
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A Geometric Unification of Generative
AI with Manifold-Probabilistic Projection
Models

Anonymous authors
Paper under double-blind review

Abstract

The foundational premise of generative AI for images is the assumption that
images are inherently low-dimensional objects embedded within a high-
dimensional space. Additionally, it is often implicitly assumed that the-
matic image datasets form smooth or piecewise smooth manifolds. Common
approaches overlook the geometric structure and focus solely on probabilis-
tic methods, approximating the probability distribution through universal
approximation techniques such as the kernel method. In some generative
models the low dimensional nature of the data manifest itself by the in-
troduction of a lower dimensional latent space. Yet, the probability dis-
tribution in the latent or the manifold’s coordinate space is considered
uninteresting and is predefined or considered uniform. This study uni-
fies the geometric and probabilistic perspectives by providing a geometric
framework and a kernel-based probabilistic method simultaneously. The
resulting framework demystifies diffusion models by interpreting them as a
projection mechanism onto the manifold of ”good images”. This interpreta-
tion leads to the construction of a new deterministic model, the Manifold-
Probabilistic Projection Model (MPPM), which operates in both the rep-
resentation (pixel) space and the latent space. We demonstrate that the
Latent MPPM (LMPPM) outperforms the Latent Diffusion Model (LDM)
across various datasets, achieving superior results in terms of image restora-
tion and generation.

Figure 1: Illustration of our manifold-aware restoration approach. The blue path shows
direct projection onto manifoldM using distance function DM(x), while the red-green path
represents encoding-decoding through latent space Rd via functions F and G. Ideally, both
paths converge to the same manifold point, ensuring geometrically consistent restoration.

1 Introduction

Restoration of images refers to the inverse process of generating a clean, meaningful, and
non-corrupted image from a noisy, blurred, or otherwise degraded input. A critical aspect of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

this process involves the use of prior knowledge or a well-approximated distribution function
over the set of clean images within a specific class. In this work, we propose the manifold
assumption, which asserts that the set of desired images resides on a low-dimensional smooth
manifold. We integrate this assumption with a probabilistic perspective. Specifically, we
extend the conventional Monge patch description of the data manifold, typically provided by
generative models such as autoencoders (AE) (Rumelhart & McClelland, 1987), variational
autoencoders (VAE) (Kingma & Welling, 2013), and generative adversarial networks (GAN)
(Goodfellow et al., 2014). Our approach augments this description by introducing a distance
function that assigns, for each point in the pixel (ambient/representation) space, the distance
to the closest point on the manifold. We treat here images as primary examples, but
evidently it can be applied to any dataset that has this manifold structure. Next, we
establish a connection between the geometric framework and the probabilistic perspective
by introducing a geometric-based probability function and its kernel-based approximation.
We further relate these approaches to diffusion-like methods, utilizing the score function to
generate, in the ambient space, a vector field that directs each noisy or corrupted image
towards the closest point on the manifold of clean images. By iteratively following this
vector field, a diffusion-like flow is generated, guiding the corrupted image progressively
towards a clean image residing on the manifold.
To accommodate the possibility of a nonuniform probability distribution on the manifold,
we employ a kernel method that adjusts the diffusion-like flow to balance the trade-off be-
tween proximity to the manifold and the probability of a point on the manifold representing
a clean and meaningful image. This integration of geometric principles with the kernel
method constitutes the primary novelty of our approach. Furthermore, we extend these
general concepts, the distance function, score, and diffusion-like flow, to operate within the
latent space, thereby reducing computational complexity and enhancing the accuracy of the
distance function. We evaluated our proposed method on the MNIST and SCUT-FBP5500
datasets, demonstrating superior performance compared to a leading method such as the
Latent Diffusion Model (LDM) (Rombach et al., 2022).

1.1 Related Work

In recent years, the task of generating samples from a distribution that characterizes a spe-
cific dataset or target image has emerged as a critical challenge in machine learning. This
problem has been extensively studied, with solutions primarily leveraging neural networks
within deep learning frameworks. Many contemporary generative models operate under
the implicit assumption that datasets comprise low-dimensional objects embedded within
a high-dimensional space. However, the underlying geometry of the dataset is not always
explicitly considered. For instance, variational autoencoders (VAEs) (Kingma & Welling,
2013) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) construct a
functional mapping from the low-dimensional latent space to the high-dimensional pixel
space. This functional mapping can be interpreted as a transformation from the manifold
coordinate system to the pixel coordinate system. More recent approaches, such as diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020a), adopt a more implicit perspective on
manifold structure. Geometrically, these models can be viewed as learning a directional
field that guides noisy points back to the data manifold, enabling iterative projection. The
diffusion process gradually transforms random noise into realistic samples by iteratively de-
noising along paths that converge onto the data manifold.
A central concept in many of these generative approaches is the Manifold Hypothesis
(Loaiza-Ganem et al., 2024), which posits that real-world high-dimensional data, such as
images, often concentrates near a low-dimensional manifold embedded within the ambient
space. This geometric perspective provides a powerful conceptual framework for understand-
ing generative models and has significantly influenced the design of numerous architectures
and training objectives. Various other manifold-aware generative approaches have been pro-
posed. Some methods explicitly model data as residing on specific manifolds. For instance,
hyperspherical VAEs (Davidson et al., 2022) and hyperbolic VAEs (Mathieu et al., 2019)
adapt generative models to handle data that naturally lies on non-Euclidean manifolds.
Riemannian flow models (Gemici et al., 2016; Mathieu & Nickel, 2020) incorporate Rieman-
nian metrics into flow-based models to explicitly account for the intrinsic geometry of the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

