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ABSTRACT

Although text-to-image diffusion models have made significant strides in generat-
ing images from text, they are sometimes more inclined to generate images like the
data on which the model was trained rather than the provided text. This limitation
has hindered their usage in both 2D and 3D applications. To address this problem,
we explored the use of negative prompts but found that the current implementation
fails to produce desired results, particularly when there is an overlap between the
main and negative prompts. To overcome this issue, we propose Perp-Neg, a new
algorithm that leverages the geometrical properties of the score space to address
the shortcomings of the current negative prompts algorithm. Perp-Neg does not
require any training or fine-tuning of the model. Moreover, we experimentally
demonstrate that Perp-Neg provides greater flexibility in generating images by
enabling users to edit out unwanted concepts from the initially generated images
in 2D cases. Furthermore, to extend the application of Perp-Neg to 3D, we inte-
grate Perp-Neg with the state-of-the-art text-to-3D (DreamFusion) method. Our
experimental studies clearly show the effectiveness of Perp-Neg in addressing the
Janus (multi-head) problem. Perp-Neg has enabled the generation of 3D assets
that were previously unattainable due to the persistent Janus problem, even after
multiple attempts.

1 INTRODUCTION

Advancements in generating images using diffusion models from text have shown remarkable ca-
pabilities in producing a wide range of creative images from unstructured text inputs Balaji et al.
(2022); Ramesh et al. (2022); Rombach et al. (2022); Saharia et al. (2022); Yu et al. (2022). How-
ever, research has found that the generated images may not always accurately represent the intended
meaning of the original text prompt Brooks et al. (2022); Chefer et al. (2023); Hertz et al. (2022);
Wang et al. (2022b).

Generating satisfactory images that semantically match the text query is challenging, as it requires
textual concepts to match the images at a grounded level. However, due to the difficulty of obtaining
such a fine-grained annotation, current text-to-image models have difficulty fully understanding the
relationship between text and images. Therefore, they are inclined to generate images like high-
frequent text-image pairs in the datasets, where we can observe that the generated images are missing
requested or containing undesired attributes Li et al. (2023). Most of the recent works focus on
adding back the missing objects or attributes to existing content to edit images based on a well-
designed main text prompt Alt et al. (2022); Brooks et al. (2022); Chefer et al. (2023); Couairon
et al. (2022); Gal et al. (2022); Kawar et al. (2022); Lugmayr et al. (2022); Meng et al. (2021); Su
et al. (2022). However, limited of them study how to remove redundant attributes, or force the model
NOT to have an unwanted object using negative prompts Du et al. (2020), which is the main goal of
our paper.

We start this paper by showing the shortcomings of the current negative prompt algorithm. After our
initial investigation, we realized the current implementation of the negative prompt could produce
unsatisfactory results when there is an overlap between the main prompt and the negative ones, as
shown in the examples in Figure 1. To address the above problem, we propose Perp-Neg algorithm,
which does not require any training and can readily be applied to a pre-trained diffusion model. We
refer to our method as Perp-Neg since it employs the perpendicular score estimated by the denoiser
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+: “an armchair in the shape of an avocado”
-: “cushion in the armchair”

+: “a boy wearing sunglasses”
-: “a pair of sunglasses with white frame”

+: “a photo of an astronaut riding a horse”
-: “a running horse”; “a white horse”

+:“a painting of a cute corgi wearing a crown”
-: “a crown with red ruby decoration”
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Figure 1: Illustration of Perp-Neg’s (training-free) ability to modify generated images using negative
prompts while preserving the main concept, for various combinations of positive (+) and negative
(-) prompts. Top to Bottom: Each column presents the generation from Stable Diffusion (using only
positive prompt), Stable Diffusion using both positive and negative prompts, and Stable Diffusion
with Perp-Neg sampling. The same seed has been used for the generation of each column.

