
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING THE MECHANISMS OF FAST HYPER-
PARAMETER TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

The growing scale of deep learning models has rendered exhaustive hyperparam-
eter (HP) optimization prohibitively expensive. A promising solution is the use
of scale-aware HPs, which can enable direct transfer of optimal settings from
small-scale grid searches to large models with minimal performance loss. Such
approaches are useful when the optimal settings converge “fast” enough with scale.
While approaches like the Maximal Update Parameterization (µP) have empirically
displayed fast transfer when scaling model width, a deeper conceptual understand-
ing of the mechanisms that enable this is still missing. Our work establishes a
systematic conceptual framework for analyzing fast HP transfer across different
synthetic and practical scenarios. In synthetic settings, we present various quantita-
tive examples where transfer either offers a provable computational advantage or
fails even under µP. We then propose a key property that enables the fast transfer
often observed in practice: through a novel decomposition of the optimization
trajectory, we identify one component that rapidly converges with model width and
determines the optimal HPs, and the other that continues to improve the loss with
increased width but has negligible impact on HP choice. We conjecture that this
decomposition elucidates the key mechanisms behind fast transfer and empirically
validate it in settings such as large language model (LLM) training.

1 INTRODUCTION

Scaling-aware hyperparameters. A central dogma in empirical deep learning is that performance
will steadily improve (Kaplan et al., 2020; Hoffmann et al., 2022) as training data and parameter count
increase. This paradigm incentivizes practitioners to develop increasingly larger trained models while
first conducting experiments at smaller, more economical scales. For such small-scale experimentation
to effectively inform larger training runs, it becomes crucial to reason about hyperparameters (HPs)
in a scaling-aware framework and to analyze the behavior of the sequence of progressively scaled-up
training runs. For example, when scaling the width n of a neural network, we should explicitly
conceptualize the learning rate as the product of a scale-independent HP η and a scaling factor n−a.
This perspective was initially formalized in the Tensor Program series (Yang & Hu, 2021; Yang et al.,
2022; Yang & Littwin, 2023) for the width-scaling of neural networks. It was shown theoretically that
the correct scaling for ensuring “optimal” training in the limit is the Maximal Update Parameterization
(µP, Yang & Hu, 2021) which ensures that asymptotically the optimal η is scale-independent.

Hyperparameter transfer. Empirical evidence (Yang et al., 2022; Lingle, 2024) has demonstrated
that in fact, µP enables a much stronger property which we refer to as fast hyperparameter transfer
(see Section 3) that is not apparent from its theoretical derivation. At a high level, fast HP transfer
occurs when optimal HPs converge significantly faster with respect to width than the performance
measure of interest. This phenomenon allows practitioners to perform HP selection on smaller proxy
models and subsequently apply these optimal values to larger-scale training runs, drastically reducing
the cost of HP tuning. Despite its practical utility, this phenomenon remains primarily an empirical
success, with limited theoretical understanding of its underlying mechanisms.

Our contributions. We provide insight into the puzzle of fast HP transfer by first developing a
framework for reasoning about HP transfer in Section 2. Then in Section 3 we formally define fast
HP transfer in terms of convergence rates of optimal HPs and the loss, and provide a direct connection
to the “usefulness” of transfer when performing compute-optimal grid search. We quantify these
convergence rates in synthetic settings, and demonstrate that while valid in certain linear model, fast
transfer is not guaranteed in neural networks a priori even when using µP. Such examples illustrate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that the benefits of transfer heavily depend on structural properties of the training process emerging
from the data, optimizer, and architecture.

To illuminate this structure, in Section 4 we introduce a novel loss decomposition obtained by
decomposing the step-wise linearized loss change along the training trajectory. We empirically
demonstrate that the linearization is an effective proxy for the true loss change when considering
the exponential moving average (EMA) of the optimization trajectory. The faithfulness of this
approximation arises due to the smoothness of the resulting EMA trajectory. Using the linearization,
we track the loss change arising from the projection of the update in the top-k directions that
maximize this change in the loss at each matrix layer. This decomposes the total loss change into two
components: the top-k loss arising from the dominant k components and the remaining residual loss.

0 1500 3000 4500 6000 7500
Step

6.0

4.5

3.0

1.5

0.0

Lo
ss

Top-k (k=40) and Residual Loss LR = 0.004

Top-k Loss: dim=128
Residual Loss: dim=128
Top-k Loss: dim=1024
Residual Loss: dim=1024

Figure 1: Loss decomposition into top-k and residual
components in transformers with varying widths.

Intuitively, we might expect that the training be-
havior on the top-k subspaces concentrates quickly
with width while the remaining directions provide
performance gains as the width increases. In Fig-
ure 1 we validate this intuition by applying the
loss decomposition introduced in Section 4 to a
sequence of Llama-style transformers of increas-
ing width trained using µP. In this setting we see
that the leading top-k loss remains approximately
invariant across widths, whereas the residual loss
consistently improves with width, especially later
in training. Moreover, since the top-k loss pro-
vides the majority of the loss decrease it is rea-
sonable to expect that the optimal learning rate for the total loss will not deviate much from the
optimal learning rate for the top-k loss. Therefore, for an appropriately chosen k < n the top-k loss
decomposition provides the following potential explanation for the phenomenon of fast transfer.

Fast transfer via loss decomposition

1. The top-k loss converges rapidly with n, hence so do the optimal top-k loss HPs.
2. The optimal HPs of the top-k loss determine the optimal HPs for the total loss.

In the rest of this paper, we provide a formalization for this intuitive explanation and use it to provide
conceptual insights into the fast transfer phenomenon with support from experiments across synthetic
and realistic settings, including large language model (LLM) training.

1.1 RELATED WORK

Hyperparameter transfer. The concept of hyperparameter transfer was introduced by Yang et al.
(2022), who showed that HPs tuned on small proxy models can transfer reliably to much larger ones
under µP scaling. Subsequent empirical studies confirmed the effectiveness of learning rate transfer
in transformers, while also highlighting certain limitations (Lingle, 2024; Vlassis et al., 2025). As
Yang et al. (2022) noted, the success of hyperparameter transfer is not fully explained from first
principles. Addressing this gap empirically, Noci et al. (2024) showed that top Hessian eigenvalues
converge rapidly under µP across widths, suggesting a width-stable curvature that could underpin
transfer. However, the connection between these spectral statistics and the optimal learning rate
remain unclear. More recently, the concurrent work of Hong & Wang (2025) established a scale
separation between certain macro- and micro-variables, thereby suggesting HPs can be effectively
tuned in early training stages. In contrast to these results, our work explicitly defines (via a trajectory-
level loss-decomposition) and connects the fast convergence of certain statistics of the optimization
path to the fast convergence of optimal HPs.

Optimization trajectories. Our fast transfer hypothesis rests on the existence of low-dimensional
structure in optimization trajectories. Gur-Ari et al. (2018) observed that gradients rapidly align with
top eigenvectors of the Hessian, suggesting that GD operates within a “tiny subspace.” Song et al.
(2024) refined this view, showing that while gradient variance concentrates in the top eigenspace,
motion in these directions primarily drive oscillations rather than loss reduction. This behavior is
consistent with edge-of-stability (EoS) (Cohen et al., 2021; Damian et al., 2022a) and motivates our

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

use of EMA smoothing: by averaging out oscillatory components tied to the top eigenspace, the
smoothed trajectory reveals the low-dimensional subspace where genuine loss decrease occurs.

Similar low-dimensional structure also appeared in various theoretical settings on gradient-based
feature learning, such as the learning of multi-index models (Abbe et al., 2022; Damian et al., 2022b;
Bietti et al., 2023; Mousavi-Hosseini et al., 2023; Lee et al., 2024), where SGD “localizes” the
parameters into low-dimensional subspaces. Recent works have also shown that gradient updates
induce a spiked (signal-plus-noise) eigenstructure in the conjugate kernel (Ba et al., 2022; Moniri
et al., 2023; Wang et al., 2024; Dandi et al., 2024) or the Hessian (Arous et al., 2023; 2025) of the
neural network, and the top eigenvectors contain information of the low-dimensional target function.

2 PRELIMINARIES AND FORMAL FRAMEWORK

We now formalize our framework for HP transfer. We will let n denote the scaling dimension. The
scaled HPs used during training at scale n are:

Hn(ν,γ) = (νin
−γ1 , . . . , νhn

−γh),

where we refer to ν = (ν1, . . . , νh) as the HPs and to γ = (γ1, . . . , γh) as the scaling exponents.
Conceptually, ν are a set of n-independent constants which are tuned for a specific problem and γ
are a set of exponents which specify how to scale the HPs with n so that training can be performed at
any scale n usingHn(ν,γ). In this paper, we focus on the “optimization hyperparameters” of the
abcd-parameterizations of Yang & Littwin (2023) (see Appendix A). This setting encompasses the
width scaling of hyperparameters needed for training standard neural network architectures using
common optimizers such as SGD and Adam. Thus we will often simply refer to the scale n as the
width; however our framework can be used more broadly for reasoning about scale-aware HPs.

In our setting the training procedure A is held fixed and we only vary n, the HPs ν, and the scaling
γ. The training procedure returns an output A(n,ν,γ). For neural network training this means
that the architecture, optimizer, dataset, etc. are all fixed, and we will let A(n,ν,γ) be the resulting
optimization trajectory. For a given configuration, we can measure a scalar metric φn(ν;γ) obtained
from the output of A. For example, this can be the final validation loss of the model.

The HP search takes place over a search space X which we take to be a h dimensional box. We
define the optimal HPs and the corresponding optimal value as

ν?(n;γ) = argmin
ν∈X

φn(ν;γ), φ
?
n(γ) := φn(ν

?(n;γ);γ)

For convenience, we omit the scaling exponents γ from the notation when they are clear from context,
and abbreviate as φn(·), ν?(n), and φ?n. To formalize when a scaling exponent γ admits stable HP
transfer across widths, we will need to impose regularity assumptions on the family {φn} so that a
well-defined limit φ∞ exists and the optimal HPs ν?(n) converge to the minimizer ν?(∞) of φ∞.
Additionally, to quantify a notion of suboptimality due to transfer, a key condition we will impose
is the local strong convexity of φ∞. This condition links the suboptimality of a transferred HP to
suboptimality in terms of loss and ensures that performance meaningfully degrades away from the
optimum. Without such a condition, φ∞ can be flat near its minimizer, making accurate HP selection
irrelevant in the large-n limit. We will say that the scaling γ admits HP transfer (or simply that
HP transfer holds) when the above conditions are satisfied. The rigorous formulation is given in
Definition 3 (Appendix A). We regard this as the weakest notion of HP transfer, since it concerns
only the asymptotic convergence of certain quantities rather than their convergence rates.