data manifold. The relationship between manifold structure and probabilistic frameworks
remains an active area of research. Normalizing flows (Rezende & Mohamed, 2015) can
be interpreted as learning diffeomorphisms between the data manifold and a simple base
distribution. Score-based generative models (Song & Ermon, 2020) utilize the score func-
tion (the gradient of the log-density) to characterize the data distribution, establishing a
direct connection to the geometry of the data manifold. Recent works on denoising diffusion
models (Ho et al., 2020b) can also be interpreted as learning a vector field that guides noisy
samples back to the data manifold. Despite these advancements, there remains a gap in
unifying the geometric and probabilistic perspectives in generative modeling.
This work addresses this gap by providing a geometric interpretation of autoencoders,
leveraging geometric properties of the data, specifically the distance function to the mani-
fold. We propose a new generative model that synthesizes both geometric and probabilis-
tic approaches, leading to improved performance in generating high-quality samples. Our
approach is based on the premise that the data manifold can be represented as a low-
dimensional submanifold embedded within a high-dimensional space. We simultaneously
learn both the distance function to this manifold and the probability distribution on it.

2 Background and Theoretical Framework

Many generative networks assume that images lie on a lower-dimensional manifold defined
according to the latent space representation, which is embedded within a higher-dimensional
representation space, such as the pixel space or ambient space. This manifold is explicitly
modeled by the decoder in autoencoders (AEs) and variational autoencoders (VAEs), and
by the generator in various Generative Adversarial Network (GAN) architectures. In all of
these models, the manifold M is represented as a Monge patch. Let the latent space be
d-dimensional, parameterized by z, and the pixel space be D-dimensional, parameterized
by x, that is (see Fig. 1):

G(z) =
(
x1(z1, . . . , zd), . . . , xD(z1, . . . , zd)

)
.

In simple terms, the value at each pixel in the image (or in similar manifold-structured
data) is a function of the d parameters z. Another (implicit) way to describe a manifold
is as the zero level set of a function. The distance function to the manifold in the ambient
(representation) space is well suited for this purpose and is defined as follows:

DM(x) = min
y∈M

∥x− y∥, (1)

where ∥ · ∥ denotes the Euclidean norm. In this high-dimensional representation space, the
distance function provides a natural measure of the proximity of a point to the manifold.
It is well known that DM satisfies the Eikonal equation ||∇DM(x)|| = 1, with the natural
boundary condition DM(x) = 0 for all x ∈M. Moreover, it is clear that −∇DM(x) defines
a vector field pointing in the direction of the shortest path to the manifold.
Building on this purely geometric consideration, we introduce a probabilistic model and
demonstrate how a deterministic, stepwise diffusion-like model for projection onto the man-
ifold is constructed using the score of the introduced probability function. Let us first
assume that the probability of an arbitrary point in the ambient space being a clean image
decreases exponentially with the distance from the manifold of clean and meaningful images.
We adopt a simple model in which each image x is assumed to be generated from the closest
point x∗ on the manifold, with additive Gaussian noise, x = x∗ + ϵ, such that ϵ ∼ N (0, σ2

d).
Therefore, the probability of x to be on the manifold is given by

Pd(x) = 1
Qd

exp
(
−D

2
M(x)
2σ2

d

)
, (2)

where Qd is a normalization factor.
An alternative way to construct a probability distribution based on the manifold hypothesis
is to describe each point x in the ambient space as a noisy version of a point (or points) on

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the manifold, such that x = G(z) + ϵ is conditioned on z. The conditional probability is
then given by

P (x|G(z)) = 1
Qd

exp
(
−∥x−G(z)∥2

2σ2
d

)
. (3)

Based on the definition of the distance function, we derive the following expression using
the maximum likelihood principle:

Pd(x) = max
z

P (x|G(z)) = 1
Qd

exp
(
−min

z

∥x−G(z)∥2

2σ2
d

)
= 1

Qd
exp

(
−D

2
M(x)
2σ2

d

)
. (4)

Note that Pd implicitly assumes a uniform distribution of data points on the manifold, so
the only factor that influences the (conditional) probability is the distance from the image x
in the ambient space to the manifold. To account for a non-uniform probability distribution
on the manifold, we define the probability function over the ambient space as a marginal
distribution (see Appendix A.2 for details):

Pnon-u(x) =
∫
Rd

P (x|G(z))P (z)dz,

where the subscript "non-u" stands for non-uniform. In this formulation, the probability
at x is obtained by integrating contributions from all points on the manifold, where the
conditional probability depends solely on the distance to the manifold and is thus purely
geometric. Each contribution is weighted by P (z), which represents the likelihood that the
point G(z) on the manifold corresponds to a clean image. Since the distribution P (z) is
unknown, we estimate it using a kernel density method. Specifically, we define:

P (z) ≈ Pker(z) = 1
Qker

∑
α∈S

exp
(
−||z − zα||2

2σ2
ker

)
, (5)

where S is the set of latent code indices corresponding to clean images, and Qker is the
normalization constant. Note that σker is a hyperparameter that should be chosen carefully.
In Fig. 6, we illustrate Pker(z). Clearly, the encoding of a generic image x in the latent
space, i.e., F (x), may lie in a region with low probability. The probability of a point x
being an image depends on its distance to every point on the manifold, weighted by the
probability of that point in the latent space. Using this kernel approximation together with
the conditional probability from Eq. (3), we can thus approximate the probability function
Pnon-u(x) as

