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Abstract

Fundamental vision tasks are increasingly important for robotics, from ground nav-
igation to aerial monitoring. As robots are deployed in diverse scenarios, domain
adaptation has been proposed to address the challenge of changing environments.
However, current methods focus on bridging the gap between pre-defined, static
domains such as synthetic-to-real or sunny-to-rainy. We argue that this static view
of adaptation is insufficient for embodied agents. Instead, embodied agents should
adapt to their own states, such as position, altitude, and orientation, to better handle
changing environments and improve performance in core vision tasks. The goal
should not be to merely cope with pre-defined shifts, but to enable systems to
continuously adapt based on their operational status. Current models, despite their
impressive performance, remain fundamentally unaware of their own states. We
posit that the next generation of robust perception systems must be state-adaptive:
dynamically modulating their internal processes in response to ever-changing
conditions. This position paper calls for a paradigm shift from building generic,
one-size-fits-all models toward adaptive systems that are intrinsically aware of their
own states, paving the way for true domain robustness in robotic vision.

1 Introduction

In recent years, robotics has experienced transformative progress, much of it driven by breakthroughs
in computer vision [7]. Embodied agents today can manipulate objects with remarkable precision [10,
10] and navigate complex environments as autonomous vehicles or drones [1, 3, 39], largely because
they can perceive and interpret the world around them. This capability is grounded in a set of core
vision tasks that convert raw sensor inputs into structured representations suitable for decision-making
and control.

While a wide range of vision tasks support the development of effective robotic vision systems, here
we highlight two representative tasks. Semantic segmentation [2, 14, 37] assigns a semantic label to
every pixel of an image, enabling an embodied agent to build a detailed map of what is present in its
environment. Monocular depth estimation [18] recovers geometric structure from a single camera
view, informing the embodied agent where objects are located and supporting crucial reasoning about
navigation and interaction [15, 29]. Together, these tasks give embodied agents both the semantic
and geometric understanding needed for autonomous operation [17, 24].

Despite their importance, these models remain fragile outside controlled training settings. A recurring
obstacle is domain shift [34], where a model trained under one set of conditions performs poorly
when deployed in another. For instance, a segmentation model trained in clear weather may fail under
rain [21, 31], and a depth estimator trained on outdoor driving scenes may yield unreliable results
when applied to indoor navigation [16].
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To mitigate this problem, the community has largely pursued the paradigm of unsupervised domain
adaptation (UDA)[4, 12]. For semantic segmentation, UDA research has focused on aligning feature
distributions to bridge shifts in appearance and style, successfully adapting models from synthetic
to real imagery [8] or from clear to adverse weather conditions [21, 31]. In depth estimation, the
challenge is even sharper: the inherent scale ambiguity of inferring 3D from 2D images [9, 19] means
that a model trained on long-range outdoor data such as KITTI [5] often produces arbitrarily scaled
predictions when tested on short-range indoor datasets like NYUv2 [22].

As the demand for long-term autonomy grows [6, 33], researchers have also explored continual
learning (CL)[13, 32]. Continual learning equips models to learn sequentially from ongoing data
streams, incorporating new classes and domains without catastrophically forgetting previous knowl-
edge [11, 13]. Continual learning offers a path for embodied agents to accumulate experience and
expand their perceptual competence over a lifetime of operation [20].

However, both UDA and continual learning share a crucial limitation: they implicitly treat the
embodied agent as a passive, disembodied observer. Adaptation is framed as a problem of distribution
alignment across datasets, without explicitly considering the primary cause of those changes in a
robotic context – the embodied agent’s own state. In practice, the robot’s position, orientation,
altitude, or motion directly shapes the data it observes [15, 30]. This embodiment is not a side effect
but the root cause of many domain shifts. For example, in depth estimation, changes in altitude
or viewpoint induce scale inconsistencies between training and deployment scenarios [9, 23]. In
segmentation, that same geometric change alters class distributions: objects that once dominated the
field of view may shrink into rare or hard-to-detect categories [28]. Traditional domain adaptation
techniques, which focus only on image characteristics (e.g., synthetic vs. real), are blind to these
state-dependent shifts [8, 27].

We therefore argue that vision models should explicitly adapt to the embodied agent’s state. A
model with an internal scaling mechanism linked to state information could address both challenges
simultaneously: correcting metric scale for depth estimation and rebalancing class importance for
segmentation. This reframes domain shift in robotics not merely as a visual discrepancy, but largely
as a geometric consequence of embodiment. By making agents state-adaptive, we move closer to
perception systems that are robust, generalizable, and ultimately capable of supporting long-term
autonomy.