3 THE PUZZLE OF USEFUL TRANSFER

In this section, we relate the convergence rate of optimal HPs to that of the evaluation metric
(e.g., validation loss). An important aspect of our definition of HP transfer in Definition 3 is that
ν?(n)→ ν?(∞) as shown in Proposition 8. As we will see in Proposition 1, the convergence rate of
φn → φ∞ already implies an upper bound on the convergence rate of the minimizers ν?(n) which
comes from the local strong convexity condition — it turns out that this convergence also informs
whether it is computationally more efficient to use HP transfer than to tune the model at a single
width n, as we show in Theorems 13 and 14. Without further assumptions this bound in Proposition 1
is tight. In practice, however, we often observe “fast transfer”: the convergence rate of the minimizers
is (much) faster than what is implied by this agnostic bound. Clearly, the fast transfer phenomenon
must arise from additional structure in practical settings, which we investigate in the ensuing sections.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 TRACKING SCALE-DEPENDENT QUANTITIES

We make use of the following asymptotic notation. Given sequences xn ∈ R and yn ∈ R+, we
write xn = O(yn) to mean there exists c > 0 such that |xn| ≤ cyn for all large n. We write
xn = o(yn) if xn/yn → 0 as n → ∞. Lastly, we write xn = Θ(yn) if there exist c1, c2 > 0 such
that c1yn ≤ |xn| ≤ c2yn for large n. As shorthand, we write xn ∼ yn to mean xn = Θ(yn).
Definition 1 (Convergent Quantities). We define the following width n-dependent quantities.

• Loss gap: an = |φ?n − φ?∞|. The quantity measures the discrepancy between the optimal value of
the metric φ at the finite-width model (over all HPs) and that of the infinite-width model.

• Hyperparameter gap: bn = ‖ν?(n)− ν?(∞)‖. The quantity measures the discrepancy between
the optimal HPs at width n and the infinite-width counterpart.

• Suboptimality gap: cn = |φ∞(ν?(n))−φ?∞|. The quantity measures the performance gap between
two infinite-width models: one with the optimal HP tuned at infinite-width, and the other with the
optimal HP at a smaller width. Intuitively speaking, this quantity reflects the performance gap in
transferring the optimal HP in a small model to a large model.

Fast Transfer. In the following, in addition to assuming HP transfer holds (Def. 3 in Appendix B.1)
we will make the mild technical assumption that the “uniform loss gap is locally tight” which implies
that an ∼ ‖φn − φ∞‖sup (see Def. 4 and Lemma 12 in Appendix B.2). The following proposition
uses strong convexity around the optimal infinite-width HP to directly connect the convergence rates
of the optimal HP and the evaluation metric (see Appendix B.2).

Proposition 1. bn = O
(
a
1/2
n

)
and cn = Θ(b2n) = O(an).

Since HP transfer holds, we have by definition an, bn, cn → 0 as n→∞. This being said, a priori
we may have bn = Θ

(
a
1/2
n

)
and hence cn = Θ(an). This would indicate that the suboptimality gap

converges at the same rate as the loss gap. In practice however we tend to observe a much faster rate
for cn relative to an. We refer to this phenomenon formally as fast transfer.

Definition 2. We say that HP transfer is fast if cn = o(an) which occurs iff bn = o
(
a
1/2
n

)
.

For instance, if an ∼ n−α and bn ∼ n−β , then fast transfer occurs if and only if β > α/2.

Useful Transfer. The notion of fast transfer also coincides with the computational usefulness of HP
transfer when performing a grid search. More precisely, consider two HP tuning strategies: direct
performs grid search on models of a single width, and transfer performs grid search on models of a
smaller width and then trains a final model of larger width using the obtained optimal HPs. We say
that transfer is “useful” if the transfer strategy yields better performance than the direct strategy for a
given compute budget. The following result characterizes when this occurs. We provide the formal
results with explicit rates in Theorems 13 and 14 found in Appendix B.3.
Theorem 2 (Informal). Suppose an ∼ n−α and bn ∼ n−β . Given a compute budget of F flops, let
pdir(F) and ptr(F) be the compute-optimal performance under the direct and transfer strategies,
respectively. Then as F →∞, ptr(F) ∼ pdir(F) iff β = α/2 and ptr(F)� pdir(F) iff β > α/2.

Observe that the requirement β > α/2 is the same condition as fast transfer (Definition 2). Con-
sequently, under local strong convexity of φ∞ with respect to ν(n), the naive loss convergence
rate already implies that transfer never underperforms the direct tuning strategy asymptotically,
provided that the HPs are parameterized to be n-independent. While this supports the effectiveness
of µ-transfer (Yang et al., 2022), it does not address the question of when the optimal HPs converge
faster than what is implied naively by the loss convergence. The question turns out to be subtle, and
the following subsection presents simple examples where fast transfer may be present or absent.

3.2 EXAMPLES OF FAST AND SLOW HYPERPARAMETER TRANSFER

Note that the precise scaling of quantities given in Definition 1 are computationally prohibitive to
measure in large-scale scenarios: since the infinite-scale model (n→∞) in inaccessible, we must
resort to power-law fit from finite-n data, which requires a refined grid search of HPs at each scale.
Consequently, in this section we present synthetic settings, where the convergence rate of (an, bn, cn)
can be either analytically derived or reliably estimated from data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Prediction risk vs. ridge penalty. (b) Scaling of optimal loss and ridge penalty.

Figure 2: Optimal ridge penalty (generalization error) for RF regression to learn a single-index model.

Fast HP Transfer: Random Features Regression. First we consider tuning the ridge penalty λ in
a high-dimensional random features (RF) model with nonlinearity σ, where the target function is a
single-index model with link function σ∗ on isotropic Gaussian input in Rd. We aim to select the
optimal regularization parameter λ ∈ R that minimizes the prediction riskR(f) = Ex[(y − f(x))2].
In the proportional limit where the number of training data N , dimension of input features d, and
model width n all diverge N, d, n → ∞, N/d → ψ1, n/d → ψ2 where ψ1, ψ2 ∈ (0,∞), Mei &
Montanari (2022); Gerace et al. (2020) derived precise asymptotics of prediction risk under standard
assumptions (see Assumption 2). In this model, the number of trainable parameters is controlled by
the ratio ψ2 = n/d, and the infinite-width model is obtained by sending ψ2 → ∞. The following
proposition quantifies the convergence of prediction risk and hyperparameter as a function of ψ2.
Proposition 3. Define λ∗(ψ2) := argminλ∈RRψ2(λ), whereRψ2(λ) is the asymptotic prediction
risk of the RF model with width n/d = ψ2 and ridge penalty λ. Then under Assumption 2, we have

• Loss gap: |Rψ2
(λ∗(ψ2))−R∞(λ∗(∞))| = Θ(ψ−1

2).

• Hyperparameter gap: |λ∗(ψ2)− λ∗(∞)| = O(ψ−1
2).

• Suboptimality gap: |R∞(λ∗(ψ2))−R∞(λ∗(∞))| = O(ψ−2
2).

This proposition states that both the loss gap an and the HP gap bn scale as d/n = ψ−1
2 , whereas the

suboptimality gap scales as cn ∼ ψ−2 � an; we conclude that the ridge regularization parameter λ
exhibits fast transfer per Definition 2. Consequently, Theorem 13 implies that tuning the ridge penalty
on small (narrower) RF model and then transfer is more compute-efficient than directly tuning the
large model. To our knowledge, this gives the first concrete setting where the hyperparameter transfer
strategy in Yang et al. (2023) provably offers computational advantage.

Figure 2 presents the prediction risk of the RF ridge estimator across varying widths n/d = ψ2; we
set σ = tanh, σ∗ = ReLU, ψ1 = 4, σε = 1/4. The analytical curves are obtained by solving the
coupled Stieltjes transforms (6)(7). Figure 2(b) confirms the scaling of an, bn, cn in Proposition 3.

Slow HP Transfer: Two-layer ReLU Network. Next we consider a classification setting with
shallow ReLU neural network: f(x) =

∑n
i=1 aiσ(〈wi,x〉+ bi), where we aim to tune the learning

rate η that minimizes the validation loss. We set the target to be the norm indicator function, which is
a well-studied function that requires a wide two-layer network to approximate (Safran & Lee, 2022),

y = 1
{
‖x‖22 > F−1

χ2
d
(0.5)

}
, where x ∼ N (0, Id),

where F−1
χ2
d
(0.5) represents the median of a chi-square distribution with d degrees of freedom –

this threshold ensures that the classes are exactly balanced. We set d = 26, n = 214, and run the
Adam optimizer (Kingma & Ba, 2014) for T = 214 steps with batch size 28 to minimize the binary
cross-entropy loss. The initialization and learning rate are set according to µP (Yang & Hu, 2021).

In Figure 3(a) we observe that even under µP, the optimal learning rate still drifts towards the right.
Moreover, Figure 3(b) illustrates that under a power-law fit, the HP of interest η converges slower
than the validation loss, and the estimated scaling β ≈ α/2 suggests that the HP convergence rate
does not beat the agnostic rate from strong convexity. An interesting future direction is to rigorously
derive the scaling exponents and demonstrate slow transfer in this µP example.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Validation loss vs. learning rate. (b) Scaling of optimal loss and learning rate.

Figure 3: Optimal learning rate (validation loss) for two-layer ReLU network to learn the ball indicator function.

4 FAST TRANSFER VIA TRAJECTORY DECOMPOSITION

At a high-level, the only way for fast transfer to occur is if somehow the optimal HP is “dependent” on
some statistics of the training trajectory which converge much faster than the statistics of the trajectory
on which the loss depends. To provide a clearer understanding we will try to explicitly “extract”
the fast converging statistics and connect these with the optimal HP. To do so we will leverage
prior intuition about the “low-dimensional” nature of optimization trajectories (see Section 1.1).
Intuitively, we may expect that the movement in a small number of directions might simultaneously
“dominate” the determination of the optimal hyperparameters since these correspond to a majority
of the loss decrease and is sensitive to the choice of hyperparameters. Furthermore, the associated
low-dimensional statistics converge fast with width and are nearly “width-invariant”.

4.1 TOP-k LOSS DECOMPOSITION

Let us consider an optimization trajectory ω = (w0, . . . ,wT) of a neural network. Define the
one-step loss change δL(wt) := L(wt+1)− L(wt), so that the overall loss change is the sum

∆L(ω) := L(wT)− L(w0) =

T−1∑
t=0

δL(wt).

Let gt := ∇L(wt) and δwt := wt+1−wt. Let us define δφ(wt) := 〈gt, δwt〉 to be the linearization
of δL(wt). Under appropriate smoothness conditions on the trajectory,

δφ(wt) ≈ δL(wt) and φ(ω) :=

T−1∑
t=0

δφ(wt) ≈ ∆L(ω).

To ensure that such smoothness conditions hold and φ(ω) is a useful proxy for ∆L(ω), we take ω
to be an exponential moving average (EMA) of the base optimization trajectory. Empirically, on
realistic problems, we obtain excellent agreement between φ(ω) and ∆L(ω) for EMA trajectories
which perform at least as well as the corresponding base trajectories (see Fig. 5).

The utility of considering the linearization φ(ω) in our setting is that we can decompose δφ(wt)
based on the structure of (gt, δwt) and recover a resulting decomposition of φ(ω). Let us consider
a fixed time index t. If w = (W (1), . . . ,W (L)) are the model parameters with corresponding
gradients g = (G(1), . . . ,G(L)) such that W (`) and G(`) are tensors of the same shape, then

〈g, δw〉 =
∑
`∈[L]

〈
G(`), δW (`)

〉
.

