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ABSTRACT

The growing scale of deep learning models has rendered exhaustive hyperparam-
eter (HP) optimization prohibitively expensive. A promising solution is the use
of scale-aware HPs, which can enable direct transfer of optimal settings from
small-scale grid searches to large models with minimal performance loss. Such
approaches are useful when the optimal settings converge “fast” enough with scale.
While approaches like the Maximal Update Parameterization (uP) have empirically
displayed fast transfer when scaling model width, a deeper conceptual understand-
ing of the mechanisms that enable this is still missing. Our work establishes a
systematic conceptual framework for analyzing fast HP transfer across different
synthetic and practical scenarios. In synthetic settings, we present various quantita-
tive examples where transfer either offers a provable computational advantage or
fails even under pP. We then propose a key property that enables the fast transfer
often observed in practice: through a novel decomposition of the optimization
trajectory, we identify one component that rapidly converges with model width and
determines the optimal HPs, and the other that continues to improve the loss with
increased width but has negligible impact on HP choice. We conjecture that this
decomposition elucidates the key mechanisms behind fast transfer and empirically
validate it in settings such as large language model (LLM) training.

1 INTRODUCTION

Scaling-aware hyperparameters. A central dogma in empirical deep learning is that performance
will steadily improve (Kaplan et al., 2020; Hoffmann et al., 2022) as training data and parameter count
increase. This paradigm incentivizes practitioners to develop increasingly larger trained models while
first conducting experiments at smaller, more economical scales. For such small-scale experimentation
to effectively inform larger training runs, it becomes crucial to reason about hyperparameters (HPs)
in a scaling-aware framework and to analyze the behavior of the sequence of progressively scaled-up
training runs. For example, when scaling the width n of a neural network, we should explicitly
conceptualize the learning rate as the product of a scale-independent HP 7 and a scaling factor n=°.
This perspective was initially formalized in the Tensor Program series (Yang & Hu, 2021; Yang et al.,
2022; Yang & Littwin, 2023) for the width-scaling of neural networks. It was shown theoretically that
the correct scaling for ensuring “optimal” training in the limit is the Maximal Update Parameterization
(1P, Yang & Hu, 2021) which ensures that asymptotically the optimal 7 is scale-independent.

Hyperparameter transfer. Empirical evidence (Yang et al., 2022; Lingle, 2024) has demonstrated
that in fact, 4P enables a much stronger property which we refer to as fast hyperparameter transfer
(see Section 3) that is not apparent from its theoretical derivation. At a high level, fast HP transfer
occurs when optimal HPs converge significantly faster with respect to width than the performance
measure of interest. This phenomenon allows practitioners to perform HP selection on smaller proxy
models and subsequently apply these optimal values to larger-scale training runs, drastically reducing
the cost of HP tuning. Despite its practical utility, this phenomenon remains primarily an empirical
success, with limited theoretical understanding of its underlying mechanisms.

Our contributions. We provide insight into the puzzle of fast HP transfer by first developing a
framework for reasoning about HP transfer in Section 2. Then in Section 3 we formally define fast
HP transfer in terms of convergence rates of optimal HPs and the loss, and provide a direct connection
to the “usefulness” of transfer when performing compute-optimal grid search. We quantify these
convergence rates in synthetic settings, and demonstrate that while valid in certain linear model, fast
transfer is not guaranteed in neural networks a priori even when using pP. Such examples illustrate
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that the benefits of transfer heavily depend on structural properties of the training process emerging
from the data, optimizer, and architecture.

To illuminate this structure, in Section 4 we introduce a novel loss decomposition obtained by
decomposing the step-wise linearized loss change along the training trajectory. We empirically
demonstrate that the linearization is an effective proxy for the true loss change when considering
the exponential moving average (EMA) of the optimization trajectory. The faithfulness of this
approximation arises due to the smoothness of the resulting EMA trajectory. Using the linearization,
we track the loss change arising from the projection of the update in the top-k directions that
maximize this change in the loss at each matrix layer. This decomposes the total loss change into two
components: the top-k loss arising from the dominant k£ components and the remaining residual loss.

Intuitively, we might expect that the training be- Top-k (k=40) and Residual ALoss LR = 0.004
havior on the top-k subspaces concentrates quickly o0
with width while the remaining directions provide
performance gains as the width increases. In Fig-
ure 1 we validate this intuition by applying the
loss decomposition introduced in Section 4 to a
sequence of Llama-style transformers of increas-
ing width trained using pP. In this setting we see
that the leading top-k loss remains approximately
invariant across widths, whereas the residual loss 0 1500 3000 1500 5000 7500
consistently improves with width, especially later Sep

in training. Moreover, since the top-k loss pro-
vides the majority of the loss decrease it is rea-
sonable to expect that the optimal learning rate for the total loss will not deviate much from the
optimal learning rate for the top-k loss. Therefore, for an appropriately chosen k < n the top-k loss
decomposition provides the following potential explanation for the phenomenon of fast transfer.
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Figure 1: Loss decomposition into top-k and residual
components in transformers with varying widths.

Fast transfer via loss decomposition

1. The top-k loss converges rapidly with 7, hence so do the optimal top-k loss HPs.
2. The optimal HPs of the top-k loss determine the optimal HPs for the total loss.

In the rest of this paper, we provide a formalization for this intuitive explanation and use it to provide
conceptual insights into the fast transfer phenomenon with support from experiments across synthetic
and realistic settings, including large language model (LLM) training.

1.1 RELATED WORK

Hyperparameter transfer. The concept of hyperparameter transfer was introduced by Yang et al.
(2022), who showed that HPs tuned on small proxy models can transfer reliably to much larger ones
under pP scaling. Subsequent empirical studies confirmed the effectiveness of learning rate transfer
in transformers, while also highlighting certain limitations (Lingle, 2024; Vlassis et al., 2025). As
Yang et al. (2022) noted, the success of hyperparameter transfer is not fully explained from first
principles. Addressing this gap empirically, Noci et al. (2024) showed that top Hessian eigenvalues
converge rapidly under P across widths, suggesting a width-stable curvature that could underpin
transfer. However, the connection between these spectral statistics and the optimal learning rate
remain unclear. More recently, the concurrent work of Hong & Wang (2025) established a scale
separation between certain macro- and micro-variables, thereby suggesting HPs can be effectively
tuned in early training stages. In contrast to these results, our work explicitly defines (via a trajectory-
level loss-decomposition) and connects the fast convergence of certain statistics of the optimization
path to the fast convergence of optimal HPs.

Optimization trajectories. Our fast transfer hypothesis rests on the existence of low-dimensional
structure in optimization trajectories. Gur-Ari et al. (2018) observed that gradients rapidly align with
top eigenvectors of the Hessian, suggesting that GD operates within a “tiny subspace.” Song et al.
(2024) refined this view, showing that while gradient variance concentrates in the top eigenspace,
motion in these directions primarily drive oscillations rather than loss reduction. This behavior is
consistent with edge-of-stability (EoS) (Cohen et al., 2021; Damian et al., 2022a) and motivates our
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use of EMA smoothing: by averaging out oscillatory components tied to the top eigenspace, the
smoothed trajectory reveals the low-dimensional subspace where genuine loss decrease occurs.

Similar low-dimensional structure also appeared in various theoretical settings on gradient-based
feature learning, such as the learning of multi-index models (Abbe et al., 2022; Damian et al., 2022b;
Bietti et al., 2023; Mousavi-Hosseini et al., 2023; Lee et al., 2024), where SGD “localizes” the
parameters into low-dimensional subspaces. Recent works have also shown that gradient updates
induce a spiked (signal-plus-noise) eigenstructure in the conjugate kernel (Ba et al., 2022; Moniri
et al., 2023; Wang et al., 2024; Dandi et al., 2024) or the Hessian (Arous et al., 2023; 2025) of the
neural network, and the top eigenvectors contain information of the low-dimensional target function.

2  PRELIMINARIES AND FORMAL FRAMEWORK

We now formalize our framework for HP transfer. We will let n denote the scaling dimension. The
scaled HPs used during training at scale n are:
Ho(v,y) = (vin™ .o upn™ ),

where we refer to v = (vq,...,vp) as the HPs and to v = (1, ..., 7s) as the scaling exponents.
Conceptually, v are a set of n-independent constants which are tuned for a specific problem and ~y
are a set of exponents which specify how to scale the HPs with n so that training can be performed at
any scale n using H,, (v, ). In this paper, we focus on the “optimization hyperparameters” of the
abcd-parameterizations of Yang & Littwin (2023) (see Appendix A). This setting encompasses the
width scaling of hyperparameters needed for training standard neural network architectures using
common optimizers such as SGD and Adam. Thus we will often simply refer to the scale n as the
width; however our framework can be used more broadly for reasoning about scale-aware HPs.

In our setting the training procedure A is held fixed and we only vary n, the HPs v, and the scaling
~. The training procedure returns an output A(n,v,-y). For neural network training this means
that the architecture, optimizer, dataset, etc. are all fixed, and we will let A(n, v, ) be the resulting
optimization trajectory. For a given configuration, we can measure a scalar metric ¢,, (v; ) obtained
from the output of .A. For example, this can be the final validation loss of the model.

