that expose a systematic vulnerability in
these models. Critically, interventions distilled from counterintuitive interference
patterns shared by two small models transfer reliably to larger instruction-tuned
models (Llama-3.1-8B/70B-Instruct and Gemma-2-9B-Instruct), yielding
predictable behavioral shifts without access to model internals. These findings
challenge the view that polysemanticity is purely stochastic, demonstrating in-
stead that interference structures generalize across scale and family. Such gener-
alization suggests a convergent, higher-order organization of internal representa-
tions, which is only weakly aligned with human intuition and structured by latent
regularities, offering new possibilities for both black-box control and theoretical
insight into human and artificial cognition. Code and data are available here.

1 Introduction

Polysemanticity refers to the phenomenon in which individual neurons or groups of neurons in neural
networks often encode a greater number of distinct features or concepts than the number of neurons
involved. This property becomes increasingly prevalent as models scale and has been shown to
enhance learning performance (Wang et al., 2024; Marshall & Kirchner, 2024; Oikarinen & Weng,
2024b). Anthropic’s work on superposition builds on prior insights, showing that large transformer
models encode more features than neurons by using linear combinations of activations. This mech-
anism sacrifices monosemanticity but significantly improves model capability (Elhage et al., 2022).
Mathematical analyses reveal that polysemantic neurons enable networks to represent exponentially
more features compared to monosemantic approaches (Elhage et al., 2022).

However, this representational efficiency comes with notable trade-offs. Most significantly, it com-
plicates model interpretability, as entangled representations obscure how human-understandable con-
cepts are encoded within the model’s internal structure. One mechanistic approach to address this
challenge is the use of sparse autoencoders (SAEs), which aim to disentangle superimposed features
by learning sparse, higher-dimensional representations of model activations. SAEs enable the ex-
traction of interpretable, monosemantic features, where each SAE neuron ideally corresponds to a
single concept (Bricken et al., 2023; Templeton et al., 2024)2. Recent work has shown that SAE-
derived features exhibit a degree of universality across different LLMs (Lan et al., 2024), suggesting
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2Nevertheless, several studies have also documented limitations of SAEs (see Appendix N).
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the existence of fundamental patterns in how neural networks encode meaning. This consistency
hints at the emergence of shared semantic topologies that persist across architectures and training
regimes, raising profound questions about whether these patterns are merely computational artifacts
or reflections of latent semantic regularities (Huh et al., 2024). Except for SAEs, a broader range of
interpretability techniques is emerging at the same time (Chang et al., 2025; Dunefsky et al., 2024).

The second trade-off, which is largely overlooked in current literature, involves systematic vulnera-
bility stemming from polysemantic structures in language models. In Anthropic’s toy experiments,
they note that stronger superposition can make models more vulnerable to adversarial attacks (El-
hage et al., 2022). Beyond this, to our knowledge, there is very little existing empirical research that
directly addresses the safety implications of polysemanticity in language models. In contrast, the
vision model domain has a well-established body of work on various forms of adversarial model con-
trol that exploit polysemantic representations (Goh et al., 2021; Oikarinen & Weng, 2024a; Geirhos
et al., 2023; Dreyer et al., 2024; Huang et al., 2022). Bereska and Gavves, in their review of mech-
anistic interpretability for AI safety, highlight polysemanticity as a key challenge in building safer
LLMs (Bereska & Gavves, 2024). To bridge this gap, we focus on polysemantic structures in real-
world LLMs, particularly those that persist across models, and explore targeted interventions to
better understand their associated risks.
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Figure 1: Conceptual illustration. Two vulnerable polysemantic structures are described: (1) fea-
tures are distinct in M (e.g., E and G) can still interfere in A and (2) features are often unevenly
distributed across neurons (i.e., neuron A encodes more features than B and C).

Before explaining the details, it is necessary to distinguish three nested representational domains:

Human Symbolic Manifold (M): The latent first-order symbolic domain that encodes human-
intuitive semantics independent of contextual usage.

Model Activation Space (Aℓ): The d-dimensional vector space spanned by the neurons in layer ℓ
of the language model; it partially reflects M.

Sparse Feature Basis (Fℓ): The k-dimensional, typically overcomplete basis (k ≫ d) extracted
from Aℓ by a SAE.

As illustrated in Figure 1, orthogonality in the activation space Aℓ does not persist after projection
into the symbolic manifold M. Consequently, two features from Fℓ that appear unrelated in M
(i.e., anchoring semantically to distinct meanings under human interpretation) can still interfere sub-
stantially in Aℓ. This interference is also often unevenly distributed across neurons. Building on
these two structural characteristics, we design feature, token, prompt, and neuron levels of interven-
tion to investigate: (1) whether model’s expression on a target is sensitive to features and tokens
that are semantically unrelated but interfering, and (2) whether model vulnerability correlates with
neuron polysemanticity, defined as the number of distinct features a neuron encodes. In this work,
model vulnerability to interventions is measured by the shift in the next-token prediction distribution
following the intervention.
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Our findings are four-fold. First, we present experimental evidence that interventions leveraging
polysemantic structures of LLMs can effectively manipulate model outputs. Specifically, by tar-
geting features and tokens—via steering vector techniques—and prompts—via prompt injection—
that are not semantically aligned with the intended target but interfere with it, we can reliably
induce the model to express the desired semantics. Second, we identify the existence of cross-
model persistent polysemantic structures. By collecting shared interference features from both
Pythia-70M and GPT-2-Small and applying them to steer Llama-3.1-8B/70B-Instruct and
Gemma-2-9B-Instruct, we still observe substantial intervention effectiveness, revealing a con-
sistent architecture of meaning that transcends specific implementations. Third, we explore those
counterintuitive yet stable interference patterns that replicate across models. Post-hoc annotation of
potential higher-order semantic relations accounts for only a minority of cases, indicating that the
models learn robust regularities largely opaque to human interpretation. Fourth, we analyze interven-
tion at the neuron level and find that highly polysemantic neurons are more vulnerable: modifying
their activation leads to greater semantic shifts in model output. However, for “super-neurons” (i.e.,
activated by over 500 features) amplification strongly alters model behavior, while deactivation has
a notably reduced effect, suggesting they may serve as critical junctions in the semantic architecture.

2 Preliminaries and Methods

2.1 Sparse Feature Extraction with SAEs

Our initial exploration of polysemantic structures draws on the pre-trained SAEs provided by Neu-
ronpedia3. We focus on GPT-2-Small and Pythia-70M, the two models for which Neuronpedia
supplies SAEs for most important sub-modules in every layer. The dimensionality of all the provided
SAEs is 32, 768, under which explicit features are extracted. For clarity, in subsequent sections, the
direction of a SAE feature is defined as its projection into Aℓ. The interference scale between two
SAE features is quantified by the cosine similarity of their projected directions in Aℓ; their surface-
level semantic resemblance is measured by the cosine similarity of their projections into M instead.

2.2 Distinct Feature Identification with Agglomerative Clustering

SAEs disentangle polysemantic neurons into monosemantic sparse features. These features, how-
ever, are not always decomposed at a consistent semantic level (Bricken et al., 2023; Foote, 2024).
For example, a neuron associated with dog-related concepts might be divided into features repre-
senting different dog breeds, while another neuron encoding both cat and car concepts might be
split into features representing cat and car. In such cases, the resulting monosemantic features differ
in granularity. To mitigate this inconsistency, we employ agglomerative clustering to align feature
representations to a consistent semantic level, facilitating both (1) the quantification of neuron poly-
semanticity and (2) the isolation of feature groups exhibiting low similarity in their surface meanings
for subsequent analysis.

To identify distinct, higher-level features, we compute the semantic similarity between pairs of SAE
features using their auto-interpretation glosses generated by GPT-4o-mini (Caden Juang et al.,
2024)4 together with embeddings of the feature glosses from text-embedding-3-large. Prior
work offers different heuristics for identifying semantically distinct SAE features. Foote et al. pro-
pose a cutoff of 0.5 for distinguishing semantically distinct feature clusters (Foote, 2024), while
another work on analyzing text-embedding-3-large shows that unrelated concepts typically fall
within the 0.05-0.30 cosine similarity range (Zuchen et al., 2025). Drawing on these insights, we
conduct agglomerative clustering in each SAE layer using four increasingly strict similarity cutoffs
(i.e., 0.40, 0.30, 0.20, and 0.15) to assess whether our results are robust across varying thresholds of
semantic distinctness, while retaining sufficient feature density for experimentation. Figure 2 shows
an example of the clustering results for the 5th MLP layer of Pythia-70M under the similarity cut-
off of 0.4. Detailed descriptive statistics on (1) the distribution of cosine similarities among SAE

3https://www.neuronpedia.org/
4Because different models can yield divergent auto-interpretations of the same feature, we conduct a cross-

validation with DeepSeek-V3 on a single SAE layer of Pythia-70M, which reveals both strong concordance
between the interpretations produced by GPT-4o-mini and DeepSeek-V3. Replicating experiments with
DeepSeek-V3 feature glosses further confirmed the consistency of the principal findings. See Appendix I.
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features, (2) the distribution of their interference values, and (3) the correlation between interference
scale and cosine similarity are provided in Appendix E.