With 
Perp-Neg

Without 
Perp-Neg

Stable-DreamFusion IF-DreamFusion Stable-2nd Stage Magic3D

Figure 2: Comparative analysis of 3D generation techniques with and without the ‘Perp-Neg’
method: left plot - ‘DreamFusion with Stable-Diffusion,’ middle plot - ’DreamFusion with
DeepFloyd-IF,’ right plot - ‘Magic3D Lin et al. (2022) mesh optimization with Stable-Diffusion.’
The results clearly show the effectiveness of ‘Perp-Neg’ in mitigating the Janus problem in all cases.
It is noteworthy that in the leftmost plot, even though we initialized Magic3D with the exact same
mesh for both with and without ‘Perp-Neg’ methods, when ‘Perp-Neg’ was not used, Magic3D re-
finement stage resulted in the emergence of two distinct lion faces on the mesh by the end of the
training process. The prompts used for generating these assets are “a cute corgi,”“a Shiba dog wear-
ing sunglasses,” “a DSLR photo of a lion bust.”
for the negative prompt. More specifically, Perp-Neg limits the direction of denoising, guided by
the negative prompt to be always perpendicular to the direction of the main prompt. In this way, the
model is able to eliminate the undesired perspectives in the negative prompts without changing the
main semantics, as illustrated in Figure 1.

Furthermore, We extend Perp-Neg to DreamFusion Poole et al. (2022b), a state-of-the-art text-to-
3D model, and show how Perp-Neg can alleviate its Janus problem, which refers to the case that a
3D-generated object inaccurately shows the canonical view of the object from several viewpoints,
as shown in the top row of Figure 2. Recent studies have considered that the main cause of the
Janus problem is the failure of the pre-trained 2D diffusion model in following the view instruction
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provided in the prompt Metzer et al. (2022). Therefore, we first, in 2D, show quantitatively and
qualitatively how our algorithm can significantly improve the view fidelity of a pretrained diffusion
model. Then we integrate Perp-Neg in DreamFusion and Magic3D and show how it can alleviate
the Janus problem. Our contributions can be summarized as follows:

• We find the limitations of the current negative prompt implementation which is susceptible
to the overlap between a positive and a negative prompt.

• We propose Perp-Neg, a sampling algorithm for text-to-image diffusion models to elimi-
nate undesired attributes indicated by the negative prompt while preserving the main con-
cept, without any training needed.

• Our experiments quantitatively and qualitatively demonstrate that Perp-Neg significantly
improves diffusion model prompt fidelity in view generation.

• By enhancing the 2D diffusion model in following the view instruction, we mitigate the
Janus problem in text-to-3D generation tasks.

2 PERP-NEG: NOVEL NEGATIVE PROMPT ALGORITHM

2.1 PRELIMINARY

Diffusion Models: Diffusion-based (also known as score-matching) models Ho et al. (2020); Sohl-
Dickstein et al. (2015); Song et al. (2021) is a family of generative models that employ a forward
process and a reverse process to iteratively corrupt and generate the data within T steps. Specifically,
denoting q(x0) as the data distribution and p(xT ) as the generative prior, such two processes can be
modeled as the following:

forward : q(x0:T ) = q(x0)
QT

t=1q(xt|xt�1), reverse : p✓(x0:T ) = p(xT )
QT

t=1p✓(xt�1|xt).

One of the most appealing attributes of diffusion models is that any intermediate step of the forward
process and every single step in the reverse process can be modeled as a Gaussian distribution like
formulated in Ho et al. (2020):

q(xt|x0) = N (xt;
p
↵tx0, (1� ↵t)I), p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),�

2
t I).

where {↵t}Tt=1 and {�t}Tt=1 can be explicitly calculated with a pre-defined variance schedule
{�t}Tt=1. Moreover, the generator µ✓(·) is a linear combination of xt and a trainable generator
✏✓ that predicts the noise in xt, which is usually optimized with a simple weighted noise prediction
loss

✓? = argmin
✓

E
t,xt,✏

[w(t)k✏✓(xt, t)� ✏k2], (1)

xt =
p
↵tx0 +

p
1� ↵t✏; x0 ⇠ q(x0), ✏ ⇠ N (0, I) (2)

with w(t) as the weight that depends on the timestep t that is uniformly drawn from {1, ..., T}.

