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ABSTRACT

Most models of generative Al for images assume that images are inherently
low-dimensional objects embedded within a high-dimensional space. Addi-
tionally, it is often implicitly assumed that thematic image datasets form
smooth or piecewise smooth manifolds. Common approaches overlook the
geometric structure and focus solely on probabilistic methods, approximat-
ing the probability distribution through universal approximation techniques
such as the kernel method. In some generative models the low dimensional
nature of the data manifest itself by the introduction of a lower dimensional
latent space. Yet, the probability distribution in the latent or the manifold’s
coordinate space is considered uninteresting and is predefined or considered
uniform. This study unifies the geometric and probabilistic perspectives by
providing a geometric framework and a kernel-based probabilistic method
simultaneously. The resulting framework demystifies diffusion models by
interpreting them as a projection mechanism onto the manifold of “good
images”. This interpretation leads to the construction of a new determin-
istic model, the Manifold-Probabilistic Projection Model (MPPM), which
operates in both the representation (pixel) space and the latent space. We
demonstrate that the Latent MPPM (LMPPM) outperforms the Latent
Diffusion Model (LDM) across various datasets, achieving superior results
in terms of image restoration and generation.

Figure 1: Illustration of our manifold-aware restoration approach. The blue path shows
direct projection onto manifold M using distance function Dy (z), while the red-green path
represents encoding-decoding through latent space R? via functions F and G. Ideally, both
paths converge to the same manifold point, ensuring geometrically consistent restoration.

1 INTRODUCTION

Restoration of images refers to the inverse process of generating a clean, meaningful, and
non-corrupted image from a noisy, blurred, or other degraded input. A critical aspect of
this process involves the use of prior knowledge or a well-approximated distribution function
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over the set of clean images within a specific class. In this work, we propose the manifold
assumption, which asserts that the set of desired images resides on a low-dimensional smooth
manifold. We integrate this assumption with a probabilistic perspective. Specifically, we
extend the conventional Monge patch description of the data manifold, typically provided by
generative models such as autoencoders (AE) (BRumelhart & McClelland, [1987), variational
autoencoders (VAE) (Kingma & Welling, 2013), and generative adversarial networks (GAN)
(Goodfellow efrall, 201d). Our approach augments this description by introducing a distance
function that assigns, for each point in the pixel (ambient /representation) space, the distance
to the closest point on the manifold. We treat here images as primary examples, but
evidently it can be applied to any dataset that has this manifold structure. Next, we
establish a connection between the geometric framework and the probabilistic perspective
by introducing a geometric-based probability function and its kernel-based approximation.
We further relate these approaches to diffusion-like methods, utilizing the score function to
generate, in the ambient space, a vector field that directs each noisy or corrupted image
towards the closest point on the manifold of clean images. By iteratively following this
vector field, a diffusion-like flow is generated, guiding the corrupted image progressively
towards a clean image residing on the manifold.

To accommodate the possibility of a nonuniform probability distribution on the manifold,
we employ a kernel method that adjusts the diffusion-like flow to balance the trade-off be-
tween proximity to the manifold and the probability of a point on the manifold representing
a clean and meaningful image. This integration of geometric principles with the kernel
method constitutes the primary novelty of our approach. Furthermore, we extend these
general concepts, the distance function, score, and diffusion-like flow, to operate within the
latent space, thereby reducing computational complexity and enhancing the accuracy of
the distance function. We evaluated our proposed method on the MNIST, SCUT-FBP5500
and CelebA-HQ-256 datasets, demonstrating superior performance compared to a leading
method such as the Latent Diffusion Model (LDM) (Rombach et all, 2022).

1.1 RELATED WORK

In recent years, the task of generating samples from a distribution that characterizes a spe-
cific dataset or target image has emerged as a critical challenge in machine learning. This
problem has been extensively studied, with solutions primarily leveraging neural networks
within deep learning frameworks. Many contemporary generative models operate under
the implicit assumption that datasets comprise low-dimensional objects embedded within
a high-dimensional space. However, the underlying geometry of the dataset is not always
explicitly considered. For instance, variational autoencoders (VAEs) (Kingma & Welling,
2013) and Generative Adversarial Networks (GANs) (Goodfellow efall, PZ014) construct a
functional mapping from the low-dimensional latent space to the high-dimensional pixel
space. This functional mapping can be interpreted as a transformation from the manifold
coordinate system to the pixel coordinate system. More recent approaches, such as diffusion
models (Sohl=Dickstein ef all, 2015; Ho ef all, 2020a), adopt a more implicit perspective on
manifold structure. Geometrically, these models can be viewed as learning a directional
field that guides noisy points back to the data manifold, enabling iterative projection. The
diffusion process gradually transforms random noise into realistic samples by iteratively de-
noising along paths that converge onto the data manifold.

A central concept in many of these generative approaches is the Manifold Hypothesis
(Coaiza-Ganem ef_all, 2024), which posits that real-world high-dimensional data, such as
images, often concentrates near a low-dimensional manifold embedded within the ambient
space. This geometric perspective provides a powerful conceptual framework for understand-
ing generative models and has significantly influenced the design of numerous architectures
and training objectives. Various other manifold-aware generative approaches have been pro-
posed. Riemannian flow models (Gemicief all, POT6; Mathieu & Nickel, 2020) incorporate
Riemannian metrics into flow-based models to explicitly account for the intrinsic geometry
of the data manifold. The relationship between manifold structure and probabilistic frame-
works remains an active area of research. Normalizing flows (Rezende & Mohamed, 2001H)
can be interpreted as learning diffeomorphisms between the data manifold and a simple
base distribution. Score-based generative models (Song & Ermon, 2020) utilize the score
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function (the gradient of the log-density) to characterize the data distribution, establishing
a direct connection to the geometry of the data manifold. Recent works on denoising diffu-
sion models (Hoef all, PO020H) can also be interpreted as learning a vector field that guides
noisy samples back to the data manifold. Despite these advancements, there remains a gap
in unifying the geometric and probabilistic perspectives in generative modeling.