Consider a single summand coming from W ∈ Rm×n with corresponding gradient G ∈ Rm×n.
Define the matrix S(G, δW) which symmetrizes the product G> · δW as

S(G, δW) :=
1

2
(G> · δW + δW> ·G).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

If S(G, δW) has eigenvalues λ1, . . . , λn such that |λ1| ≥ · · · ≥ |λn|, then we define the top-k
step-wise linear loss change for parameter W to be the sum of its first k eigenvalues.

δφk(W) :=

k∑
i=1

λi. (1)

The top-k loss change captures an intuitive notion of the loss change in the top-k directions of
maximum change in loss. Note that δφn(W) = δφ(W). If the update δW is aligned with the
gradient, that is G = c · δW for a constant c 6= 0, then δφk(W) is the sum of the top-k singular
values of G. We can add the step-wise changes over time and over all parameters1 to compute the
top-k loss change,

φk(ω) :=
∑
`∈[L]

T−1∑
t=0

δφk
(
W

(`)
t

)
. (2)

For some parameters we will use a “row version” of δφk which uses S(G>, δW>) in place of
S(G, δW). Then we can make the index k span [n] across all layers so that using the same k for
each layer in Eq. (2) becomes reasonable.

Decomposition-aware HP transfer. We can now make our earlier intuitions more precise using
this step-wise decomposition. Assume that we fix a training procedure A (see Definition 3). Then
we can define the width-n trajectory trained with HPs ν and scaling γ to be the trajectory ωn(ν,γ)
obtained from executing the training procedure A with hyperparametersHn(ν,γ). If we consider a
fixed scaling γ and an HP dependent truncation function κ which outputs an index κ(ν) ∈ [n] given
HPs ν, then we can abbreviate

φn(ν) := φ(ωn(ν,γ)), φ
κ
n(ν) := φκ(ν)(ωn(ν,γ))

ν?(n) := argmin
ν

φn(ν), ν
?
κ(n) := argmin

ν
φκ(ν)n (ν). (3)

We will refer to φκn as the top-κ loss curve and φ−κn := φn − φκn as the residual loss curve.

Recall our initial intuition for fast transfer based on a loss decomposition. Conceptually, in our
framework, this intuition says that fast transfer occurs if for an appropriately chosen sequence κn the
following are simultaneously true for large enough n

• Top-κ strong convexity: The top-κn losses φκn
n and φκn

n are strongly-convex.

• Top-κ invariance: The top-κn loss converges rapidly so φκn
n ≈ φκn

∞ and ν?κn
(n) ≈ ν?κn

(∞).

• Residual Flatness: The residuals φ−κn
n and φ−κn

∞ are both “flat” as functions of ν, and so
ν?κn

(n) ≈ ν?(n) and ν?κn
(∞) ≈ ν?(∞).

It follows that when these conditions hold that ν?(n) ≈ ν?(∞). In Appendix B.5 we make these
intuitions more formal by defining a quantity Jn(κ) which given a truncation function κ upper bounds
the HP gap bn using quantitative measures of top-κ invariance and residual flatness. By choosing
a truncation function κ?n which minimizes Jn(κ) by optimally balancing the top-κ invariance and
residual flatness we obtain the best such upper bound on bn. In practice, it is intractable to optimize
this objective so instead we optimize a proxy objective Jproxy(κ) to obtain a truncation function
κn := κ̂(n) using a procedure outlined in Algorithm 1 (see Appendix C). We will then validate
empirically that top-κ invariance and residual flatness holds qualitatively with our choice of κ̂(n).2

4.2 EXPERIMENTAL RESULTS

Experimental Setup We train a Llama-style transformer architecture (Touvron et al., 2023) using
the Adam (Kingma & Ba, 2014) optimizer with a warmup stable (WSD) learning rate schedule (Hu
et al., 2024) on WikiText-103 (Merity et al., 2016). Further experimental details are given in Ap-
pendix D. There we also show that similar observations hold for the Adam β1 and β2 hyperparameters
(App. D.4) and for the learning rate when training a 2 layer MLP using SGD on CIFAR-10 (App.
D.6). In Appendix D.5, we investigate the recently popularized Muon optimizer (Jordan et al., 2024).

1We will only decompose matrix parameters and use the full inner-product for vector parameters.
2It suffices to just exhibit one such κ̂(n), but there can be many ways of producing qualitatively similar κn.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 10 2 9 2 8 2 7

Learning Rate

3.50

3.75

4.00

4.25

4.50

Lo
ss

Step 7185
EMA

n = 128
n = 256
n = 512
n = 1024
n = 2048

Linearized
n = 128
n = 256
n = 512
n = 1024
n = 2048

(a) EMA loss (solid) and linearized loss (dashed).

27 28 29 210 211

Width n

3.4

3.6

3.8

4.0

4.2

4.4

Lo
ss

Scaling Law at Step 7185

L = 3.08 + 10.45 n 0.47, LR(n) = (n)
L = 3.08 + 10.39 n 0.47, LR(n) = (128)

(b) Scaling law for the EMA loss.

Figure 4: Training a 4-layer Llama transformer on WikiText-103. Left: EMA and linearized losses nearly
coincide. Right: We plot the EMA loss as a function of width n using (1): the optimal learning rates ν?(n) (2):
the optimal width-128 learning rate ν?(128). For Adam these two curves overlap indicating perfect transfer.

In this setting we find that transfer is slightly worse than for Adam and that the decomposition yields
qualitatively different results. We conjecture that this results from the whitening of the gradient which
prevents the updates from being low-rank. More careful investigation of the transfer properties of
Muon is an exciting area for future work.

0 1500 3000 4500 6000 7500
Step

4.5

6.0

7.5

9.0

10.5

Lo
ss

Dim = 128, LR = 0.004

EMA Loss
Iterate Loss
Linearized

Figure 5: Training a transformer on WikiText-
103 (see Section 4.2). The linearized loss and
EMA loss are identical through training and
close to the iterate loss at the final step.

Fast Transfer and Linearization Faithfulness. The
Adam learning rate sweeps are shown in Figure 4. As
we can see from Figures 5 and 4, the EMA loss and the
linearized loss φ are nearly indistinguishable indicating
that the EMA trajectory is sufficiently smooth. From
Figure 5 we see that the smoothing does not degrade the
final loss. Our setting also clearly exhibits fast transfer
since the optimal learning rate is converging rapidly
with the width n (see Fig. 4a) while the reducible loss
improves more slowly with the model width, converging
to zero with rate n−0.49 (see Fig. 4b). Using the optimal
learning rate obtained at width n = 128 for larger widths
widths is essentially optimal as indicated by the fact that
the two curves in Figure 4b overlap. We now further
probe the optimization and scaling dynamics in this fast
transfer setting using the lens of our decomposition.

Decomposition Over Time. In Figure 1 we visualize the top-k loss with k = 40 and the residual
loss across training time and different widths for a fixed learning rate when training with Adam. We
see that throughout training the top-k loss is nearly width invariant and accounts for the majority of
the loss decrease. This indicates that the bulk of the improvement due to optimization comes from a
low-dimensional subspace. As a result, the majority of the loss improvement due to width comes
from improving the residual loss. This suggests that the additional learning is mostly occurring in the
bottom “modes” of the trajectory. These modes become more dominant later in training.

2 9 2 8 2 7

Learning Rate

100

200

300

400

500

600

k

(n)

0 200 400 600 800 1000 1200
k

7

6

5

4

3

k n

LR = 0.004
n = 128
n = 256
n = 512
n = 1024
n = 2048

Figure 6: Left: The computed values of κ̂(n) using Algorithm 1. Right: The top-k loss φkn for
LR = 0.004. the φkn descend rapidly with k and overlap over different n for an intermediate range of
k where top-k invariance holds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2 9 2 8 2 7

Learning Rate

7.5

7.0

6.5

6.0

Lo
ss

Total
n

n = 128
n = 256
n = 512
n = 1024
n = 2048 ()

2 9 2 8 2 7

Learning Rate

Top
n

n
n = 128
n = 256
n = 512
n = 1024

n

n = 128
n = 256
n = 512
n = 1024

Figure 7: Left: Total loss curves φn. Right: Top-κ loss curve pairs φκn
n (dashed) and φκn

∞ (dash-dotted). The
top-κ pairs are nearly overlapping with minimizers close to those of the corresponding total losses.

2 9 2 8 2 7

Learning Rate

1.25

1.00

0.75

0.50

0.25

0.00

Lo
ss

Residual
n

n
n = 128
n = 256
n = 512
n = 1024

2 9 2 8 2 7

Learning Rate

Residual
n

n = 128
n = 256
n = 512
n = 1024

Figure 8: Residuals are nearly flat around the top-κ minimizers (solid lines).

Decomposition Across Widths. In Figure 7, we apply our loss decomposition across different
n and compute κn = κ̂(n). We use the largest width nmax = 2048 as an infinite-width proxy and
consider transfer from widths n < nmax. In the right panel, we see that φκn

n ≈ φκn
∞ , that is the top-κn

loss is approximately the same for the width n model and the infinite-width proxy across different
learning rates, despite the large gap in the total losses φn and φ∞ shown in the left panel. Furthermore,
the minimizers of the total loss are essentially dictated by the minimizers of the respective top-κn loss,
that is ν?κn

(n) ≈ ν?(n) and ν?κn
(∞) ≈ ν?(∞) (see Eq. (3)). In Figure 8 we plot the corresponding

residuals and see these are much more locally “flat” around the corresponding top-κn minimizer. As
a result, the residuals contribute less to the determination of the overall optimal learning rate.

In the left panel of Figure 12 we show the computed values of κ̂(n) which appear to be approximately
constant across learning rates and grow sublinearly with n. In Figure 6 we can see the value of φkn for
a fixed learning rate as we vary the value of k. The top-k loss is smooth with k and starts to flatten
out once k is not too small which shows that our results are not highly sensitive to the choice of
κ̂(n). The top-k invariance can also be seen to hold cleanly for intermediate values of k. Overall, we
can qualitatively see how our decomposition can account for fast transfer in the sense described in
Section 4, even when the convergence of the loss itself is much slower. The above provides concrete
evidence for our central hypothesis that there is a low-dimensional projection of the trajectory which
remains nearly invariant across width and is responsible for dictating the learning rate.

5 CONCLUSION

This work introduces a novel conceptual framework to reason about hyperparameter transfer and
its underlying driving forces. We posit that a basic form of HP transfer can hold generically due to
asymptotic considerations, but we show that this asymptotic condition can fail to be useful in practice.
We conjecture that the utility of HP transfer is in fact dependent on the existence of non-trivial
low-dimensional structure in the optimization dynamics. Through a novel decomposition of the
dynamics we propose concrete measurements of such structure and argue that these provide an
informative sufficient condition for useful HP transfer. Our experiments explicitly show that this
structure exists in practice and may underlie the practical success of HP transfer. We hope that this
will motivate further investigation into what settings allow for efficient HP transfer and a deeper
understanding of optimization dynamics across scales.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LLM Usage. Large language models are used to polish the abstract, find relevant references in the
related work section, and symbolically verify a computation in Appendix B.4.