Text-to-Image Diffusion Models and Composing Diffusion Model: Recent works have shown the
success of leveraging the power of diffusion models, where large-scale models are able to be trained
on extremely large text-image paired datasets by modeling with the loss function in Equation 1
(or its variants) Nichol et al. (2021); Ramesh et al. (2022); Rombach et al. (2022); Saharia et al.
(2022), with the text prompt c often encoded with a pre-trained large language model Devlin et al.
(2018); Raffel et al. (2020). To generate photo-realistic images given text prompts, the diffusion
models can further take advantage of classifier guidance Dhariwal & Nichol (2021) or classifier-
free guidance Ho & Salimans (2022) to improve the image quality. Especially, in the context of
text-to-image generation, classifier-free guidance is more widely used, which is usually expressed
as a linear interpolation between the conditional and unconditional prediction ✏̂✓(xt, t, c) = (1 +
⌧)✏✓(xt, t, c)� ⌧✏✓(xt, t) at each timestep t with a guidance scale parameter ⌧ .

When the prompt becomes complex, the model may fail to understand some key elements in the
query prompt and create undesired images. To handle complex textual information, Liu et al. (2022)
proposes composing diffusion models to factorize the text prompts into a set of text prompts, i.e.,
c={c1, ...cn}, and model the conditional distribution as

p✓(x|c1, ..., cn) / p(x, c1, ..., cn) = p✓(x)
nY

i=1

p✓(ci|x). (3)
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By applying Bayes rule, we have p(ci|x) / p(x|ci)
p(x) and

p✓(x|c1, ..., cn) / p✓(x)
Qn

i=1

p✓(x|ci)
p✓(x)

. (4)

Note that p✓(x|ci) and p✓(x) respectively correspond to ✏✓(xt, t, ci) and ✏✓(xt, t) modeled by the
diffusion model. Putting them together yields a composed noise predictor, as shown in Liu et al.
(2022):

✏̂✓(xt, t, c) = ✏✓(xt, t) +
P

iwi (✏✓(xt, t, ci)� ✏✓(xt, t)) , (5)

With wi as a scaling temperature parameter to adjust the weight of the concept components. When
one concept c̃ is needed to be removed, it is proposed to plug in the corresponding component
1/p(x|c̃) to reformulate Equation 4:

p✓(x|not c̃, c1, ..., cn) = p✓(x)
p✓(x)�

p✓(x|c̃)�
Qn

i=1

p✓(x|ci)
p✓(x)

,

and the corresponding sampler becomes

✏?✓(xt, t, c)= ✏̂✓(xt, t, c)�wneg (✏✓(xt, t, c̃)�✏✓(xt, t)) ,

where wneg > 0 is a weight function depending on ⌧ and �, denoting the scale for the concept
negation.

2.2 PERPENDICULAR GRADIENT SAMPLING

2.2.1 THE PROBLEM OF SEMANTIC OVERLAP

Although Liu et al. (2022) proposes to decompose the text condition into a set of positive and
negative prompts in order to help the model handle complex textual inputs, the proposed method
assumes these conditional prompts are independent of each other, which requires careful design
of the prompts or maybe too ideal to realize in practice. For simplicity of presentation, below we
present the overlap problem with the case of fusing two prompts, i.e., the main prompt c1 and
an additional prompt c2. Without loss of generality, this problem can also be generalized to the
case where the main prompt is combined with a series of prompts as {c1, ..., cn}. To illustrate the
problem, we first re-write the relation in Equation 3:

p✓(x, c1, c2)=p✓(x)p✓(c1|x)p✓(c2|x)
p✓(c1, c2|x)

p✓(c1|x)p✓(c2|x)
.

When c1 and c2 are conditional independent given x, the ratio R(c1, c2) = p✓(c1,c2|x)
p✓(c1|x)p✓(c2|x) = 1

and this term can be ignored. However, in practice, the input text prompts can barely be indepen-
dent when we need to specify the desired attributes of the image, such as style, content, and their
relations. When c1 and c2 have an overlap in their semantics, simply fusing the concepts could
be harmful and result in undesired results, especially in the case of concept negation, as shown in
Figure 1. In the second row of images, we can clearly observe the key concepts requested in the
main text prompt (respectively “armchair”, “sunglasses”, “crown”, and “horse”) are removed when
those concepts appear in the negative prompts. This important observation motivates us to rethink
the concept composing process and propose the use of a perpendicular gradient in the sampling,
which is described in the following section.