Pnon-u(x) ≈ P̂non-u(x) = 1
QdQker

∑
α∈S

∫
Rd

exp
(
−∥x−G(z)∥2

2σ2
d

)
exp

(
−||z − zα||2

2σ2
ker

)
dz. (6)

3 Geometric View of Diffusion Models

Since the domain of both the encoder F and the distance DM is the ambient space RD,
effectively training mappings that enable the diffusion-like flow from corrupted images back
to clean ones on the manifold requires sampling the high-dimensional ambient space, which
is an inherently challenging task due to the curse of dimensionality. Following the approach
of diffusion models, we generate ambient samples by adding Gaussian noise to the data
points. While this sampling strategy does not cover all possible corruptions, it empirically
produces useful mappings. Notably, although the models are trained using Gaussian noise,
they generalize well to other types of image corruption during testing.
To connect a corrupted image to its clean projection we use the concept of the score. The
score is a D-dimensional vector field defined by s(x) = ∇x log P (x), which points in the
direction of the steepest ascent of the probability density. For the distance-based probability
distribution Pd(x) defined in Eq. (2), we obtain:

sd(x) = ∇x log Pd(x) = ∇xPd(x)
Pd(x)

= − 1
σ2

d

DM(x)∇xDM(x). (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Since DM(x) is the distance to the manifold, its normalized gradient ∇xDM(x)/|∇xDM(x)|
is a unit vector pointing to the closest point on the manifold. Therefore, for σd = 1 we have:

xshift := x + sd(x) = x−DM(x)∇xDM(x)/|∇xDM(x)| = G(F (x)) = x∗, (8)
where x∗ is the point on the manifold closest to x (see Fig. 2).
To incorporate the probability distribution of clean images on the manifold (or equivalently,
in the latent space), we interpret the probability in the ambient space as a marginal distri-
bution. This allows the approximation of the score function using a kernel-based method:

snon-u(x) = ∇x log Pnon-u ≈ ∇x log P̂non-u =: ŝnon-u(x).

Figure 2: The manifold M is illustrated as the curved line. x∗
i is the closest point to x on

the manifold. Ḡ(x) is depicted as well and is not necessarily a point on the manifold.

Direct computation results in

ŝnon-u(x) = − 1
2σ2

d

(
x− Ḡ(x)

)
, (9)

where Ḡ(x) =
∑

α∈S Ḡα(x), and

Ḡα(x) = 1
P̂non-u(x)QdQker

∫ [
G(z)P (x|G(z)) exp

(
−||z − zα||2

2σ2
ker

)]
dz. (10)

Note that Ḡ(x), which is the mean of the contributions from all points in the manifold to
the probability P (x) does not necessarily lie on the manifold. In contrast, x∗ = G(F (x))
is, by definition, a point on the manifold. See Fig. 2 for an illustration and Fig. 8 for a
synthetic example. The integral over z in the computation of Ḡα(x) is approximated by
randomly sampling the normal distribution centered around the training point zα (see de-
tails in Appendix A).
A noisy or corrupted image x can be viewed as a point in the ambient space. The image gen-
eration then becomes the task of finding an appropriate, though not necessarily orthogonal,
projection of this point onto the manifold of clean, meaningful images. If the mappings and
functions G, F , and DM are perfectly accurate, a single step can move x closer to the cor-
responding clean image. Since the ambient space is sampled sparsely, especially in regions
far from the manifold, the approximations of these mappings become less accurate as the
distance from the manifold increases. To address this, we employ multiple iterative steps,
gradually improving accuracy as we move closer to the manifold. This process resembles
a diffusion-like flow; see Fig. 8 for an illustrative example. Equations 7 and 8 motivate a
diffusion-like process guided by the distance function. The score defines a vector field in the
ambient space. A step in the direction of the closest point on the manifold is

xn+1 = xn − αDM(xn)∇xDM(xn)/|∇xDM(xn)| with 0 < α < 1 and x0 = x . (11)
Equation 11 does not take into account the distribution of training points on the manifold.
To address this limitation, we combine it with the score of the kernel method to obtain:

xn+1 = (1− β)xn + βḠ(xn)− αDM(xn)∇xDM(xn)/|∇xDM(xn)|, (12)
where 0 < α, β, α+β < 1, and x0 = x. The trajectory of x as it moves towards the manifold
is illustrated in Fig. 8 in Appendix D.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 Methods

4.1 Manifold-Probabilistic Projection Model (MPPM)

The autoencoder and the distance function are implemented as separate neural networks
and are jointly trained using the loss function in Appendix A.1. Algorithm 1 outlines the
training procedure using the clean dataset X clean and the reconstruction of a noisy point x
in the ambient space. The algorithm is demonstrated for the simple case of a non-uniform
distribution on the circle embedded in R3 in Fig. 9 in Appendix D. All the experimental
and optimization details can be found in appendices C and D.