Using examples from recent advances in computer vision, this position paper argues that the primary
bottleneck to achieving true domain robustness lies in the field’s limited ability to adapt to the
embodied agent’s own state. Specifically, it issues a call to action for the computer vision research
community:

• Move beyond adapting to static, appearance-based domains (e.g., synthetic-vs-real) and
instead focus on adapting to the continuous, state-dependent domains generated by the
embodied agent’s own motion and interaction with the world.

• Prioritize research to develop new perception architectures with internal, dynamic mecha-
nisms that are modulated by the embodied agent’s state. This includes creating state-adaptive
loss functions, attention mechanisms, and even architectures that can adapt their own com-
putational graph based on context.

• Prioritize establishing new benchmarks that evaluate a model’s ability to handle state-
dependent domain shifts, unifying the evaluation of seemingly disparate problems like class
imbalance in semantic segmentation and scale inconsistency in depth estimation under a
common, robotics-centric framework.

2 The Real Gap: Perception Without State Awareness

The dominant paradigm for achieving robust perception is through data diversity. By training a
single, large model on a vast and varied dataset encompassing numerous conditions (different weather,
lighting, viewpoints, etc.), the goal is to learn a universal feature representation that generalizes
across all scenarios. This approach, while powerful, implicitly models the world as an independent
and identically distributed (i.i.d.) process. For an embodied agent like a robot, this assumption
is perpetually violated. A robot’s sensory stream is non-stationary and highly structured, with the
statistical properties of the input data being a direct function of the agent’s physical state. The failure
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to account for this coupling between state and perception leads to a fragile "one-size-fits-all" model
that may perform well on average but is unreliable in specific, state-dependent regimes. A notable
example of this is the effect of visual scale, which is a direct consequence of the robot’s distance from
objects. This single state-dependent variable creates two well-known, yet typically disconnected,
failure modes in vision:

Metric Scale Ambiguity in 3D Vision Monocular depth estimators are notoriously susceptible to
domain shifts in depth range. A model trained on the outdoor KITTI dataset [5] (depths up to 80m)
and tested on the indoor NYUv2 dataset [22] (depths up to 10m) will produce predictions that are not
only metrically incorrect but also internally inconsistent, as the learned mapping from image cues
to disparity is no longer valid [19]. This is a geometric problem, not a stylistic one; aligning image
textures cannot resolve the fundamental ambiguity in metric scale.

Class Representation Imbalance in 2D Vision In semantic segmentation, visual scale, a direct
function of the embodied agent’s state, manifests as a severe class representation problem. For
a drone, this is not a static property of a dataset but a dynamic, per-frame reality. Consider an
autonomous drone performing a surveillance task. At a low altitude of 10 meters, a pedestrian is
a salient object, occupying thousands of pixels. In this context, the class imbalance between the
pedestrian and the sprawling road class is manageable. However, as the drone ascends to a cruising
altitude of 80 meters to survey the area, its state changes, and the perception problem transforms
entirely. The same pedestrian shrinks to a mere speck of 10-20 pixels. The instantaneous class
imbalance within this high-altitude frame has now skyrocketed from perhaps 50:1 to over 1000:1. A
model trained with a static balancing parameter is optimized for the average imbalance of its training
set and is fundamentally unprepared for this extreme state-dependent shift. It will likely fail to
classify the 20-pixel blob, treating it as noise, a safety-critical failure. This localized, state-dependent
phenomenon explains the kind of large-scale performance deltas observed in recent research [25].
For instance, baseline models in continual learning often show a performance gap of over 25 mIoU
points [25] between majority and minority classes on datasets like ADE20K [38]. This demonstrates
that model performance already varies with object scale, which is itself dependent on the embodied
agent’s state. Current static balancing methods cannot dynamically adapt to this vulnerability.

These two issues mentioned above, one a 3D geometric failure, the other a 2D semantic failure, are
two sides of the same coin. Both are symptoms of a state-agnostic model’s inability to adapt to a
change in its physical distance from the scene.

