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Abstract

The foundational premise of generative AI for images is the assumption that
images are inherently low-dimensional objects embedded within a high-
dimensional space. Additionally, it is often implicitly assumed that the-
matic image datasets form smooth or piecewise smooth manifolds. Common
approaches overlook the geometric structure and focus solely on probabilis-
tic methods, approximating the probability distribution through universal
approximation techniques such as the kernel method. In some generative
models the low dimensional nature of the data manifest itself by the in-
troduction of a lower dimensional latent space. Yet, the probability dis-
tribution in the latent or the manifold’s coordinate space is considered
uninteresting and is predefined or considered uniform. This study uni-
fies the geometric and probabilistic perspectives by providing a geometric
framework and a kernel-based probabilistic method simultaneously. The
resulting framework demystifies diffusion models by interpreting them as a
projection mechanism onto the manifold of ”good images”. This interpreta-
tion leads to the construction of a new deterministic model, the Manifold-
Probabilistic Projection Model (MPPM), which operates in both the rep-
resentation (pixel) space and the latent space. We demonstrate that the
Latent MPPM (LMPPM) outperforms the Latent Diffusion Model (LDM)
across various datasets, achieving superior results in terms of image restora-
tion and generation.

Figure 1: Illustration of our manifold-aware restoration approach. The blue path shows
direct projection onto manifoldM using distance function DM(x), while the red-green path
represents encoding-decoding through latent space Rd via functions F and G. Ideally, both
paths converge to the same manifold point, ensuring geometrically consistent restoration.

1 Introduction

Restoration of images refers to the inverse process of generating a clean, meaningful, and
non-corrupted image from a noisy, blurred, or otherwise degraded input. A critical aspect of
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this process involves the use of prior knowledge or a well-approximated distribution function
over the set of clean images within a specific class. In this work, we propose the manifold
assumption, which asserts that the set of desired images resides on a low-dimensional smooth
manifold. We integrate this assumption with a probabilistic perspective. Specifically, we
extend the conventional Monge patch description of the data manifold, typically provided by
generative models such as autoencoders (AE) (Rumelhart & McClelland, 1987), variational
autoencoders (VAE) (Kingma & Welling, 2013), and generative adversarial networks (GAN)
(Goodfellow et al., 2014). Our approach augments this description by introducing a distance
function that assigns, for each point in the pixel (ambient/representation) space, the distance
to the closest point on the manifold. We treat here images as primary examples, but
evidently it can be applied to any dataset that has this manifold structure. Next, we
establish a connection between the geometric framework and the probabilistic perspective
by introducing a geometric-based probability function and its kernel-based approximation.
We further relate these approaches to diffusion-like methods, utilizing the score function to
generate, in the ambient space, a vector field that directs each noisy or corrupted image
towards the closest point on the manifold of clean images. By iteratively following this
vector field, a diffusion-like flow is generated, guiding the corrupted image progressively
towards a clean image residing on the manifold.
To accommodate the possibility of a nonuniform probability distribution on the manifold,
we employ a kernel method that adjusts the diffusion-like flow to balance the trade-off be-
tween proximity to the manifold and the probability of a point on the manifold representing
a clean and meaningful image. This integration of geometric principles with the kernel
method constitutes the primary novelty of our approach. Furthermore, we extend these
general concepts, the distance function, score, and diffusion-like flow, to operate within the
latent space, thereby reducing computational complexity and enhancing the accuracy of the
distance function. We evaluated our proposed method on the MNIST and SCUT-FBP5500
datasets, demonstrating superior performance compared to a leading method such as the
Latent Diffusion Model (LDM) (Rombach et al., 2022).