REFERENCES

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

Gerard Ben Arous, Reza Gheissari, Jiaoyang Huang, and Aukosh Jagannath. High-dimensional sgd
aligns with emerging outlier eigenspaces. arXiv preprint arXiv:2310.03010, 2023.

Gerard Ben Arous, Reza Gheissari, Jiaoyang Huang, and Aukosh Jagannath. Local geometry of
high-dimensional mixture models: Effective spectral theory and dynamical transitions. arXiv
preprint arXiv:2502.15655, 2025.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932–37946, 2022.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta numerica, 30:87–201, 2021.

Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning Gaussian multi-index models
with gradient flow. arXiv preprint arXiv:2310.19793, 2023.

Lénaïc Chizat and Praneeth Netrapalli. The feature speed formula: a flexible approach to scale
hyper-parameters of deep neural networks. Advances in Neural Information Processing Systems,
37:62362–62383, 2024.

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations (ICLR), 2021.

Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient
descent at the edge of stability. arXiv preprint arXiv:2209.15594, 2022a.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022b.

Yatin Dandi, Luca Pesce, Hugo Cui, Florent Krzakala, Yue M Lu, and Bruno Loureiro. A random
matrix theory perspective on the spectrum of learned features and asymptotic generalization
capabilities. arXiv preprint arXiv:2410.18938, 2024.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression
and classification. The Annals of Statistics, 46(1):247–279, 2018.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy
training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2020
(11):113301, 2020.

Federica Gerace, Bruno Loureiro, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. General-
isation error in learning with random features and the hidden manifold model. In International
Conference on Machine Learning, pp. 3452–3462. PMLR, 2020.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Letong Hong and Zhangyang Wang. On the provable separation of scales in maximal update
parameterization. In Forty-second International Conference on Machine Learning, 2025.

Hong Hu and Yue M Lu. Universality laws for high-dimensional learning with random features.
IEEE Transactions on Information Theory, 69(3):1932–1964, 2022.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. In Conference on Language Models (COLM)5, 2024.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
polynomials with sgd near the information-theoretic limit. arXiv preprint arXiv:2406.01581, 2024.

Lucas Lingle. An empirical study of mup learning rate transfer. arXiv preprint arXiv:2404.05728,
2024.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics, 75
(4):667–766, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear feature
learning with one gradient step in two-layer neural networks. arXiv preprint arXiv:2310.07891,
2023.

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Erdogdu.
Neural networks efficiently learn low-dimensional representations with SGD. In The Eleventh
International Conference on Learning Representations, 2023.

Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Super consistency of
neural network landscapes and learning rate transfer. Advances in Neural Information Processing
Systems, 37:102696–102743, 2024.

Itay Safran and Jason Lee. Optimization-based separations for neural networks. In Conference on
Learning Theory, pp. 3–64. PMLR, 2022.

Minhak Song, Kwangjun Ahn, and Chulhee Yun. Does sgd really happen in tiny subspaces? arXiv
preprint arXiv:2405.16002, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Georgios Vlassis, David Belius, and Volodymyr Fomichov. A thorough reproduction and evaluation
of mup. Transactions on Machine Learning Research, 2025.

Zhichao Wang, Denny Wu, and Zhou Fan. Nonlinear spiked covariance matrices and signal propaga-
tion in deep neural networks. In The Thirty Seventh Annual Conference on Learning Theory, pp.
4891–4957. PMLR, 2024.

Denny Wu and Ji Xu. On the optimal weighted `2 regularization in overparameterized linear
regression. Advances in Neural Information Processing Systems, 33:10112–10123, 2020.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pp. 11727–11737. PMLR, 2021.

Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width limit.
arXiv preprint arXiv:2308.01814, 2023.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in
infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1
1.1 Related Work . 2

2 Preliminaries and Formal Framework 3

3 The Puzzle of Useful Transfer 3
3.1 Tracking Scale-dependent Quantities . 4

3.2 Examples of Fast and Slow Hyperparameter Transfer 4

4 Fast Transfer via Trajectory Decomposition 6
4.1 Top-k Loss Decomposition . 6

4.2 Experimental Results . 7

5 Conclusion 9

A Background 14
A.1 Scaling Limits and Tensor Programs . 14

B Theoretical Results 15
B.1 Weak Transfer . 15

B.2 Asymptotic Rates . 16

B.3 Grid Search . 17

B.4 Random Features Regression . 19

B.5 Fast Transfer . 22

C Truncation Index Selection 23

D Experimental Details and Additional Experiments 25
D.1 Synthetic Experiments . 25

D.2 LLM Experiments . 25

D.3 Llama Adam LR . 25

D.4 Llama Adam β1 and β2 . 26

D.5 Llama Muon . 27

D.6 CIFAR-10 MLP SGD . 28

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A BACKGROUND

Function Class Regularity Let X be a compact metric space, and let C(X) denote the space of
real-valued continuous functions on X , equipped with the uniform norm:

‖f‖sup := sup
ν∈X
|f(ν)|.

We say a collection F ⊂ C(X) is:

• uniformly bounded if supf∈F ‖f‖sup ≤ K for some K <∞,

• uniformly equicontinuous if for every ε > 0 there exists δ > 0 such that

‖ν − ν′‖ < δ =⇒ |f(ν)− f(ν′)| < ε for all f ∈ F .

We denote by Ck(X) the space of k-times continuously differentiable functions. For f ∈ Ck(X),
the k-th derivative is written f (k). We define f (0) ≡ f . In multivariate settings, this refers to the k-th
total derivative.
Theorem 4 (Arzelà–Ascoli). Any uniformly bounded and uniformly equicontinuous collection
F ⊂ C(X) is relatively compact in the uniform norm topology.

Proposition 5. Let {fn} ⊂ C1(X) such that f ′n → g uniformly and fn(ν0)→ L for some ν0 ∈ X
and L ∈ R. Then fn → f uniformly for some f ∈ C1(X), and f ′ = g.

Proposition 6. If {fn} ⊂ C1(X) and the derivatives f ′n are uniformly bounded, then {fn} is
uniformly equicontinuous.

A.1 SCALING LIMITS AND TENSOR PROGRAMS

In this section we will recall some simplified background from (Yang & Hu, 2021; Yang & Littwin,
2023). For concreteness, we will fix the architecture to a L-hidden layer MLP, but all statements
can be extended to a much more generic architectures (see Section 2.9.1 in (Yang & Littwin, 2023)).
An L-hidden layer MLP of width n with nonlinearity φ : R→ R and no biases is parameterized by
weight matrices W 1 ∈ Rn×d, W 2, . . . ,WL ∈ Rn×n, and WL+1 ∈ R1×n. On an input x ∈ Rd,
the network computes

h`(x) = W `z`(x) ∈ Rn, z`(x) = φ(h`(x)) ∈ Rn, for ` = 1, . . . , L, (4)

and the output is f(x) = WL+1zL(x) ∈ R. Given N inputs x1, . . . ,xN , we will abbreviate

h` := [h`(x1) | · · · | h`(xN)] ∈ Rn×N ,
z` := [z`(x1) | · · · | z`(xN)] ∈ Rn×N ,
f := (f(x1), . . . , f(xN)) ∈ RN .

abc-parameterization Assume that we train the network using SGD. We recall the definition of
abc-parameterization from (Yang & Hu, 2021) (see Geiger et al. (2020); Chizat & Netrapalli (2024)
for similar derivations). An abc-parameterization is a width-aware HP scaling specified by a set of
HPs ν = {α`, σ`, η`}`∈[L+1] and HP scaling exponents γ = {a`, b`, c`}`∈[L+1] such that

(a) The weights W ` receive a multiplier α`n−a` ,
(b) We initialize each W `

αβ ∼ N (0, σ2
`n

−2b`), and

(c) The SGD learning rate in layer ` is η`n−c` .

Asymptotic Notation Given a sequence x = {x(n)}∞n=1 of random tensors we write x = Θ(n−a)
and say that x has coordinates of size Θ(n−a) if there exist constants A,B > 0 such that, almost
surely for sufficiently large n,

A ≤ 1

#x(n)

∑
α

x(n)2α ≤ B,

where #x(n) denotes the number of entries in x(n). We use O(n−a) and Ω(n−a) similarly.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Dynamical Dichotomy Theorem. We recall some definitions from (Yang & Littwin, 2023). To
reflect the network after t steps of training we add a subscript t to the quantities in Eq. (4). We use ∆
to denote a one-step difference of a time-dependent quantity. We say an abc-parameterization is

1. stable at initialization if

h`0, z
`
0 = Θ(1), ∀` ∈ [L], and f0 = O(1).

2. stable during training if for any time t ≥ 0 we have for any training routine

∆h`t,∆z`t = O(1), ∀` ∈ [L], and ∆ft = O(1).

3. trivial if for any time t ≥ 1 and training routine, ft − f0 → 0 almost surely as n→∞. We
say the parameterization is non-trivial otherwise.

4. is in the kernel regime if there exists K : RN → RN such that for every t ≥ 0 and training
routine, as n→∞,

ft+1 − ft − ηK(ft)→ 0.

5. is feature learning if ∆zLt = Ω(1) for some training routine and t ≥ 0.
Theorem 7 (Dynamical Dichotomy (Yang & Hu, 2021)). A nontrivial and stable abc-parametrization
either admits feature learning or is in the kernel regime but not both. The kernel regime does not
admit feature learning, that is, for any training routine ∆zLt → 0 for all t ≥ 0.

The µP and NTK parameterization are the maximal feature learning and kernel parameterizations
respectively. All other such parameterizations can be obtained from one of these by setting some
initialization or learning rate to zero (see Section 5.3 in (Yang & Hu, 2021) for more discussion). For
adaptive optimizers such as Adam it is possible to extend the definitions to abcd-parameterizations (see
Section 2.2 in (Yang & Littwin, 2023) for more details), for which a similar Dynamical Dichotomy
theorem exists.

B THEORETICAL RESULTS

B.1 WEAK TRANSFER

In the following we provide a minimal set of technical conditions for the concept of HP transfer to be
well-defined and align with empirical observations. We say that a function is locally strongly convex
with parameters τ, δ > 0, if for every minimizer ν? ∈ argmin f ,

|f(ν)− f(ν?)| ≥ τ

2
‖ν − ν?‖2, for all ν such that ‖ν − ν?‖ ≤ δ.

Recall that we assume that the HP search takes place over a search space X :

X =

h∏
i=1

[`i, ui], int (X) :=
h∏
i=1

(`i, ui),

which is a h-dimensional box with bounds `i < ui and interior int (X).
Definition 3 (HP Transfer). The scaling γ admits HP transfer for a training procedure A and metric
φ over a search space X if the following hold

1. φn ∈ C2(X) is convex and has a unique minimizer ν?(n).

2. φ∞ := lim
n→∞

φn is locally strongly convex and argminφ∞ ⊆ int (X).