2.2.2 PERPENDICULAR GRADIENT

Recall when c1 and c2 are independent, both of them possess a denoising score component

✏i✓ = ✏✓(xt, t, ci)� ✏✓(xt, t); i = 1, 2

and we can directly fuse these denoising scores as done in Equation 5. However, from the above
section, when c1 and c2 overlap, we cannot directly fuse the denoising components together, which
motivates us to seek the independent component of c2 to ensure the fused denoising score does not
hurt the semantics in c1.
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Text Encoder

Denoising U-Net 
or

Figure 3: Overview of Perp-Neg. The plot shows a denoising step in the Perp-Neg algorithm for
the whole scheme of 2D generation, refer to Figure 8 in Appendix

Considering the geometrical interpretation of ✏i✓ indicates the gradient that the generative model
should denoise to produce the final images, a natural solution is to find the perpendicular gradient of
✏1✓ as the independent component of ✏2✓. Therefore, we now re-formulate Equation 5 and define the
Perp-Neg sampler for c1 and c2 as

✏̂Perp
✓ (xt, t, c)=✏✓(xt, t)+w1✏

1
✓+w2

✓
✏2✓�

h✏1✓, ✏2✓i
k✏1✓k2

✏1✓

◆

| {z }
perpendicular gradient

. (6)

where h, i denotes the vectorial inner product, w1 and w2 define the weights for each component,
and h✏1✓,✏

2
✓i

k✏1✓k2 defines the projection function to find the most correlated component of c2 to c1.

Note that although the proposed perpendicular gradient sampler is applicable for both positive text
prompts and negative prompts, we find in the case of concept conjunction, the positive prompts can
be designed to be independent of the main prompt in an easier way, as we are creating new details in
complementary to the main concept. However, in the case of concept negation, it is more frequent
to observe the negative prompts have overlap with the main text prompt. Compared to the sampler
in Equation 5, the most important property of the perpendicular gradient is that the component of
✏1✓ won’t be affected by the additional prompt. Imagine the case where ✏1✓ = ✏2✓, using Equation 5,
the denoising gradient becomes zero if we also set w1 = �w2, which might fail the generation.
However, using perpendicular gradient in Equation 2.2.2 could still preserve the main component ✏1✓.
Below we mainly discuss the case of using perpendicular gradient sampling to handle the negative
prompts and introduce Perp-Neg algorithm.

2.2.3 PERP-NEG ALGORITHM

The above section discusses the perpendicular gradient between the main prompt and one additional
prompt. Here we generalize it to a set of negative text prompts {c̃1, ..., c̃m} and present our Perp-
Neg algorithm. We first denote c1 and ✏1✓ used in the previous section as cpos and ✏pos

✓ , which indicate
the main positive text prompt condition and the corresponding denoising component, respectively.
For any negative text prompt in the set c̃i, i = 1, ...,m, following equation 2.2.2, the Perp-Neg
sampler is defined as

✏Perp-Neg
✓ (xt, t, cpos, c̃i) = ✏✓(xt, t) + wpos✏

pos
✓ �

P
iwi

✓
✏i✓ �

h✏pos
✓ , ✏i✓i
k✏pos

✓ k2
✏pos
✓

◆

| {z }
perpendicular gradient of ✏pos on ✏i

,

with ✏i✓ = ✏✓(xt, t, c̃i)� ✏✓(xt, t), wpos > 0 and wi > 0 as the weight for positive and each negative
prompt. The illustration of Perp-Neg algorithm is shown in Figure 3, and the detailed algorithm is
described in Algorithm 1 in Appendix.
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3 2D DIFFUSION MODEL FOR 3D GENERATION