This work addresses this gap by providing a geometric interpretation of autoencoders,
leveraging geometric properties of the data, specifically the distance function to the mani-
fold. We propose a new generative model that synthesizes both geometric and probabilis-
tic approaches, leading to improved performance in generating high-quality samples. Our
approach is based on the premise that the data manifold can be represented as a low-
dimensional submanifold embedded within a high-dimensional space. We simultaneously
learn both the distance function to this manifold and the probability distribution on it.

2 BACKGROUND AND THEORETICAL FRAMEWORK

Many generative networks assume that images lie on a lower-dimensional manifold defined
according to the latent space representation, which is embedded within a higher-dimensional
representation space, such as the pixel space or ambient space. This manifold is explicitly
modeled by the decoder in autoencoders (AEs) and variational autoencoders (VAEs), and
by the generator in various Generative Adversarial Network (GAN) architectures. In all of
these models, the manifold M is represented as a Monge patch. Let the latent space be
d-dimensional, parameterized by z, and the pixel space be D-dimensional, parameterized
by z, that is (see Fig. I):

G(z) = (z1(21,..-,2a),- -, xp(21,. ., 2a))-

In simple terms, the value at each pixel in the image (or in similar manifold-structured data)
is a function of the d parameters z. Many works, in the context of deep learning, use this
representation to analyze the data set as a Riemannian manifold. We will mention here,
as examples, (Shao ef-all, DUIR; Wang & Poncd, 2021) where geodesics and directions of
meaningful changes on the manifold are studied. In (Chadebec & Allassonniérd, 2022) the
relation of the induced metric of the manifold was found to be approximated close enough
to the encoded point of a clean image by the inverse covariance found in VAE.

Another (implicit) way to describe a manifold is as the zero level set of a function. The
distance function to the manifold in the ambient (representation) space is well suited for
this purpose and is defined as follows:

Dau(a) = min 2 = . (1

where || - || denotes the Euclidean norm. In this high-dimensional representation space, the
distance function provides a natural measure of the proximity of a point to the manifold.
It is well known that Dy satisfies the Eikonal equation (Hamilfon, I828) ||[VD(x)|| =1,
with the natural boundary condition Dyq(x) = 0 for all z € M. Moreover, it is clear
that —VDaq(x) defines a vector field pointing in the direction of the shortest path to the
manifold.

Building on this purely geometric consideration, we introduce a probabilistic model. Fol-
lowing works such as (Kadkhodaie efall, 2023)(Sun_efall, 2025). We start by assuming
some non-trivial distribution of clean data P.(z) from which we have many samples, i.e.
our data set. The probability of a non-data point x is defined such that the resulting score
vector field points toward the data manifold and its more densely populated regions. We
therefore choose naturally the conditional probability of the corrupted image = conditioned
on clean data point 2’ as P(z|z") = f(D(x, ")) where D(x, ') is the distance between the
clean and corrupted image and f is a monotonically decreasing function. For ease of analysis
and computation we choose f to be a Gaussian. The second assumption is the standard

one, D(x,2’) = ||z — a'||. These considerations lead to the following expression for the
conditional probability function
1 x—z'|?
Potale’) = 5o (125510, @
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and the probability on the ambient space is then the well-known expression (Kadkhodaié
B all, P023) (Sun_ef-all, POZ5)

1 2
P(w;0) = | Py(a|a')Pe(a’)da’ = - / exp (—”xf”
RP Qa Jrp 20

)R
where P.(z') stands for the probability of the clean image z’. Although the Gaussian
form might suggest a restriction to Gaussian noise, this formulation imposes no specific
assumption regarding the degradation process that transforms z’ to z. It only assumes that
the likelihood decreases exponentially with the distance between the corrupted and clean

images. The result is a blind image denoising that does not need to have the type of noise
or its amplitude as input.

Calculating the score of this probability function is impossible because of the need to find
the mean over the whole ambient space. One of our main contributions is to introduce in this
formulation the manifold hypothesis, namely we propose that P.(2') = [ P((G(z))d(z’ —
G(2))dVaq. This means that P.(z') = P(G(z)) if 2’ € M and 0 otherwise. Substituting
P.(z') in Eq. B and after changing the order of integration we get (see Appendix A.2)

Plz;o) = /R Py (alG() P(2)d. ()

Note that the integration now takes place in the latent space. In the limit ¢ — 0, only
the point on the manifold closest to x contributes significantly, and for small enough o we
obtain

L D)
P,,(z|G(2)) x Py(x) = o exp ( 207 ) , (5)
where (g is a normalization factor. In this limit we obtain “Energy-based model” where
FE = Df\,t. It is also worth mentioning that learning directly the distance D4 to the manifold
makes the algorithm time/noise condition free. This distance encapsulates the noise/time
approximation using the actual quantity of interest the distance to the manifold of clean
images. It therefore resolves another challenge associated with using diffusion models for
image restoration (Sun_ef all, 2025). In this formulation of P(x;0), the probability at x is
obtained by integrating contributions from all points on the manifold, where the conditional
probability depends solely on the distance to the manifold and is thus purely geometric. Each
contribution is weighted by P(z), which represents the likelihood that the point G(z) on the
manifold corresponds to a clean image. Since the distribution P(z) is unknown, we estimate
it using a kernel density method (Rosenblaff, T956) (Parzen, T967) a.k.a. ideal denoiser with
delta mixture distribution / empirical distribution (Wang, 2024)(Karras et all, 2020):

PO~ Pant?) = g Do (g ). o

2
2O—ker

where S is the set of latent code indices corresponding to clean images, and Qe is the
normalization constant. Note that oy, is a hyperparameter that should be chosen carefully.
In Fig. B, we illustrate Pye (2). Clearly, the encoding of a generic image x in the latent
space, i.e., F(z), may lie in a region with low probability. The probability of a point z
being an image depends on its distance to every point on the manifold, weighted by the
probability of that point in the latent space. Using this kernel approximation together with
the conditional probability from Eq. (2), we can thus approximate the probability function
P(x;0) as