The HP search takes place over a search space X which we take to be a h dimensional box. We

define the optimal HPs and the corresponding optimal value as

vi(n;y) = arg min n(V3), On(Y) i= Gu(v (n57); )
v

For convenience, we omit the scaling exponents ~ from the notation when they are clear from context,
and abbreviate as ¢,,(-), v*(n), and ¢} . To formalize when a scaling exponent « admits stable HP
transfer across widths, we will need to impose regularity assumptions on the family {¢,,} so that a
well-defined limit ¢, exists and the optimal HPs v*(n) converge to the minimizer v*(c0) of ¢o.
Additionally, to quantify a notion of suboptimality due to transfer, a key condition we will impose
is the local strong convexity of ¢.,. This condition links the suboptimality of a transferred HP to
suboptimality in terms of loss and ensures that performance meaningfully degrades away from the
optimum. Without such a condition, ¢, can be flat near its minimizer, making accurate HP selection
irrelevant in the large-n limit. We will say that the scaling « admits HP transfer (or simply that
HP transfer holds) when the above conditions are satisfied. The rigorous formulation is given in
Definition 3 (Appendix A). We regard this as the weakest notion of HP transfer, since it concerns
only the asymptotic convergence of certain quantities rather than their convergence rates.

3 THE PuzzLE OF USEFUL TRANSFER

In this section, we relate the convergence rate of optimal HPs to that of the evaluation metric
(e.g., validation loss). An important aspect of our definition of HP transfer in Definition 3 is that
v*(n) — v*(c0) as shown in Proposition 8. As we will see in Proposition 1, the convergence rate of
®n — Poo already implies an upper bound on the convergence rate of the minimizers v*(n) which
comes from the local strong convexity condition — it turns out that this convergence also informs
whether it is computationally more efficient to use HP transfer than to tune the model at a single
width n, as we show in Theorems 13 and 14. Without further assumptions this bound in Proposition 1
is tight. In practice, however, we often observe “fast transfer”: the convergence rate of the minimizers
is (much) faster than what is implied by this agnostic bound. Clearly, the fast transfer phenomenon
must arise from additional structure in practical settings, which we investigate in the ensuing sections.
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3.1 TRACKING SCALE-DEPENDENT QUANTITIES

We make use of the following asymptotic notation. Given sequences z,, € R and y,, € RT, we
write x, = O(y,) to mean there exists ¢ > 0 such that |z,| < cy, for all large n. We write
Xy = 0(yn) if 2 /yn — 0 as n — oco. Lastly, we write x,, = O(y,,) if there exist ¢1, ¢ > 0 such
that 1y, < |z,| < oy, for large n. As shorthand, we write x,, ~ y,, to mean x,, = O(y,).

Definition 1 (Convergent Quantities). We define the following width n-dependent quantities.

* Loss gap: a,, = |¢f, — ¢%|. The quantity measures the discrepancy between the optimal value of
the metric ¢ at the finite-width model (over all HPs) and that of the infinite-width model.

* Hyperparameter gap: b, = ||[v*(n) — v*(c0)||. The quantity measures the discrepancy between
the optimal HPs at width n and the infinite-width counterpart.

* Suboptimality gap: c,, = |poo (V* (1)) — ¢%, |- The quantity measures the performance gap between
two infinite-width models: one with the optimal HP tuned at infinite-width, and the other with the
optimal HP at a smaller width. Intuitively speaking, this quantity reflects the performance gap in
transferring the optimal HP in a small model to a large model.

Fast Transfer. In the following, in addition to assuming HP transfer holds (Def. 3 in Appendix B.1)
we will make the mild technical assumption that the “uniform loss gap is locally tight” which implies
that a, ~ || — @oolly, (see Def. 4 and Lemma 12 in Appendix B.2). The following proposition
uses strong convexity around the optimal infinite-width HP to directly connect the convergence rates
of the optimal HP and the evaluation metric (see Appendix B.2).

Proposition 1. b, = O(a}/2) and ¢, = O(b2) = O(ay).

Since HP transfer holds, we have by definition a,,, b,,, ¢, — 0 as n — co. This being said, a priori

we may have b,, = © (a}/ 2) and hence ¢,, = ©(a,,). This would indicate that the suboptimality gap
converges at the same rate as the loss gap. In practice however we tend to observe a much faster rate
for ¢, relative to a,,. We refer to this phenomenon formally as fast transfer.

Definition 2. We say that HP transfer is fast if ¢, = o(ay,) which occurs iff b, = o(a}«/ 2).

For instance, if a,, ~ n~% and b,, ~ n~ 8, then fast transfer occurs if and only if 5 > «/2.

Useful Transfer. The notion of fast transfer also coincides with the computational usefulness of HP
transfer when performing a grid search. More precisely, consider two HP tuning strategies: direct
performs grid search on models of a single width, and transfer performs grid search on models of a
smaller width and then trains a final model of larger width using the obtained optimal HPs. We say
that transfer is “useful” if the transfer strategy yields better performance than the direct strategy for a
given compute budget. The following result characterizes when this occurs. We provide the formal
results with explicit rates in Theorems 13 and 14 found in Appendix B.3.

Theorem 2 (Informal). Suppose a, ~n~< and b, ~ n~P. Given a compute budget of F flops, let
pY*(F) and p'* (F) be the compute-optimal performance under the direct and transfer strategies,
respectively. Then as F — oo, p*(F) ~ p3(F) iff 8 = /2 and p* (F) < pt*(F) iff B > /2.

Observe that the requirement 5 > «/2 is the same condition as fast transfer (Definition 2). Con-
sequently, under local strong convexity of ¢, with respect to v(n), the naive loss convergence
rate already implies that transfer never underperforms the direct tuning strategy asymptotically,
provided that the HPs are parameterized to be n-independent. While this supports the effectiveness
of u-transfer (Yang et al., 2022), it does not address the question of when the optimal HPs converge
faster than what is implied naively by the loss convergence. The question turns out to be subtle, and
the following subsection presents simple examples where fast transfer may be present or absent.

3.2 EXAMPLES OF FAST AND SLOW HYPERPARAMETER TRANSFER

Note that the precise scaling of quantities given in Definition 1 are computationally prohibitive to
measure in large-scale scenarios: since the infinite-scale model (n — c0) in inaccessible, we must
resort to power-law fit from finite-n data, which requires a refined grid search of HPs at each scale.
Consequently, in this section we present synthetic settings, where the convergence rate of (a,, by, ¢p)
can be either analytically derived or reliably estimated from data.
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Figure 2: Optimal ridge penalty (generalization error) for RF regression to learn a single-index model.

Fast HP Transfer: Random Features Regression. First we consider tuning the ridge penalty A in
a high-dimensional random features (RF) model with nonlinearity o, where the target function is a
single-index model with link function o, on isotropic Gaussian input in R?. We aim to select the
optimal regularization parameter A € R that minimizes the prediction risk R(f) = Ez[(y — f(x))?].

In the proportional limit where the number of training data /N, dimension of input features d, and
model width n all diverge N,d,n — oo, N/d — 11,n/d — 15 where 11,15 € (0,00), Mei &
Montanari (2022); Gerace et al. (2020) derived precise asymptotics of prediction risk under standard
assumptions (see Assumption 2). In this model, the number of trainable parameters is controlled by
the ratio 1o = n/d, and the infinite-width model is obtained by sending 12 — co. The following
proposition quantifies the convergence of prediction risk and hyperparameter as a function of 5.

Proposition 3. Define \* (1)) := arg miny cp Ry, (A), where Ry, (N) is the asymptotic prediction
risk of the RF model with width n/d = 1 and ridge penalty \. Then under Assumption 2, we have

* Loss gap: [Ry,(\*(12)) = Roo(A*(00))| = O(4h3 ).
* Hyperparameter gap: |\*(15) — \*(c0)| = O(¢51).
* Suboptimality gap: |Roc (X (1h2)) — Roo(A*(00))] = O (b3 ).

This proposition states that both the loss gap a,, and the HP gap b,, scale as d/n = 15 !, whereas the
suboptimality gap scales as ¢,, ~ 9~2? < a,,; we conclude that the ridge regularization parameter \
exhibits fast transfer per Definition 2. Consequently, Theorem 13 implies that tuning the ridge penalty
on small (narrower) RF model and then transfer is more compute-efficient than directly tuning the
large model. To our knowledge, this gives the first concrete setting where the hyperparameter transfer
strategy in Yang et al. (2023) provably offers computational advantage.

Figure 2 presents the prediction risk of the RF ridge estimator across varying widths n/d = 1q; we
set 0 = tanh, 0, = ReLU, ¢y = 4,0, = 1/4. The analytical curves are obtained by solving the
coupled Stieltjes transforms (6)(7). Figure 2(b) confirms the scaling of a,,, b,,, ¢,, in Proposition 3.

Slow HP Transfer: Two-layer ReLU Network. Next we consider a classification setting with
shallow ReLU neural network: f(x) = Y7, a;o({w;,x) + b;), where we aim to tune the learning
rate 1) that minimizes the validation loss. We set the target to be the norm indicator function, which is
a well-studied function that requires a wide two-layer network to approximate (Safran & Lee, 2022),

y=1{|z| > FX_{(O.5)}, where x ~ N(0, I,),

where Fx_21(0'5) represents the median of a chi-square distribution with d degrees of freedom —
d

this threshold ensures that the classes are exactly balanced. We set d = 26, n = 2'4, and run the
Adam optimizer (Kingma & Ba, 2014) for T = 2'* steps with batch size 2% to minimize the binary
cross-entropy loss. The initialization and learning rate are set according to uP (Yang & Hu, 2021).