Background: Since 2D diffusion models not only provide samples of density but also allow cal-
culating the derivate of data density likelihood. There are several seminal works that use the latter
advantage to uplift a pretrained 2D diffusion and make it a 3D generative model. The main idea be-
hind all these methods is to optimize a 3D scene representation of an object (e.g., NeRF Mildenhall
et al. (2021), mesh, etc.) based on the likelihood that a diffusion model defines its 2D projections.
To be more specific, these algorithms consist of 3 main components:

• 1- A 3D parametrization of the scene �.
• 2- A differentiable renderer g to create an image x (or its encoded feature) from a desired

camera viewpoint v such that x = g(�, v).
• 3- A pre-trained 2D diffusion model ✓ to obtain a proxy of log p(x|c, v) where p is the 2D

data density and c is the text prompt.

The 3D generation has been done as solving an optimization problem as follows:

�⇤ = argmin
�

Ev [L(x = g(�, v)|c, v; ✓)]

where L is a proxy to the negative log-likelihood of the 2D image based on the pre-trained diffusion
model.

The noise prediction loss in Equation 1 is a natural choice for L as the training objective of the
diffusion model, since it is a (weighted) evidence lower bound (ELBO) of the data density Ho et al.
(2020); Kingma et al. (2021); Poole et al. (2022b):

LDiff = Et,✏

⇥
w(t)k✏✓(xt; t)� ✏k22

⇤
(7)

However, direct optimization of LDiff does not provide realistic samples Poole et al. (2022b). There-
fore, Score Distillation Sampling (SDS) has been proposed as a modified version of the diffusion
loss gradient r�LDiff, which is more robust and more computationally efficient as follows:

r�LSDS(x = g(�)) , Et,✏


w(t) (✏̂✓(xt; c, v, t)� ✏)

@x

@�

�
(8)

where also ✏✓ has been replaced with ✏̂✓ to allow text conditioning by using the classifier-free guid-
ance Ho & Salimans (2022).

Intuitively, this loss perturbs x with a random amount of noise corresponding to the timestep t, and
estimates an update direction that follows the score function of the diffusion model to move to a
higher-density region.

For the choice of L, since the introduction of the seminal work DreamFusion Poole et al. (2022b),
there have been several proposals Lin et al. (2022); Metzer et al. (2022); Wang et al. (2022a). How-
ever, since they are similar in core and our method can be applied to all of them, we continue the
formulation of the paper by using the Score Distillation Sampling loss presented by DreamFusion.

3.1 THE JANUS PROBLEM

Since the introduction of 2D diffusion-based 3D generative models, it has been known that they
suffer from the Janus (multi-faced) problem Metzer et al. (2022); Poole et al. (2022b). This refers
to a phenomenon that the learned 3D scene, instead of presenting the 3D desired output, shows
multiple canonical views of an object in different directions. For instance, when the model is asked
to generate a 3D sample of a person/animal, the generated object model has multiple faces of the
person/animal (which is their canonical view) instead of having their back view.

View-dependent prompting (e.g., adding back view, side view, or overhead view with respect to the
camera position to the main prompt) has been proposed as a remedy but does not fully solve the
problem Poole et al. (2022a). We believe part of the reason is that 2D Diffusion models fail to be
fully conditioned on the view provided by the prompt, as also pointed out by others Metzer et al.
(2022). For instance, when the model is asked to generate the back view of a peacock, it wrongly
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produces the front view instead, as the front view has been more prominent in the training data the
model has been trained on.

To provide an intuitive mathematical understanding of the Janus problem, we believe one of the
reasons is the model fails to be properly conditioned on view v. More specifically, the proxy of
log p(x|c, v) does not fully restrict x to have zero density on areas that do not represent the viewpoint
v for the scene description y. The main reason we think this is the case is samples of the density fail
to reflect the direction of interest.

3.2 PERP-NEG TO ALLEVIATE JANUS PROBLEM AND 2D VIEW CONDITIONING

In this section, we first explain how combining Perp-Neg with a unique prompting technique can
enable us to accurately condition the 2D diffusion model on the desired view. Additionally, we will
explore how Perp-Neg can be integrated with SDS loss to address the Janus problem by improving
the view faithfulness of the 2D model.