P(z;0) ~ P(x;0) = ! Z/Rd exp <W) exp <|225‘*|2> dz. (7

Qkoer Py 202 ker

3 GEOMETRIC VIEW OF DIFFUSION MODELS

Since the domain of both the encoder F' and the distance Da4 is the ambient space RP,
effectively training mappings that enable the diffusion-like flow from corrupted images back
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to clean ones on the manifold requires sampling the high-dimensional ambient space, which
is an inherently challenging task due to the curse of dimensionality. Following the approach
of diffusion models, we generate ambient samples by adding Gaussian noise to the data
points. While this sampling strategy does not cover all possible corruptions, it empirically
produces useful mappings. Notably, although the models are trained using Gaussian noise,
they generalize well to other types of image corruption during testing.

To connect a corrupted image to its clean projection we use the concept of the score. The
score is a D-dimensional vector field defined by s(z) = V,log P(z), which points in the
direction of the steepest ascent of the probability density. For the distance-based probability
distribution Py(x) defined in Eq. (H), we obtain:

salw) = V. log Palx) = Vpp(f;(j”) - —%DM (2)VaDad(a). (®)

Since Daq(x) is the distance to the manifold, its gradient is a unit vector that points to the
closest point on the manifold. Therefore, for o4 = 1 we have:

2= g 4 s4(2) = 2 — Da(2) VD (z) = G(F(2)) = 2%, 9)

where 2* is the point on the manifold closest to = (see Fig. B). The point z* = zshift =

G(F(x)) is known as the ideal denoiser in for example (Kadkhodaie et all, P023). To incor-
porate the probability distribution of clean images on the manifold (or equivalently, in the
latent space), we interpret the probability in the ambient space as a marginal distribution.

This allows the approximation of the score function using a kernel-based method:

s(x) = Vylog P~ V, log P =: §(z).

. clean
.Tclh an i

pelean
5

pclean
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Figure 2: The manifold M is illustrated as the curved line. z} is the closest point to z on
the manifold. G(z) is depicted as well and is not necessarily a point on the manifold.

Direct computation results in

§(z) =—

272 (z - G(2)), (10)

where G(z) = 3,5 Ga(z), and
R
P(x)Qkocr

Note that G(z), which is the (normalized) mean of G(z) over the manifold (with a parameter
x), does not necessarily lie on the manifold. In contrast, * = G(F(z)) is, by definition, a
point on the manifold.

/ {G(z)P(ﬂG(z))eXp (—Wﬂ dz. (11)

ker

Compared to prior work, G in Eq. [ is the same object as Eyep.ly | 2] in Kadkhodaie
ef_all (2023). This quantity is intractable in Kadkhadaie efall (2023) because the integral
can’t be approximated by sampling clean images beyond the points in the data set. It is
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therefore often replaced by the denoiser x*. See Fig. B for an illustration and Fig. B for a
synthetic example. Clearly, the approximation of G by z* is justified only under a uniform
distribution over the manifold. In contrast, in our geometric formulation the integral over
z in the computation of G, (z) can be directly approximated by randomly sampling the
normal distribution centered around the training point z, (see details in Appendix @l).

A noisy or corrupted image x can be viewed as a point in the ambient space. The image
generation then becomes the task of finding an appropriate, though not necessarily orthogo-
nal, projection of this point onto the manifold of clean, meaningful images. If the mappings
and functions G, F, and Dy, are perfectly accurate, a single step can move x closer to
the corresponding clean image. Since the ambient space is sampled sparsely, especially in
regions far from the manifold, the approximations of these mappings become less accurate
as the distance from the manifold increases. To address this, we employ multiple iterative
steps, gradually improving accuracy as we move closer to the manifold. This process resem-
bles a diffusion-like flow; see Fig. B for an illustrative example. Equations B and 8 motivate
a diffusion-like process guided by the distance function. The score defines a vector field in
the ambient space. A step in the direction of the closest point on the manifold by using the
Tweedie formula (Efron, 20OTT) is:

2" =" — aDp(a")VeDp(a")/[VaDm(a"™)| with 0<a <1 and 2=z (12)

Because of the approximate nature of the distance network, we normalize the gradient in
order to better control the step size. Equation 2 does not take into account the distribution
of training points on the manifold. To address this limitation, we combine it with the score
of the kernel method to obtain by the Tweedie formula (see Appendix B4):

2" = (1= B)a" + BG(a") — Dy (a™)Va Dar (@) /IVaDg(a™)], (13)

where 0 < o, 8, a+ < 1, and z° = z. The trajectory of = as it moves towards the manifold
is illustrated in Fig. B in Appendix D.

4 METHODS

4.1 MANIFOLD-PROBABILISTIC PROJECTION MODEL (MPPM)

The autoencoder and the distance function are implemented as separate neural networks
and are jointly trained using the loss function in Appendix A.1. Algorithm 0 outlines the
training procedure using the clean dataset X°'*®" and the reconstruction of a noisy point
in the ambient space. The algorithm is demonstrated for the simple case of a non-uniform
distribution on the circle embedded in R? in Fig. 8 in Appendix D. All the experimental
and optimization details can be found in appendices 0 and D.