Cluster A

CODING

(30790) programming instructions and code-related 
queries
(9395) computer programming syntax and commands
(21955) keywords related to programming constructs…

LAW

Cluster B

(22710) contents related to legal actions and proceedings
(31998) terms related to legal jurisdictions…
(905) topics related to lawsuits and legal actions

BIOCHEMISTRY

HEALTH

LICENSE

Cluster C

(9280) terms related to medical symptoms and conditions…
(23104) medical conditions related to diagnostics and testing
(18087) terminology and concepts related to surgical and 
health management procedures

Cluster D

(8179) mentions of "License" in various contexts
(32158) components related to software licensing and copyright
(31425) references to software licenses and legal terms…

Cluster E

(25566) references to biological assays and testing methodology
(7809) scientific terms related to medical and biological processes…
(32492) terms related to biochemical parameters and substances 
involved in metabolic processes

Figure 2: Agglomerative clustering of SAE features trained on Pythia-70M’s 5th MLP layer
under the cosine similarity threshold of 0.4. Only the five largest feature clusters are labeled, and
the 10 largest clusters are color-coded.

2.3 Dataset Construction

To evaluate the effectiveness of polysemantic interventions in shaping next-token prediction, we
construct tailored contextual prompts for each vocabulary token. Specifically, for each token in
Pythia-70M and GPT-2-Small, we use DeepSeek-V3 to generate three incomplete sentences with
varied contexts in which the token is likely to appear next, resulting in a sentence-completion dataset
containing 150, 000 prompts for each model. More concrete considerations and details of our dataset
generation are stated in Appendix D. In a word, we conduct interventions in specific contexts to
influence the output probability of the target token associated with a SAE feature.

2.4 Evaluation Criteria

The success of a polysemantic intervention is quantified as the change in alignment between the
model’s next-token prediction distribution and a target SAE feature f ∈ Fℓ. Specifically, we assess
the similarity between the model’s output and a feature-associated token set Tf ⊂ V , defined as the
top-k (here k = 10) tokens whose embeddings are most similar to the top-activating tokens for f .

Let O, Õ ∈ ∆|V | be the model’s output distributions before and after the intervention, and let
E ∈ R|V |×d denote the token embedding matrix. Our main metric is weighted cosine similarity:

c(P, Tf ) =
∑
t∈V

P (t) ·max
t̄∈Tf

cos(Et, Et̄), (1)

where each token t ∈ V contributes its predicted probability weighted by the highest cosine simi-
larity between its embedding and those in Tf . This captures how semantically aligned the model’s
output distribution is with the target feature direction. Then, the intervention effect is:

∆c =
c(Õ, Tf )− c(O, Tf )

c(O, Tf )
. (2)
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As an alternative, we also report weighted overlap, which directly sums the output probability mass
over Tf . Formal definition and results are provided in Appendix F.

2.5 Overview of Intervention Methods

Our investigation of polysemantic interventions begins with Pythia-70M and GPT-2-Small, us-
ing three complementary approaches: feature-direction steering, token-gradient steering, and
prompt injection. We randomly select target features to be intervened5. For each selected target
feature, we sample interference features from feature clusters derived from Section 2.2—excluding
the target’s own cluster—to ensure sufficient meaning dissimilarity with the target. Interference
features are drawn from five interference intervals: [0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], and
[0.4, 1.0]. In the first two experiments, we construct steering vectors for interference features using
two methods: (1) projecting feature directions from the sparse basis Fℓ into the model’s activation
space Aℓ, and (2) computing token-gradient directions from the partial derivatives of the layer’s
activations with respect to each feature’s top-activating tokens. For each intervention, we roughly
optimize the scaling of the steering vector over the range [−20, 20], balancing intervention strength
with the need to preserve coherent model outputs (i.e., avoiding substantial disruption to the overall
output distribution). Details about the tuning strategy are elaborated in Appendix G.2

In the prompt injection setting, we prepend sampled top-activating tokens from interference features
to the input and, rather than using weighted cosine similarity, measure how frequently the target fea-
ture’s top-activating tokens appear among the model’s top-10 predictions, conditioned on varying
levels of feature interference. To evaluate cross-model transferability, we apply the two scalable in-
tervention methods (i.e., token-gradient steering and prompt-injection) to black-box, larger models
Llama-3.1-8B/70B-Instruct and Gemma-2-9B-Instruct. For these interventions, we use as
targets the interference features shared between Pythia-70M and GPT-2-Small. One might ques-
tion the practical significance of our next-token control test. While the primary aim of this study is
mechanistic, we also include a small-scale evaluation of prompt injection on the HellaSwag dataset
to assess its ability to steer model behavior in specific target-related cases without compromising
general performance. Details are explained in Appendix K.

Finally, we analyze the impact of neuron polysemanticity on model outputs in Pythia-70M and
GPT-2-Small. For each neuron, we identify strongly connected features by thresholding connection
weights at 0.2, and define its degree of polysemanticity as the number of such features. We then
suppress or amplify the activations of neurons with varying polysemanticity levels and evaluate how
the model’s output distribution shifts toward the semantics of their associated feature clusters.

3 Experiments

3.1 Exploiting SAE Feature Directions for Intervention

Our hypothesis posits that if two feature directions interfere in Aℓ, despite being nearly orthogonal
in M, then enhancing one will inevitably influence the other to some degree. If true, this would im-
ply the potential to covertly manipulate the output probability of a target feature by steering with not
obviously related features. To evaluate this, we pair each target feature with interference features
sampled at varying levels of semantic dissimilarity. We vary feature irrelevance thresholds (from
0.4 to 0.15; Appendix G) to confirm that the observed pattern holds across threshold choices. Ad-
ditionally, we perform controlled regressions—accounting for feature-pair cosine similarity—under
two linear model specifications to confirm that interference effects persist independently of semantic
similarity. Figure 3 reports the results, and Table 3 in Appendix G shows particular examples.

All analyses consistently show that steering with features that are semantically dissimilar yet in-
terfering can alter the output probabilities of a target features top-activating tokens, with stronger
effects observed at higher interference levels. We also find that SAE-based interventions are gener-
ally much less effective on GPT-2-Small than on Pythia-70M, likely due to the greater depth of
the former, which may attenuate the influence of mid-layer activation changes (Fort, 2023).

5We randomly sample 480 target features from GPT-2-Small and 180 from Pythia-70M. See Appendix G
for details.
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Figure 3: Effects of intervention based on the interference SAE feature direction. (A–B) Rel-
ative change in weighted cosine similarity toward the target (∆c). Bars show the mean relative
change compared to baseline across interference levels, with lighter shades indicating stricter feature-
meaning relevancy cutoff thresholds. The x-axis denotes the degree of interference between the
target and intervention feature: Original corresponds to intervening with the target feature itself,
and Random serves as a random feature intervention baseline. Error bars denote 95% confidence
intervals. (C) Regression estimates of the effect of feature-pair interference value on intervention
success. Two regression specifications are shown: Model A regresses weighted cosine similarity af-
ter intervention (c(Õ, Tf )) on interference value, with feature-meaning similarity, baseline weighted
cosine similarity (c(O, Tf )), and layer-type controls; Model B regresses the change score (∆c) on
interference value, with feature-meaning similarity and layer-type controls. Error bars denote 90%,
95%, and 99% confidence intervals. Results with the alternative metric are shown in Figure 9.

3.2 Steering with Gradient Vector for Token Intervention

In this section, we treat the top-activating tokens of semantically unrelated yet interfering SAE
features as intervention signals (Ferrando et al., 2024). For each interfering feature, we pass its
top-activating text through the model and, at the feature’s corresponding layer, compute the gradient
of that token with respect to all neurons in that layer. This gradient serves as the steering vector.
As shown in Figure 4, using token-gradient steering on both models yields roughly ∼ 10× larger
effects than steering along SAE feature directions. Interestingly, token-gradient steering also flattens
the relationship between interference scale and intervention effectiveness, and steering the original
feature’s gradient direction is less effective than steering the interfering ones. This may stem from
the fact that token gradients are not tied to SAE-defined interference levels and that SAE features
can exhibit a degree of arbitrariness (Paulo & Belrose, 2025; Heap et al., 2025).
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Figure 4: Effects of interventions along the gradient direction of interference SAE feature’s top-
activating tokens. Subpanels follow the same conventions as Figure 3, but intervention vectors are
computed from token gradients rather than SAE decoder weights. For (A–B), error bars indicate 95%
confidence intervals; for (C), error bars denote 90%, 95%, and 99% confidence intervals. Results
with the alternative metric are shown in Figure 10.
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3.3 Prompt Injection for Inference Time Intervention

In addition to the two intervention methods described above, which directly modify the model’s
internal activations, we also investigate whether models are vulnerable to polysemantic interference
during inference time. In this case, hidden state manipulation is achieved indirectly by modifying the
input prompt. The core idea is that, for a given target feature, we identify highly interfering features,
select the tokens with the highest activation values for those features, and inject these tokens into the
prompt. This is intended to activate the corresponding features, allowing their influence to propagate
and affect the activation of the target feature. The number of ways to inject n tokens into a prompt
grows super-exponentially with n, making optimization costly. Here, we apply a straightforward
method by prepending 10 randomly selected tokens from each interference value range to the prompt.
To assess the generality of our findings, we intervene on the model’s production of tokens associated
with selected target features, illustrating with three cases: location names, emotion verbs (“hate” or
“love”) and color-related terms. . For each target set, we identify the corresponding SAE features
and extract the top-activating tokens from features with either high or low interference. In addition
to these, we include two baseline sets for comparison: a random token set and the original target
token set. For each prompt, we sample injection tokens 100 times and compute the success rate as the
proportion of runs where target-type tokens are elevated into the top-10 predictions. Table 3 presents
representative examples and Table 1 shows macro statistics. As shown, high-interference tokens are
more effective at elevating target-related tokens into the top-10 predictions than low-interference or
random tokens, though still much less effective than directly prepending the target’s tokens.