3 Our Position: Towards State-Adaptive Perception

Given the fundamental limitations of the state-agnostic paradigm, we posit that achieving the next
level of robustness requires a paradigm shift. We must move beyond simply building larger, more
diverse datasets and instead focus on creating perception systems that are intrinsically aware of their
own states. This leads us to a new mandate for robotic vision research, a call to action centered on
three core principles:

First, we must move beyond adapting to static, appearance-based domains and instead focus on
adapting to the continuous, state-dependent domains generated by the embodied agent’s own motion
and interaction with the world. The current conception of a domain as a discrete category (e.g.,
synthetic, real, rainy) is a useful but ultimately coarse abstraction. For an embodied agent, the
domain is not static but a continuous function of its state vector. The shift from a low-altitude to a
high-altitude view is not a jump between two domains but a trajectory through a continuous space of
visual scales. This perspective requires us to rethink our adaptation strategies. Rather than learning
mappings between a few pre-defined points in domain space, we should develop methods that can
smoothly and continuously adapt along these state-dependent axes. Some recent efforts address
viewpoint changes in the context of segmentation [26, 36] and depth estimation [35], but they still
frame the problem as adaptation among static datasets rather than as a continuous change in view
and altitude. Therefore, research should therefore prioritize models that can generalize their adaptive
behavior across the full spectrum of an embodied agent’s operational states.

Second, we must prioritize research into new perception architectures with internal, dynamic mech-
anisms that are modulated by the embodied agent’s state. A truly adaptive system cannot be a
monolithic black box; it must possess explicit structures that allow its computational strategy to
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change in response to its context. This is a call to explore a new class of architectures where the
state is not just another input feature, but a control signal that governs the computation itself. Such a
principle opens up numerous promising research directions, including:

• state-adaptive Loss Functions: We can design learning objectives that dynamically re-
weight their own terms based on the current state. For example, a system could learn to infer
its distance from a scene and use that inference to apply a more aggressive balancing factor
to its loss function, forcing it to prioritize small, distant objects that are at high risk of being
missed.

• State-Modulated Attention: We can develop attention mechanisms whose queries, keys, or
values are conditioned on the embodied agent’s state. This would allow a model to focus its
capacity on different types of features based on its context—for instance, prioritizing fine-
grained textures during a close-up inspection versus coarse object shapes during high-speed
navigation.

• Adaptive Computational Graphs: We can explore models that can dynamically alter their
own structure in a principled way, activating or deactivating certain layers or modules based
on the mission phase or energy constraints.

Finally, we must establish new benchmarks and evaluation protocols that measure a model’s ability
to handle state-dependent domain shifts. Current benchmarks, which report a single, aggregate
performance metric (e.g., mIoU), are not just insufficient; they are potentially misleading. Such
metrics incentivize models that perform well on average, a strategy that can mask catastrophic failures
in specific but common operational states, creating a false sense of security. To foster genuine
progress, we must advocate for a move towards state-stratified evaluation. A benchmark for a drone
perception model, for example, should not just report a single mIoU but should explicitly report
performance binned by altitude, velocity, or viewpoint. Similarly, an autonomous vehicle benchmark
should stratify results by the vehicle’s speed and the distance to objects of interest (near, mid, and
far-field performance). This granular approach provides a much clearer and more honest picture of a
model’s true robustness, revealing failure modes that are currently averaged away. More importantly,
such a framework would force the community to confront the unified nature of these challenges,
directly assessing both semantic failures (like class imbalance) and geometric failures (like scale
inconsistency) under a common, robotics-centric lens, thereby encouraging the development of more
holistic and truly robust perception systems.

These principles of state-adaptive perception extend far beyond the above examples. We believe this
is a rich and vital area for robotics research. We encourage the community to explore other forms of
state-adaptive perception, such as:

• Motion-Adaptive Perception: Models that dynamically adjust their temporal fusion strate-
gies or allocate more capacity to de-blurring features when the embodied agent is moving at
high speed.

• Energy-Adaptive Perception: For long-duration missions, models that can scale down
their own computational graph and operate in a lower-power, lower-fidelity mode when the
agent’s battery is low.

• Interaction-Adaptive Perception: A manipulation embodied agent whose visual sys-
tem changes its feature extraction strategy based on whether it is in a pre-grasp (object
recognition) or post-grasp (slip detection) phase.

4 Conclusion

The current paradigm of training large, static models and hoping they generalize to all possible
robotic scenarios has brought us far, but it is reaching its limits, especially for robot-deployable vision
models. For embodied agents to become truly robust and trustworthy, they must be able to reason
about their own state and adapt their perception strategies accordingly. We have argued for a shift
towards state-adaptive perception and have presented a concrete, practical example of how these
principles can be applied to solve a safety-critical problem in mobile robotics. By building models
that are not just robust in general, but adaptive in particular, we posit that to move beyond current
limitations in robotic robustness, the community should shift its focus from building static, universal
models to creating state-adaptive perception systems.
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