Algorithm 1 MPPM

function TRAIN(XCa ¢ ~ N(0,02))
G,F, Dy Train(XC]ea“,e,[,(F,G,DM))
end function
function RECONSTRUCTION(z, X" o, B num_ steps) pO<a,B,a+p<1
ot —x
for n <~ 1 to num_ steps do _
2 e (1-B)a"+B Y, Ga(2")—aDar(z") Vs Dag(a")/ Vo Dag(a™)| by 13, T
end for
return z" !
end function

4.2 LaTENT MPPM (LMPPM)

The key difference between the pixel space and the latent space is that, in the latter, we do
not assume that encoded clean and meaningful images lie on a lower-dimensional manifold.
Instead, we treat the set of encoded clean and meaningful images as a point cloud that
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occupies the full dimension of the latent space. We model this set as samples from a
probability distribution P(z). Let the set of clean and meaningful images be X!**" and the
set of these encoded images be S = {F(X*°'@)}. In this context, S serves the role that
the manifold M played in the previous section, in the sense that the distance function Dg
is now computed in the latent space with respect to the set S. Let z € R” be an image
and z = F(z) € R? its latent representation. The reconstructed image is then given by
# = G(2). Let us define a distance function Ds : R? — R such that Dg(z) measures the
distance from z to the set S in the latent space. Using this, we define a shift in the latent
space as: 2% .= 2 — Dg(2)V,Ds(2)/|V.Ds(z)|. The loss function is then given by

L(F,G,Ds) =M Y (Ds(zi) = [z = %) + X D (58" = G(21))”

Zi¢S Z, €S
A3 Y Ds(z)P + M) (Ds(zi) — [Ds(z)))? (14)
z, €S Zi
+ A5 Z ||Zl$hift _ Z:H + X6 Z HG(thift) _ 1‘:”7
ZL¢S z,ﬁS

where 2} = arg mingc yoean |2, —Z||, and 2} = F(z]). These definitions ensure that a generic
point z in the ambient space, whose closest clean image in the dataset is x* is mapped to
z = F(x) such that its nearest neighbor in S is z* = F(z*). It is important to note that
the set S evolves over training iterations as the encoder F' and decoder G are updated, and
the distance function Dg is adjusted accordingly. The first three terms are the heart of the
algorithm. The 4th element ensures positivity. The 5th and 6th terms improve consistency
between all three networks. Ablation study empirically proves that these terms contribute
to the performance of the method. By the kernel method, we obtain

z= % > F(xj)exp (—(Z_FW> : (15)

202
Tj ex ker

The complete procedure is described in Algorithm B.

Algorithm 2 LMPPM

function TRAIN(X ¢ ~ N(0,02))
G,F,Dg + Train(/'\?‘;leam,.s,lj(F7 G,DS)) by 12
end function
function RECONSTRUCTION(x, X" o B num_ steps) pO<a,f,a+p <1
2t F(z)
for n < 1 to num_ steps do
2L (1= B)2" + Bz" — aDs(2")V,Ds(2")/|V.Ds(z™)| by @A
end for
return G(z""!)
end function

5 EXPERIMENTS

We evaluated our MPPM method on synthetic data and our LMPPM method on real-world
image datasets, where we simultaneously trained an autoencoder-like network for F' and
G, and a different network for the distance function D and Dg. It is important to note
that training was performed exclusively with Gaussian noise degradation, while at inference
time we evaluated the models under a variety of other degradation types. We compared
our results with standard denoising autoencoders (DAE) (Wincenf ef all, PO0R) and latent
diffusion models (LDM) (Rombach et all, 2022). For synthetic experiments, we evaluated
on a one-dimensional manifold: a half-circle lying in the xy plane and embedded in R3.
The points in the circle are sampled according to angular coordinates drawn from truncated
normal distributions (see Fig. R).

For real-world data, we experiment with MNIST (LeCun, 998) and the SCUT-FBP5500
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Figure 3: Top: Digit generation from pure noise, with an FID of 19.53 computed over 2000
images. Bottom: Progression of digit generation over 16 steps.

facial beauty dataset (Liang et all, 20IR). To evaluate restoration performance, we apply
three types of degradation to MNIST: Gaussian noise, downsampling (super-resolution),
and elastic deformation, each at two severity levels. For SCUT-FBP5500, we consider four
types of degradation: Gaussian noise, downsampling, random scribbles, and black patches
(inpainting), also applied at two severity levels. We train our proposed methods and the
comparison baselines to assess their performance across the different datasets. Detailed
architecture specifications and hyperparameters are provided in appendices B and 0. For
synthetic data, we implement MPPM using MLP architectures. For MNIST, we employ a
CNN-based autoencoder for both DAE and our LMPPM method, while for SCUT-FBP5500
we adopt a U-Net architecture with skip connections. In addition, we construct an extra set
of skip connections from the latent space and combine them with the original skips through
weighted summation (see Appendix B). The distance functions D and Dg are implemented
as MLPs with progressively decreasing layer sizes to perform dimensionality reduction. For
LDM, we integrate the corresponding DAE backbone (in place of the autoencoder) with a
standard diffusion model, using 2000 diffusion steps.

5.1 RESuULTS

MNIST Results: For the MNIST dataset, we set the latent space dimension to 18 and the
additive noise to € = 0.4. To calculate FID, we trained an MNIST classifier and computed an
embedding distribution for each class. After reconstructing a degraded digit, we classified
it and compared its embedding with the corresponding pre-computed class distribution.
Table O reports the mean SSIM and FID metrics. Our method consistently outperforms
both DAE and LDM baselines across all degradation types in terms of FID scores. Notably,
DAE occasionally achieved higher SSIM values, although its visual results were inferior.

We additionally performed an ablation study to assess the significance of the distance net-
work. Ablation™PP™ corresponds to setting a = 0 in the reconstruction process, while
Ablationd® uses the DAE network instead of our (F, G) network, also with o = 0. As can
be seen, when using the proposed network (trained with D), the results improve compared
to the DAE variant, but still remain below the performance of the full reconstruction setting
(> 0).

Fig. @ in Appendix O illustrates restoration examples for Gaussian noise, elastic deforma-
tion, and downsampling. Additional experiment included the generation of digits from a
pure noise. We generated 200 images from random Gaussian noise and managed to obtain
realistic digits (FID=19.5) as can be seen in Fig. B.