Table 1: Comparing intervention effect of prompt injection
Target Model Original High-interference Low-interference Random

Locations Pythia-70M 65.08%*** 36.93%** 32.53% 35.06%
GPT-2-Small 44.68%*** 18.42%*** 19.08%*** 16.42%

Llama-3.1-8B-Instruct 33.84%*** 20.78%*** 19.63%* 18.24%
Gemma-2-9B-Instruct 10.16% 12.71%*** 11.36% 10.66%

Llama-3.1-70B-Instruct 37.23%*** 28.21%*** 23.09%** 24.48%

Number Pythia-70M 65.32%*** 35.15% 36.71%*** 34.30%
GPT-2-Small 55.87%*** 30.33% 31.23% 34.71%

Llama-3.1-8B-Instruct 55.97%*** 31.87%* 32.90%*** 30.57%
Gemma-2-9B-Instruct 48.42%*** 29.93%*** 30.64%*** 27.16%

Llama-3.1-70B-Instruct 25.57%*** 8.85%*** 6.67% 7.09%

Science Pythia-70M 61.66%*** 23.13% 22.78% 28.58%
GPT-2-Small 75.70%*** 25.93%*** 26.07%*** 21.71%

Llama-3.1-8B-Instruct 49.67%*** 20.08%*** 18.95% 17.94%
Gemma-2-9B-Instruct 46.84%*** 20.40% 19.25% 20.15%

Llama-3.1-70B-Instruct 67.26%*** 48.22%*** 43.57% 42.24%

Note: Cell values show the success rate of elevating target-type tokens into the top-30 predictions.
Gray-shaded rows indicate black-box interventions. Testing uses a shared token set from the two small mod-

els. ***, **, and * denote t-test significance at p < 0.001, p < 0.01, and p < 0.05, respectively, vs. random
baseline. High- and low-interference tokens lie in [0.5, 1.0] and [0.2, 0.5] for Pythia-70M, while [0.3, 1.0] and
[0.2, 0.3] in GPT-2-Small. Details in Appendix J.3.

3.4 Generalization of Polysemantic Intervention Vulnerability

Since token gradient-based and prompt-based interventions do not rely on pre-trained SAEs, they
can be applied to models without access to detailed internal representations. To demonstrate this, we
target the Llama-3.1-8B-Instruct and Gemma-2-9B-Instruct models, reusing the two targets
from the prompt injection experiment. We focus on the top-activating tokens of features that interfere
with the targets, and identify those shared across both Pythia-70M and GPT-2-Small. For example,
Pythia-70M contains 1,309 tokens with interference values above 0.5 for location-related features,
while GPT-2-Small has 932 such tokens; their intersection includes 193 shared tokens.

We apply token gradient-based intervention to Llama-3.1-8B-Instruct and, notably, by extract-
ing steering vectors through random sampling of only one high-interference features’ top five acti-
vation texts, we could boost the presence of relevant tokens in the top-10 prediction list with over
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95% success rate. Prompt injection interventions are tested on both Llama-3.1-8B-Instruct and
Gemma-2-9B-Instruct. As shown in Table 1, high-interference tokens derived from the two small
models can steer both larger models more effectively than random baselines. In hindsight, these
results suggest that shared polysemantic structures observed in small models also extend to larger
models, indicating generalized vulnerabilities that persist across architectures and training regimes.

3.5 Analyzing Shared but Counterintuitive Polysemantic Structure

We observe that many similar feature pairs in GPT-2-Small and Pythia-70M that are far apart in
the first-order symbolic manifold, M (by surface/gloss semantics), nevertheless lie close in both
models’ activation space F . To understand this transferability, we first consider mechanisms that
couple features via higher-order semantic structure, including semantic-priming-type associations
(e.g., thematic/scripts, causal, frame roles) and morphological relatedness, even when overt mean-
ings appear unrelated (Mandera et al., 2017; Bojanowski et al., 2017).

To probe these links, we undertake large-scale annotation using DeepSeek-V3 and GPT-5-mini.
The models are prompted to identify higher-order semantic relations for shared interfering feature
pairs meeting three filters: interference value > 0.4, semantic similarity in M < 0.2, and cross-
model feature-pair cosine similarity > 0.5. In total, 459,229 pairs are annotated (prompt details
in Appendix L). Head-to-head comparison of the two model-based annotators is provided in Ap-
pendix L. Only 27.7% of feature pairs are judged by at least one model to exhibit potential higher-
order associations, and most of those links remain counterintuitive to post-hoc model interpretations.
These results both corroborate our filtering strategy for isolating unrelated pairs in the intervention
analyses and point to a striking regularity: LLMs instantiate stable, cross-model polysemantic orga-
nization that may be largely opaque to human semantic intuition. In Appendix L Table 7, we report
several examples where models find latent associations between feature pairs and where they do not.
One interesting case is the last example marked with an asterisk in Table 7. Both model annotators la-
bel it as negative. In our follow-up analysis, however, we hypothesize a deep biographical-affective
link: mentions of “Beethoven” may co-occur with expressions of frustration/suffering, given his
late-life deafness and celebrated late-period compositions. These examples shed light on the idea
that LLM polysemanticity may approximate many latent human knowledge structures; they offer a
productive set of hypotheses awaiting rigorous examination. Adjudicating this possibility is beyond
our present scope, but we view it as an important direction for future work.

3.6 Manipulating Activations for Neuron Intervention

To complete our discussion, we explore models’ vulnerability to interventions on individual neurons.
Specifically, we investigate how the degree of polysemanticity in neurons affects the output. For the
aggregated features obtained through agglomerative clustering under the cosine similarity threshold
of 0.4, we quantify each neuron’s connected number of features. Here, we only involve neuron-
feature pairs with a connection strength greater than 0.2. Among all neurons, those connected to
only one or two aggregated features account for more than 33% in strongly connected neurons, as
shown in Figure 5. In addition to neurons connected to multiple or dozens of aggregated features,
there are also some “super-neurons” with connections exceeding 500. We examine the impact of ma-
nipulating these neurons on the model’s output. The experimental results indicate that neurons with
higher degrees of polysemanticity are more vulnerable, which means they tend to affect the model’s
output more effectively. However, for certain “super-neurons,” the impact on the model is notably
asymmetric: masking them results in even less influence than neurons with lower polysemanticity,
while amplifying their activations often leads to exponentially greater effects on model behavior.

4 Discussion

This work makes two main contributions. First, we systematically investigate the vulnerability of
LLMs to structured interventions grounded in their polysemantic representations. Specifically, we
examine three types of interventions: (1) feature direction-based, (2) token gradient-based, and
(3) prompt-based. Feature direction interventions rely on SAEs. While less effective than gradient-
based approaches, they form the basis for deriving token gradient vectors. Token gradient-based
interventions are more effective and can be constructed directly from activation texts, without re-
quiring SAE pre-training—though they do assume access to internal activations. Prompt-based
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Figure 5: Effects of activating and deactivating neurons by polysemanticity level. The x-axis
indicates neuron categories grouped by the number of connected features (after clustering). The
y-axis reports the change in weighted cosine similarity. Each boxen plot centers on the median
(50%) and progressively splits the remaining data in half at each level. A and B correspond to
GPT-2-Small; C and D correspond to Pythia-70M. A and C show the effect of masking neuron
activations, while B and D show the effect of amplifying them.

interventions require minimal access and, despite their surface-level nature, still yield meaningful
behavioral shifts. Additionally, we explore neuron-level interventions, motivated by the uneven
distribution of features across neurons. We find that the behavioral impact of masking and ampli-
fication correlates with neuron polysemanticity. We also identify a class of “super-neurons,” those
encoding over 500 features, for which amplification significantly alters model behavior, while deac-
tivation results in a markedly reduced effect.

The second contribution lies in our finding that polysemantic structures identified in two small mod-
els transfer to larger, instruction-tuned black-box models (e.g., Llama-3.1-8B/70B-Instruct,
Gemma-2-9B-Instruct) via token- and prompt-level manipulations, producing predictable behav-
ioral shifts without access to internal weights. This suggests that certain polysemantic structures are
preserved across architectures and training regimes, exposing a shared representational basis. No-
tably, this challenges prevailing theories that treat polysemanticity as an incidental artifact of training
(Marshall & Kirchner, 2024; Lecomte et al., 2023). Our exploratory analyses further suggest that
these transferable polysemantic structures are not reducible to higher-order relations that are readily
intelligible to humans; we therefore treat these counterintuitive regularities as testable hypotheses
about latent knowledge structure. These results sharpen a central question about LLM polyseman-
ticity: unintended byproducts—or stable, higher-order patterns that await rigorous examination?
Finally, our findings strengthen recent evidence of representational consistency and topological sta-
bility across models (Huh et al., 2024; Wolfram & Schein, 2025; Lee et al., 2025), even as the origins
and functional implications of this consistency remain open challenges.