3. The family {φ′′n} is uniformly bounded and uniformly equicontinuous.

This definition implies the following desirable consequences.
Proposition 8 (HP Transfer Properties). In the context of Definition 3, the following are true

1. φ∞ ∈ C2(X) is convex and has a unique minimizer ν?(∞)

2. φn → φ∞, φ′n → φ′∞, φ′′n → φ′′∞ uniformly and ν?(n)→ ν?(∞).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. By Proposition 6, it follows that for all j ∈ {0, 1, 2}, φ(j)n is uniformly equicontinuous. Since
φn has a limit, it must converge uniformly φ∞. Now repeatedly using Proposition 5 after passing
to subsequences and invoking Arzela-Ascoli (Theorem 4), we see that φ(j)n → φ

(j)
∞ uniformly for

j ∈ {1, 2}. Now it follows that φ∞ ∈ C2(X) since the uniform limit of continuous functions is
continuous and φ∞ is convex since convexity is preserved under pointwise limits. Note that the local
strong convexity condition implies that φ∞ has a unique minimizer. Now becauseX is compact, every
subsequence of ν?(n) has a convergent subsequence. By uniform convergence and the continuity of
the φn and φ∞, it follows that the limit of this subsequence is a minimizer of φ∞. By the uniqueness
of this minimizer, all the subsequences converge to ν?(∞) hence ν?(n)→ ν?(∞).

This definition gives a minimal set of conditions under which the concept becomes mathematically
coherent and aligns with observed empirical behavior. Requiring φn to have a unique minimizer
removes ambiguity about which configuration should be transferred across scales. The convexity,
smoothness, and equicontinuity conditions provide technical regularity that facilitates analysis and
generally hold in practice.

The local strong convexity of φ∞ ensures that performance meaningfully degrades away from the
optimum. Without this condition, φ∞ may be flat near its minimizer, making accurate hyperparameter
selection potentially irrelevant in the large-n limit. The assumption that ν?(∞) lies in the interior of
the search space ensures that this optimum remains unchanged under any enlargement of the domain;
this condition rules out the n-dependent drift of the HPs of interest due to a “suboptimal” scaling –
see Appendix A for discussions.

“Optimal” scaling limit. In (Yang et al., 2022; 2023), the authors remark that a key principle
behind hyperparameter transfer is the “optimality” of the scaling. Heuristically if a scaling yields a
suboptimal limit, then it cannot exhibit hyperparameter transfer since the HPs ν need to undergo a
n-dependent rescaling to “convert” the suboptimal scaling into the optimal scaling. The following
proposition formalizes this intuition. The proposition requires 0 ∈ X to avoid uninteresting cases
where the optimal HP is zero which will generally not occur for optimization HPs in normal neural
network training.

Proposition 9. Let γ be a scaling that exhibits transfer over X = [0, u1] × · · · [0, uk] and all X ′

containing X . Any other scaling γ′ 6= γ with these properties must satisfy

min
ν∈X

φ∞(ν;γ) = min
ν′∈X ′

φ∞(ν′;γ′).

Proof of Proposition 9. For brevity define

ν? := argmin
ν∈X

φ∞(ν;γ) and ν′
? := argmin

ν′∈X
φ∞(ν′;γ′).

For the sake of contradiction assume that φ∞(ν?;γ) > φ∞(ν′
?;γ

′). For large enough n, we will
have φn(ν?;γ) > φn(ν?;γ) where ν? = ν′

? � (nγ1−γ
′
1 , . . . , nγk−γ

′
k) and ν? 6= ν? which is a

contradiction. The case φ∞(ν?;γ) < φ∞(ν′
?;γ

′) follows analogously.

The dynamical dichotomy theorem states that all scalings induced by abcd-parameterizations except
for µP lead to optimization degeneracies or non-feature learning behavior. Therefore the proposition
implies that if HP transfer is possible with µP and feature learning is advantageous, then it should be
only possible using µP. Of course, it is still a challenging problem to rigorously characterize when
µP will exhibit transfer and when feature learning is actually advantageous.

B.2 ASYMPTOTIC RATES

Recall the definitions of the quantities an, bn, cn from Definition 1. We will need to reason about the
following quantity which we call the uniform loss gap.

ān := ‖φn − φ∞‖sup. (5)

Using the local strong convexity assumption, we will be able to directly relate the HP gap with the
uniform loss gap. We first prove a convenient lemma which bounds the minimizer displacement in
terms of the sup-norm of the perturbation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma 10. Let f : X → R and g : X → R such that f has a unique minimizer xf and g has a
unique minimizer xg , and g is τ strongly-convex

g(x)− g(xg) ≥
τ

2
‖x− xg‖2, ∀x ∈ X

for some τ > 0. If ‖f − g‖sup ≤ ε, then

‖xf − xg‖ ≤ 2
(ε
τ

)1/2

.

Proof. Note that g(xf)− ε ≤ f(xf) ≤ f(xg) ≤ g(xg) + ε, hence

g(xf)− g(xg) ≤ 2ε.

By strong convexity, 2ε ≥ τ
2‖xf − xg‖2, which after rearranging gives the desired conclusion.

The above lemma, along with Propositions 8 and Taylor’s theorem immediately yields the following.

Lemma 11. Assume HP transfer holds (Def. 3), then bn = O
(
ā
1/2
n

)
and cn = Θ(b2n).

To relate the loss gap an and the uniform loss gap ān we must make further assumptions. Intuitively,
we would like to capture the fact that typically the uniform loss gap is dominated by a fairly uniform,
positive loss gap for HPs which are nearly optimal.

Definition 4. We will say that the uniform loss gap is locally tight if there exists some radius r̄ and
constants 0 < c ≤ C such that for all ν ∈ B(ν?(∞), r̄),

cān ≤ φn(ν)− φ∞(ν) ≤ Cān.

This essentially states that the uniform loss gap tightly controls the convergence rate for any nearly op-
timal set of HPs. This corresponds with the empirical observation that nearly optimal hyperparameters
obey identical scaling laws. Under this assumption it is easy to see that an = Θ(ān).

Lemma 12. Assume HP transfer holds (Def. 3). If the uniform loss gap ān is locally tight then
an = Θ(ān).

Proof. Note that we have

φn(ν
?(n))− φ∞(ν?(∞)) = φn(ν

?(n))− φ∞(ν?(n)) + φ∞(ν?(n))− φ∞(ν?(∞))

≥ φn(ν?(n))− φ∞(ν?(n)),

φn(ν
?(n))− φ∞(ν?(∞)) = φn(ν

?(n))− φn(ν?(∞)) + φn(ν
?(∞))− φ∞(ν?(∞))

≤ φn(ν?(∞))− φ∞(ν?(∞)).

Since ν?(n)→ ν?(∞) we can apply the inequalities in Definition 4 for large enough n to yield the
claim.

Proof of Proposition 1. This follows directly by applying Lemmas 11 and 12

B.3 GRID SEARCH

We now turn towards the connection between the previous asymptotic quantities and compute-optimal
grid search. Define a grid G in a search space X to be a collection of points {ν(1), . . . ,ν(M)}
contained in X . The grid resolution ρ(G,X) is defined as the largest distance of a point in X to a
point in G, that is

ρ(G,X) := sup
ν∈X

min
ν′∈G

‖ν − ν′‖.

For a grid G in the search space X , define ν?(n,G) = argminν∈G φn(ν). Let us assume that we are
allocated a flops budget F in order to perform hyperparameter search and produce a final model.

Recall that for brevity we use f(x) ∼ g(x) to mean f(x) = Θ(g(x)). For a grid G of resolution ρ,
we will make the following convenience assumption for Theorems 13 and 14.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Assumption 1 (Grid proximity). For a grid G of resolution ρ, we assume that

min
ν∈G
‖ν − ν?(n)‖ ∼ ρ.

This assumption is morally true if G is not chosen with knowledge of the location of ν?(∞). If for
a given G we chose ν?(∞) uniformly at random within G, then this assumption holds on average.
Suppose we have a compute budget of F flops, and the amount of flops needed for a single training
run scales with nr for models of width n, where r = 2 for standard optimization algorithms on
standard architectures. For a scaling γ, we will evaluate the quality of a set of HPs ν by performing a
full training run for a certain width n using the scaled hyperparametersHn(ν,γ). The details about
the grid search are discussed in Appendix B.3. Let us assume that the number of HPs we perform a
grid search over is h. We first consider compute optimal performance when directly tuning the HPs
on a large model.
Theorem 13. Suppose that an ∼ n−α. Given a compute budget of F flops, if we directly conduct
grid search on a width-n model, the compute-optimal performance scales as F

−2α
hα+2r and is obtained

at width n? ∼ F
2

hα+2r .

Proof of Theorem 13. For a grid of resolution ρ = ρ(G,X) we will have |G| ∼ ρ−h and F ∼ nrρ−h.
Now observe that by uniform convergence of derivatives (Prop. 8), for n large enough φn will satisfy
(τ ′, δ′)-LSC for some constants τ ′, δ′ > 0 and so φn(ν?(n,G))− φn(ν?(n)) ∼ ρ2 by Assumption
1. Therefore,

φn(ν
?(n,G))− φ?∞ = φn(ν

?(n,G))− φn(ν?(n)) + φn(ν
?(n))− φ?∞

∼ ρ2 + n−α

∼ n2r/hF−2/h + n−α.

We see the final expression is minimized by taking n? ∼ F
2

hα+2r which yields the rate

φn(ν
?(n,G))− φ?∞ ∼ F− 2α

hα+2r ,

as claimed.

Now consider the strategy of transferring the optimal HPs from a smaller model. We say that transfer
is useful if this strategy achieves a better loss scaling than directly tuning the large model under the
same compute budget, as specified above.
Theorem 14. Suppose an ∼ n−α and bn ∼ n−β , and we conduct a grid search on a width-n model
and then transfer to a large width-M model. Given a compute budget of F flops, the compute-optimal
performance scales as F −α

r + F
−2β
hβ+r , obtained at widths n? ∼ F

1
hβ+r and M? ∼ F1/r. Transfer

is useful iff β > α/2.

Proof of Theorem 14. Note that in this setting F ∼ nrρ−h +Mr. The performance scaling is

φM (ν?(n,G))− φ?∞ = φM (ν?(n,G))− φM (ν?(n))

+ φM (ν?(n))− φM (ν?(M))

+ φM (ν?(M))− φ?∞
∼ ρ2 + n−2β +M−α

∼
(

nr

F −Mr

)2/h

+ n−2β +M−α.

Since F −Mr ∼ F , we should take M? ∼ F1/r in which case the above simplifies to

φM (ν?(n,G))− φ?∞ ∼
n2r/h

F2/h
+ n−2β + F−α/r

which is minimized a n? ∼ F
1

hβ+r and yields φM (ν?(n,G)) − φ?∞ ∼ F
−2β
hβ+r + F −α

r . Now note
that α

r > 2α
hα+2r and 2β

hβ+r >
2α

hα+2r if and only if β > α/2, which is the condition for useful
transfer.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 RANDOM FEATURES REGRESSION

Consider the following data generating process where the labels come from a single-index model,
and we train a random features ridge regression estimator on N samples,

y = σ∗(〈x,β∗〉) + ε, where x ∼ N (0, Id), ‖β∗‖ = 1, Var(ε) = σ2
ε .

f(x) = 〈aλ, σ(Wx)〉, where W ∈ Rd×n, [W]i,j ∼ N (0, 1/d),

aλ := argmina∈Rn

∑N
i=1(yi − 〈a, σ(Wxi)〉)2 + λ‖a‖22.