Algorithm 1 MPPM
function Train(X clean, ϵ ∼ N (0, σ2

d))
G, F,DM ← Train

(
X clean, ϵ,L(F, G,DM)

)
end function
function Reconstruction(x,X clean, α, β,num_steps) ▷ 0 < α, β, α + β < 1

x1 ← x
for n← 1 to num_steps do

xn+1 ← (1−β)xn+β
∑

α Ḡα(xn)−αDM(xn)∇xDM(xn)/|∇xDM(xn)| by 12, 10
end for
return xn+1

end function

4.2 Latent MPPM (LMPPM)

The key difference between the pixel space and the latent space is that, in the latter, we do
not assume that encoded clean and meaningful images lie on a lower-dimensional manifold.
Instead, we treat the set of encoded clean and meaningful images as a point cloud that
occupies the full dimension of the latent space. We model this set as samples from a
probability distribution P (z). Let the set of clean and meaningful images be X clean and the
set of these encoded images be S = {F (X clean)}. In this context, S serves the role that
the manifold M played in the previous section, in the sense that the distance function DS

is now computed in the latent space with respect to the set S. Let x ∈ RD be an image
and z = F (x) ∈ Rd its latent representation. The reconstructed image is then given by
x̂ = G(z). Let us define a distance function DS : Rd → R such that DS(z) measures the
distance from z to the set S in the latent space. Using this, we define a shift in the latent
space as: zshift := z −DS(z)∇zDS(z)/|∇zDS(z)|. The loss function is then given by

L(F, G,DS) = λ1
∑
zi /∈S

(DS(zi)− ∥zi − z∗
i ∥])2 + λ2

∑
zi∈S

(
xclean

i −G(zi)
)2

λ3
∑
zi∈S

|DS(zi)|2 + λ4
∑
zi

(DS(zi)− |DS(zi)|)2

+ λ5
∑
zi /∈S

∥∥zshift
i − z∗

i

∥∥ + λ6
∑
zi /∈S

∥∥G(zshift
i)− x∗

i

∥∥ ,

(13)

where x∗
i = arg minx̃∈X clean ∥xi−x̃∥, and z∗

i = F (x∗
i). These definitions ensure that a generic

point x in the ambient space, whose closest clean image in the dataset is x∗ is mapped to
z = F (x) such that its nearest neighbor in S is z∗ = F (x∗). It is important to note that
the set S evolves over training iterations as the encoder F and decoder G are updated, and
the distance function DS is adjusted accordingly. The first three terms are the heart of the
algorithm. The 4th element ensures positivity. The 5th and 6th terms improve consistency
between all three networks. Ablation study empirically proves that these terms contribute
to the performance of the method. By the kernel method, we obtain

z̄ = 1
Q

∑
xj∈X

F (xj) exp
(
− (z − F (xj))2

2σ2
ker

)
. (14)

The complete procedure is described in Algorithm 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 LMPPM
function Train(X clean, ϵ ∼ N (0, σ2

d))
G, F,DS ← Train

(
X clean, ϵ,L(F, G,DS)

)
by 13

end function
function Reconstruction(x,X clean, α, β,num_steps) ▷ 0 < α, β, α + β < 1

z1 ← F (x)
for n← 1 to num_steps do

zn+1 ← (1− β)zn + βz̄n − αDS(zn)∇zDS(zn)/|∇zDS(zn)| by 14
end for
return Gĉ(zn+1)

end function

5 Experiments

We evaluated our MPPM method on synthetic data and our LMPPM method on real-world
image datasets, where we simultaneously trained an autoencoder-like network for F and
G, and a different network for the distance function DM and DS . It is important to note
that training was performed exclusively with Gaussian noise degradation, while at inference
time we evaluated the models under a variety of other degradation types. We compared
our results with standard denoising autoencoders (DAE) (Vincent et al., 2008) and latent
diffusion models (LDM) (Rombach et al., 2022). For synthetic experiments, we evaluated
on a one-dimensional manifold: a half-circle lying in the xy plane and embedded in R3.
The points in the circle are sampled according to angular coordinates drawn from truncated
normal distributions (see Fig. 8).
For real-world data, we experiment with MNIST (LeCun, 1998) and the SCUT-FBP5500
facial beauty dataset (Liang et al., 2018). To evaluate restoration performance, we apply
three types of degradation to MNIST: Gaussian noise, downsampling (super-resolution),
and elastic deformation, each at two severity levels. For SCUT-FBP5500, we consider four
types of degradation: Gaussian noise, downsampling, random scribbles, and black patches
(inpainting), also applied at two severity levels. We train our proposed methods and the
comparison baselines to assess their performance across the different datasets. Detailed
architecture specifications and hyperparameters are provided in appendices B and C. For
synthetic data, we implement MPPM using MLP architectures. For MNIST, we employ a
CNN-based autoencoder for both DAE and our LMPPM method, while for SCUT-FBP5500
we adopt a U-Net architecture with skip connections. In addition, we construct an extra set
of skip connections from the latent space and combine them with the original skips through
weighted summation (see Appendix B). The distance functions DM and DS are implemented
as MLPs with progressively decreasing layer sizes to perform dimensionality reduction. For
LDM, we integrate the corresponding DAE backbone (in place of the autoencoder) with a
standard diffusion model, using 2000 diffusion steps.