Our work is the first to systematically evaluate polysemantic structures and vulnerabilities in real-
world LLMs, but it has several limitations, including intervention depth and transferability robust-
ness tests. We discuss these limitations and ethical considerations in Appendix N.

5 Conclusion

We systematically probe the sensitivity of LLMs to structured interventions grounded in the poly-
semantic representations of two small models using SAEs. We show that model behavior can be
steered toward specific feature directions by manipulating semantically unrelated yet interfering fea-
tures via three intervention methods. Interventions distilled from polysemantic structures shared
across the small models transfer to larger, black-box instruction-tuned models, indicating a stable
and transferable polysemantic topology that persists across architectures and training regimes. Post-
hoc annotation suggests that fewer than 30% of these shared interference structures align with higher-
order relations readily intelligible to humans; many counterintuitive cases may therefore serve as
generators of testable hypotheses about latent knowledge structure. Finally, by leveraging the un-
even distribution of features across neurons, we assess models’ sensitivity to neuron-level manipula-
tions across degrees of polysemanticity and reveal asymmetric effects in “super-neurons.” Together,
these findings provide a foundation for future work on the structural properties, vulnerabilities, and
representational robustness of LLMs.
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A Related Work

A.1 A Brief Review on LLM Adversarial Interventions

Over the past five years, a growing body of high-impact research has revealed that even aligned
LLMs remain vulnerable to a set of converging attack strategies. First, prompt-space jailbreaks
have evolved from handcrafted exploits into automated, highly transferable methods. For instance,
a single gradient-and-greedyoptimized “universal suffix” can consistently bypass refusal policies
in ChatGPT, Bard, Claude, and a wide range of open-source modelsdemonstrating both query ef-
ficiency and cross-model generalizability (Zou et al., 2023). Second, activation-space steering
techniques like Contrastive Activation Addition (CAA) show that simple linear interventions in
the residual stream can steer behaviors such as hallucination, sycophancy, or toxicity with minimal
performance degradation (Panickssery et al., 2023). Third, parameter-space backdoors, such as the
Composite Backdoor Attack, embed stealthy triggers during fine-tuning that achieve near-perfect
malicious compliance without affecting standard benchmarks (Huang et al., 2023). Mechanistic in-
terpretability offers a unifying explanation: transformer activations encode more features than they
have dimensions, forcing representations into a compressed superposition and leading to widespread
polysemantic overlap (Elhage et al., 2022). Recent work with SAEs has begun to isolate—and in
some cases manipulate—these overlapping features directly (Nanda, 2024). Building on this insight,
our intervention targets SAE-derived polysemantic directions, integrating prompt-, activation-, and
neuron-level interventions into a unified, transferable framework that broadens the known landscape
of LLM vulnerabilities.

A.2 A Brief Review on SAE-based Intervention Techniques in LLMs

SAE-based interventions represent a promising direction for developing more interpretable and con-
trollable LLMs. Recent research have introduced a diverse set of SAE-based techniques, such as
clamping, patching, and causal tracing, applied across a range of use cases (Farrell et al., 2024; Cun-
ningham et al., 2023; Marks et al., 2024). Empirical results indicate that these methods can be highly
effective. For example, targeted unlearning via SAE features has been shown to suppress undesired
capabilities with fewer side effects than global fine-tuning (Khoriaty et al., 2025; Muhamed et al.,
2025), while feature-level steering enables more nuanced output control than prompt-based methods
alone (Rajamanoharan et al., 2024). A key advantage of SAE-based approaches is their efficiency
at inference time: they often require only a forward pass with lightweight vector operations and
typically do not require model retraining, making them well-suited for real-time interventions.

However, the approach is still in its early stages. Key limitations include challenges in achieving
complete and disentangled feature representations, which depend heavily on SAE training qual-
ity and selection procedures (Chanin et al., 2024). Computational overhead remains non-trivial,
though recent developments such as k-sparse autoencoders and JumpReLU activations offer promis-
ing improvements in scalability (Rajamanoharan et al., 2024). There is also a growing need for
standardized evaluation benchmarks tailored to intervention methods. A unified benchmark would
enable more meaningful comparisons across studies. Currently, researchers often rely on custom
evaluation protocols, limiting cross-paper comparability.

In summary, SAE-based interventions offer a powerful mechanism for both understanding and steer-
ing model behavior. They uniquely bridge interpretability and utility: not only can we decode model
activations into human-interpretable concepts (Cunningham et al., 2023), but we can also use those
same features to drive controlled behavioral change (Khoriaty et al., 2025). In this work, rather than
focusing on a specific downstream application, we leverage SAEs to investigate structural sensitiv-
ities in LLMs—demonstrating that polysemantic features can serve as a substrate for transferable,
interpretable interventions. This perspective highlights the broader role of SAEs in the design of
more transparent and controllable AI systems.
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B Impact Statement

This work systematically investigates a semantic vulnerability in LLMs rooted in polysemanticity—
where single neurons encode multiple semantically dissimilar features. We introduce four com-
plementary approaches that expose this vulnerability: manipulating SAE-derived features, token
gradients, and prompts to steer model outputs via semantically unrelated inputs, and intervening at
the neuron level to reveal a correlation between polysemanticity and output sensitivity. We also iden-
tify a class of “super-neurons” whose amplification disproportionately alters model behavior, while
masking them has limited effect. These findings not only highlight the unique characteristics of
structural fragility of LLMs but also provide practical tools for probing and controlling their internal
mechanisms. Our work lays a foundation for future research in AI safety and mechanistic inter-
pretability, not only enabling defenses against such vulnerabilities and more targeted interventions
for alignment, but also offering a theoretical lens into the model’s internal organization, revealing
stable yet counterintuitive interference patterns that may reflect a form of unconscious knowledge
association.

C Sparse Autoencoder Training

SAEs are a rapidly developing tool for probing the polysemantic structure of neurons (Shu et al.,
2025). Given the activation vector a ∈ Rdembed from a particular model layer, an SAE projects it
into a higher–dimensional sparse code f ∈ Rdsae in order to disentangle the multiple semantics that
a single neuron may simultaneously encode. The forward computation and the resulting feature
definition f are shown below:

f = ReLU
(
Wenca+ benc

)
,

ā = Wdecf + bdec.

The encoder and decoder parameters are

Wenc ∈ Rdsae×dembed , Wdec ∈ Rdembed×dsae , benc ∈ Rdsae , bdec ∈ Rdembed .

The SAE is trained by dictionary learning to minimize

L =
∥∥a− ā

∥∥ 2

2
+ λ

∑
i

fi
∥∥Wdec [·,i]

∥∥
2
,

where the first term is the reconstruction loss and the second encourages sparsity (weighted by λ).

For each feature fi, its direction in the embedding space is defined as the unit-norm decoder column.
Note that the activation can be represented as linear combination of feature directions. The semantics
of features are interpreted by large language models, such as GPT-4o-mini, based on their activation
texts.

ŵi =
Wdec [·,i]∥∥Wdec [·,i]

∥∥
2

.
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D Dataset Generation

When conducting intervention, we do not expect to substantially interfere with every inference of the
model, but rather consider intervention in specific contexts, in which we will examine target tokens’
prediction probabilities. We require that the constructed sentences be grammatically capable of
deriving the target token so that we can check it in top-10 predictions without severely compromising
the model. In later sections, we will see that for tokens such as location names and personal names,
we can effectively interfere with the output of the corresponding sentences, which shows a potential
to produce hallucinations. Also, we need to point out that more specific and general intervention can
be achieved by first listing a set of sentences within that context and then identifying possible ways
to interfere with each of them. The prompt to generate the dataset is shown below.

System: Generate exactly 3 incomplete English sentences where the next word would
clearly be "target_token". Return a JSON dictionary where:
- The ONLY key is the exact "target_token" (including spaces/capitalization) - The
value is a list of 3 sentence fragments that naturally lead to "target_token"
Example for "target_token=‘ apple’":
{
" apple": [
"She reached into the basket and grabbed",
"The teacher pointed to the red",
"He washed and polished his"
]
}
Rules:
1. All sentences MUST grammatically require "target_token" next to it
2. Use different contexts / scenarios for variety 3. Maintain exact formatting -
no additional keys or explanations
User: target_token={token}

We also use DeepSeek-V3 to roughly classify the token types:
System: Analyze a token target_token from Pythia/GPT-2-Small’s vocabulary and return

its type in EXACT JSON format:
{
"[target_token]": {
"type": "[token_type]",
}
}
Token Type Rules:
1. "verb": Action words (e.g., "run", "jumping")
2. "location": Place names (e.g., "Paris", "Tokyo")
3. "person": Names of people/roles (e.g., "John", "teacher")
4. "object": Physical objects (e.g., "apple", "table")
5. "other_noun": Other nouns not in above categories
6. "adjective": Descriptive words (e.g., "happy", "red")
7. "single_letter": Single characters (e.g., "A", "z")
8. "prefix": Word parts (e.g., "un", "pre")
9. "other": Symbols/punctuation or unclassifiable tokens
User: target_token={token}

Here we provide a table of some example tokens and their sentences generated by DeepSeek-V3
(See Table 2).