In Figure 3(a) we observe that even under pP, the optimal learning rate still drifts towards the right.
Moreover, Figure 3(b) illustrates that under a power-law fit, the HP of interest 1 converges slower
than the validation loss, and the estimated scaling 8 =~ «/2 suggests that the HP convergence rate
does not beat the agnostic rate from strong convexity. An interesting future direction is to rigorously
derive the scaling exponents and demonstrate slow transfer in this 4P example.
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Figure 3: Optimal learning rate (validation loss) for two-layer ReLU network to learn the ball indicator function.

4  FAST TRANSFER VIA TRAJECTORY DECOMPOSITION

At a high-level, the only way for fast transfer to occur is if somehow the optimal HP is “dependent” on
some statistics of the training trajectory which converge much faster than the statistics of the trajectory
on which the loss depends. To provide a clearer understanding we will try to explicitly “extract”
the fast converging statistics and connect these with the optimal HP. To do so we will leverage
prior intuition about the “low-dimensional” nature of optimization trajectories (see Section 1.1).
Intuitively, we may expect that the movement in a small number of directions might simultaneously
“dominate” the determination of the optimal hyperparameters since these correspond to a majority
of the loss decrease and is sensitive to the choice of hyperparameters. Furthermore, the associated
low-dimensional statistics converge fast with width and are nearly “width-invariant”.

4.1 Topr-k LOoSS DECOMPOSITION

Let us consider an optimization trajectory w = (wy, ..., wr) of a neural network. Define the
one-step loss change § £(w;) := L(w;y1) — L(w;), so that the overall loss change is the sum

AL(w) := L{wr) — L(wg) = 2 OL(wy).

Let g; := VL(w;) and dw; := w1 —w;. Let us define d¢p(w;) := (gy, dw,) to be the linearization
of 6 L(w;). Under appropriate smoothness conditions on the trajectory,

T-1
d0p(wy) = §L(w;) and Pp(w) := Z dp(wy) ~ AL(w).
t=0

To ensure that such smoothness conditions hold and ¢(w) is a useful proxy for AL(w), we take w
to be an exponential moving average (EMA) of the base optimization trajectory. Empirically, on
realistic problems, we obtain excellent agreement between ¢(w) and AL(w) for EMA trajectories
which perform at least as well as the corresponding base trajectories (see Fig. 5).

The utility of considering the linearization ¢(w) in our setting is that we can decompose d¢(w;)
based on the structure of (g, dw;) and recover a resulting decomposition of ¢(w). Let us consider
a fixed time index ¢. If w = (W(l)7 ceey W(L)) are the model parameters with corresponding
gradients g = (G, ..., G")) such that W) and G¥) are tensors of the same shape, then

(g.ow) = <G“>, 6W(")> .

Le[L]

Consider a single summand coming from W € R™*"™ with corresponding gradient G € R™*",
Define the matrix S(G, §W') which symmetrizes the product G - §W as

1
S(G,0W) := 5(GT W+ W T - G).
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If S(G,0W) has eigenvalues Ay, ..., A\, such that [A;| > --- > |\,]|, then we define the top-k
step-wise linear loss change for parameter W to be the sum of its first k£ eigenvalues.

k

SEF (W) =)\ 1)

i=1

The top-k loss change captures an intuitive notion of the loss change in the top-k directions of
maximum change in loss. Note that ¢ (W) = §¢p(W). If the update §W is aligned with the
gradient, that is G = ¢ - §W for a constant ¢ # 0, then 6¢* (W) is the sum of the top-k singular
values of G. We can add the step-wise changes over time and over all parameters' to compute the

top-k loss change,
T—1
()= Y 3 a0k (W). @)
] t=0

Le[L] t=

For some parameters we will use a “row version” of 6¢* which uses S(G",6WT) in place of
S(G,0W). Then we can make the index k span [n] across all layers so that using the same & for
each layer in Eq. (2) becomes reasonable.

Decomposition-aware HP transfer. We can now make our earlier intuitions more precise using
this step-wise decomposition. Assume that we fix a training procedure A (see Definition 3). Then
we can define the width-n trajectory trained with HPs v and scaling = to be the trajectory w,, (v, ~y)
obtained from executing the training procedure A with hyperparameters H,, (v, 7). If we consider a
fixed scaling v and an HP dependent truncation function x which outputs an index x(v) € [n] given
HPs v, then we can abbreviate

(bn(y) = ¢(wn(’/”7>)’ d)fz(’/) = ¢K(V) (wn(Vv’Y))

v*(n) := argmin ¢, (v), v (n) := arg min ¢~ (v). 3)

We will refer to ¢! as the top-« loss curve and ¢ " := ¢, — ¢ as the residual loss curve.

Recall our initial intuition for fast transfer based on a loss decomposition. Conceptually, in our
framework, this intuition says that fast transfer occurs if for an appropriately chosen sequence &, the
following are simultaneously true for large enough n

* Top-k strong convexity: The top-x,, losses ¢/» and ¢~ are strongly-convex.
* Top-« invariance: The top-s,, loss converges rapidly so ¢;" ~ ¢z and v (n) =~ v} (00).

» Residual Flatness: The residuals ¢, "~ and ¢_ "~ are both “flat” as functions of v, and so

vi (n) = v*(n)and v} (o) = v*(c0).

It follows that when these conditions hold that v*(n) =~ v*(c0). In Appendix B.5 we make these
intuitions more formal by defining a quantity .7, (x) which given a truncation function x upper bounds
the HP gap b,, using quantitative measures of top-~ invariance and residual flatness. By choosing
a truncation function 7, which minimizes 7, (k) by optimally balancing the top-x invariance and
residual flatness we obtain the best such upper bound on b,,. In practice, it is intractable to optimize
this objective so instead we optimize a proxy objective Jproxy () to obtain a truncation function
Kn := k(n) using a procedure outlined in Algorithm 1 (see Appendix C). We will then validate
empirically that top-« invariance and residual flatness holds qualitatively with our choice of #(n).2

4.2 EXPERIMENTAL RESULTS

Experimental Setup We train a Llama-style transformer architecture (Touvron et al., 2023) using
the Adam (Kingma & Ba, 2014) optimizer with a warmup stable (WSD) learning rate schedule (Hu
et al., 2024) on WikiText-103 (Merity et al., 2016). Further experimental details are given in Ap-
pendix D. There we also show that similar observations hold for the Adam 3; and /35 hyperparameters
(App. D.4) and for the learning rate when training a 2 layer MLP using SGD on CIFAR-10 (App.
D.6). In Appendix D.5, we investigate the recently popularized Muon optimizer (Jordan et al., 2024).

'We will only decompose matrix parameters and use the full inner-product for vector parameters.
21t suffices to just exhibit one such #(n), but there can be many ways of producing qualitatively similar x,.
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Figure 4: Training a 4-layer Llama transformer on WikiText-103. Left: EMA and linearized losses nearly
coincide. Right: We plot the EMA loss as a function of width n using (1): the optimal learning rates v* (n) (2):
the optimal width-128 learning rate v*(128). For Adam these two curves overlap indicating perfect transfer.

In this setting we find that transfer is slightly worse than for Adam and that the decomposition yields
qualitatively different results. We conjecture that this results from the whitening of the gradient which
prevents the updates from being low-rank. More careful investigation of the transfer properties of
Muon is an exciting area for future work.

Fast Transfer and Linearization Faithfulness. The Dim = 128, LR = 0.004
Adam learning rate sweeps are shown in Figure 4. As 105 — EMALos
we can see from Figures 5 and 4, the EMA loss and the -~ Lincarized

linearized loss ¢ are nearly indistinguishable indicating 9.0
that the EMA trajectory is sufficiently smooth. From
Figure 5 we see that the smoothing does not degrade the £ 75
final loss. Our setting also clearly exhibits fast transfer
since the optimal learning rate is converging rapidly 6.0
with the width n (see Fig. 4a) while the reducible loss
improves more slowly with the model width, converging 45
to zero with rate n =94 (see Fig. 4b). Using the optimal o 1500 3000 4500 6000 7500
learning rate obtained at width n = 128 for larger widths o Step o
widths is essentially optimal as indicated by the fact that T.gure 5: Training a transformer on WikiText-
the two curves in Figure 4b overlap. We now further %5(1)\3;[/(;8?6 Section 4.2). The linearized loss and
.. . . . oss are identical through training and
probe the optimization and scaling dynamics 1n.thls fast | ose to the iterate loss at the final step.
transfer setting using the lens of our decomposition.

Decomposition Over Time. In Figure 1 we visualize the top-£ loss with £ = 40 and the residual
loss across training time and different widths for a fixed learning rate when training with Adam. We
see that throughout training the top-k loss is nearly width invariant and accounts for the majority of
the loss decrease. This indicates that the bulk of the improvement due to optimization comes from a
low-dimensional subspace. As a result, the majority of the loss improvement due to width comes
from improving the residual loss. This suggests that the additional learning is mostly occurring in the
bottom “modes” of the trajectory. These modes become more dominant later in training.