5.1 Results

MNIST Results: For the MNIST dataset, we set the latent space dimension to 18 and the
additive noise to ϵ = 0.4. To calculate FID, we trained an MNIST classifier and computed an

Figure 3: Top: Digit generation from pure noise, with an FID of 19.53 computed over 2000
images. Bottom: Progression of digit generation over 16 steps.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results on MNIST

Elastic 2.3 Elastic 1.8
SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.66 69.36 0.59 134.60
LDM 0.64 66.52 0.58 124.05
LMPPM (ours) 0.63 12.61 0.59 16.38

Downsample 0.5 Downsample 0.35
SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.79 31.66 0.54 133.66
LDM 0.75 31.61 0.53 128.80
LMPPM (ours) 0.67 11.27 0.52 22.65

Table 2: Quantitative results on SCUT-FBP5500

Miss pixels 0.04 Miss pixels 0.08 Miss pixels 0.1
SSIM ↑ FID ↓ SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.917 33.90 0.798 49.00 0.745 47.94
LDM 0.914 27.35 0.798 41.47 0.738 44.41
LMPPM (ours) 0.881 16.20 0.862 23.92 0.832 34.13

Scribble 6 Scribble 13 Scribble 20
SSIM ↑ FID ↓ SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.921 34.83 0.889 45.66 0.860 51.68
LDM 0.919 29.31 0.887 39.02 0.859 44.66
LMPPM (ours) 0.879 16.73 0.878 17.35 0.869 18.46

Sharpen 8 Sharpen 10 Sharpen 18
SSIM ↑ FID ↓ SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.902 28.53 0.883 29.80 0.815 33.82
LDM 0.898 20.79 0.878 21.73 0.807 25.37
LMPPM (ours) 0.878 16.79 0.874 17.33 0.853 19.48

embedding distribution for each class. After reconstructing a degraded digit, we classified
it and compared its embedding with the corresponding pre-computed class distribution.
Table 1 reports the mean SSIM and FID metrics. Our method consistently outperforms both
DAE and LDM baselines across all degradation types in terms of FID scores. Notably, DAE
occasionally achieved higher SSIM values, although its visual results were inferior. Fig. 10
in Appendix D illustrates restoration examples for Gaussian noise, elastic deformation, and
downsampling. Additional experiment included the generation of digits from a pure noise.
We generated 200 images from random Gaussian noise and managed to obtain realistic digits
(FID=19.5) as can be seen in Fig. 3.
SCUT-FBP5500 Results: Figure 4 shows restoration results on facial images with several
degradation functions: excessive Gaussian noise, randomly missing pixels, random scribbles
and over sharpening. The quantitative results in Table 2 support these visual observations,
with our approach achieving consistently lower FID values across all degradation types. We
set the latent dimension to 1024 and the additive noise to ϵ = 0.2. While in some cases the
DAE method achieves higher SSIM values, the visual quality of its reconstructions is no-
ticeably inferior. Additional results for Gaussian noise, downsampling, and over-sharpening
are provided in Appendix D.

6 Summary and Conclusions

This work emphasizes the Manifold Hypothesis and interprets established image restora-
tion and generation methods through a novel geometric perspective. Beyond presenting a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Variety of degradations: noise, missing pixels, scribbles and over sharpening. Left
to right: degraded, DAE, LDM, LMPPM (ours), and original.

Figure 5: Left to right: over-sharpened input, DAE, LDM, LMPPM (ours), and original.
LMPPM remains realistic despite changes to the face.

unifying framework, which is valuable in its own right, we propose incorporating a learned
distance function to the manifold. By leveraging distances to the manifold, we establish a
connection between the geometric structure and a probability density approximation. By
employing a kernel-like method to approximate the probability distribution on the manifold,
or equivalently on the latent space, we integrate geometry and probability in a novel manner.
We induce a vector field in the ambient space via the score of these probability densities.
This vector field directs each point toward the manifold of clean images, considering both
the structure and the distribution of clean and meaningful images on the manifold.
In this work, we utilize a (denoising) autoencoder in conjunction with the distance function.
Providing an approach where both F and G define the manifold while maintaining their
coupling to the distance function D from it. However, due to potential errors in the outputs
of the three networks G, F and D, especially when x is far from the manifold, this vector field
is not exact. Therefore, rather than applying a single-step (weighted) projection onto the
manifold, we proceed iteratively, advancing in small steps along the noisy vector field. We
are currently exploring an analogous approach where VAE and GAN are coupled with the
distance function. A key practical advantage of our approach is its application in the latent
space. This dimensionality reduction significantly enhances the accuracy of the distance
function, thereby improving restoration and generation results. Indeed, as shown in our
experiments (Section 5.1), comparisons with other leading methods indicate the superior
performance of our methods, particularly under severe distortions for different data sets and
different distortions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak.

Hyperspherical variational auto-encoders, 2022. URL https://arxiv.org/abs/1804.
00891.

Mevlana C Gemici, Danilo Jimenez Rezende, and Shakir Mohamed. Normalizing flows on
Riemannian manifolds. In NeurIPS Workshop on Bayesian Deep Learning, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, 2014.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, 2020a.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, 2020b.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. URL https:
//arxiv.org/abs/1312.6114.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

Lingyu Liang, Luojun Lin, Lianwen Jin, Duorui Xie, and Mengru Li. Scut-fbp5500: A
diverse benchmark dataset for multi-paradigm facial beauty prediction. 2018.

Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L. Caterini, and
Jesse C. Cresswell. Deep generative models through the lens of the manifold hypothesis:
A survey and new connections, 2024. URL https://arxiv.org/abs/2404.02954.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. In Ad-
vances in Neural Information Processing Systems, 2020.

Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, and Yee Whye Teh.
Continuous hierarchical representations with poincaré variational auto-encoders, 2019.
URL https://arxiv.org/abs/1901.06033.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In International Conference on Machine Learning, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

David E. Rumelhart and James L. McClelland. Learning Internal Representations by Error
Propagation, pp. 318–362. 1987.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.
org/abs/1503.03585.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution, 2020. URL https://arxiv.org/abs/1907.05600.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pp. 1096–1103, 2008.

10

https://arxiv.org/abs/1804.00891
https://arxiv.org/abs/1804.00891
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2404.02954
https://arxiv.org/abs/1901.06033
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1907.05600

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A Appendix: Detailed Theory

A.1 MPPM

The loss function for the MPPM is
L(F, G,DM) = λ1

∑
xi /∈M

(DM(xi)− ∥xi − x∗
i ∥])2 + λ2

∑
xi∈M

(
xclean

i −G(F (xclean
i)

)2

+ λ3
∑

xi∈M
|DM(xi)|2 + λ4

∑
xi∈RD

(DM(xi)− |DM(xi)|)2 + λ5
∑

xi∈RD

(
xshift

i − x∗
i

)2
,

(15)
where x∗ = G(F (x)). The first term defines the distance function assuming a perfect
autoencoder; the second is the standard autoencoder loss. The third term enforces the
boundary condition on the distance function and the fourth ensures its positivity. The last
term enforces the geometric consistency of Eq. (8) (see also Fig. 1).

A.2 Kernel method

Detailed computation of eq. 2

Pnon-u(x) =
∫

M
P (x, y = G(z))dy =

∫
M

P (x|y = G(z))P (y)dy

=
∫
Rd

P (x|G(z))P (G(z))√gdz =
∫
Rd

P (x|G(z))P (z)dz,

where the subscript "non-u" stands for non-uniform. Here dy = √gdz is the manifolds
volume element, where g = det G and Gµν =

∑D
i=1 J i

µJ i
ν is the induced metric, with the

Jacobian of the embedding map given by J i
µ = ∂Gi(z)/∂zµ. In the last equality, we use the

identity P (G(z)) = P (z)(√g)−1.

A.3 score function

snon-u(x) = ∇x log Pnon-u ≈ ∇x log P̂non-u =: ŝnon-u(x).

Direct computation results in

ŝnon-u(x) = − 1
2σ2

d

(
x− Ḡ(x)

)
, (16)

where Ḡ(x) =
∑

α∈S Ḡα(x), and

Ḡα(x) = 1
P̂non-u(x)QdQker

∫ [
G(z)P (x|G(z)) exp

(
−||z − zα||2

2σ2
ker

)]
dz. (17)

Specifically,

ŝnon-u(x) = 1
P̂non-u

∇xP̂non-u = 1
P̂non-u

∇x

(∫
P (x | G(z))Pker(z)dz

)
.

Now,

(∇xP (x | G(z))) Pker(z) = − 1
2σ2

dQd
(x−G(z)) exp

(
−∥x−G(z)∥2

2σ2
d

)
1

Qker

∑
α∈S

exp
(
−||z − zα||2

2σ2
ker

)
.

(18)

The integral of z in the computation of Ḡα(x) is approximated by randomly sampling the
normal distribution centered around the training point zα. Explicitly, we approximate the
mean using and average over n samples from Pker∫ [

G(z)P (x|G(z)) exp
(
−||z − zα||2

2σ2
ker

)]
dz ≈ 1

n

∑
zi∈N (zα,σ2

ker)

G(zi) exp
(
−∥x−G(zi)∥2

2σ2
d

)
,

(19)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

where α denotes an index in the training set (see Fig. 6). The calculation of Ḡα(x) requires
evaluating Pnon-u(x) in the denominator. In particular, we approximate∫ [

P (x|G(z)) exp
(
−||z − zα||2

2σ2
ker

)]
dz ≈ 1

n

∑
zi∈N (zα,σ2

ker)

exp
(
−∥x−G(zi)∥2

2σ2
d

)
. (20)

Note that in the computation of Ḡα all constant factors Qd, Qker and 1
n , are canceled

between the numerator and the denominator.

Figure 6: An illustration of the kernel approximation Pker(z) of the probability distribution
P (z) in the latent space.

B Appendix: Detailed Experimental Setup

B.1 Notation and Abbreviations

Table 3: Glossary of abbreviations and terms used throughout the paper

Term Definition
DAE Denoising Autoencoder
MPPM Manifold Projection and Propagation Method (our proposed approach)
LMPPM Latent Manifold Projection and Propagation Method (our proposed approach)
LDM Latent Diffusion Model
SSIM Structural Similarity Index Measure
BN Batch Normalization

Table 4: Summary of experimental datasets used for evaluating restoration performance

Dataset Description
MNIST 60,000 training/10,000 test grayscale images (28× 28 pixels)
SCUT-FBP5500 5,500 facial images with beauty scores (resized to 120× 120)

B.2 Degradations

Degradation Parameters We apply six degradation types to simulate real-world image
corruption scenarios. Each degradation is applied at three severity levels (mild, intermediate,
and severe) to test the robustness of restoration methods:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 5: Degradation parameters at different severity levels. Note: Lower σ values for elastic
deformation indicate more severe distortion due to increased localized displacement

Degradation Mild Severe
Gaussian noise (σ) 0.2 0.3
Elastic deformation (σ) 1.5 1.1
Super-resolution (downsampling factor) 0.5 0.35
Missing Pixels 0.04 0.1
Number of Scibbles 13 20
Over Sharpening 10 18

Degradation Methods Brief descriptions of each degradation type:

• Gaussian noise: Additive zero-mean Gaussian noise that simulates sensor noise
or transmission errors.