SCUT-FBP5500 Results: Figure @ shows restoration results on facial images with several
degradation functions: excessive Gaussian noise, randomly missing pixels, random scribbles
and over sharpening. The quantitative results in Table B support these visual observations,
with our approach achieving consistently lower FID values across all degradation types. We
set the latent dimension to 1024 and the additive noise to ¢ = 0.2. While in some cases
the DAE method achieves higher SSIM values, the visual quality of its reconstructions is
noticeably inferior.

Additional results for Gaussian noise, downsampling, and over-sharpening for SCUT-
FBP5500 and CelebA-HQ-256 are provided in Appendix D.
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Table 1: Quantitative results on MNIST

Elastic 2.3 Elastic 1.8

SSIM1t FID|] | SSIM+ FID |
DAE 0.66 69.36 | 0.59 134.60
LDM 0.64 66.52 | 0.58 124.05
LMPPM (ours) | 0.63 12.61 | 0.59 16.38
Ablation™PP™ | 0.63 12.83 | 0.59 16.27
Ablationd?® 0.17 522.39 | 0.15 527.25

Downsample 0.5 | Downsample 0.35

SSIM+ FID| | SSIM1t FID |
DAE 0.79 31.66 | 0.54 133.66
LDM 0.75 31.61 | 0.53 128.80
LMPPM (ours) | 0.67 11.27 | 0.52 22.65
Ablation'™PP™ | 0.67 11.34 | 0.52 22.89
Ablationda® 0.17 521.14 | 0.13 504.08

Table 2: Quantitative results on SCUT-FBP5500

Miss pixels 0.04
SSIM 1+ FID |

Miss pixels 0.08
SSIM 1 FID |

Miss pixels 0.1
SSIM 1+ FID |

DAE 0.917 33.90 | 0.798 49.00 | 0.745 47.94

LDM 0.914 27.35 0.798 41.47 0.738 44.41

LMPPM (ours) | 0.881 16.20 | 0.862 23.92 | 0.832 34.13
Scribble 6 Scribble 13 Scribble 20

SSIM1 FID| | SSIM1 FID | | SSIM+ FID |

DAE 0.921 34.83 0.889 45.66 0.860 51.68

LDM 0.919 29.31 | 0.887 39.02 | 0.859 44.66

LMPPM (ours) | 0.879 16.73 | 0.878 17.35 | 0.869 18.46
Sharpen 8 Sharpen 10 Sharpen 18

SSIMt+ FID| | SSIMt FID | | SSIM1 FID |

DAE 0.902 28.53 | 0.883 29.80 | 0.815 33.82

LDM 0.898 20.79 | 0.878 21.73 | 0.807 25.37

LMPPM (ours) | 0.878 16.79 | 0.874 17.33 | 0.853 19.48
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Figure 4: Variety of degradations: noise, missing pixels, scribbles and over sharpening. Left
to right: degraded, DAE, LDM, LMPPM (ours), and original.
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MPPM (ours), and original.

LMPPM remains realistic despite changes to the face.

6 SUMMARY AND CONCLUSIONS

This work emphasizes the Manifold Hypothesis and interprets established image restora-
tion and generation methods through a novel geometric perspective. Beyond presenting a
unifying framework, which is valuable in its own right, we propose incorporating a learned
distance function to the manifold. By leveraging distances to the manifold, we establish a
connection between the geometric structure and a probability density approximation. By
employing a kernel-like method to approximate the probability distribution on the manifold,
or equivalently on the latent space, we integrate geometry and probability in a novel manner.
We induce a vector field in the ambient space via the score of these probability densities.
This vector field directs each point toward the manifold of clean images, considering both
the structure and the distribution of clean and meaningful images on the manifold.

In this work, we utilize a (denoising) autoencoder in conjunction with the distance function.
Providing an approach where both F' and G define the manifold while maintaining their
coupling to the distance function D from it. However, due to potential errors in the outputs
of the three networks G, F' and D, especially when x is far from the manifold, this vector field
is not exact. Therefore, rather than applying a single-step (weighted) projection onto the
manifold, we proceed iteratively, advancing in small steps along the noisy vector field. We
are currently exploring an analogous approach where VAE and GAN are coupled with the
distance function. A key practical advantage of our approach is its application in the latent
space. This dimensionality reduction significantly enhances the accuracy of the distance
function, thereby improving restoration and generation results. Indeed, as shown in our
experiments (Section Bl), comparisons with other leading methods indicate the superior
performance of our methods, particularly under severe distortions for different data sets and
different distortions.

10
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A APPENDIX: DETAILED THEORY

A.1 MPPM

The loss function for the MPPM is

LF,G.Dp) =M Y. (Dpalas) = i — [N+ Aa D (890 — GF ()
11¢M z;EM

+s Y D)+ X Y (Daalws) = D)) + A5 D (@™ — z7)”,
z; €M z;ERP x;ERD
(16)
where z* = G(F(z)). The first term defines the distance function assuming a perfect
autoencoder; the second is the standard autoencoder loss. The third term enforces the
boundary condition on the distance function and the fourth ensures its positivity. The last
term enforces the geometric consistency of Eq. (8) (see also Fig. ).

A.2 KERNEL METHOD

Detailed computation of eq. B. A general point on the ambient space is denoted = and a
point of clean data is denoted y. The probability density of the clean images is denoted

P.(y)
P(z) = /M P y)dy = / P(aly) Poly)dy

RD

— [ Pualy < /M P(G(2))d(y — G(Z))dVM> dy

RD
= / P(zly = G(2))P(G(z)) Vgdz = / P(z|G(z))P(z)dz.
M m/ Rd

Here dV = ,/gdz is the manifolds volume element, where g = det G and G, = )7, J s
is the induced metric, with the Jacobian of the embedding map given by JL = 0G"(2)/0z,.
In the last equality, we use the identity P(G(z)) = P(z)(,/9)"".
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A.3 SCORE FUNCTION
s(x) = V,log P~ V,log P =: 5(z).
Direct computation results in

$(z) = —

(:C — G(x)) , (17)

2
203

where G(z) = 3,5 Ga(z), and

Go(@) = — / [G(z)P(aﬂG(z))exp (-'Z_Wﬂ dz. (18)