We aim to select the optimal regularization parameter λ that minimizes the prediction risk (general-
ization error)R = Ex[(y − f(x))2]. We make the following assumptions.
Assumption 2.
• Proportional limit. N, d, n→∞, N/d→ ψ1, n/d→ ψ2 where ψ1, ψ2 ∈ (0,∞).

• Normalized activation. Both the student and teacher nonlinearities are normalized such that
E[σ],E[σ∗] = 0, ‖σ‖γ , ‖σ∗‖γ = 1, and also ‖σ′‖γ , ‖σ′

∗‖γ 6= 0. We further require that σ is a
nonlinear odd function with bounded first three derivatives, and σ∗ is Θ(1)-Lipschitz.

Remark 1. The above assumptions are standard in the high-dimensional asymptotic analysis of
random features models, see e.g., Mei & Montanari (2022); Gerace et al. (2020). The non-zero
expectation of σ′, σ′

∗ is necessary for the RF model to outperform the null estimator in the proportional
regime. The assumption of odd σ simplifies the Gaussian equivalence computation — see Hu & Lu
(2022); Ba et al. (2022).

Asymptotic prediction risk. Under Assumption 2, following Hu & Lu (2022), we know that the
asymptotic prediction risk is given as by the following implicit equations,

lim
n,d,N→∞

E[(y − f(x))2] =: R(λ) = −(µ∗2
2 + σ2

ε) ·
m′

1(λ)

m1(λ)2
− µ∗2

1 ·
m′

2(λ)

m1(λ)2
,

where the Hermite coefficients µ∗
1 = Ez∼N (0,1)[σ

′
∗(z)], µ

∗2
2 = 1 − µ∗2

1 , and the coupled Stieltjes
transforms m1(z) and m2(z) ∈ C+ ∪ R+ are uniquely defined by the following self-consistent
equations for z ∈ C+ ∪ R+,

1

ψ1
(m1(z)−m2(z))(µ

2
2m1(z) + µ2

1m2(z)) + µ2
1m1(z)m2(z) (zm1(z)− 1) = 0, (6)

ψ2

ψ1

(
µ2
1m1(z)m2(z) +

1

ψ1
(m2(z)−m1(z))

)
+ µ2

1m1(z)m2(z) (zm1(z)− 1) = 0, (7)

where µ1 = Ez∼N (0,1)[σ
′(z)], µ2

2 = 1− µ2
1. Note that σ being nonlinear implies µ2 6= 0. We omit

the argument in m1(λ),m2(λ) except when tracking the λ-dependence. m′
1,m

′
2 stand for derivative

with respect to λ. To further simplify the exposition, we define η := ψ1/ψ2, and write the asymptotic
prediction risk at width ψ2 and ridge penalty λ asRψ2

(λ) = Rψ1/η(λ).

Large-width limit. First we consider the test performance of the “infinite-width” model, which
corresponds to taking ψ2 = n/d → ∞ or η → 0. Note that the prediction risk in this limit is
well-defined and has been computed in prior works (see e.g., Bartlett et al. (2021)). First recall that
m1,m2 > 0 and zm1(z)− 1 remains uniformly bounded for any 1/η, hence from (7) we know that
at the large-width limit,

µ2
1m1m2 + ψ−1

1 (m2 −m1) =: T1(m1,m2) = 0, λm1 + µ2
2m1 + µ2

1m2 − 1 =: T2(m1,m2, λ) = 0.

Reparameterize t := 1 + µ2
1ψ1m1 > 1, we have λ(t) = µ2

1ψ1

t−1 −
µ2
1

t − µ
2
2. By the chain rule,

∂tm1 =
1

µ2
1ψ1

, ∂tm2 =
1

µ2
1ψ1t2

, ∂tλ = − µ2
1S(t)

t2(t− 1)2
,

where we defined S(t) := ψ1t
2 − (t− 1)2. Hence at η = 0 we have

m′
1

m2
1

= −ψ1t
2

S(t)
,

m′
2

m2
1

= − ψ1

S(t)
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Therefore,

R∞(λ(t)) := lim
ψ2→∞

Rψ2(λ(t)) =
ψ1((µ

∗2
2 + σ2

ε)t
2 + µ∗2

1)

S(t)
.

Differentiating the risk yields the closed-form expression of the optimal ridge penalty (consistent
with Dobriban & Wager (2018); Wu & Xu (2020)),

λ∗(∞) =
µ2
1(σ

2
ε + µ∗2

2)

µ∗2
1

− µ2
2. (8)

We restrict ourself to the setting where non-vanishing regularization is needed at the large-width limit,
i.e., λ∗(∞) > 0. Denote t∗ as the corresponding optimal value of t = 1 + µ2

1ψ1m1, the optimality
condition µ∗2

1 =
(µ∗2

2 +σ2
ε)t∗(t∗−1)

ψ1t∗−t∗+1 implies that

ψ1t∗ − t∗ + 1 > 0, S(t∗) = (ψ1t∗ − t∗ + 1)t∗ + (t∗ − 1) > 0.

Hence we have the following characterization of the curvature

R′′
∞(λ∗(∞)) =

2(µ∗2
2 + σ2

ε)ψ1

S(t∗)λ′(t∗)2(ψ1t∗ − t∗ + 1)
> 0, λ′(t∗) = −

µ2
1S(t∗)

t2∗(t∗ − 1)2
< 0. (9)

Note that (9) validates the local strong convexity ofR∞.

Finite-width sensitivity. Now consider the system given by (6)(7)

E(m1,m2, λ, η) :=

[
T2(m1,m2, λ)

T1(m1,m2) + ηT3(m1,m2, λ)

]
,

where T3 = µ2
1m1m2(λm1 − 1). Differentiate E = 0 with respect to η and evaluate at η = 0,

J0

[
∂ηm1

∂ηm2

]
= −

[
0
T

] ∣∣∣∣∣
η=0

, where J0 := ∂m1,m2
(T2,T1) =

[
λ+ µ2

2 µ2
1

µ2
1m2 − ψ−1

1 µ2
1m1 + ψ−1

1

]
.

(10)

Recall that T2 = 0 yields λm1 − 1 = −(µ2
2m1 + µ2

1m2), and hence T |η=0 = −µ2
1m1m2(µ

2
2m1 +

µ2
1m2). On the other hand, by direct computation

detJ0 =
µ2
1S(t)

ψ1t(t− 1)
, ⇒ detJ0(t∗) > 0. (11)

Solving the linear system (10) yields

∂ηm1 =− µ4
1m1m2(µ

2
2m1 + µ2

1m2)

detJ0
= − (t− 1)4(µ2

1 + µ2
2t)

µ4
1ψ

2
1tS(t)

,

∂ηm2 =− (λ+ µ2
2)µ

2
1m1m2(µ

2
2m1 + µ2

1m2)

detJ0
=

(t− 1)3(µ2
1 + µ2

2t)(ψ1t− t+ 1)

µ4
1ψ

2
1t

2S(t)
.

Differentiating the prediction risk with respect to η and evaluate at the large-width limit η = 0,

∂η=0R∞(λ) = −(µ∗2
2 + σ2

ε)

(
∂ηm

′
1

m2
1

− 2m′
1∂ηm1

m3
1

)
− µ∗2

1

(
∂ηm

′
2

m2
1

− 2m′
2∂ηm1

m3
1

)
,

where ∂η=0R∞(λ) = ∂ηRψ1/η(λ)
∣∣
η=0

. A similar determinant calculation yields

∂ηm
′
1 = − µ

2
1S

detJ0
, ∂ηm

′
2 = − (λ+ µ2

2)S

detJ0
,

where

S :=µ2
1m2(2λm1 − 1)m′

1 + µ2
1m1(λm1 − 1)m′

2 + µ2
1m

2
1m2

=
(t− 1)3

µ4
1ψ

2
1

[
− t

S(t)
+

(2t+ 1)

S(t)
· t− 1

µ2
1ψ1
· µ

2
1 + µ2

2t

t

]
+

(t− 1)3

µ4
1ψ

3
1 t

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Using the above, a tedious algebraic calculation gives the following expression of the sensitivity of
the prediction risk (at fixed λ) with respect to η:

∂η=0R∞(λ) =
(t− 1)2Q(t)

µ2
1S(t)

2
, (12)

where Q(t) =
∑2
k=0 ckt

k with coefficients

c2 = µ2
1(µ

∗2
2 + σ2

ε)− µ2
2(µ

∗2
2 + σ2

ε) + 2µ2
2µ

∗2
1 (ψ1 − 1),

c1 = −3µ2
1(µ

∗2
2 + σ2

ε) + µ2
1µ

∗2
1 (ψ1 − 1) + µ2

2(µ
∗2
2 + σ2

ε) + µ2
2µ

∗2
1 (ψ1 + 3),

c0 = 2µ2
1(µ

∗2
2 + σ2

ε) + µ∗2
1 (2µ2

1ψ1 + 2µ2
1 − 1).

Importantly, under the optimal λ defined in (8), we have the factorization

Q(t∗) =
2(µ∗2

2 + σ2
ε)(µ

2
1 + µ2

2t∗)(t∗ − 1)S(t∗)

ψ1t∗ − t∗ + 1
,

and since (t∗−1), S(t∗), (ψ1t∗− t∗+1) > 0, we conclude the derivative (12) at t∗ is strictly positive

∂η=0R∞(λ∗(∞)) =
2(µ∗2

2 + σ2
ε)(µ

2
1 + µ2

2t∗)(t∗ − 1)3

µ2
1S(t∗)(ψ1t∗ − t∗ + 1)

=: Cη > 0. (13)

Putting things together. Recall that the asymptotic prediction riskR is C2 in λ and C1 in η. Given
the Jacobian invertibility (11) and local strong convexity (9), the implicit function theorem (IFT)
implies that there exists a neighborhood defined by some η0 > 0 and a unique C1 map λ̄∗ : [0, η0)→
R+, such that λ̄∗(0) = λ∗(∞), ∂λRη(λ̄∗(η)) = 0, and ∂2λRη(λ̄∗(η)) > 0. Consequently, we may
take a first-order expansion and conclude (setting η = ψ1/ψ2 under with ψ1)

λ∗(ψ2) = λ∗(∞) + ∂η→0+ λ̄
∗(η) · ψ1

ψ2
+ o(ψ−1

2), ∂η→0+ λ̄
∗(η) := −∂λ∂ηR∞(λ∗(∞))

∂2λR∞(λ∗(∞))
=: Cλ.