• Elastic deformation: Non-rigid distortions implemented using
torchvision.transform.ElasticTransform(α = 34,σ) that simulate warping ef-
fects.

• Super-resolution: Downsampling followed by upsampling to original resolution,
simulating reconstruction from low-resolution data.

• Missing Pixels: Set black patches with some coverage portion;
• Scribbles Add n random scribbles with random colors
• Over Sharpening by factor s: I = I + s(I − I ∗ σs)

B.3 Model Architectures

We implemented three main architectures across all experiments, with design choices tailored
to each dataset’s complexity.

Synthetic Data Model Synthetic data for MPPM experiments use MLP-based networks
with a latent dimension of 8, selected based on the low intrinsic dimensionality of these
manifolds:

Table 6: Network architectures for synthetic data experiments. All models use fully-
connected layers

Component Architecture
Encoder 3→ 64→ 32→ 16→ 8 with ReLU
Decoder 8→ 16→ 32→ 64→ 3 with ReLU
Distance Network 8→ 64→ 32→ 16→ 1 with ReLU, dropout=0.2

MNIST Models MNIST experiments use CNN-based models with latent dimension 18,
chosen to capture the variability among handwritten digits while promoting compact rep-
resentations.

Table 7: Network architectures for MNIST experiments

Component Architecture
Encoder Conv2d(1→ 32→ 64, kernel = 3, stride = 2)→ Flatten→ Linear(64× 7× 7→ 18)
Decoder Linear(18→ 64× 7× 7)→ Reshape→ ConvTranspose2d(64→ 32→ 1)→ Sigmoid
Distance Network 18→ 100→ 50→ 20→ 1 with ReLU, dropout=0.2

SCUT-FBP5500 Models Facial image experiments employ a U-Net with skip connec-
tions and a latent dimension of 1024, which accommodates the higher complexity of facial
features while enabling detailed reconstruction. Facial image experiments employ a U-Net

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Input
3×120×120

Enc1
Conv×2

C: 3→32
H×W: 120×120

Enc2
MaxPool 2×2

Conv×2
C: 32→64

H×W: 60×60

Enc3
MaxPool 2×2

Conv×2
C: 64→128

H×W: 30×30

Enc4
MaxPool 2×2

Conv×2
C: 128→256
H×W: 15×15

Flatten
256×7×7 → 12544

Bottleneck
Linear

12544 → 1024

LeakyReLU

Decoder Dense
Linear

1024 → 12544

LeakyReLU

Reshape
→ 256×7×7

⊕

⊕

⊕

⊕
Dec4

UpConv2d
Conv×2

→ 128 @ 15×15

Dec3
UpConv2d

Conv×2

→ 64 @ 30×30

Dec2
UpConv2d

Conv×2

→ 32 @ 60×60

Dec1
UpConv2d

Conv×2

→ 32 @ 120×120

Final
Upsample → 120×120

Conv 32 → 3 + Sigmoid

Output
3×120×120

Encoder Decoder

injection Ii skip path (pre & post ⊕) blend: (1 − α)e + αI α: injection strength wi: ei weight σ: skip noise skip path (opt.): ×wi & +(0, σ)⊕

Figure 7: Modified U-net architecture

with skip connections and a latent dimension of 1024, which accommodates the higher com-
plexity of facial features while enabling detailed reconstruction. Note that in the U-Net
architecture, during the inference process we use iterations (denoted by superscripts) such
that

F (xn) =
(
Sn

1 , Sn
2 , . . . , Sn

k , zn
)T

,

and
xn+1 = G

(
Sn

1 + Ŝn
1 (zn+1), Sn

2 + Ŝn
2 (zn+1), . . . , Sn

k + Ŝn
k (zn+1), zn+1

)
.

Here, each Ŝn
i (zn+1) denotes the projection of the latent space zn+1 onto the corresponding

skip connection Sn
i . Thus, the updated skip connection is formed by adding the original

skip feature Sn
i with the new projected feature Ŝn

i (zn+1) before being passed to G. The
architecture is illustrated in Fig. 7.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Component Structure
EncoderBlock(Cin → Cout) Conv(Cin → Cout)→ BN→ LReLU→

Conv(Cout → Cout)→ BN→ LReLU→ MPool
Encoder EncoderBlock(3→ 32), output: 60× 60

EncoderBlock(32→ 64), output: 30× 30
EncoderBlock(64→ 128), output: 15× 15
EncoderBlock(128→ 256), output: 7× 7
Flatten→ Linear(12544→ 1024)→ LReLU

DecoderBlock(Cin, Cskip, Cout) ConvT(Cin → Cin)→ Cat([Cin, Cskip])→
Conv(Cin + Cskip → Cin)→ BN→ LReLU→
Conv(Cin → Cout)→ BN→ LReLU

Decoder Linear(1024→ 12544)→ Reshape(256, 7, 7)
DecoderBlock(256, 256, 128), output: 15× 15
DecoderBlock(128, 128, 64), output: 30× 30
DecoderBlock(64, 64, 32), output: 60× 60
DecoderBlock(32, 32, 32), output: 120× 120
Conv(32→ 3)→ Sigmoid

Distance Network 1024→ 100→ 50→ 20→ 1 with ReLU, dropout=0.2

Table 8: Network architectures for SCUT-FBP5500 experiments. Skip connections connect
corresponding Encoder and Decoder layers through concatenation. The encoder and de-
coder blocks are represented as parameterized functions (shown in italic font), where Cin,
Cout, and Cskip represent the number of input, output, and skip connection channels re-
spectively. Abbreviations: Conv = Conv2d (kernel=3, padding=1), BN = BatchNorm2d,
LReLU = LeakyReLU(0.2), MPool = MaxPool2d(2), ConvT = ConvTranspose2d(kernel=2,
stride=2), Cat = Concatenation. The bottleneck dimension is 1024.