K(n) LR = 0.004
600 n=128
w— =256
500 -3 —— n=512
—n=1024
—=2048
400 -4
< “e
300 '_\\\_‘___,/. S 5
200 -6
100 —
27 27 27 0 200 400 600 800 1000 1200
Learning Rate k

Figure 6: Left: The computed values of #(n) using Algorithm 1. Right: The top-k loss ¢* for
LR = 0.004. the ¢* descend rapidly with & and overlap over different n for an intermediate range of
k where top-k invariance holds.
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Total Top-k

6 0 ¢ﬂ ;7(17
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—— n=256 n=256
— n=512 * —-=- n=512
@ —6.5 — n=1024 -—- n=1024
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Figure 7: Left: Total loss curves ¢,,. Right: Top-x loss curve pairs ¢, (dashed) and ¢52 (dash-dotted). The
top-k pairs are nearly overlapping with minimizers close to those of the corresponding total losses.

Residual Residual
0.00Fgzoc=o = e | ¢ (o
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Figure 8: Residuals are nearly flat around the top-x minimizers (solid lines).

Decomposition Across Widths. In Figure 7, we apply our loss decomposition across different
n and compute k,, = &(n). We use the largest width 7,,,,, = 2048 as an infinite-width proxy and
consider transfer from widths . < npax. In the right panel, we see that ¢/» ~ ¢S, that is the top-x,,
loss is approximately the same for the width n model and the infinite-width proxy across different
learning rates, despite the large gap in the total losses ¢,, and ¢, shown in the left panel. Furthermore,
the minimizers of the total loss are essentially dictated by the minimizers of the respective top-«,, loss,
thatis v} (n) ~ v*(n) and v} (00) =~ v*(00) (see Eq. (3)). In Figure 8 we plot the corresponding
residuals and see these are much more locally “flat” around the corresponding top-+,, minimizer. As
a result, the residuals contribute less to the determination of the overall optimal learning rate.

In the left panel of Figure 12 we show the computed values of 4(n) which appear to be approximately
constant across learning rates and grow sublinearly with n. In Figure 6 we can see the value of ¢* for
a fixed learning rate as we vary the value of k. The top-k loss is smooth with k& and starts to flatten
out once k is not too small which shows that our results are not highly sensitive to the choice of
#(n). The top-k invariance can also be seen to hold cleanly for intermediate values of k. Overall, we
can qualitatively see how our decomposition can account for fast transfer in the sense described in
Section 4, even when the convergence of the loss itself is much slower. The above provides concrete
evidence for our central hypothesis that there is a low-dimensional projection of the trajectory which
remains nearly invariant across width and is responsible for dictating the learning rate.

5 CONCLUSION

This work introduces a novel conceptual framework to reason about hyperparameter transfer and
its underlying driving forces. We posit that a basic form of HP transfer can hold generically due to
asymptotic considerations, but we show that this asymptotic condition can fail to be useful in practice.
We conjecture that the utility of HP transfer is in fact dependent on the existence of non-trivial
low-dimensional structure in the optimization dynamics. Through a novel decomposition of the
dynamics we propose concrete measurements of such structure and argue that these provide an
informative sufficient condition for useful HP transfer. Our experiments explicitly show that this
structure exists in practice and may underlie the practical success of HP transfer. We hope that this
will motivate further investigation into what settings allow for efficient HP transfer and a deeper
understanding of optimization dynamics across scales.
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LLM Usage. Large language models are used to polish the abstract, find relevant references in the
related work section, and symbolically verify a computation in Appendix B.4.
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A BACKGROUND

Function Class Regularity Let X’ be a compact metric space, and let C'(X') denote the space of
real-valued continuous functions on X, equipped with the uniform norm:

[fllsup = sup [f(¥)].
vekX
We say a collection & C C(X) is:

< K for some K < oo,

sup —

* uniformly bounded if sup ;¢ & || f |

* uniformly equicontinuous if for every € > 0 there exists § > 0 such that
lv -V <d = |f(v)— f(V)| <e forall fe Z.

We denote by C*(X) the space of k-times continuously differentiable functions. For f € C*(X),
the k-th derivative is written f(*). We define f(*) = f. In multivariate settings, this refers to the k-th
total derivative.

Theorem 4 (Arzela—Ascoli). Any uniformly bounded and uniformly equicontinuous collection
F C C(X) is relatively compact in the uniform norm topology.

Proposition 5. Let {f,,} C CY(X) such that f!, — g uniformly and f, (vo) — L for some vy € X
and L € R. Then f,, — f uniformly for some f € C1(X), and f' = g.

Proposition 6. If {f,} C C'(X) and the derivatives f! are uniformly bounded, then {f,} is
uniformly equicontinuous.

A.1 SCALING LIMITS AND TENSOR PROGRAMS

In this section we will recall some simplified background from (Yang & Hu, 2021; Yang & Littwin,
2023). For concreteness, we will fix the architecture to a L-hidden layer MLP, but all statements
can be extended to a much more generic architectures (see Section 2.9.1 in (Yang & Littwin, 2023)).
An L-hidden layer MLP of width n with nonlinearity ¢ : R — R and no biases is parameterized by
weight matrices W' € R4 W2 ... WL € R"*" and WL+l € R™™, On an input & € R¢,
the network computes

hf(z) = W2 (z) e R", 2'(z) = ¢(h*(z)) €R", forl=1,...,L, 4)
and the output is f(z) = WLFlzL(z) € R. Given N inputs 1, ..., xy, we will abbreviate
h' = [h(z1) |- | hf(zy)] € RV,

2t = [2%x1) | - | 2%(xN)] € RV,
fi=(f(1),..., f(zn)) eRY.
abc-parameterization Assume that we train the network using SGD. We recall the definition of
abc-parameterization from (Yang & Hu, 2021) (see Geiger et al. (2020); Chizat & Netrapalli (2024)
for similar derivations). An abc-parameterization is a width-aware HP scaling specified by a set of
HPs v = {ay, 04, e }ocir+1) and HP scaling exponents v = {ay, by, c¢}¢e[r41) such that
(a) The weights W* receive a multiplier a.pn =%,
(b) We initialize each W¢; ~ N'(0, 07n~2"), and
(c) The SGD learning rate in layer ¢ is nyn .
Asymptotic Notation Given a sequence = {x(n)}52; of random tensors we write z = O(n~%)

and say that « has coordinates of size O(n~%) if there exist constants A, B > 0 such that, almost
surely for sufficiently large n,

1
A< e > x(n)} < B,

where #a(n) denotes the number of entries in (n). We use O(n~%) and Q(n~*) similarly.

~—

[e3%
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Dynamical Dichotomy Theorem. We recall some definitions from (Yang & Littwin, 2023). To
reflect the network after ¢ steps of training we add a subscript ¢ to the quantities in Eq. (4). We use A
to denote a one-step difference of a time-dependent quantity. We say an abc-parameterization is

1. stable at initialization if
hi, z5 = ©(1), V¢ € [L], and fo = O(1).
2. stable during training if for any time ¢ > 0 we have for any training routine
AR Azl =O(1), Ve € [L], and Af; = O(1).

3. trivial if for any time ¢ > 1 and training routine, f; — fo — 0 almost surely as n — oo. We
say the parameterization is non-trivial otherwise.

4. is in the kernel regime if there exists KC : RN — RV such that for every ¢ > 0 and training

routine, as n — oo,
fie1 — fe —nK(fe) — 0.

5. is feature learning if AzF = Q(1) for some training routine and ¢ > 0.

Theorem 7 (Dynamical Dichotomy (Yang & Hu, 2021)). A nontrivial and stable abc-parametrization
either admits feature learning or is in the kernel regime but not both. The kernel regime does not
admit feature learning, that is, for any training routine Azl — 0 for all t > 0.

The pP and NTK parameterization are the maximal feature learning and kernel parameterizations
respectively. All other such parameterizations can be obtained from one of these by setting some
initialization or learning rate to zero (see Section 5.3 in (Yang & Hu, 2021) for more discussion). For
adaptive optimizers such as Adam it is possible to extend the definitions to abcd-parameterizations (see
Section 2.2 in (Yang & Littwin, 2023) for more details), for which a similar Dynamical Dichotomy
theorem exists.

B THEORETICAL RESULTS

B.1 WEAK TRANSFER

In the following we provide a minimal set of technical conditions for the concept of HP transfer to be
well-defined and align with empirical observations. We say that a function is locally strongly convex
with parameters 7, > 0, if for every minimizer v* € arg min f,

lf(v)—f(w")| > %HV— v*||?, for all v such that || — v*|| < 4.

Recall that we assume that the HP search takes place over a search space X:

h h

X = H[éi,ui], int (X) := H(giaui)a

i=1 i=1
which is a h-dimensional box with bounds ¢; < w; and interior int (X).

Definition 3 (HP Transfer). The scaling v admits HP transfer for a training procedure A and metric
¢ over a search space X if the following hold

1. ¢, € C?(X) is convex and has a unique minimizer v*(n).