(14)

Note that the denominator in Cλ is strictly positive by (9). Moreover, since λ′(t∗) 6= 0, we may
write ∂λ∂ηR∞(λ) =

∂t(∂η=0R(λ(t)))
∂tλ(t)

, and compute Cλ =
(3ψ1−4µ2

1ψ1+1)t2∗+2(2µ2
1ψ1−1)t∗+1

2ψ1t2∗
. This

confirms that the hyperparameter gap vanishes at a rate of O(ψ−1
2).

For the loss gap, denote δη = λ∗(ψ1/η)−λ∗(∞) for η ∈ [0, η0), the IFT and Taylor expansion gives

Rψ1/η(λ
∗(∞) + δη) =R∞(λ∗(∞)) + ∂λ=λ∗(∞)R∞(λ∗(∞))δη + ∂η=0R∞(λ∗(∞)) +O(δ2η + η2)

(i)
=R∞(λ∗(∞)) + Cη ·

ψ1

ψ2
+ o(ψ−1

2),

where (i) is due to the stationarity condition ∂λ=λ∗(∞)R∞(λ∗(∞)) = 0 and δη = O(η) from
(14), and Cη > 0 is explicitly given in (13). The strict positivity of Cη ensures that the
loss gap scales exactly as Θ(ψ−1

2). Hence by Proposition 1 and Theorem 14 we know that
the ridge penalty in RF regression exhibits fast and useful transfer, i.e., the suboptimality gap
|R∞(λ∗(ψ2))−R∞(λ∗(∞))| ∼ ψ−2

2 � |Rψ2
(λ∗(ψ2))−R∞(λ∗(∞))|, which aligns with the

observations in Figure 2 and concludes Proposition 3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.5 FAST TRANSFER

In this section we formalize our quantitative bound on the HP gap bn in terms of the top-κ invariance
and residual flatness arising from our decomposition. For the sake of simplicity we will assume that
X is small enough so that the local strong convexity condition holds globally.
Definition 5. For f ∈ C2(X), define the curvature µ(f) and the Lipschitz constant Lip(f) as:

µ(f) := inf
ν∈X

f ′′(ν), Lip(f) := sup
ν∈X
|f ′(ν)|.

Definition 6 (Decomposition Rate). Let φn and X be as in Definition 3, and φκn and ν?κ(n) as in Eq.
(3). We define the following quantities associated with the decomposition:

• Top-κ invariance gap: εinv(n, κ) :=
‖φκ

n−φ
κ
∞‖

sup

µ(φκ
n)∨µ(φκ

∞)

• Residual flatness gap: εflat(n, κ) :=
Lip(φ−κ

n)
µ(φn)

+
Lip(φ−κ

∞)
µ(φ∞)

• Decomposition objective: J (κ) := 2
√
εinv(n, κ) + εflat(n, κ)

• Decomposition HP gap: tn := minκ J (κ) s.t. µ(φκn) ∧ µ(φκ∞) > 0.

The decomposition HP gap tn is defined to be a natural upper bound on the HP gap bn as we show in
Proposition 15 which makes use of Lemmas 10 and 16. This upper bound is obtained by choosing an
optimal HP dependent truncation index κ?n minimizing J (κ) such that εinv(n, κ?n) which quantifies
top-κ invariance and εflat(n, κ?n) which quantifies residual flatness are both appropriately small. Note
that tn is well-defined for n large enough because we can take κ ≡ n and from the assumptions of
Definition 3 both φn and φ∞ are strongly convex.
Proposition 15. Assume the setting of Definition 3 where the local strong convexity is global. The
decomposition HP gap tn in Definition 6 satisfies tn ≥ bn where bn is the HP gap from Definition 1.

We remark that we introduce the quantity tn primarily as a theoretical quantity for conceptual
purposes. The quantity tn will be small when top-κ invariance and residual flatness holds and since
tn ≥ bn this will imply bn is small as well. We also note that it is natural to chose the optimal
truncation index κ?n used in tn to be a function of the width n. This is because as n→∞ we expect
bn → 0 and so it is desirable that tn → 0 as well which will not be the case if we used a fixed κ
because εflat in J (κ) will converge to a non-zero value. Overall, one can view tn being small3 as
an explicit sufficient condition for fast transfer. We conjecture that (some version of) this condition
holds in practice when training neural networks on natural data with optimizers like Adam or SGD.
For future work, it would be interesting to provide natural settings where such a formal statement is
provably true.

To prove Proposition 15 we will first need a perturbation result similar to Lemma 10.
Lemma 16. Let f : X → R and g : X → R such that f is τ strongly-convex and supx∈X |g′(x)| ≤ ε.
Let x? = argminx∈X f(x) and x̃ = argminx∈X f(x) + g(x). Then

‖x? − x̃‖ ≤ ε

τ
.

Proof. By first order optimality we have f ′(x̃) + g′(x̃), hence |f ′(x̃)| = |g′(x̃)| ≤ ε. By strong
convexity τ‖x̃− x?‖ ≤ |f ′(x̃)| ≤ ε which gives the result.

Proof of Proposition 15. For a given n and κ such that µ(φκn) ∧ µ(φκ∞) > 0,
bn = ‖ν?(n)− ν?(∞)‖

= ‖ν?(n)− ν?κ(n) + ν?κ(n)− ν?κ(∞) + ν?κ(∞)− ν?(∞)‖
≤ ‖ν?(n)− ν?κ(n)‖+ ‖ν?κ(n)− ν?κ(∞)‖+ ‖ν?κ(∞)− ν?(∞)‖

≤ 2
√
εinv(n, k) + ‖ν?(n)− ν?κ(n)‖+ ‖ν?κ(∞)− ν?(∞)‖

≤ 2
√
εinv(n, κ) + εflat(n, κ),

where the first inequality is the triangle inequality, the second comes from Lemma 10, and the last
inequality comes from Lemma 16. Taking the minimum of the right hand side over valid κ yields the
claim tn ≥ bn.

3Relative to the bound on bn implied solely by an (see Proposition 1).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C TRUNCATION INDEX SELECTION

Empirically finding the minimizer κ?(n) in the definition of tn (Def. 6) is not tractable due to
complicated nature of the decomposition objective J . Instead of trying to minimize J , we will use a
simpler surrogate process which we outline below.

Note that given a finite grid of HPs {ν1, . . . ,νg}, we only need to produce a truncation index for
each νi with i ∈ [g]. Let κ = (κ1, . . . , κg) represent the vector of these values where κi = κ(νi)
for i ∈ [g]. We define φκn to be the set of pointwise evaluations {(νi, φκi

n (νi))}i∈[g] and identify it
with the function obtained from its linear interpolation. Our goal is to return a set of truncation index
vectors κ̂(n).

Let nmax denote the largest width model under consideration and fix a width n < nmax. Consider
the following proxy objective with parameters τ = (τ1, τ2) and τ1, τ2 > 0,

Jproxy(κ; τ) :=
1

g

∑
i∈[g]

|φκi
n (νi)− φκi

nmax
(νi)|+ τ1 · Lip(φ−κ

n) + τ2 · Lip(φ−κ
nmax

), (15)

and define its minimizer to be κ?(τ) := argminκ Jproxy(κ; τ), which can be found approximately
using coordinate descent (see Algorithm 2). The objective Jproxy is similar to the objective J in
Definition 6, except that instead of a supnorm we use an average `1-norm to promote tractability,
we use nmax as an infinite-width proxy, and we absorb all the curvature based scalings µ(·) into
constants τ1, τ2. We will set κ̂(n) = κ?(τ̂) for a “reasonable” choice of τ̂ . In particular, τ̂ will be
chosen to be the smallest4 τ so that φκ

?(τ)
n and φκ

?(τ)
nmax are approximately convex and the minimizers

are close to the minimizers of φn and φnmax respectively, assuming such τ̂ exists. The full details of
the process are given in Algorithm 1 in Appendix C.

In this section we describe our procedure (Algorithm 1) for selecting κ̂(n) (see Section 4.1). We do
not claim this procedure is optimal in any sense and emphasize that we are just searching for a valid
κ̂(n) so that a certain sufficient condition holds qualitatively in order to support our conjecture for
fast hyperparameter transfer. For convenience, we only consider the case where we sweep a single
HP, although this can be straightforwardly extended.

As part of our algorithm, we need to measure the convexity and flatness of a function f given a set
of pointwise evaluations {(νi, yi)}gi=1 where ν1 < · · · < νg and yi = f(νi). For each interior index
i = 2, . . . , g − 1, define the three-point second-derivative estimate

f̂ ′′(νi) := 2

(
yi−1

(νi−1 − νi)(νi−1 − νi+1)
+

yi
(νi − νi−1)(νi − νi+1)

+
yi+1

(νi+1 − νi−1)(νi+1 − νi)

)
.

The convexity error is the fraction of interior points with negative curvature estimate:

ConvErr({(νi, yi)}gi=1) :=
1

g − 2

g−1∑
i=2

1
{
f̂ ′′(νi) < 0

}
. (16)

The Lipschitz constant is the maximum slope magnitude:

Lip({(νi, yi)}gi=1) := max
1≤i≤g−1

∣∣∣∣ yi+1 − yi
νi+1 − νi

∣∣∣∣ . (17)

4For definiteness, we order (τ1, τ2) by their sum, breaking ties in the first-coordinate.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 1: Compute κ̂(n)

Input:
N set of widths, with nmax = maxN
{νi}gi=1 grid of g hyperparameter points
T candidate list of τ values
εcvx, εamin tolerances (convexity, argmin proximity)
Φn ∈ Rg×n arrays φkn(νi) for each n ∈ N

Output: κ̂(n) truncation vectors in [n]g for n < nmax, or FAIL

1. Grid: Gτ := {(τ1, τ2) : τ1, τ2 ∈ T } sorted by τ1 + τ2

2. For each n ∈ N \ {nmax}:
(a) For (τ1, τ2) ∈ Gτ (in order):

i. κ← MINIMIZEPROXY(Φn,Φnmax
; τ1, τ2) // Alg. 2; minimizes

Eq. (15)
ii. Ecvx := max{ConvErr(φκn), ConvErr(φκnmax

)} // Eq. (16)

iii. an := argminν φ
κ
n, atotn := argminν φn;

a∞ := argminν φ
κ
nmax

, atot∞ := argminν φnmax
.

∆ := max{|an − atotn |, |a∞ − atot∞ |} // argmin proximity
iv. If Ecvx ≤ εcvx and ∆ ≤ εamin, set κ̂(n)← κ and break to the next n.

(b) If no pair in Gτ is accepted, set κ̂(n)← FAIL.

Algorithm 2: Minimize Proxy Objective Eq. (15)
Input:
Φn, Φnmax

arrays φkn(νi) and φknmax
(νi), shapes g × n and g × nmax

(τ1, τ2) positive penalty weights

Output: κ? ∈ [n]g (approximate minimizer via coordinate descent)

1. Initialize: κ← (n/2, . . . , n/2)

2. Repeat until no coordinate changes:
For i = 1, . . . , g:
i. Local scores for each k ∈ [n]:

score(k) = Jproxy(κ̃) where κ̃ is κ with κi switched to k

ii. Coordinate update: κi ← argmink∈[n] score(k).