To begin, we demonstrate how to generate a desired statistical view using the improved model.
Then, we explain the process for creating interpolations between two views To generate a specific
view of an object, we use a combination of positive and negative prompts. We define txtback, txtside,
and txtfront as the main text prompts appended by back, side, and front views, respectively. We
replace simple prompts containing the view with the following set of positive and negative prompts
to generate each view:

txtback ! [+txtback,�wb
side

txtside,�wb
front

txtfront]

txtside ! [+txtside,�ws
front

txtfront], txtfront ! [+txtfront,�wf
side

txtside]

where w(·) � 0 denotes the weights for the negative prompts. Positive and negative prompts are fed
into the Perp-Neg algorithm during each iteration of the diffusion model. We don’t include txtback

as a negative prompt for the generation of side/front views since most objects’ canonical view is
not back. However, if the back view is more prominent for some objects, it should be included
as a negative prompt. We also observed increasing the weight of the negative prompt makes the
algorithm focus more on avoiding that view, acting as a pose factor.

In this subsection, we will first explain how we interpolate between the side and back views, followed
by the interpolation between the front and side views. We distinguish between these two cases
because the diffusion model may be biased toward generating front views, and if this assumption is
not true, then the formulation needs to be adjusted accordingly.

To interpolate between the side and back views, we use the following embedding as the positive
prompt:

rinter ⇤ embside + (1� rinter)embback; 0  rinter  1

where embv is the encoded text for the view v and rinter is the degree of interpolation. And for the
negative prompts, we use:

[�fsb(rinter)txtside,�ffsb(rinter)txtfront]

such that fsb, ffsb are positive decreasing functions. The second negative prompt is chosen based on
the assumption that the diffusion model is more biased towards generating samples from the front
view.

For interpolation between the front and side views, the embedding for the positive would be:

rinter ⇤ embfront + (1� rinter)embside

and the following two negative prompts

[�ffs(rinter)txtfront,�fsf(1� rinter)txtside]

where ffs(1), fsf(1) ⇡ 0 and both of the functions are decreasing.

Perp-Neg SDS: We employed interpolation technique in Stable DreamFusion and varied rinter based
on the related direction of 3D to 2D rendering. To be more specific, we modified the SDS loss 8 as
follows:

r�LPN

SDS , Et,✏


w(t)

�
✏̂PN

✓ (xt; c, v, t)� ✏
� @x

@�

�
(9)
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Figure 4: Averaged successful generation count
in terms of different positive and negative prompt
combinations.

Method Side view Back view
Stable Diffusion 42.0% 14.6%
CEBM 12.7% 2.0%
Perp-Neg (Ours) 73.1% 40.4%

Figure 5: Comparison of successful generation
rate.

Figure 6: Comparison of generation of the
back view of panda, lion and peacock using
the vanilla sampler, CEBM, and our Perp-Neg
(from left to right) with Stable Diffusion.

such that ✏̂PN

✓ (xt; c, v, t) is:

✏unc
✓ + wguidance[✏

posv
✓ �

X

i

w(i)
v ✏

neg(i)?v
✓ ]. (10)

The unconditional term ✏unc✓ refers to ✏✓(xt, t), and

✏
posv
✓ = ✏✓(xt, t, c

(v)
pos )� ✏✓(xt, t), ✏

neg(i)v
✓ = ✏✓(xt, t, c

(v)
neg(i)

)� ✏✓(xt, t)

where c(v). refers to the text embedding of positive/negative at direction v. And ✏
neg(i)?v
✓ is the per-

pendical component of ✏neg(i)v
✓ on ✏

posv
✓ . And, wv’s are representative of the weights of the negative

prompts at direction v.

4 EXPERIMENTS

In this section, we first conduct experiments on 2D cases to quantitatively demonstrate the impor-
tance of using Perp-Neg in the sampling to improve the likelihood of getting the image correspond-
ing to the text query, which provides evidence of why our method surpasses vanilla sampling in the
3D case. Next, we show results in 3D generation.