2. ¢oo := lim @y, is locally strongly convex and arg min ¢, C int (X).
n—oo

3. The family {¢!'} is uniformly bounded and uniformly equicontinuous.

This definition implies the following desirable consequences.

Proposition 8 (HP Transfer Properties). In the context of Definition 3, the following are true

1. ¢oo € C?(X) is convex and has a unique minimizer v* (o)

2. Gn = boor Pl = D, P — @l uniformly and v*(n) — v*(o0).
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Proof. By Proposition 6, it follows that for all j € {0, 1,2}, ¢Ef ) is uniformly equicontinuous. Since
¢y, has a limit, it must converge uniformly ¢... Now repeatedly using Proposition 5 after passing

to subsequences and invoking Arzela-Ascoli (Theorem 4), we see that ¢$3 ) — ngO) uniformly for
j € {1,2}. Now it follows that ¢, € C?(X) since the uniform limit of continuous functions is
continuous and ¢ is convex since convexity is preserved under pointwise limits. Note that the local
strong convexity condition implies that ¢, has a unique minimizer. Now because X’ is compact, every
subsequence of v*(n) has a convergent subsequence. By uniform convergence and the continuity of
the ¢, and ¢, it follows that the limit of this subsequence is a minimizer of ¢.. By the uniqueness
of this minimizer, all the subsequences converge to v*(co0) hence v*(n) — v*(0). O

This definition gives a minimal set of conditions under which the concept becomes mathematically
coherent and aligns with observed empirical behavior. Requiring ¢,, to have a unique minimizer
removes ambiguity about which configuration should be transferred across scales. The convexity,
smoothness, and equicontinuity conditions provide technical regularity that facilitates analysis and
generally hold in practice.

The local strong convexity of ¢, ensures that performance meaningfully degrades away from the
optimum. Without this condition, ¢, may be flat near its minimizer, making accurate hyperparameter
selection potentially irrelevant in the large-n limit. The assumption that ©*(c0) lies in the interior of
the search space ensures that this optimum remains unchanged under any enlargement of the domain;
this condition rules out the n-dependent drift of the HPs of interest due to a “suboptimal” scaling —
see Appendix A for discussions.

“Optimal” scaling limit. In (Yang et al., 2022; 2023), the authors remark that a key principle
behind hyperparameter transfer is the “optimality” of the scaling. Heuristically if a scaling yields a
suboptimal limit, then it cannot exhibit hyperparameter transfer since the HPs v need to undergo a
n-dependent rescaling to “convert” the suboptimal scaling into the optimal scaling. The following
proposition formalizes this intuition. The proposition requires 0 € X to avoid uninteresting cases
where the optimal HP is zero which will generally not occur for optimization HPs in normal neural
network training.

Proposition 9. Ler vy be a scaling that exhibits transfer over X = [0,u1] X --- [0, ug] and all X’
containing X. Any other scaling ' # ~ with these properties must satisfy

. . _ . o)
Wil oo (V5Y) = MR Poo (V7).

Proof of Proposition 9. For brevity define

v, 1= arg min ¢ (v; ) and v, := arg min ¢oo (V';7').
vex v'eX
For the sake of contradiction assume that oo (V4 ) > doo (Vs; 7). For large enough n, we will
have ¢y, (V,;y) > én(Tx;y) where U, = v, @ (n'~7,..., 0% %) and v, # U, which is a
contradiction. The case oo (Vs;Y) < ¢oo(Vy; ') follows analogously. O

The dynamical dichotomy theorem states that all scalings induced by abcd-parameterizations except
for uP lead to optimization degeneracies or non-feature learning behavior. Therefore the proposition
implies that if HP transfer is possible with yP and feature learning is advantageous, then it should be
only possible using uP. Of course, it is still a challenging problem to rigorously characterize when
P will exhibit transfer and when feature learning is actually advantageous.

B.2 ASYMPTOTIC RATES

Recall the definitions of the quantities ay,, b, ¢,, from Definition 1. We will need to reason about the
following quantity which we call the uniform loss gap.

Qp = H(bn - (bOOHsup' (5)

Using the local strong convexity assumption, we will be able to directly relate the HP gap with the
uniform loss gap. We first prove a convenient lemma which bounds the minimizer displacement in
terms of the sup-norm of the perturbation.
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Lemma 10. Let f : X — Rand g : X — R such that f has a unique minimizer xy and g has a
unique minimizer x4, and g is T strongly-convex

.
9(@) = g(zg) 2 Sl ~ x,|?, Vo e X

forsome T > 0. If || f — g, <& then

sup —
e\ 1/2
oy —,ll <2(5)

Proof. Note that g(z¢) —e < f(zy) < f(zy) < g(x,) + &, hence
glaws) = g(my) < 2.

By strong convexity, 2¢ > Z ||z — x4 ||?, which after rearranging gives the desired conclusion. [

The above lemma, along with Propositions 8 and Taylor’s theorem immediately yields the following.

Lemma 11. Assume HP transfer holds (Def. 3), then b, = O (EL}/ 2) and c,, = O(b2).

To relate the loss gap a,, and the uniform loss gap a,, we must make further assumptions. Intuitively,
we would like to capture the fact that typically the uniform loss gap is dominated by a fairly uniform,
positive loss gap for HPs which are nearly optimal.

Definition 4. We will say that the uniform loss gap is locally tight if there exists some radius T and
constants 0 < ¢ < C such that for allv € B(v*(00),T),

Cdn S (bn(y) - ¢m(y) S Cdn-

This essentially states that the uniform loss gap tightly controls the convergence rate for any nearly op-
timal set of HPs. This corresponds with the empirical observation that nearly optimal hyperparameters
obey identical scaling laws. Under this assumption it is easy to see that a,, = ©(ay,).

Lemma 12. Assume HP transfer holds (Def. 3). If the uniform loss gap a,, is locally tight then
an = O(an).

Proof. Note that we have

P (V7 (1)) = doo(V7(00)) = dn (V7 (1)) = Poo (V7 (1)) + Poo (V7 (1)) = Poo(¥(00))
2 ¢n (V7 (n)) = oo (v (n)),
P (V7 (n)) = doo(V7(00)) = dn (V7 (n)) = ¢n(17(20)) + dn (V7 (00)) — oo (¥ (00))

< P (V7(00)) = oo (V7 (00).

Since v*(n) — v*(c0) we can apply the inequalities in Definition 4 for large enough n to yield the
claim. O

Proof of Proposition 1. This follows directly by applying Lemmas 11 and 12 O

B.3 GRID SEARCH

We now turn towards the connection between the previous asymptotic quantities and compute-optimal
grid search. Define a grid G in a search space X to be a collection of points {v(1), ... v}
contained in X'. The grid resolution p(G, X) is defined as the largest distance of a point in X to a
point in G, that is
p(G,X) := sup min |v — /||
vex v'eg

For a grid G in the search space X, define v*(n, G) = arg min,, g ¢, (v). Let us assume that we are
allocated a flops budget F in order to perform hyperparameter search and produce a final model.

Recall that for brevity we use f(x) ~ g(x) to mean f(x) = O(g(z)). For a grid G of resolution p,
we will make the following convenience assumption for Theorems 13 and 14.
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Assumption 1 (Grid proximity). For a grid G of resolution p, we assume that

min ||y — v*(n)]] ~ p.
min v~ v (n)] ~ 5

This assumption is morally true if G is not chosen with knowledge of the location of v*(c0). If for
a given G we chose v*(c0) uniformly at random within G, then this assumption holds on average.
Suppose we have a compute budget of F flops, and the amount of flops needed for a single training
run scales with n” for models of width n, where » = 2 for standard optimization algorithms on
standard architectures. For a scaling -y, we will evaluate the quality of a set of HPs v by performing a
full training run for a certain width n using the scaled hyperparameters H., (v, ). The details about
the grid search are discussed in Appendix B.3. Let us assume that the number of HPs we perform a
grid search over is h. We first consider compute optimal performance when directly tuning the HPs
on a large model.

Theorem 13. Suppose that a,, ~ n~%. Given a compute budget of F flops, if we directly conduct

—2«
grid search on a width-n model, the compute-optimal performance scales as F #+27 and is obtained
2
at width n* ~ Fra+ar,

h h

Proof of Theorem 13. For a grid of resolution p = p(G, X') we will have |G| ~ p~" and F ~ n"p~".
Now observe that by uniform convergence of derivatives (Prop. 8), for n large enough ¢,, will satisfy
(7', 4")-LSC for some constants 7/, 6" > 0 and so ¢, (v*(n,G)) — ¢, (v*(n)) ~ p* by Assumption
1. Therefore,

(V" (n,9)) = 9% = on (V" (1, G)) — on (V" (n)) + on (V" (n)) — %

~ p2 —|—n_
~ n2r/hf—2/h + e,

We see the final expression is minimized by taking n* ~ F 77 which yields the rate
(V" (n,G)) = 9 ~ F it

as claimed. O

Now consider the strategy of transferring the optimal HPs from a smaller model. We say that transfer
is useful if this strategy achieves a better loss scaling than directly tuning the large model under the
same compute budget, as specified above.