Table 2: Token type and prompt sentences examples

Token Type Sentence Examples
London location After a long flight, we finally arrived in

Continued on next page
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Table 2: Token type and prompt sentences examples (continued)

Token Type Sentence Examples
The train from Paris was heading straight to
She always dreamed of visiting the historic city of

harbor location The cruise ship slowly approached the bustling
Fishermen gathered at the edge of the protected
The city’s economy thrived thanks to its busy

Mike person After the meeting, everyone turned to
The teacher called on
She handed the report directly to

Trump person The media has been closely following the latest statements from
During the debate, the moderator asked a direct question to
Many supporters gathered outside the venue to catch a glimpse of

expert person After years of practice, she became an
The company hired an
When it comes to antique furniture, he’s an

loves verb She truly believes that everyone
The way he looks at her shows how much he
Despite their differences, their friendship

hates verb Everyone knows that she
The way he treats people shows he
It’s clear from his expression that he

apple object She reached into the bag and pulled out
The smoothie recipe called for one chopped
He carefully balanced the shiny red

sad adjective After hearing the bad news, she felt incredibly
The movie’s ending left everyone feeling
His eyes told a story of being deeply

happy adjective After receiving the good news, she felt extremely
The children were laughing and playing, clearly very
Winning the competition made him incredibly

17



E Supportive Statistics

Active features refer to SAE features that have input texts enabling them to reach an active state.
In addition to the semantic clustering of active features mentioned in the main text, we also apply
agglomerative clustering to cluster their interference values. The threshold for dividing clusters is
set to 0.4. As shown in Figure 7, the vast majority of clusters contain only one feature, indicating
that only a small number of features exhibit high interference with others.

In Figure 8, we also provide an overview of the distribution of semantic similarity and interference
values between features, as well as their correlations. Since the distribution and correlation of these
two types of data remain largely consistent across all layers of the model, we present a representative
example layer for illustration.

A B

Figure 6: Number of active features extracted by SAEs per layer. A is the result of Pythia-70M,
and B is the result of GPT-2-Small. Error bars represent 95% confidence intervals.

A B

Figure 7: Interference Cluster Size Distribution. A is the result of Pythia-70M, and B is the
result of GPT-2-Small. Error bars represent 95% confidence intervals.
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A B C

D E F

Figure 8: Semantic similarity and interference distribution of Pythia-70M Res-4 and
GPT-2-Small Res Post-4 layer. (A–C) are the results of Pythia-70M-Res-4. For semantic
similarity, 14.0% of values are below 0.15, 29.6% are below 0.2, 67.4% are below 0.3, and 89.6%
are below 0.4. For interference, 85.5% of values are below 0.1, 96.4% are below 0.2, 99.2% are
below 0.3, and 99.8% are below 0.4. The bivarite analysis suggests semantic similarity and inter-
ference value is positively associated (β = 0.071, s.d = 0.092, p < 0.001). (D–F) are the results
of GPT-2-Smal Res Post-4. For semantic similarity, 10.8% of values are below 0.15, 24.5% are
below 0.2, 63.3% are below 0.3, and 89.5% are below 0.4. For interference, 95.6% of values are
below 0.15, 99.7% are below 0.2, approximately all values are below 0.3 and 0.4. The bivarite anal-
ysis also suggests a positive association (β = 0.030, s.d = 0.049, p < 0.001).

F Definition of the Alternative Metric: Weighted Overlap

In addition to the weighted cosine similarity, we report results with an alternative metric, weighted
overlap, which measures the raw probability mass assigned to the feature-associated token set Tf ⊂
V in Section G and H. This metric does not smooth over near misses via embedding similarity;
instead, it directly captures how much of the model’s next-token distribution lands on tokens in Tf .

Definition. For a model output distribution P ∈ ∆|V | and target token set Tf ,

w(P, Tf ) =
∑
t∈Tf

P (t). (3)

Intervention effect. Let O and Õ denote the model’s output distributions before and after inter-
vention, respectively. The (absolute) change in weighted overlap is

∆w = w(Õ, Tf ) − w(O, Tf ). (4)

Relative change. When a scale-free summary is preferred, we also report the relative change:

∆̂w =
w(Õ, Tf )− w(O, Tf )

max{w(O, Tf ), ϵ}
, (5)

where ϵ > 0 is a small constant to avoid division by zero.
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G Intervention Test with Feature Direction

G.1 Generalized Formulation of a Steering-Vector Intervention

Let x1:T ∈ {1, · · · , V }T be the input sequence, E ∈ RV×d be the token-embedding matrix, and G1

to GL be the blocks of a decoder-only Transformer. The unperturbed hidden states are

H0 = E[x1:T ], Hℓ = Gℓ (Hℓ−1) (ℓ = 1, . . . , L).

For any layer index p, we denote the vectorized activation as

Ap = vec (Hp) ∈ Rd×T .

With different strategies, we extract the steering direction zp ∈ Rd×T . For injection at site s, we
define the linear Jacobian:

Φp→s : Rd×T → Rds

obtained by composing linear portions between indices p and s. The transported steering direction
is

zs =

{
Φp→szp, if s > p

Φ†
s→pzp, if s < p

where † denotes the Moore–Penrose pseudo-inverse. When s = p, we set zs = zp. Eventually, we
modify the activation at site s:

Ãs = As + αzs.

The network proceeds normally with this perturbation, yielding modified hidden states H̃ℓ and logits
ỹ1:T .

G.2 Experiment Details

Our hypothesis posits that if two feature directions interfere in Aℓ, despite being nearly orthogonal
in M, then enhancing one will inevitably encode some information of the other one into activation
space. If true, this would reveal the potential to covertly manipulate the output probability of a target
feature by steering the model with seemingly unrelated features.

To obtain the complete intervention data of various levels of interference features on the target fea-
tures, we first filtered out all features in each layer that contained interference values at all levels,
and for which the semantic similarity with the target feature is below the four selected thresholds.
Subsequently, we select a subset of these features as the target features and identify the correspond-
ing interference features across the various interference levels. Next, we search for other interfer-
ence features with low interference values to the target features for experimentation. Specifically,
other interference features are selected based on the interference values lying in intervals:[0.0, 0.1],
[0.1, 0.2], [0.2, 0.3] and [0.3, 0.4]. The scale parameter was tested within the range of [−20, 20], and
we avoid larger ranges to prevent severe disruption of the model.

Due to limitations on computational power, we sample clusters and features across various layers. In
each SAE experiment with Pythia-70M, we sample 180 target features and collect approximately
2,700 interference features. In each SAE experiment with GPT-2-Small, we sample 480 target fea-
tures and collect approximately 7, 200 interference features. For gradient experiments, we reduced
60% sampled features, but three times the number of gradient intervention vectors are extracted to
keep the test set scale. As mentioned in the main text, for each feature, we focus on its top-activating
token and use DeepSeek-V3 to generate three prompt sentences for it. For each sentence, we test
within the aforementioned scale range and record the result with the greatest improvement in the
two metrics. This result means the best performance that the steering vector can achieve to induce
the semantics of output toward the target feature without significantly disrupting the model. The
final two metrics are averaged across all sentences for all features. To show the robustness of our
experiments, the results of the alternative metric are presented in Figure 9.
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Figure 9: Feature-level intervention effects measured by weighted overlap. Subpanels follow
the same conventions as Figure 3, but intervention effects are computed using weighted overlap. For
(A–B), error bars indicate 95% confidence intervals; for (C), error bars denote 90%, 95%, and 99%
confidence intervals.

H Intervention Test with Token’s Gradient

H.1 Token Gradient Direction Extraction

Given a tokenized input sequence x = [x0, . . . , xT−1], let ei = E[xi] denote the embedding of
token xi, and e = [e0, . . . , eT−1] the full input embedding sequence. Let fℓ : RT×d → AT

ℓ denote
the models transformation up to layer ℓ. The activation at position i is:

aℓ,i = fℓ(e)[i] ∈ Aℓ.

We define a scalar probe loss that selects this activation via a linear projection vector v ∈ Rd:

L = ⟨aℓ,i, v⟩.

The gradient of this loss with respect to the input embedding ei is:

gℓ,i :=
∂L
∂ei

=
∂⟨aℓ,i, v⟩

∂ei
.

We then normalize this vector to obtain a direction in embedding space:

ĝℓ,i :=
gℓ,i

∥gℓ,i∥2
.

We refer to ĝℓ,i as the token gradient direction—the direction in input embedding space along which
perturbations to token xi most increase its activation in Aℓ along v.

H.2 Experiment Details

Steering with the feature direction requires a pretrained sparse auto-encoder of the target model,
which incorporates substantial computational costs and lacks scalability. To break this limitation,
we need to explore a general approach. Observe that the SAE features are activated mainly by the
top-activating token in its activation texts, while other tokens are just diluting its expression. Based
on this observation, we can obtain a better steering vector by focusing on this particular token, and
a sketch is as follows. We first feed the feature’s activation text into the model, then compute the
gradients of the top-activating token with respect to all neurons in the layer. The resulting gradients
are combined to form a vector.