C Training and Evaluation

Table 9: MPPM training and inference parameters for synthetic data

Parameter Value
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rates AE: 1× 10−3, Distance network: 1× 10−3

Weight decay 1× 10−4

Batch size 550
Training epochs 500
Loss function Composite loss (Equation 15)
Early stopping Patience: 100 epochs
α (distance gradient step) 0.15
β (kernel averaging weight) 0.1
Convergence tolerance 0.005
Maximum iterations 60

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 10: LMPPM training parameters across all experiments, determined through prelim-
inary grid search, diffusion steps are define the number of steps in algorithm 2

Parameter Value
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rates AE: 1× 10−3, Distance network: 1× 10−5, LDM: 1× 10−3

Batch size MNIST: 128, SCUT-FBP5500: 32
Training epochs MNIST: 100, SCUT-FBP5500: 75
Loss functions DAE: L2, LDM: MSE, LMPPM: Composite loss 13
Early stopping Patience: 8 epochs
Diffusion steps MNIST: 2000, SCUT-FBP5500: 2000

D Additional Results

Here, we present additional experimental results. Figures 8 and 9 depict the results of the
MPPM algorithm.

Figure 8: The manifoldM is the unit circle lying in the xy-plane and is parametrized by the
azimuth angle θ. It is sampled according to a normal distribution centered at θ0 indicated
by the red line. The reconstruction trajectory is shown in dark red. Note that the final
result of the iterations on x does not converge to x∗ which is the closest point on the circle.
Instead, it is influenced by the data distribution on the manifold through the effect of Ḡ(x).

Next, we present additional results on the MNIST dataset using the LMPPM algorithm.
Figure 10 shows reconstruction results under noise, elastic, and downsampling deforma-
tions, compared with the DAE and LDAM models. Figures 11, 12, 13, and 14 present
reconstruction results for missing pixels, scribbles, noise, and over-sharpening deformations,
respectively for the SCUT-FBP5500 dataset. We compare our method with the DAE and
LDM models. Finally, Figure 15 shows the reconstruction after 4 iterations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) DAE restoration. MSE = 0.032, max error
= 0.147.

(b) MPPM restoration. MSE = 0.026, max er-
ror = 0.060.

Figure 9: Comparison between the DAE and our proposed MPPM, this example uses the
same setup as in Fig. 8. The error was computed as the deviation from the unit circle in
2D. In regions of the circle with lower probability density, the DAE is more prone to error
than the proposed MPPM method.

Figure 10: Left panel: noise = 0.7; middle panel: elastic (α = 0.34, σ = 1.8); right
panel: downsampling factor = 0.35. In all panels, from left to right: degraded, DAE, LDA,
LMMPM (ours), and original.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 11: Missing pixels. From left to right: degraded, DAE, Diffusion, LMPPM, original.

Figure 12: 13 scribbles. From left to right: degraded, DAE, Diffusion, LMPPM, original.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 13: Noise σ = 0.3. From left to right: degraded, DAE, Diffusion, LMPPM, original.

Figure 14: over sharpening. From left to right: degraded, DAE, Diffusion, LMPPM, original.

Figure 15: gradual reconstruction of missing pixels degradation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E Use of Large Language Models

Large Language Models (LLMs) were used in this work solely as a language assistance tool
for English polishing and proofreading. Specifically, we employed LLMs to:

• Improve grammar, syntax, and sentence structure in the manuscript
• Enhance clarity and readability of technical descriptions
• Correct spelling and typographical errors
• Suggest more precise word choices and phrasing

The LLMs did not contribute to research ideation, methodology development, experimen-
tal design, data analysis, or the generation of scientific content. All research concepts,
approaches, results, and conclusions presented in this paper are entirely the work of the
human authors. The LLMs were used exclusively for language refinement of content that
was already conceptualized and written by the authors.
Additionally, an LLM was used to assist in drafting this disclosure section itself, based on
the authors’ description of how LLMs were employed in the research process.
We take full responsibility for all content in this manuscript, including any text that was
refined with LLM assistance. All factual claims, scientific interpretations, and conclusions
remain our own work and responsibility.

20

	Introduction
	Related Work

	Background and Theoretical Framework
	Geometric View of Diffusion Models
	Methods
	Manifold-Probabilistic Projection Model (MPPM)
	Latent MPPM (LMPPM)

	Experiments
	Results

	Summary and Conclusions
	Appendix: Detailed Theory
	MPPM
	Kernel method
	score function

	Appendix: Detailed Experimental Setup
	Notation and Abbreviations
	Degradations
	Model Architectures

	Training and Evaluation
	Additional Results
	Use of Large Language Models