Theorem 14. Suppose a,, ~ n~* and b,, ~ n~P, and we conduct a grid search on a width-n model
and then transfer to a large width- M model. Given a compute budget of F flops, the compute-optimal

—a =28 . . 1
performance scales as F = + F#o+r, obtained at widths n* ~ F7+ and M* ~ F'/". Transfer

is useful iff B > «/2.
Proof of Theorem 14. Note that in this setting 7 ~ n”p~" + M. The performance scaling is
P (V¥ (n,G)) — &% = du(v™(n,G)) — dm (v (n))
+ ou(v™(n)) — ou(v*(M))
+ ou (v (M)) = ¢%
~ p2 +n 4 M
o 2/h
~ -2 M~
(]__ — M7”> +n "+ .
Since F — M" ~ F, we should take M* ~ F!/" in which case the above simplifies to

n2r/h )
(W (n,G)) — ¢h ~ =0 +n2B g Fe/r

. . L. 1 . =28 —a
which is minimized a n* ~ F#5 7 and yields ¢ar(v*(n, G)) — o5, ~ Fre+r + F = . Now note
that % > h(f_f% and héf_r > h(f_f%, if and only if 8 > «/2, which is the condition for useful
transfer. O
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B.4 RANDOM FEATURES REGRESSION

Consider the following data generating process where the labels come from a single-index model,
and we train a random features ridge regression estimator on /N samples,

y=o.((x,B.)) +¢&, where z ~ N(0,1,), ||| =1, Var(e) = o2.
f(z) = (ar,0(Wz)), where W € R™*" [W];; ~ N(0,1/d),
ay = argmingepn 310 (y; — (@, 0 (Wa:))? + Aalf3.
We aim to select the optimal regularization parameter A that minimizes the prediction risk (general-
ization error) R = E4[(y — f())?]. We make the following assumptions.
Assumption 2.
* Proportional limit. N,d,n — co, N/d — 11,n/d — 1y where 11,19 € (0, 00).

* Normalized activation. Both the student and teacher nonlinearities are normalized such that
Elo],Elo.] = 0, [|o]l.,, loxll, = 1, and also ||o’||,, ||o% ||, # 0. We further require that o is a
nonlinear odd function with bounded first three derivatives, and o, is ©(1)-Lipschitz.

Remark 1. The above assumptions are standard in the high-dimensional asymptotic analysis of
random features models, see e.g., Mei & Montanari (2022); Gerace et al. (2020). The non-zero
expectation of o', o', is necessary for the RF model to outperform the null estimator in the proportional
regime. The assumption of odd o simplifies the Gaussian equivalence computation — see Hu & Lu
(2022); Ba et al. (2022).

Asymptotic prediction risk. Under Assumption 2, following Hu & Lu (2022), we know that the
asymptotic prediction risk is given as by the following implicit equations,
mi(A) e mh(A)

L Bl — f@)] = RO) = 3+ o2) T i T

where the Hermite coefficients 1j = E.. xr(0,1)[0%(2)], 13> = 1 — p}?, and the coupled Stieltjes
transforms m; (z) and ma(z) € CT U R, are uniquely defined by the following self-consistent
equations for z € CT UR,,

1 (2) = ma()) (3 () + na(2) + s (Imaz) (s () 1) =0, (6)
Pa 1 2 _
L <u%m1<z>m2<z> + L (ma(s) - m1<z>>) e (2ma() (zma(2) — 1) =0, ()

where 11 = E, n(0,1)[07(2)], 43 = 1 — p1i. Note that o being nonlinear implies o # 0. We omit
the argument in mj (A), ma () except when tracking the A-dependence. m/, m/, stand for derivative
with respect to A. To further simplify the exposition, we define 7 := 1)1 /12, and write the asymptotic
prediction risk at width 1/ and ridge penalty A as Ry, (A) = Ry, /n(A).

Large-width limit. First we consider the test performance of the “infinite-width” model, which
corresponds to taking ¢ = n/d — oo or n — 0. Note that the prediction risk in this limit is
well-defined and has been computed in prior works (see e.g., Bartlett et al. (2021)). First recall that
mq,mg > 0and zmy(z) — 1 remains uniformly bounded for any 1/7, hence from (7) we know that
at the large-width limit,

pimama + ¥y (ma —my) = Fi(ma,ma) =0, My + pimy + pims — 1 =: Fa(my,ma, ) = 0.

2 2
Reparameterize ¢ := 1 + p21ymy > 1, we have A(£) = %1 — 1 _ 1,2 By the chain rule,

T—1 7
1 1 1S(¢
5 — 5 A= *2“17()2,
G pit 2 (t—1)

where we defined S(t) := ¢1t*> — (¢t — 1)2. Hence at 7 = 0 we have

m W
m? St mi  S@t)

Oymy = Oyma =

li 2 !
my Uit my
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Therefore,

. 1((u3® + 02)t* + pi?)

Roo(A(t)) := 1 Ry, (A1) = <

(M) = lim Ry, (A1) S

Differentiating the risk yields the closed-form expression of the optimal ridge penalty (consistent
with Dobriban & Wager (2018); Wu & Xu (2020)),

i} 2(52 4 22

A (oo):ﬂl(siwfug_ (8)
Ky

We restrict ourself to the setting where non-vanishing regularization is needed at the large-width limit,

i.e., A*(00) > 0. Denote t, as the corresponding optimal value of ¢ = 1 + p21)ym1, the optimality

- Prte—te+1

Urts —t+1>0, S(t) = Whrts —te + Dty + (£, —1) > 0.

Hence we have the following characterization of the curvature

" * _ 2(:“*2 + Ug)wl / o
RO 0D = gwie Pt — )~ Y=

Note that (9) validates the local strong convexity of R .

condition p}? implies that

_p3S(t)
2(t, — 1)2

< 0. C)

Finite-width sensitivity. Now consider the system given by (6)(7)

To(mi,ma, \) ]

E(m1,m27/\,77) = yl(m17m2)+n<73(m1,m2,)\)

where 753 = p3mimso(Am — 1). Differentiate E = 0 with respect to 17 and evaluate at i = 0,

J {%ml} _ {0] A+ 43 I
0| 9ymo T pimy =yt pdma gt
(10)

,  where Jy = 0Oy m, (T2, T1) = [

n=0

Recall that 75 = 0 yields Am; — 1 = —(u3my + pims), and hence T|,—g = —pimima(udm; +
13ms). On the other hand, by direct computation

pis(t)
it — 1)’

Solving the linear system (10) yields

detJy = = detJy(ts) > 0. (11)

pimima(p3mi + pims) (t = 1)*(uf + p3t)

Oy = = detJo T s
Do — _ A F ) pdmams(pudma + pima) (£ = 1)*(42 + p3t) (Ynt —t + 1)
e det.Jg pp22S(t)

Differentiating the prediction risk with respect to 7 and evaluate at the large-width limit = 0,

o,my  2mio,m Oymbh  2mbLo,m
*2 2 n'’ 1Yp'71 %2 n'’b2 20n 't
871:07?'00(/\) = _(/’[’2 + 05) ( m% - m;{, ) - M1 < m% - mglg > )
where 0)—0Roo(A) = OyRy, /n(N) |n:0' A similar determinant calculation yields
2 2
pi- , At m)S
a = TV ) = T 3.
" detJo "2 detjo

where
S =pima(22my — 1)my 4+ pdmy (Amy — 1)mly + pimimy
(t-1)3 t (2t+1) t—1 p2+udt]  (—1)3
pivt LS S pive t pitt
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Using the above, a tedious algebraic calculation gives the following expression of the sensitivity of
the prediction risk (at fixed \) with respect to 7:

(t—1)?Q(t)

Op=0Roo(A) = —5=——,
RN = sy

(12)

where Q(t) = Zi:o cpt® with coefficients

cr = 413 (3” + 02) = i3 (u3” + 02) + 203472 (1 — 1),

er = =3 (u3” + 02) + pini*(r = 1) + p3 (5" + 02) + ppi* (1 + 3),

co = 2413 (3" + 02) + pi* (2pitn + 27 — 1).
Importantly, under the optimal \ defined in (8), we have the factorization
2(p5” 4 02) (F + p3t) (B — 1)S(t)

wlt* - t* + ]- ’

and since (t. — 1), S(t«), (Y1te —t.+1) > 0, we conclude the derivative (12) at ¢, is strictly positive

2(ps® + 02) (3 + pat.) (te —1)°
WS (Wt — o+ 1)

Q(t) =

By—0Reoo(Au(00)) = = C, > 0. (13)

Putting things together. Recall that the asymptotic prediction risk R is C2 in A and C"* in 7. Given
the Jacobian invertibility (11) and local strong convexity (9), the implicit function theorem (IFT)
implies that there exists a neighborhood defined by some 79 > 0 and a unique C'* map A* : [0,70) —
R, such that \*(0) = A\*(00), AR, (A*(n)) = 0, and 93R,,(A*(n)) > 0. Consequently, we may
take a first-order expansion and conclude (setting 7 = 1 /12 under with 1);)

i _ 909 Rec(A*(0))
Y2 O3 R (A*(20))

N (th2) = N(00) + Oyso, (1) - = +0(¥3 1), Oyso, X (1) = =: O

(14)

Note that the denominator in C), is strictly positive by (9). Moreover, since N (t.) # 0, we may

write Iy8y Roo(A) = W%%()W))), and compute C, = (3111174ﬂf¢1+1)2t§1+t§(2ﬂf¢171)t*+1. This

confirms that the hyperparameter gap vanishes at a rate of O (5 1).