N p(I)Qkoer 201%61,
Specifically,
3(x) = lv.p= %vx (/ P(z | G(z))Pker(z)dz) :
Now,
_ 1 |z - G()[*Y 1 ||z = zall?
(VoP(x | G(2))) Prex(2) = —m(x—G(z)) exp <— 202 ) O O%‘:gexp <_2‘71%er) .
(19)

The integral of z in the computation of éa<$) is approximated by randomly sampling the
normal distribution centered around the training point z,. Explicitly, we approximate the
mean using and average over n samples from Py,

/ [G(Z)P(I|G(z))exp <”Z20§a”2)] VEEES

n
2, €EN (24,02 )

ker

nxawnz),

2
203

G enp (

(20)
where « denotes an index in the training set (see Fig. B). The calculation of G, (x) requires
evaluating Ppon.u(2) in the denominator. In particular, we approximate

/[P(xG(z))eXp (—”22;5“”2” i %% S ew (‘W) (21)

ker 2, €N (20,07,,)

Note that in the computation of G, all constant factors Qg, Quer and %, are canceled
between the numerator and the denominator.

A.4 THeE TWEEDIE FORMULA
The “flow” equations I and 3 are the Tweedie formulas for the corresponding probability
functions. Eq. 2 follows

Py(x) = é exp (fozDi,l (x)) , (22)
and Eq. I3 follows

1 — 2|12

P(x) = Pala) ) /R exp (—B|z — G(2)||?) exp (-”Zzag”> dz. (23)
a€eS er

where Z is a normalization factor.

One can easily verify from Eq. [@2 that we decrease the distance to the manifold along the
flow. Indeed

D (™) = Dpg(2™ — €Dpq (™) VD g (2™))
= Dp(z™) — VDA (2") - Dy (™) VDps (™) + O(€?) = (1 — €)Dpq(z™) + O(€?)

where we used the fact that the distance function is a solution of the Eikonal equation
IVDsm(a)]* = 1.
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Figure 6: An illustration of the kernel approximation Pye,(z) of the probability distribution
P(z) in the latent space.

B APPENDIX: DETAILED EXPERIMENTAL SETUP

B.1 NOTATION AND ABBREVIATIONS
Here are some notations and definitions:

Table 3: Glossary of abbreviations and terms used throughout the paper

Term Definition

DAE Denoising Autoencoder

MPPM Manifold Probabilistic Projection Model (our proposed approach)
LMPPM Latent Manifold Probabilistic Projection Model (our proposed approach)
LDM Latent Diffusion Model

SSIM Structural Similarity Index Measure

BN Batch Normalization

Table 4: Summary of experimental datasets used for evaluating restoration performance

Dataset Description
MNIST 60,000 training,/10,000 test grayscale images (28 x 28 pixels)
SCUT-FBP5500 5,500 facial images with beauty scores (resized to 120 x 120)

B.2 DEGRADATIONS

Degradation Parameters We apply six degradation types to simulate real-world image
corruption scenarios. Each degradation is applied at three severity levels (mild, intermediate,
and severe) to test the robustness of restoration methods:

Degradation Methods Brief descriptions of each degradation type:

¢ Gaussian noise: Additive zero-mean Gaussian noise that simulates sensor noise
or transmission errors.

e Elastic deformation: Non-rigid distortions implemented using
torchvision.transform.ElasticTransform(a = 34,0) that simulate warping ef-
fects.
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Table 5: Degradation parameters at different severity levels. Note: Lower o values for elastic
deformation indicate more severe distortion due to increased localized displacement

Degradation Mild Severe
Gaussian noise (o) 0.2 0.3
Elastic deformation (o) 1.5 1.1
Super-resolution (downsampling factor) 0.5 0.35
Missing Pixels 0.04 0.1
Number of Scribbles 13 20
Over Sharpening 10 18

e Super-resolution: Downsampling followed by upsampling to original resolution,
simulating reconstruction from low-resolution data.

« Missing Pixels: Set black patches with some coverage portion;
e Scribbles Add n random scribbles with random colors

e Over Sharpening by factor s: I =1+ s(I — I x0y)

B.3 MODEL ARCHITECTURES

We implemented three main architectures across all experiments, with design choices tailored
to each dataset’s complexity.

Synthetic Data Model Synthetic data for MPPM experiments use MLP-based networks
with a latent dimension of 8, selected based on the low intrinsic dimensionality of these
manifolds:

Table 6: Network architectures for synthetic data experiments. All models use fully-
connected layers

Component Architecture
Encoder 3 — 64 — 32 — 16 — 8 with ReLLU
Decoder 8 — 16 — 32 — 64 — 3 with ReLU

Distance Network 8 — 64 — 32 — 16 — 1 with ReLU, dropout=0.2

MNIST Models MNIST experiments use CNN-based models with latent dimension 18,
chosen to capture the variability among handwritten digits while promoting compact rep-
resentations.

Table 7: Network architectures for MNIST experiments

Component Architecture
Encoder Conv2d(1 — 32 — 64, kernel = 3, stride = 2) — Flatten — Linear(64 x 7 x 7 — 18)
Decoder Linear(18 — 64 x 7 x 7) — Reshape — ConvTranspose2d(64 — 32 — 1) — Sigmoid

Distance Network 18 — 100 — 50 — 20 — 1 with ReLU, dropout=0.2

SCUT-FBP5500 Models Facial image experiments employ a U-Net with skip connec-
tions and a latent dimension of 1024, which accommodates the higher complexity of facial
features while enabling detailed reconstruction. Note that in the U-Net architecture, during
the inference process we use iterations (denoted by superscripts) such that

F(a™) = (S7,5%,...,80,2"),

and
2= (S 8P, Sy 4+ SE (Y, L SE SR, ).