The SAE dataset from Neuronpedia contains approximately 50 activation text segments per active
SAE feature, each strongly activating its corresponding feature. Due to computational limitations,
we try to extract the gradient vectors from the first 3 activation texts of each feature. Also, we scale
the vector within the same range [−20, 20]. Additional experimental results are presented below.
Each with steering with token gradients combined with steering with feature directions can be done
in one hour and a half for Pythia-70M and six hours for GPT-2-Small, running on a single thread
of Intel i7-14700K. The results of the alternative evaluation metric are presented in Figure 10.
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Table 3: Examples of interventions using SAE features, token gradients, and prompt injections

Type Model Intervention Target feature Result

Feature Pythia-70M Steering feature
vector: occur-
rences of specific
surnames

Geographical loca-
tions

“In the next week, we will go to”
↑ Entered ↓ Dropped

Berlin +0.025 our -0.029
London +0.012 some -0.012
To +0.010 an -0.010

GPT-2-Small Steering feature
vector: positive
or negative event
outcomes

Expressions of sad-
ness

“After hearing the bad news,
she felt incredibly”

↑ Entered ↓ Dropped
grateful +0.051 bad -0.047
blessed +0.028 guilty -0.044
excited +0.028 uncomfortable -0.025

Token Pythia-70M Steering token vec-
tor: legal termi-
nology related to
licenses and their
implications

Elements related
to political com-
mentary and
critique

“In the election of this year, it
is suggested to vote for”
↑ Entered ↓ Dropped

Donald +0.030 an -0.020
more +0.026 one -0.015
@ +0.015 President -0.013

GPT-2-Small Steering token vec-
tor: key terms re-
lated to prices and
transactions

References to loca-
tion Tokyo

“The organizing committee just
announced that the upcoming

finals will be held in”
↑ Entered ↓ Dropped

Tokyo +0.005 Toronto -0.007
Seoul +0.003 Seattle -0.005
Moscow +0.004 London -0.001

Llama-
3.1-8B-
Instructed

Steering gradient
vector: references
to the world and
its various aspects

References to
‘Switzerland’

“I would like to recommend you
to spend holidays in”

↑ Entered ↓ Dropped
Switzerland +0.16 Italy -0.034
Germany +0.089 Greece -0.016
Canada +0.015 Bulgaria -0.012

Prompt Pythia-70M Injection of the to-
kens “Court” and
“Dat”, both before
and within the text

References to loca-
tions

“In the upcoming holiday, we will
go to”

↑ Entered ↓ Dropped
Japan +0.021 some -0.014
Europe +0.015 an -0.006
Tokyo +0.012 see +0.003

GPT-2-Small Prepending the in-
jection text “(team
writers writers)”

Terms related to
names or surnames

“After years of hard work, the award
finally went to”

↑ Entered ↓ Dropped
Steve +0.005 China -0.006
John +0.002 waste -0.005
one +0.003 Donald +0.003

Llama-
3.1-8B-
Instructed

Prepending the
injection text
“(placement from
placement)”

References to loca-
tions

“In the next weekend we will go to”
↑ Entered ↓ Dropped

Paris +0.011 another -0.013
** +0.010 H -0.003
- +0.006 K -0.003

Note: ↑ Entered means that corresponding tokens entered the top-10; ↓ Dropped means that corresponding
tokens dropped from the top-10. Gray-shaded rows indicate black-box interventions.

I Experiments with DeepSeek-V3 Feature Descriptions

To evaluate the sensitivity of our findings to the selection of LLMs for auto-interpretation, we em-
ploy an alternative model, DeepSeek-V3, to interpret the features of a sparse auto-encoder. The
explanation text is subsequently processed by the text-embedding-3-large model to obtain em-
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Figure 10: Token-level intervention effects measured by weighted overlap. Subpanels follow the
same conventions as Figure 4, but intervention effects are computed using weighted overlap. For
(A–B), error bars indicate 95% confidence intervals; for (C), error bars denote 90%, 95%, and 99%
confidence intervals.

beddings. These embeddings are then utilized as semantic vectors to assess the similarity between
features. For this illustrative sampling, features from the Pythia-70M att-5 layer are selected. The
interpretation of features by large models is generated by feeding the model the top-activating texts
of the feature and denoting the high activating tokens in it. Specifically, the prompts we write for
DeepSeek-V3 are as listed below.

System: We’re studying neurons in a neural network. Each neuron activates on some
particular word or concept in a short document. The activating words in each
document are enclosed by « and ». Look at the parts of the document the neuron
activates for and summarize in a single sentence what the neuron is activating on.
Try to be general in your explanations. Don’t just repeat activation words. Also,
you can summarize multiple points if the text content is not highly consistent. Pay
attention to things like the capitalization and punctuation of the activating words
or concepts, if that seems relevant. Keep the explanation as short and simple as
possible, limited to 32 words or less. Omit punctuation and formatting.
User: The activating documents are given below:

1.activation_text_1
2.activation_text_2
...
5.activation_text_5

In Figure 11, we compare semantic relatedness among SAE features using embeddings of expla-
nations generated by DeepSeek-V3 and GPT-4o-mini. The left density plot shows that pairwise
similarities from the two models are tightly aligned, while the right heatmaps further illustrate that
both models induce comparable featurefeature semantic structure.
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Figure 11: Semantic relatedness between features from the view of DeepSeek-V3 and
GPT-4o-mini.
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Figure 12 compares SAE feature-direction and gradient-based interventions under auto-
interpretations from GPT-4o-mini and DeepSeek-V3. Semantic dissimilarity threshold is set to
different scales for intervention feature selection. Although this check is limited to a single layer
(and thus exhibits greater variance), we consistently observe that high-interference, low-semantic-
similarity features steer the target far more strongly than a random baseline. This pattern holds under
both interpreters, indicating robustness to the choice of auto-interpretation model.

Figure 12: Intervention effects under GPT-4o-mini vs. DeepSeek-V3 auto-interpretations of
SAE features. Top row shows SAE-direction interventions; bottom row shows gradient-based inter-
ventions. Columns are the evaluation metrics: left, ∆c; right, ∆̂w. Error bars denote 95% confidence
intervals.
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J Black-Box Interventions on Larger Models

We hypothesize that the polysemantic structures learned by large language models may exhibit some
degree of generalizability. To explore this further, the interference study is extended to larger models
without pretrained sparse auto-encoders.

J.1 Target Selection

We deliberately focus on two feature families—(i) location names and (ii) the polarity antonyms
“hate” / “love”—because they satisfy three practical and conceptual criteria that make them ideal
first-round probes of polysemantic vulnerabilities.

High corpus frequency, low internal polysemy. Most large-scale text corpora mention both world
cities/countries and the verbs hate/love thousands of times, giving the SAE a rich activation sig-
nal, yet each term carries a relatively unambiguous core meaning. This minimizes confounds from
“target drift” when we measure probability shifts.

Complementary linguistic classes. Locations are concrete named entities rooted in external knowl-
edge, whereas hate/love are abstract affective predicates that drive sentiment. Showing transferable
interference for both a propernoun category and an emotionalvalence category demonstrates that the
vulnerability is not restricted to a single part of speech or semantic field.

Policy relevance. Manipulating geographic references risks misinformation about real-world facts
(“The capital of X is...”), while manipulating strong sentiment verbs directly impacts toxicity and
persuasion. Successful steering of these tokens therefore highlights two distinct, societally signifi-
cant threat surfaces-factual reliability and affective bias.

Together, these criteria make locations and hate/love a parsimonious yet representative pair for an
initial, systematic evaluation; expanding to additional categories is an important next step once the
core risk is established.

J.2 Steering with Token Gradient Vector

The scalable intervention on Llama-3.1-8B-Instruct is conducted by first selecting target type
tokens as mentioned above and identifying target features in Pythia-70M and GPT-2-Small for
which these tokens are the top-activating ones. The two interference feature sets in Pythia-70M
and GPT-2-Small with respect to the target features are then identified. Next, we collect the top-
activating tokens in two models respectively, and compute the intersection. The figure13 shows a
sketch of the shared interference tokens across two models. From the token cloud map, we can
observe that high-interference tokens are often punctuation-like tokens such as line breaks. There
are also some tokens with specific meanings, which may be related to certain target tokens in daily
context.

(a) Person interference tokens (b) Location interference tokens (c) Emotion interference tokens

Figure 13: Three types of interference tokens
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After getting the tokens, we proceed to collect the activation texts, which may activate interference
features of the target in black-box models. Due to computational constraints, we only compute gra-
dients from and perform operations on the first half of residual layers in Llama-3.1-8B-Instruct.
The intervention experiments are done for three target token types, each containing about 100 sen-
tences. More intervention examples are listed below. It takes about 20 minutes for a single RTX4090
GPU to find a highly effective gradient vector for steering.