For the loss gap, denote §,, = A\* (11 /1) — A*(o0) for n € [0, 1), the IFT and Taylor expansion gives
Ripy (N (00) + 87) =R (A*(00)) + Dazre (00) Roo (X7 (00))dy + Fp=0Ro (A" (00)) + O(6; +17°)

DR (X (00) + Gy 22+ o3
where (7) is due to the stationarity condition Jy\—»+(s)Roc(A*(o0)) = 0 and 6, = O(n) from
(14), and C;, > 0 is explicitly given in (13). The strict positivity of (), ensures that the
loss gap scales exactly as O(1y ). Hence by Proposition 1 and Theorem 14 we know that
the ridge penalty in RF regression exhibits fast and useful transfer, i.e., the suboptimality gap
IRoo (N (12)) = Roo(A*(00))]| ~ 152 < |Ryy (AN (102)) — Roo(A*(00))], which aligns with the
observations in Figure 2 and concludes Proposition 3.
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B.5 FAST TRANSFER

In this section we formalize our quantitative bound on the HP gap b,, in terms of the top-« invariance
and residual flatness arising from our decomposition. For the sake of simplicity we will assume that
X is small enough so that the local strong convexity condition holds globally.

Definition 5. For f € C%(X), define the curvature ju(f) and the Lipschitz constant Lip(f) as:
p(f) := inf f"(v), Lip(f):= sup [f'(v)|.
vex veX
Definition 6 (Decomposition Rate). Let ¢,, and X be as in Definition 3, and ¢! and v} (n) as in Eq.
(3). We define the following quantities associated with the decomposition:

; ; o5 —¢% llu
* Top-r invariance gap: ciny (N, K) 1= — o~ 2i0

w(r)Vu(ds,)
* Residual flatness gap: cq.c(n, k) := Lii((g;;) Ljf((f;; )

* Decomposition objective: J (k) := 21/Einv (N, £) + Efat (N, K)
* Decomposition HP gap: t,, := min, J (k) s.t. p(¢5) A pu(d%,) > 0.

The decomposition HP gap t,, is defined to be a natural upper bound on the HP gap b,, as we show in
Proposition 15 which makes use of Lemmas 10 and 16. This upper bound is obtained by choosing an
optimal HP dependent truncation index ) minimizing 7 () such that i,y (n, £% ) which quantifies
top-« invariance and eqat (1, ;) which quantifies residual flatness are both appropriately small. Note
that ¢,, is well-defined for n large enough because we can take x = n and from the assumptions of
Definition 3 both ¢,, and ¢, are strongly convex.

Proposition 15. Assume the setting of Definition 3 where the local strong convexity is global. The
decomposition HP gap t,, in Definition 6 satisfies t,, > b,, where b,, is the HP gap from Definition 1.

We remark that we introduce the quantity ¢,, primarily as a theoretical quantity for conceptual
purposes. The quantity ¢,, will be small when top-x invariance and residual flatness holds and since
t, > b, this will imply b,, is small as well. We also note that it is natural to chose the optimal
truncation index 7 used in ¢,, to be a function of the width n. This is because as n — oo we expect
b, — 0 and so it is desirable that t,, — 0 as well which will not be the case if we used a fixed k
because eq,¢ in J (k) will converge to a non-zero value. Overall, one can view t,, being small® as
an explicit sufficient condition for fast transfer. We conjecture that (some version of) this condition
holds in practice when training neural networks on natural data with optimizers like Adam or SGD.
For future work, it would be interesting to provide natural settings where such a formal statement is
provably true.

To prove Proposition 15 we will first need a perturbation result similar to Lemma 10.
Lemma 16. Let f : X — Rand g : X — Rsuchthat f is T strongly-convex and sup ¢ » |¢' ()| < €.
Let x* = argming,c y f(x) and & = argmingc  f(x) + g(x). Then

|zt — & < =
:

Proof. By first order optimality we have f'(&) + ¢'(&), hence |f'(£)| = |¢'()| < €. By strong
convexity 7||& — x*|| < |f'(&)| < e which gives the result. O

Proof of Proposition 15. For a given n and & such that u(¢f) A p(eh ) > 0,
bn = [[v*(n) — v*(c0)]|
= [[v*(n) — vi(n) + vi(n) —v;(c0) + vy (00) — v*(o0) ||
<|v*(n) —vi(n)|| + [[vi(n) — vi(co)|| + [[vi(o0) — v™(c0)]|

< 2v/&mv(n, k) + [[v7(n) — vi(n)|| + [[vi(o0) — v (o0
< 2v/€inv(n, k) + efat (1, ),

where the first inequality is the triangle inequality, the second comes from Lemma 10, and the last
inequality comes from Lemma 16. Taking the minimum of the right hand side over valid « yields the
claim t¢,, > b,,. O

3Relative to the bound on b,, implied solely by a,, (see Proposition 1).
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C TRUNCATION INDEX SELECTION

Empirically finding the minimizer x*(n) in the definition of ¢,, (Def. 6) is not tractable due to
complicated nature of the decomposition objective 7. Instead of trying to minimize 7, we will use a
simpler surrogate process which we outline below.

Note that given a finite grid of HPs {v1,...,v,}, we only need to produce a truncation index for
each v; with ¢ € [g]. Let Kk = (k1,. .., kq) represent the vector of these values where x; = £(v;)
for i € [g]. We define ¢ to be the set of pointwise evaluations {(v;, ¢ (v;)) }ie[q and identify it
with the function obtained from its linear interpolation. Our goal is to return a set of truncation index
vectors & (n).

Let nmax denote the largest width model under consideration and fix a width n < ny,.x. Consider
the following proxy objective with parameters T = (71, 72) and 71, 72 > 0,

jproxy K; T Z |¢Hl V? M (UZ)‘ + 71 Llp(d) )+72 Llp( nmax)a (15)

”max
ze lg]

and define its minimizer to be K*(7) := argmin,, Jproxy(K; T), Which can be found approximately
using coordinate descent (see Algorithm 2). The objective Jproxy is similar to the objective [J in
Definition 6, except that instead of a supnorm we use an average ¢;-norm to promote tractability,
We US€ Nmax as an infinite-width proxy, and we absorb all the curvature based scalings y(-) into

constants 71, 7o. We will set &(n) = k*(7) for a “reasonable” choice of 7. In particular, 7 will be

chosen to be the smallest* T so that ¢ ™ and ¢ () are approximately convex and the minimizers

are close to the minimizers of ¢,, and ¢, respectively, assuming such 7 exists. The full details of
the process are given in Algorithm 1 in Appendix C.

In this section we describe our procedure (Algorithm 1) for selecting £(n) (see Section 4.1). We do
not claim this procedure is optimal in any sense and emphasize that we are just searching for a valid
#(n) so that a certain sufficient condition holds qualitatively in order to support our conjecture for
fast hyperparameter transfer. For convenience, we only consider the case where we sweep a single
HP, although this can be straightforwardly extended.

As part of our algorithm, we need to measure the convexity and flatness of a function f given a set
of pointwise evaluations {(v;,v;)}7_, where v; < --- < v, and y; = f(v;). For each interior index

i=2,...,9 — 1, define the three-point second- derlvative estimate
3 Yi—1 Yi Yi+1
() = 2( + + ) :
(v4) (Vi1 —vi) (Vi1 — Vig1) (vi —vi1) (Vi — Vig1) (Vig1 — vie1)(Vig1 — Vi)
The convexity error is the fraction of interior points with negative curvature estimate:
1 &
ConvErr({(vi, yi)}{—1) = J—2 > 1{f”(Vi) < 0} : (16)
i=2
The Lipschitz constant is the maximum slope magnitude:
: Yit1 — Yi
L PTTAR C7 R 2T I 17
1p({(mez)}z=1) 1;?3‘]_1 Vi+1 — v ( )

“For definiteness, we order (’7‘1, 7'2) by their sum, breaking ties in the first-coordinate.
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Algorithm 1: Compute & (n)

Input:
N set of widths, with nyax = max N
{vite, grid of g hyperparameter points

candidate list of 7 values
€cvxs Eamin  tolerances (convexity, argmin proximity)
®, € R9*"™  arrays ¢F (1;) foreachn € N
Output: £(n) truncation vectors in [n]9 for n < Npax, or FAIL
1. Grid: G, :={(m1,72) : 71,72 € T} sorted by 71 + 7o
2. For eachn € N\ {npax
(a) For (71,72) € G- (in order):

i. Kk <= MINIMIZEPROXY(®,,, @), ;T1,T2) // Alg. 2; minimizes
Eq. (15)
ii. Eevx := max{ConvErr(¢y), ConvErr(¢5 )} // Eg. (16)
iii. a, := argmin, ¢¥, al°" := argmin, ¢,;
Uoo = argmin, ¢ . al’ :=argmin, ¢p,,. .
A = max{|a, — a'®!|, |ase — al2'|} // argmin proximity

iv. If By < ecvx and A < €41min, Set £(n) < K and break to the next n.
(b) If no pair in G is accepted, set £(n) < FAIL.