Here, each gf(z"“‘l) denotes the projection of the latent space z"** onto the corresponding
skip connection S}*. Thus, the updated skip connection is formed by adding the original
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Figure 7: Modified U-net architecture

skip feature S with the new projected feature 5’:‘(2"“) before being passed to G. The
architecture is illustrated in Fig. @.

Component Structure

EncoderBlock(C;, = Cout) Conv(Cip — Cout) — BN — LReLU —
Conv(Cpyt — Cout) — BN — LReLU — MPool

Encoder EncoderBlock(3 — 32), output: 60 x 60
EncoderBlock(32 — 64), output: 30 x 30
EncoderBlock(64 — 128), output: 15 x 15
EncoderBlock(128 — 256), output: 7 x 7
Flatten — Linear(12544 — 1024) — LReLU

DecoderBlock(Cip, Cskips Cout) ConvT(Ciy — Cin) — Cat([Cip, Cskip)) —
Conv(Cip, + Csiip — Cin) = BN — LReLU —
Conv(Cjy, — Coyt) — BN — LReLU

Decoder Linear(1024 — 12544) — Reshape(256,7,7)
DecoderBlock(256, 256, 128), output: 15 x 15
DecoderBlock(128,128, 64), output: 30 x 30
DecoderBlock(64, 64, 32), output: 60 x 60
DecoderBlock(32, 32, 32), output: 120 x 120
Conv(32 — 3) — Sigmoid

Distance Network 1024 — 100 — 50 — 20 — 1 with ReLU, dropout=0.2

Table 8: Network architectures for SCUT-FBP5500 experiments. Skip connections connect
corresponding Encoder and Decoder layers through concatenation. The encoder and de-
coder blocks are represented as parameterized functions (shown in italic font), where Cy,,
Cout, and Cip;p represent the number of input, output, and skip connection channels re-
spectively. Abbreviations: Conv = Conv2d (kernel=3, padding=1), BN = BatchNorm2d,
LReLU = LeakyReLU(0.2), MPool = MaxPool2d(2), ConvT = ConvTranspose2d(kernel=2,
stride=2), Cat = Concatenation. The bottleneck dimension is 1024.

C TRAINING AND EVALUATION
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Table 9: MPPM training and inference parameters for synthetic data

Parameter Value

Optimizer Adam (8; = 0.9, 83 = 0.999)

Learning rates AE: 1 x 1073, Distance network: 1 x 1073
Weight decay 1x1074

Batch size 550

Training epochs 500

Loss function Composite loss (Equation [H)

Early stopping Patience: 100 epochs

a (distance gradient step) 0.15
B (kernel averaging weight) 0.1
Convergence tolerance 0.005
Maximum iterations 60

Table 10: LMPPM training parameters across all experiments, determined through prelim-
inary grid search, diffusion steps are define the number of steps in algorithm &

Parameter Value

Optimizer Adam (8; = 0.9, 52 = 0.999)

Learning rates AE: 1 x 1073, Distance network: 1 x 1075, LDM: 1 x 1073
Batch size MNIST: 128, SCUT-FBP5500: 32

Training epochs MNIST: 100, SCUT-FBP5500: 75

Loss functions DAE: L2, LDM: MSE, LMPPM: Composite loss I
Early stopping  Patience: 8 epochs

Diffusion steps ~ MNIST: 2000, SCUT-FBP5500: 2000

D AbDDITIONAL RESULTS

Here, we present additional experimental results. Figures B and B depict the results of the
MPPM algorithm.

Figures M and [ illustrate the advantages of the proposed MPPM method compared to
the diffusion model. We used 1000 diffusion steps during both training and inference. Be-
cause the data points are not uniformly distributed, most of the diffusion models recon-
structed samples concentrate in the dense region (the upper half-circle), as shown in the
left panel of Figure . In contrast, the proposed MPPM method effectively handles this
non-uniformity through our formulation, resulting in a significantly smaller reconstruction
error. Pseudocode for DDPM (Denoising Diffusion Probabilistic Model) training and infer-
ence is summarized in Algorithms B and A. Note the difference from Chen’efall (2024), who
analyzed the trajectory of the flow by measuring the deviation from the line between the
degraded image and the point found on the manifold.
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Figure 8: The manifold M is the unit circle lying in the xy-plane and is parametrized by the
azimuth angle 6. It is sampled according to a normal distribution centered at 6y indicated
by the red line. The reconstruction trajectory is shown in dark red. Note that the final
result of the iterations on x does not converge to z* which is the closest point on the circle.
Instead, it is influenced by the data distribution on the manifold through the effect of G(z).

Algorithm 3 DDPM Training

Precompute noise schedule:
Bt (linear schedule from 0.0001 to 0.02)
ar=1—p
ay = HE:I 7]
for each batch do
Sample timestep ¢ ~ Uniform(0,7 — 1)
Sample noise € ~ N(0,1)
Forward diffusion:

Ty = \/@txO"‘Vl_@tE
9: Predict noise: €preq = model(zy, t/T)
10: Compute loss:
L = [l — epreall®
11: Backpropagate and update parameters
12: end for
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(a) DAE restoration. MSE = 0.032, max error

Figure 9: Comparison between the DAE and our proposed MPPM, this example uses the
same setup as in Fig. B. The error was computed as the deviation from the unit circle in
2D. In regions of the circle with lower probability density, the DAE is more prone to error
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than the proposed MPPM method.
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(b) MPPM restoration. MSE = 0.026, max er-
ror = 0.060.
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Figure 10: Left: Diffusion model trajectory, Right: MPPM trajectory

Algorithm 4 DDPM Inference (Stochastic, 1000 steps)

: Initialize z7 ~ N(0,1)

: fort =T —1 down to 0 do
Predict noise: €preq = model(zy, t/T)
Denoise:

Tt

if t > 0 then
Sample z ~ N(0, 1)
Add noise: z; = z¢ + 042
end if
end for
return z

x¢ — coefy €pred

Ja

Next, we present additional results on the MNIST dataset using the LMPPM algorithm.
Figure [ shows reconstruction results under noise, elastic, and downsampling deformations,
compared with the DAE and LDM models. Figures I3, I, [, and 0@ present reconstruction
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Figure 11: Left: Diffusion restoration, MSE=0.138, Right: MPPM restoration, MSE=0.026

results for missing pixels, scribbles, noise, and over sharpening deformations, respectively
for the SCUT-FBP5500 dataset. We compare our method with the DAE and LDM models.
Finally, Figure A shows the reconstruction after 4 iterations.