4.1 STATISTICS ON SEMANTIC-ALIGNED 2D GENERATIONS

In the first experiment, we set the random seeds as 0-49 to get 50 images from each text prompt. We
carefully select qualified images that align with the requested text based on a series of criteria and
report the percentage of accepted samples produced with Stable Diffusion, Compositional Energy-
based Model (CEBM), and our Perp-Neg. Below we introduce the details of prompt design and the
criteria for accepting qualified samples.

Design of prompts: We design the basic text prompts as: “A [O], [V] view.” Token [O] stands for
the objects, such as panda, lion; token [V] stands for view, where we only consider “front”, “back”
and “side” in our experiments. For example, we use “A panda, side view” to request the model to
generate an image showing the side view of a panda. For more detail please refer to AppendixA.2.

Average success rate: We test each group of prompts using three objects, “panda”, “lion”, and
“peacock” and only count photo-realistic generation that matches the text prompt query as a suc-
cessful generation. For detailed acceptance criteria and other details, please refer to Appendix A.2.
We count the averaged percentage of accepted successful generations, summarized in Table 5.
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Figure 7: Qualitative examples of Magic3D with Perp-Neg. The prompts used for generating these assets are
“a tiger cub,” “a marble lion bust,” “a Shiba dog wearing sunglasses.” It is important to highlight that, in the

absence of Perp-Neg, the Magic3D model, whether utilizing Stable-Diffusion or DeepFloyd-IF, failed to

produce satisfactory results across all the above prompts, even after six attempts.

As shown, we can observe the vanilla sampling from Stable Diffusion only has 42.0% in success-
fully generating requested side-view images. For more difficult cases like generating the back-view
images, the success rate is even lowered to 14.6%. By simply using negative prompts without con-
sidering the overlap between positive and negative prompts, CEBM fails to generate the desired
view and results in a lower success rate compared to Stable Diffusion. Figure 6 shows a qualitative
justification corresponding to Table 5.

On the combination of positive and negative prompts: To explore how to combine negative
prompts with the positive prompt. We compute the averaged successful generation count across all
tested objects and report the averaged count using different positive and negative prompt combina-
tions in Figure 4. From the figure, it is notable that when generating the side-view images, using the
back view as the negative prompt is less effective than using the front view or using the combination
of both the front view and back view. Similarly, when generating back-view images, using the front
view in negative prompts is also less effective, since the model is less likely to generate front-view
details when conditioned on the back view, while the side view is more ambiguous to the model.

4.2 PERP-NEG FOR 3D

To demonstrate the efficacy of Perp-Neg in mitigating the Janus problem across various scenarios,
we employ Perp-Neg with two distinct choices of pre-trained diffusion models: Stable-Diffusion
and DeepFloyd-IF. We take this approach to underscore that our algorithm’s utility extends beyond
specific models or architectures.

Furthermore, we seek to illustrate that Perp-Neg can offer value beyond its application in the Dream-
Fusion algorithm. To this end, we integrate it into the Magic3D framework, showcasing its effec-
tiveness in refining 3D objects without causing the Janus problem. A selection of our qualitative
observations can be found in Figures 2 and 7. For a more comprehensive exploration and details,
including quantitative comparisons, please refer to AppendixB.

5 CONCLUSION

We introduce Perp-Neg, a new algorithm that enables negative prompts to overlap with positive
prompts without damaging the main concept. Perp-Neg provides greater flexibility in generating
images by enabling users to edit out unwanted concepts from initial generated photos. More impor-
tantly, Perp-Neg enhances prompt faithfulness by preventing the 2D diffusion model from producing
biased samples from its training data and accurately representing the input prompt. This can be ac-
complished by feeding to Perp-Neg a sentence describing the model bias as the negative prompt to
generate desired solutions. Our paper also demonstrates how Perp-Neg can properly condition the
2D diffusion model to generate views of interest rather than a canonical view. Finally, we integrate
Perp-Neg’s robust view conditioning property into SDS-based text to 3D models and show how it
alleviates the Janus problem.
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