Table 4: Examples of interventions on Llama-3.1-8B-Instruct Using Token Gradient Vector

Type Intervention feature Result
location terms related to data and its presen-

tation
“After months of planning, our road

trip finally reached”
↑ Entered ↓ Dropped

New +0.017 an -0.006
Seattle +0.015 it -0.007
San +0.011 our -0.002

the verb “be” in various forms and
contexts

“She always dreamed of
owning a small cafe in”
↑ Entered ↓ Dropped

Vienna +0.080 France -0.008
Munich +0.071 town -0.007
Berlin +0.038 Italy -0.006

proper nouns, names, and refer-
ences to specific roles or positions

“This novel’s opening scene takes
place aboard a train to”
↑ Entered ↓ Dropped

Beijing +0.023 New -0.026
Tokyo +0.020 Venice -0.009
Shanghai +0.018 Istanbul -0.010

quantitative data points related to
statistics and performance metrics

“The rebels established their
hidden base deep within”
↑ Entered ↓ Dropped

Afghanistan +0.018 an -0.009
Germany +0.015 their -0.003
Eastern +0.014 one -0.002

references to specific labeled items
or categories

“His last known coordinates
placed him somewhere near”

↑ Entered ↓ Dropped
Paris +0.012 an -0.003
New +0.010 their -0.003
Moscow +0.009 Lake -0.002

name quantitative data points related to
statistics and performance metrics

“Nobody expected the mysterious
package to be from”

↑ Entered ↓ Dropped
Paul +0.261 the -0.104
Emmanuel +0.026 a -0.078
Matthew +0.021 Lake -0.51

references to academic institutions
or concepts

“The voice on the recording
definitely belongs to”
↑ Entered ↓ Dropped

Robert +0.015 a -0.101
Patrick +0.012 the -0.088
David +0.009 me -0.033

phrases related to pre-approval pro-
cesses and conditional statements

“The fingerprints found at the
scene match those of”
↑ Entered ↓ Dropped

Michael +0.003 your -0.017
Richard +0.003 one -0.011
Smith +0.004 both -0.008

Continued on next page
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Table 4 – Examples of interventions Using Token Gradient Vector (Continued)
Type Intervention feature Result

keywords related to file manage-
ment and programming constructs

“This traditional folk song
was popularized by”

↑ Entered ↓ Dropped
Bruce +0.010 Pete -0.086
Walter +0.010 American -0.032
Paul +0.007 Woody -0.021

terms related to multimedia and
video production

“The confidential information was
leaked by former employee”
↑ Entered ↓ Dropped

Mike +0.017 and -0.024
Tom +0.012 who -0.024
Bill +0.011 to -0.010

emotion instances of the verb “is.” “After trying the new recipe,
my brother absolutely”
↑ Entered ↓ Dropped

love +0.121 fell -0.042
hate +0.095 LO -0.037
dislike +0.015 ad -0.031

references to legal documents and
real estate transactions

“Science proves that most
infants naturally”

↑ Entered ↓ Dropped
Like +0.048 develop -0.099
like +0.020 prefer -0.051
love -0.001 learn -0.034

phrases indicating topics of discus-
sion or content focus

“His body language suggests
he secretly”

↑ Entered ↓ Dropped
love +0.457 wants -0.158
loved +0.012 enjoys -0.069
hate +0.015 hopes -0.062

phrases indicating relationships and
affiliations in contexts such as
surveillance, borders, and regula-
tions

“This fabric texture makes
allergy sufferers”

↑ Entered ↓ Dropped
love +0.126 miserable -0.091
like +0.020 feel -0.074
hate +0.027 and -0.043

statements that conclude or summa-
rize concepts

“After the concert
critics began to”

↑ Entered ↓ Dropped
hate +0.017 question -0.070
love +0.016 praise -0.064
enjoy +0.010 dissect -0.054

Note: ↑ Entered means that corresponding tokens entered the top-10; ↓ Dropped means that corresponding
tokens dropped from the top-10. Gray-shaded rows indicate black-box interventions.
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J.3 Prompt Injection

Prompt injection in our experiments is done on the token types listed in Appendix ??. Based on the
classification of tokens, we also generate test sentences for each type, requiring that these sentences
grammatically lead to tokens of the target type. The prompt is as follows.
System: You are a creative writing assistant specialized in generating incomplete

sentences. Your task is to create incomplete sentences where the next logical token
would very likely be from the category category.

Requirements:
1. Generate approximately 1000 incomplete sentences
2. Each sentence should be approximately 20 tokens long when complete
3. The sentences should end at a natural point where the next word would very
likely be a category word
4. Use diverse contexts, scenarios, and grammatical structures
5. Make the sentences engaging and varied
6. Ensure the incomplete sentences create strong expectation for category words

Examples for category:
- For ’animal’: "In the dense jungle, we could hear the roar of a wild"
- For ’color’: "The sunset painted the sky a beautiful shade of"
- For ’emotion’: "When she heard the news, her face showed pure"
- For ’location’: "Our vacation destination this summer will be"
- For ’number’: "The recipe calls for exactly"
- For ’person’: "The award ceremony will be hosted by a famous"
- For ’science’: "The experiment required careful measurement of"
- For ’time’: "The meeting is scheduled for next"

Return your response as a Python list of strings, with exactly 1000 sentences.
Format it properly as valid Python code that can be executed.
Start your response with: sentences = [
End your response with: ]

Do not include any explanatory text before or after the list.

User: Generate approximately 1000 incomplete sentences for the category category.

Available type tokens (separated by |, each token is enclosed in quotes):
type_token_1, type_token_2, ...

IMPORTANT NOTES:
- Each token above is a separate vocabulary item from language models
- Some tokens may have leading/trailing spaces (like " dog" or "cat ")
- These are the exact token strings that should be likely to appear as the next
token after your incomplete sentences
- Consider the token boundaries when creating sentences

Please generate diverse, engaging incomplete sentences where the next word would
very likely be from the category category tokens shown above. Make sure to use
various contexts and grammatical structures.

Return as a Python list: sentences = [...]

The model returns approximately 400 to 800 sentences for each type. The dataset of token
type denotation, along with the example sentences, has been made available in the GitHub
repository.

After annotating the tokens in the model’s vocabulary with type labels, we partition the token sets
based on the intervention information provided by the sparse auto-encoder. First, we filter for fea-
tures where the highly activated tokens contain the target token type, simply tagging these as target
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features. Specifically, for each activation text, we identify the token with the highest activation value
(max_act) and set a ratio (here, 0.8). Tokens with activation values exceeding ratio * max_act are
considered highly activating the interference feature.

We then identify all interference features whose interference value with the target feature exceeds 0.2
and whose semantic similarity is below 0.3. Based on this set of interference features, we further par-
tition them into high-interference and medium-interference sets. Features with interference values
above a high_threshold (for a given target feature) are classified as high-interference features, while
those with interference values between 0.2 and high_threshold are classified as medium-interference
features.

Subsequently, we collect the highly-activating tokens from features in each set to form the respective
token sets. All remaining tokens that were not collected constitute the random token set. It should
be noted that the high-interference and medium-interference token sets exhibit significant overlap.
To address this, we deduplicate the two sets to obtain disjoint token sets. For example, in the case
of the Pythia-70M model, we annotate 1,938 tokens as belonging to the “location” type. Using
the method described above and setting 0.5 as the high-interference threshold, the resulting high-
interference token set contains 10,185 tokens, while the medium-interference set consists of 34,946
tokens. And 13,323 tokens remain in the random set. There is an overlap of 9,535 tokens between
the high- and medium-interference sets. After deduplication, the high-interference set retains 650
tokens, and the medium-interference set retains 25,404 tokens.

For experiments on Pythia-70M and GPT-2-Small, we use the token sets generated by each re-
spective model. For experiments on Llama-3.1-8B/70B-Instuct and Gemma-2-9B-Instruct
models, we adopt the union of the token sets from the corresponding interference levels of the two
small models. We examine a total of eight categories of token types: location, person, emotion,
color, animal, science, number, and time. Apart from the three types mentioned in the main text that
demonstrate strong generalizability, the test results for the remaining types are presented below.

Table 5: Token Types without Strong Generalizability
Target Model Original High-interference Low-interference Random

Person Pythia-70M 60.28%*** 29.02% 28.58% 32.31%
GPT-2-Small 54.29%*** 27.47%*** 26.97%** 25.16%

Llama-3.1-8B-Instruct 38.85%*** 19.20%*** 19.08%*** 16.86%
Gemma-2-9B-Instruct 43.27%*** 25.36% 26.10% 25.04%

Llama-3.1-70B-Instruct 46.27%*** 21.90%*** 21.13%** 19.61%

Animal Pythia-70M 96.96%*** 28.49% 30.75% 29.83%
GPT-2-Small 86.11%*** 21.64% 18.87% 25.03%

Llama-3.1-8B-Instruct 67.07%*** 42.76%* 40.56% 40.89%
Gemma-2-9B-Instruct 26.09%*** 41.02%*** 38.50% 38.47%

Llama-3.1-70B-Instruct 49.32%*** 32.80%* 30.79% 31.43%

Emotion Pythia-70M 61.74%*** 26.13%*** 21.11% 20.68%
GPT-2-Small 58.84%*** 36.91%*** 35.22%* 33.85%

Llama-3.1-8B-Instruct 60.16%*** 27.94% 27.45% 29.37%
Gemma-2-9B-Instruct 56.55%*** 13.85% 13.63% 13.50%

Llama-3.1-70B-Instruct 51.51%*** 44.90%*** 40.63% 40.40%

Color Pythia-70M 97.31%*** 17.89% 21.49% 21.80%
GPT-2-Small 85.47%*** 35.57% 33.13% 36.93%

Llama-3.1-8B-Instruct 76.76%*** 22.01% 20.67% 20.97%
Gemma-2-9B-Instruct 22.57%*** 13.58% 16.10% 15.67%

Llama-3.1-70B-Instruct 76.85%*** 19.08% 17.88% 18.44%

Time Pythia-70M 69.92%*** 45.33%*** 45.54%*** 41.33%
GPT-2-Small 58.48%*** 31.55%*** 27.72%*** 21.42%