3. Return κ? := (κi)
g
i=1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

D.1 SYNTHETIC EXPERIMENTS

We provide an additional synthetic setting where fast transfer is observed. We consider a regression
setting with shallow ReLU neural network: f(x) =

∑n
i=1 aiσ(〈wi,x〉+ bi), where we aim to tune

the learning rate η that minimizes the validation loss. We set the target to be the norm function
y = ‖x‖22, where x ∼ N (0, Id).

Note that this function is easier to represent (with a shallow neural network) than the classification
example in Section 3.2 due to the absence of indicator function. We set d = 28, n = 214, and run the
Adam optimizer (Kingma & Ba, 2014) for T = 214 steps with batch size 28 to minimize the squared
loss. The initialization and learning rate are set according to µP (Yang & Hu, 2021). In Figure 9 we
observe that while the validation MSE loss decays at an approximate 1/n rate, the optimal learning
rate remains almost invariant across (reasonably large) width.

(a) Validation loss vs. learning rate. (b) Scaling of optimal loss and learning rate.

Figure 9: Optimal learning rate (validation loss) for two-layer ReLU network to learn the norm function.

D.2 LLM EXPERIMENTS

For experiments on the Llama architecture we use the following schedule for the EMA.

EMA Warmup We warm up the EMA decay coefficient αt linearly from αstart = 0.98 to
αend = 0.9995 over 2000 steps in the effective window (1 − αt)

−1. To capture early-training
variation without increasing linearization error, we subsample the EMA trajectory every τ steps, with
τ itself warmed up linearly from τstart = 2 to τend = 10 over the same period.

D.3 LLAMA ADAM LR

Llama Adam Configuration Below is the default setup for all Llama experiments using Adam.

Dataset WikiText-103

Epochs 1

Hidden layers 4

Optimizer Adam (β1 = 0.9, β2 = 0.999)

Batch Size 128

LR Schedule WSD with 4% linear warmup & 20% cooldown

LR Grid Search
• LR ∈ {1.0, 1.4, 2.0, 2.8, 4.0, 4.8, 5.7, 6.7, 8.0} × 10−3

• n ∈ {128, 256, 512, 1024, 2048}
All curvature computations are done in log2(LR), since we sweep the peak learning rate on a log-grid.
The loss L is evaluated on the validation split. We average runs over 3 random seeds.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.4 LLAMA ADAM β1 AND β2

We repeat the same experiment from Appendix D.3 for the Adam momentum hyperparameters, fixing
LR = 0.004. For the β1 sweep we vary β1 ∈ {0.63, 0.78, 0.86, 0.92, 0.95} and for the β2 sweep
we vary β2 ∈ {0.95, 0.98, 0.99, 0.995, 0.998, 0.9999}. The sweeps are performed in logspace in
the effective window size (1 − β)−1. The analog of Figure 7 is presented at step 7185 for β1 in
Figure 10 and for β2 in Figure 11. We note that the performance is insensitive to β1 except when it is
too large and insensitive to β2 except when it is too small. The computed values of κ̂(n) shown in
Figure 12 are fairly similar for all the hyperparameters, suggesting that the dimension of this invariant
subspace may be mostly data and architecture dependent. It will be interesting in the future to perform
similar experiments for other HPs such as weight decay and if our decomposition viewpoint can shed
insight onto HPs which do not show fast transfer.

22 23 24

(1 1) 1

7.50

7.25

7.00

6.75

6.50

Lo
ss

Total
n

n = 128
n = 256
n = 512
n = 1024
n = 2048 ()

22 23 24

(1 1) 1

Top
n

n
n = 128
n = 256
n = 512
n = 1024

n

n = 128
n = 256
n = 512
n = 1024

Figure 10: Same as Fig. 7, but for Adam β1 at step 7185.

25 27 29 211 213

(1 2) 1

7.4

7.2

7.0

6.8

6.6

6.4

Lo
ss

Total
n

n = 128
n = 256
n = 512
n = 1024
n = 2048 ()

25 27 29 211 213

(1 2) 1

Top
n

n
n = 128
n = 256
n = 512
n = 1024

n

n = 128
n = 256
n = 512
n = 1024

Figure 11: Same as Fig. 7, but for Adam β2 at step 7185.

2 9 2 8 2 7

Learning Rate

100

200

300

400

500

600

k

(n)

22 23 24

(1 1) 1

(n)

25 27 29 211 213

(1 2) 1

(n)
n = 128
n = 256
n = 512
n = 1024

Figure 12: The computed values of κ̂(n) for Adam LR, β1, and β2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.5 LLAMA MUON

As in Section 4.2, we train a Llama-style transformer architecture with a warmup stable (WSD)
learning rate schedule on WikiText-103, but using the Muon (Jordan et al., 2024) optimizer instead of
Adam. The training configuration is shown below. The learning rate sweeps are shown in Figure 13a.

Llama Muon Configuration Below is the setup used for the Muon training.

Dataset WikiText-103

Epochs 1

Hidden layers 4

Optimizer Muon (β = 0.95, Adam LR= 0.004, β1 = 0.9, β2 = 0.999)

Batch Size 128

LR Schedule WSD with 4% linear warmup & 20% cooldown

LR Grid Search
• LR ∈ {0.1, 0.2, 0.4, 0.57, 0.8, 1.1, 1.6, 1.9} × 10−2

• n ∈ {128, 256, 512, 1024, 2048}
Although the Muon algorithm achieves a better loss, the reducible loss scaling rate is similar to Adam
(see Fig. 13b compared with Fig. 4b) but the optimal learning rate convergence does not seem as
rapid (see Fig. 13a compared with Fig. 4a). Our hypothesis is that the conditions for our fast transfer
conjecture hold for the Adam optimizers due to the low-rank nature of the updates, but this property
is broken by the whitening step in Muon which harms fast transfer. We further probe these aspects
using the lens of our decomposition which provides interesting insights into the dynamics of Muon in
relation to the network width.

In Figure 14 we see that the k for which top-k invariance holds in Muon is much smaller and for large
n accounts for a small fraction of the total loss. As such it is likely that our fast transfer hypothesis is
incompatible with the Muon optimizer and we are unable to find supporting evidence. We conjecture
that this is related to our observation of the less perfect transfer observed in Figures 13a and 13b,
suggesting that our condition for fast transfer is somewhat necessary.

2 10 2 9 2 8 2 7 2 6

Learning Rate

3.4

3.6

3.8

4.0

4.2

Lo
ss

Step 7185
EMA

n = 128
n = 256
n = 512
n = 1024
n = 2048

Linearized
n = 128
n = 256
n = 512
n = 1024
n = 2048

(a) EMA loss (solid) and linearized loss (dashed).

27 28 29 210 211

Width n

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Lo
ss

Scaling Law at Step 7185

L = 3.00 + 12.93 n 0.50, LR(n) = (n)
L = 3.14 + 18.05 n 0.60, LR(n) = (128)

(b) Scaling law for the EMA loss.

Figure 13: Training a 4-layer Llama transformer on WikiText-103 with Muon. Left: EMA and linearized
losses nearly coincide. Right: We plot the EMA loss as a function of width n using (1): the optimal learning
rates ν?(n) (2): the optimal width-128 learning rate ν?(128). At large n, ν?(128) is slightly suboptimal.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
k

7

6

5

4

3

2

1

k n

LR = 0.008, Step = 7185
n = 128
n = 256
n = 512
n = 1024
n = 2048

Figure 14: The top-k loss φkn. The φkn descend slowly with k especially for large n showing that
top-k invariance holds for a small range of k and the residual is significant.

D.6 CIFAR-10 MLP SGD

We also probe the generality of our observations to a different dataset, optimizer, and architecture:
CIFAR-10 training using SGD on a 2-layer MLP with ReLU activation and no biases.

CIFAR-10 Training Configuration Below is the setup used for our CIFAR-10 experiment.

Dataset CIFAR-10

Epochs 100

Layers 2

Optimizer Momentum SGD (β = 0.9)

Batch Size 512

LR Schedule WSD with 4% linear warmup & 20% cooldown

Data Augmentation Mixup, Random Resized Cropping

We use the same EMA warmup and subsampling schedule as detailed in Appendix D. We use our
largest width nmax = 8192 as the infinite-width proxy for computing κ̂(n) using Algorithm 1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

LR Grid Search
• LR ∈ {1.0, 1.4, 2.0, 2.8, 4.0, 4.8, 5.7, 6.7, 8.0} × 10−3

• n ∈ {128, 256, 512, 1024, 2048, 4096, 8192}

2 8 2 7 2 6 2 5

Learning Rate

1.29

1.32

1.35

1.38

1.41

1.44

Lo
ss

Step 9695
EMA

n = 128
n = 256
n = 512
n = 1024
n = 2048
n = 4096
n = 8192

Linearized
n = 128
n = 256
n = 512
n = 1024
n = 2048
n = 4096
n = 8192

(a) The final EMA loss (solid) and final linearized.

27 28 29 210 211 212 213

Width n

1.30

1.32

1.34

1.36

1.38

1.40

1.42

Lo
ss

Scaling Law at Step 9695 (LR = 0.016)

L = 1.29 + 3.52 n 0.72 (R2 = 0.9996)

(b) Scaling law for the EMA loss at step 9695.

Figure 15: Training a 2-layer MLP on CIFAR-10 using SGD. We see that this problem exhibits fast transfer.

2 8 2 7 2 6 2 5

Learning Rate

1.00

0.95

0.90

0.85

0.80

Lo
ss

Total
n

n = 128
n = 1024
n = 4096
n = 8192 ()

2 8 2 7 2 6 2 5

Learning Rate

Top
n

n
n = 128
n = 1024
n = 4096

n

n = 128
n = 1024
n = 4096

Figure 16: Same as Fig. 7, but for the setup described above.

2 8 2 7 2 6 2 5

Learning Rate
10

20

30

40

50

k

(n)

0 1000 2000 3000 4000 5000
k

1.0

0.9

0.8

0.7

0.6

0.5

0.4

k n

LR = 0.016
n = 128
n = 256
n = 512
n = 1024
n = 2048
n = 4096
n = 8192

Figure 17: Same as Fig. 12 but for the above setup. This setting appears much more low-rank than the one
in Section 4.2, based on how much smaller kn/n is (left, see Fig. 12) and more quickly φk

n flattens out with k
(right, see Fig. 6).

29

	Introduction
	Related Work

	Preliminaries and Formal Framework
	The Puzzle of Useful Transfer
	Tracking Scale-dependent Quantities
	Examples of Fast and Slow Hyperparameter Transfer

	Fast Transfer via Trajectory Decomposition
	Top-k Loss Decomposition
	Experimental Results

	Conclusion
	Background
	Scaling Limits and Tensor Programs

	Theoretical Results
	Weak Transfer
	Asymptotic Rates
	Grid Search
	Random Features Regression
	Fast Transfer

	Truncation Index Selection
	Experimental Details and Additional Experiments
	Synthetic Experiments
	LLM Experiments
	Llama Adam LR
	Llama Adam beta1 and beta2
	Llama Muon
	CIFAR-10 MLP SGD