Algorithm 2: Minimize Proxy Objective Eq. (15)

Input:
Dy, Py, arrays ¢k (v;) and ¢f  (v;), shapes g X nand g X npmax
(11,72) positive penalty weights

Output: k* € [n]Y (approximate minimizer via coordinate descent)
1. Initialize: k < (n/2,...,n/2)
2. Repeat until no coordinate changes:

Fori=1,...,¢g:
i. Local scores for each k € [n]:

score(k) = Jproxy (R) Where K is k with ; switched to k
ii. Coordinate update: r; < arg min(,,) score(k).

3. Return k* := (K;)7_;.
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D EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

D.1 SYNTHETIC EXPERIMENTS

We provide an additional synthetic setting where fast transfer is observed. We consider a regression
setting with shallow ReLU neural network: f(x) = >_I" ; a;o({w;, z) + b;), where we aim to tune
the learning rate 7 that minimizes the validation loss. We set the target to be the norm function
y=|z|3, where & ~N(0,1,).

Note that this function is easier to represent (with a shallow neural network) than the classification
example in Section 3.2 due to the absence of indicator function. We set d = 28, n = 24, and run the
Adam optimizer (Kingma & Ba, 2014) for T' = 2'* steps with batch size 2% to minimize the squared
loss. The initialization and learning rate are set according to pP (Yang & Hu, 2021). In Figure 9 we
observe that while the validation MSE loss decays at an approximate 1/n rate, the optimal learning
rate remains almost invariant across (reasonably large) width.

103 ~,
width n=1448 o O TPSal, === 67 =008n"0%25+0.000005
0 Sso
— width n=23170 3 N
*  Optimal HP g Y
w Z TR
8 o TSk
- Sl
c 10°%
210 * 10¢
® * 106
°
% R a -10.8
= T o
E s aat SEE R
g
E—na
o
116 === loga(n,)=-11.132
1 10 102 -8 Tot
Learning Rate n Width n
(a) Validation loss vs. learning rate. (b) Scaling of optimal loss and learning rate.

Figure 9: Optimal learning rate (validation loss) for two-layer ReLU network to learn the norm function.

D.2 LLM EXPERIMENTS
For experiments on the Llama architecture we use the following schedule for the EMA.

EMA Warmup We warm up the EMA decay coefficient o linearly from aggare = 0.98 to
Qenda = 0.9995 over 2000 steps in the effective window (1 — a;)~!. To capture early-training
variation without increasing linearization error, we subsample the EMA trajectory every 7 steps, with
7 itself warmed up linearly from Ts¢a,t = 2 t0 Tong = 10 over the same period.

D.3 LLAaMA ApDAM LR

Llama Adam Configuration Below is the default setup for all Llama experiments using Adam.

Dataset WikiText-103

Epochs 1

Hidden layers 4

Optimizer Adam (81 = 0.9, B2 = 0.999)
Batch Size 128

LR Schedule WSD with 4% linear warmup & 20% cooldown

LR Grid Search
* LR € {1.0, 1.4, 2.0, 2.8, 4.0, 4.8, 5.7, 6.7, 8.0} x 1073
» n € {128, 256, 512, 1024, 2048}

All curvature computations are done in log, (LR), since we sweep the peak learning rate on a log-grid.
The loss L is evaluated on the validation split. We average runs over 3 random seeds.

25



Under review as a conference paper at ICLR 2026

D.4 LLAMA ADAM 31 AND 35

We repeat the same experiment from Appendix D.3 for the Adam momentum hyperparameters, fixing
LR = 0.004. For the /3, sweep we vary 81 € {0.63, 0.78, 0.86, 0.92, 0.95} and for the 82 sweep
we vary (B2 € {0.95, 0.98, 0.99, 0.995, 0.998, 0.9999}. The sweeps are performed in logspace in
the effective window size (1 — 3)~!. The analog of Figure 7 is presented at step 7185 for 31 in
Figure 10 and for 3, in Figure 11. We note that the performance is insensitive to 31 except when it is
too large and insensitive to 35 except when it is too small. The computed values of £(n) shown in
Figure 12 are fairly similar for all the hyperparameters, suggesting that the dimension of this invariant
subspace may be mostly data and architecture dependent. It will be interesting in the future to perform
similar experiments for other HPs such as weight decay and if our decomposition viewpoint can shed

insight onto HPs which do not show fast transfer.

Total Top-k
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: -« —— n=256 ——- n=256
—— n=512 —=- n=512
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< —7.00 . Kn
—_ o ————— — T 7 n=128
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'\-—\.__*_/ —-- n=512
—-7.50 52 53 57 52 53 5T —-- n=1024
1-pB)7" (1-p)7t
Figure 10: Same as Fig. 7, but for Adam (3, at step 7185.
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—64 on P
n=128 g n=128
-6.6 % —— n=256 —=- n=256
» —6.8 — n=512 —-=- n=512
w —6. \ — n=1024 ~e— e | m=-n=1024
= 7.0 e — n=2048(w) I Sl
S E ~— 5
-7.2 e e n=128
-\'*_ N =0 —opr—0— -0 —————=0 | . ,_>56
74 S~ - N —-- n=512
25 ) 29 i1 713 25 2 29 it Stz — n=1024
(1-B)71 1-B2)7*
Figure 11: Same as Fig. 7, but for Adam 3 at step 7185.
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Figure 12: The computed values of #(n) for Adam LR, 81, and .
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D.5 LLAMA MUON

As in Section 4.2, we train a Llama-style transformer architecture with a warmup stable (WSD)
learning rate schedule on WikiText-103, but using the Muon (Jordan et al., 2024) optimizer instead of
Adam. The training configuration is shown below. The learning rate sweeps are shown in Figure 13a.

Llama Muon Configuration Below is the setup used for the Muon training.

Dataset WikiText-103

Epochs 1

Hidden layers 4

Optimizer Muon (8 = 0.95, Adam LR= 0.004, 81 = 0.9, B2 = 0.999)
Batch Size 128

LR Schedule WSD with 4% linear warmup & 20% cooldown

LR Grid Search
« LR €{0.1,0.2, 0.4, 0.57, 0.8,1.1,1.6,1.9} x 102
« n € {128, 256, 512, 1024, 2048}

Although the Muon algorithm achieves a better loss, the reducible loss scaling rate is similar to Adam
(see Fig. 13b compared with Fig. 4b) but the optimal learning rate convergence does not seem as
rapid (see Fig. 13a compared with Fig. 4a). Our hypothesis is that the conditions for our fast transfer
conjecture hold for the Adam optimizers due to the low-rank nature of the updates, but this property
is broken by the whitening step in Muon which harms fast transfer. We further probe these aspects
using the lens of our decomposition which provides interesting insights into the dynamics of Muon in
relation to the network width.

In Figure 14 we see that the k for which top-k invariance holds in Muon is much smaller and for large
n accounts for a small fraction of the total loss. As such it is likely that our fast transfer hypothesis is
incompatible with the Muon optimizer and we are unable to find supporting evidence. We conjecture
that this is related to our observation of the less perfect transfer observed in Figures 13a and 13b,
suggesting that our condition for fast transfer is somewhat necessary.

Step 7185 Scaling Law at Step 7185

EMA
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(a) EMA loss (solid) and linearized loss (dashed). (b) Scaling law for the EMA loss.

Figure 13: Training a 4-layer Llama transformer on WikiText-103 with Muon. Left: EMA and linearized
losses nearly coincide. Right: We plot the EMA loss as a function of width n using (1): the optimal learning
rates v*(n) (2): the optimal width-128 learning rate v*(128). At large n, v*(128) is slightly suboptimal.
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LR = 0.008, Step = 7185
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Figure 14: The top-k loss ¢F. The ¢F descend slowly with k especially for large n showing that
top-k invariance holds for a small range of k and the residual is significant.

D.6 CIFAR-10 MLP SGD

We also probe the generality of our observations to a different dataset, optimizer, and architecture:
CIFAR-10 training using SGD on a 2-layer MLP with ReLU activation and no biases.

CIFAR-10 Training Configuration Below is the setup used for our CIFAR-10 experiment.

Dataset CIFAR-10

Epochs 100

Layers 2

Optimizer Momentum SGD (8 = 0.9)

Batch Size 512

LR Schedule WSD with 4% linear warmup & 20% cooldown

Data Augmentation = Mixup, Random Resized Cropping

We use the same EMA warmup and subsampling schedule as detailed in Appendix D. We use our
largest width 7, = 8192 as the infinite-width proxy for computing < (n) using Algorithm 1.
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LR Grid Search
« LR € {1.0, 1.4, 2.0, 2.8, 4.0, 4.8, 5.7, 6.7, 8.0} x 1073
* n € {128, 256, 512, 1024, 2048, 4096, 8192}

Step 9695
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(a) The final EMA loss (solid) and final linearized.
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(b) Scaling law for the EMA loss at step 9695.
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Figure 15: Training a 2-layer MLP on CIFAR-10 using SGD. We see that this problem exhibits fast transfer.
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Figure 16: Same as Fig. 7, but for the setup described above.
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Figure 17: Same as Fig. 12 but for the above setup. This setting appears much more low-rank than the one
in Section 4.2, based on how much smaller &y /n is (left, see Fig. 12) and more quickly @F flattens out with k
(right, see Fig. 0).
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