Llama-3.1-8B-Instruct 51.41%*** 25.58% 26.29% 25.95%
Gemma-2-9B-Instruct 55.15%*** 25.10%* 25.94%*** 23.62%

Llama-3.1-70B-Instruct 78.28%*** 36.87% 36.68% 37.71%

Note: Cell values show the success rate of elevating target-type tokens into the top 30 predictions.
Gray-shaded rows indicate black-box interventions. Testing uses a shared token set from the two small mod-

els. ***, **, and * denote t-test significance at p < 0.001, p < 0.01, and p < 0.05, respectively, vs. random
baseline. High- and low-interference tokens lie in [0.5, 1.0] and [0.2, 0.5]. Details in Appendix J.3.
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K Covert Intervention on Hellaswag Testset

To further examine the impact of the interference vectors obtained in the aforementioned sections
on the overall performance of the model, we conduct a rapid validation using the experimental
results targeting the “location” type of interference. Given that the intensity of the interference
vectors applied in the previous experiments is aimed at maximizing the disruptive effectwhich likely
caused substantial impairment to the model, we first reduce the scale to 0.25 times its original value.
Subsequently, we randomly select 500 test samples from the HellaSwag validation set and evaluate
each interference vector on them. Using accuracy as the evaluation metric, the experimental results
demonstrate that, out of a total of 174 interference vectors, 149 decreased the accuracy, while 25
increased it. The baseline accuracy is 77.2%, and the average reduction in accuracy is 2.77%. Some
examples that keep model performance, i.e. reduce accuracy fewer than 1%, while still having
substantial intervention effects are listed below.

Table 6: Covert Intervention on Hellaswag Dataset

Intervention Feature Top Predicted Tokens
Description of precautions related to safety
protection

“The documentary crew disappeared
while filming in remote areas of”

Raw Intervention
the 0.35 the 0.24
Papua 0.027 Papua 0.04
Nepal 0.016 Africa 0.035

Numerical data that may require ordering
or sorting

“She always dreamed of owning a
small cafe in”

Raw Intervention
the 0.34 the 0.36
a 0.27 a 0.28
her 0.21 Paris 0.13
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L Transferable Polysemantic Structure Exploration

In this section, we analyze shared interference patterns in GPT-2-Small and Pythia-70M, which we
previously demonstrated transfer to larger models under intervention. First, we use DeepSeek-V3
and GPT-5-mini to annotate every selected feature pair with the following prompt instruction.

System: You are an expert in analyzing neural network feature semantics. Given
two SAE (Sparse Autoencoder) features, their explanations, and their top activation
texts, determine if they are semantically related.
For each feature, you will see:
- An explanation describing what the feature captures
- 5 text segments where the feature activates most strongly. High-activation tokens
are marked with «<token»> or «<multiple tokens»>

Analyze the explanations and the marked tokens/activation patterns to determine:
1. Are these two features semantically related? Consider any form of semantic
relationship - including direct overlaps (capturing similar concepts, linguistic
patterns, or contextual meanings) as well as higher-order associations (e.g.,
semantic priming, thematic relatedness, or complementary roles).
2. If related, provide a concise description (max 50 tokens) of their relationship.
Return your analysis in this exact JSON format:
"isRelated": true/false, "description": "brief description" or null
Examples:
- Features activating on different tenses of verbs: "isRelated": true,
"description": "Both capture verbal expressions, one for past tense, other for
present tense"
- Features for numbers vs. animals: "isRelated": false, "description": null
- Features for positive vs. negative emotions: "isRelated": true, "description":
"Both capture emotional expressions with opposite valence"
- Features for doctor vs. hospital: "isRelated": true, "description":
"Conceptually linked via medical domain (profession vs. location)"
- Features for boat vs. sand: "isRelated": true, "description": "Loosely
associated through beach/marine context (object vs. terrain)"

User: Feature A: feature_a
Explanation: feature_a’s explanation
Top activations: texts that activates feature_a the most
Feature B: feature_b Explanation: feature_b’s explanation
Top activations: texts that activates feature_b the most

To compare the behavior of the two automatic annotators (DeepSeek-V3 and GPT-5-mini), we
compute the share of feature pairs labeled as “related” and the simple percent agreement in two sub-
sets. In the Pythia-70M subset, DeepSeek-V3 labels 10.8% of pairs as related and GPT-5-mini
28.7%, with 80.3% percent agreement. In the GPT-2-Small subset, the corresponding proportions
are 3.7% (DeepSeek-V3) and 18.4% (GPT-5-mini), with 83.8% agreement. Aggregating both sub-
sets, DeepSeek-V3 labels 9.5% of pairs as related and GPT-5-mini 26.8%, and the overall percent
agreement was 80.9%. We define percent agreement as the proportion of pairs for which both an-
notators assign the same label. Figure 15 A-B shows the agreement matrices for the two annotators.
Interestingly, the overall consistency between the two annotators is low (Pythia-70M: Cohen’s
k = 0.408; GPT-2-Small: Cohen’s k = 0.221). Compared with DeepSeek-V3, GPT-5-mini
labels significantly more feature pairs as related, suggesting greater sensitivity to latent semantic
associations. Nevertheless, more than 70% of pairs are still judged completely unrelated in the
annotators’ combined judgment (i.e., both say unrelated).

In Table 7, we further report eight qualitative examples where the two annotators flag latent associa-
tions and contrasting cases where they do not.
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Figure 14: GPT-5-mini and DeepSeek-V3’s annotation reports for shared interfered feature
pairs. DS is the abbreviation of DeepSeek-V3 and G5 is the abbreviation of GPT-5-mini.

Table 7: Eight examples of annotated feature pairs.

Category Feature pair Interpretation

Frame Feature A: Phrases and sentences that highlight sys-
temic issues related to incarceration and its effects on
individuals and families.
Feature B: Quantitative information related to statistics
and predictions.

Incarceration content often appears
alongside quantitative/statistical refer-
ences. (from GPT-5-mini)

Orthography Feature A: Occurrences of the word “acher.”
Feature B: References to specific researchers or authors
in studies related to minimum wage.

Both capture researcher/author name
substrings (e.g., -acher / Wascher).
(from GPT-5-mini)

Axiology Feature A: The term “dear” in emotional contexts re-
lated to relationships and feelings of affection.
Feature B: Concepts related to the notion of the sacred.

Both capture emotionally significant
concepts (affection vs. sacredness)
with deep personal or spiritual value.
(from DeepSeek-V3)

Homography Feature A: References to playing cards and card-related
concepts.
Feature B: References to the authors or studies related
to economic analysis.

Surface lexical overlap: “card” as
playing card vs “Card” (author name).
Same token, different senses. (from
GPT-5-mini)

No-relation Feature A: References to “New Guinea.”
Feature B: File formats and file compression terminol-
ogy.

None

No-relation Feature A: Instances of the abbreviation “ob” or related
terms indicating observational data or annotations.
Feature B: A specific term related to a well-known ride-
sharing company.

None

No-relation Feature A: Terms related to turbidity and its measure-
ment.
Feature B: References to specific music artists or
groups.

None

No-relation* Feature A: Occurrences of the name “Beethoven” and
related variations.
Feature B: Words related to expressions of frustration or
annoyance.

None
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M Polysemantic Neuron Manipulation

During the examination of SAE features and their connections with neurons, many features exhibit
semantically similar activation texts. To avoid repetitive analysis on similar activation texts, we first
perform feature clustering based on semantics of activation texts, and then check neuron connection
at the cluster level. Given that the sparse auto-encoder from Neuronpedia is trained with a sparsity
setting of 3, the analysis focuses on the top three neurons with the highest alignment values per
cluster. A threshold of 0.2 is applied to filter out weak connections. Figure15 shows the distribution
of polysemantic neurons identified in each layer. We can see that polysemantic neurons with strong
connections with aggregated features only take up fewer than 5% in each layer.

A B

Figure 15: Distribution of polysemantic neurons in each model. A is the result of Pythia-70M,
and B is the result of GPT-2-Small. Error bars represent 95% confidence intervals.

For strongly connected polysemantic neurons, we do further investigations on how suppressing or
boosting their activation influences the semantic shift in the model’s output to their aligned features.
Neurons’ activation is multiplied with a scale value in the range [0, 20]. Note that scaling within
[0, 1] suppresses activation, while scaling within [1, 20] amplifies it.
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N Ethics Statement, Limitations and Future Works

This study has three key methodological limitations. First, we rely on SAEs to disentangle polyse-
mantic activations; although SAEs are the de-facto tool, their outputs fluctuate with dimensionality
and hyperparameters, yielding unstable features (Paulo & Belrose, 2025; Heap et al., 2025; Gao
et al., 2024). Second, our interventions steer only one interference feature in one layer, while multi-
feature, cross-layer manipulations could amplify and better obscure the effect (Ameisen et al., 2025).
Third, we quantify vulnerability solely via shifts in immediate next-token probabilities on two small
base models—because only they both expose raw logits and have pre-trained SAEs—then check
coarse transfer on three larger instructed models; establishing how these interventions alter non-
trivial downstream tasks in bigger models is the next stage of this project. We release complete
code, evaluation scripts, and synthetic data here.
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