R 9010023 |5< | o9 (o0
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—

Figure 12: Left panel: noise = 0.7; middle panel: elastic (a« = 0.34, o = 1.8); right panel:
downsampling factor = 0.35. In all panels, from left to right: degraded, DAE, LDA, LMPPM
(ours), and original.

D.1 CELEBA DATASET

We applied our method to the CelebA-HQ-256 dataset. We used the same architecture of
SCUT-FBP5500 model. The results are shown in Figures IR and [, as well as in Table M.
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Figure 13: Missing pixels. From left to right: degraded, DAE, Diffusion, LMPPM, original.

Original

Figure 14: ITmages with 13 scribbles. From left to right: degraded, DAE, Diffusion, LMPPM,
original.
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Original

Figure 15: Noise o = 0.3. From left to right: degraded, DAE, Diffusion, LMPPM, original.

Original

Figure 17: Gradual reconstruction of missing pixels degradation.
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Figure 18: Different degradations applied to the CelebA-HQ-256 dataset. From left to right:
degraded, DAE, LDM, LMPPM (ours), and original.

Figure 19: Excessive Gaussian noise (o = 0.3) applied on CelebA-HQ-256 dataset. From
left to right: degraded, DAE, LDM, LMPPM and original.

As evident from the quantitative results, our method achieves a significantly lower FID
score, while the SSIM values remain approximately similar across all methods.

We further compared our method to DiffBIR [Lin“ef all (2024). DiffBIR tackles blind image
restoration using two stages: (1) degradation removal, and (2) information regeneration.
The first stage removes degradations and produces a high-fidelity but often over-smoothed
intermediate result, while the second stage regenerates realistic textures and details. For
completeness, we conducted three experiments: (i) DiffBIR after its first stage only, (ii) full
DiffBIR, and (iii) our LMPPM followed by DiffBIRs second stage. The results are shown
in Figure PO and in the bottom panel of Table I

As can be seen, LMPPM outperforms the first stage of DiffBIR both visually (second and
third columns from the left) and quantitatively, especially under the missing-pixel and scrib-
ble degradations. The output of Diff BIRs second stage is realistic and perceptually high-
quality. Notably, the full DiffBIR model (fourth column from the left) performs well in
removing Gaussian noise (first row), even though the reconstructed image differs from the
original image (right column). The best performance is achieved by applying our LMPPM
followed by DiffBIRs second stage (second column from the right), indicating that our blind
degradation-removal module provides a strong foundation for high-quality restoration.
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Figure 20: Comparison to DiffBIR method Lin“ef"all (2024). From left to right: degraded,
DiffBIR stagel, LMPPM, DiffBIR (stagel + stage2), LMPPM+DiffBIR stage2, original

Table 11: Quantitative results on the CelebA-HQ-256 dataset, compared also to the DiffBIR
method Cin“ef all (2024).

Noise 0.3 Scribbles 22 Miss Pixels 0.1 Sharpen 12

SSIM 1t FID | | SSIMt FID | | SSIMt FID | | SSIM 1 FID |
DAE 0.694 43.05 | 0.817 54.75 | 0.762 49.23 | 0.719 46.64
LDM 0.663 34.99 | 0.793 42.73 | 0.757 41.38 | 0.724 34.54
LMPPM (ours) 0.707 23.92 | 0.757 30.69 | 0.671 25.63 | 0.714 28.25
DiffBIR 0.70 24.09 | 0.69 42.95 | 0.58 42.52 | 0.76 31.95
DiffBIR stagel 0.67 28.52 | 0.71 43.85 | 0.69 44.01 | 0.89 28.55
LMPPM+DiffBIR stage2 | 0.68 22.64 | 0.69 30.68 | 0.63 23.21 | 0.72 25.69

E VavrLipATION OF FID METRIC IMPLEMENTATION

Given the challenging nature of the degradation tasks presented in this paper, baseline
methods such as LDM and DAE yielded relatively high FID scores. To ensure these values
reflect true performance rather than an artifact of the metric implementation, we conducted
a validation experiment.

We utilized the MNIST dataset with minimal deformations to test the sensitivity of our FID
calculation. As shown in the table below, our evaluation pipeline correctly reports low FID
scores in this simplified regime. This confirms the reliability of our metric and suggests that
the performance gaps observed in the main experiments are driven by model capabilities on
complex data, rather than measurement errors.

Table 12: FID values for different small degradations of MNIST

Low Severity (¢) DAE LDM LMPPM

Elastic 5.5 711  8.36 9.57
Noise 0.1 3.12  3.65 9.99
Down sample 0.9 5.06 5.84 9.78
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F USE OoOF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in this work solely as a language assistance tool
for English polishing and proofreading. Specifically, we employed LLMs to:

e Improve grammar, syntax, and sentence structure in the manuscript
o Enhance clarity and readability of technical descriptions
e Correct spelling and typographical errors

e Suggest more precise word choices and phrasing

The LLMs did not contribute to research ideation, methodology development, experimen-
tal design, data analysis, or the generation of scientific content. All research concepts,
approaches, results, and conclusions presented in this paper are entirely the work of the
human authors. The LLMs were used exclusively for language refinement of content that
was already conceptualized and written by the authors.

Additionally, an LLM was used to assist in drafting this disclosure section itself, based on
the authors’ description of how LLMs were employed in the research process.

We take full responsibility for all content in this manuscript, including any text that was
refined with LLM assistance. All factual claims, scientific interpretations, and conclusions
remain our own work and responsibility.
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