1.1 Related Work

In recent years, the task of generating samples from a distribution that characterizes a spe-
cific dataset or target image has emerged as a critical challenge in machine learning. This
problem has been extensively studied, with solutions primarily leveraging neural networks
within deep learning frameworks. Many contemporary generative models operate under
the implicit assumption that datasets comprise low-dimensional objects embedded within
a high-dimensional space. However, the underlying geometry of the dataset is not always
explicitly considered. For instance, variational autoencoders (VAEs) (Kingma & Welling,
2013) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) construct a
functional mapping from the low-dimensional latent space to the high-dimensional pixel
space. This functional mapping can be interpreted as a transformation from the manifold
coordinate system to the pixel coordinate system. More recent approaches, such as diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020a), adopt a more implicit perspective on
manifold structure. Geometrically, these models can be viewed as learning a directional
field that guides noisy points back to the data manifold, enabling iterative projection. The
diffusion process gradually transforms random noise into realistic samples by iteratively de-
noising along paths that converge onto the data manifold.
A central concept in many of these generative approaches is the Manifold Hypothesis
(Loaiza-Ganem et al., 2024), which posits that real-world high-dimensional data, such as
images, often concentrates near a low-dimensional manifold embedded within the ambient
space. This geometric perspective provides a powerful conceptual framework for understand-
ing generative models and has significantly influenced the design of numerous architectures
and training objectives. Various other manifold-aware generative approaches have been pro-
posed. Some methods explicitly model data as residing on specific manifolds. For instance,
hyperspherical VAEs (Davidson et al., 2022) and hyperbolic VAEs (Mathieu et al., 2019)
adapt generative models to handle data that naturally lies on non-Euclidean manifolds.
Riemannian flow models (Gemici et al., 2016; Mathieu & Nickel, 2020) incorporate Rieman-
nian metrics into flow-based models to explicitly account for the intrinsic geometry of the
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data manifold. The relationship between manifold structure and probabilistic frameworks
remains an active area of research. Normalizing flows (Rezende & Mohamed, 2015) can
be interpreted as learning diffeomorphisms between the data manifold and a simple base
distribution. Score-based generative models (Song & Ermon, 2020) utilize the score func-
tion (the gradient of the log-density) to characterize the data distribution, establishing a
direct connection to the geometry of the data manifold. Recent works on denoising diffusion
models (Ho et al., 2020b) can also be interpreted as learning a vector field that guides noisy
samples back to the data manifold. Despite these advancements, there remains a gap in
unifying the geometric and probabilistic perspectives in generative modeling.
This work addresses this gap by providing a geometric interpretation of autoencoders,
leveraging geometric properties of the data, specifically the distance function to the mani-
fold. We propose a new generative model that synthesizes both geometric and probabilis-
tic approaches, leading to improved performance in generating high-quality samples. Our
approach is based on the premise that the data manifold can be represented as a low-
dimensional submanifold embedded within a high-dimensional space. We simultaneously
learn both the distance function to this manifold and the probability distribution on it.

2 Background and Theoretical Framework

Many generative networks assume that images lie on a lower-dimensional manifold defined
according to the latent space representation, which is embedded within a higher-dimensional
representation space, such as the pixel space or ambient space. This manifold is explicitly
modeled by the decoder in autoencoders (AEs) and variational autoencoders (VAEs), and
by the generator in various Generative Adversarial Network (GAN) architectures. In all of
these models, the manifold M is represented as a Monge patch. Let the latent space be
d-dimensional, parameterized by z, and the pixel space be D-dimensional, parameterized
by x, that is (see Fig. 1):

G(z) =
(
x1(z1, . . . , zd), . . . , xD(z1, . . . , zd)

)
.

In simple terms, the value at each pixel in the image (or in similar manifold-structured
data) is a function of the d parameters z. Another (implicit) way to describe a manifold
is as the zero level set of a function. The distance function to the manifold in the ambient
(representation) space is well suited for this purpose and is defined as follows:

DM(x) = min
y∈M

∥x− y∥, (1)

where ∥ · ∥ denotes the Euclidean norm. In this high-dimensional representation space, the
distance function provides a natural measure of the proximity of a point to the manifold.
It is well known that DM satisfies the Eikonal equation ||∇DM(x)|| = 1, with the natural
boundary condition DM(x) = 0 for all x ∈M. Moreover, it is clear that −∇DM(x) defines
a vector field pointing in the direction of the shortest path to the manifold.
Building on this purely geometric consideration, we introduce a probabilistic model and
demonstrate how a deterministic, stepwise diffusion-like model for projection onto the man-
ifold is constructed using the score of the introduced probability function. Let us first
assume that the probability of an arbitrary point in the ambient space being a clean image
decreases exponentially with the distance from the manifold of clean and meaningful images.
We adopt a simple model in which each image x is assumed to be generated from the closest
point x∗ on the manifold, with additive Gaussian noise, x = x∗ + ϵ, such that ϵ ∼ N (0, σ2

d).
Therefore, the probability of x to be on the manifold is given by

Pd(x) = 1
Qd

exp
(
−D

2
M(x)
2σ2

d

)
, (2)

where Qd is a normalization factor.
An alternative way to construct a probability distribution based on the manifold hypothesis
is to describe each point x in the ambient space as a noisy version of a point (or points) on
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the manifold, such that x = G(z) + ϵ is conditioned on z. The conditional probability is
then given by

P (x|G(z)) = 1
Qd

exp
(
−∥x−G(z)∥2

2σ2
d

)
. (3)

Based on the definition of the distance function, we derive the following expression using
the maximum likelihood principle:

Pd(x) = max
z

P (x|G(z)) = 1
Qd

exp
(
−min

z

∥x−G(z)∥2

2σ2
d

)
= 1

Qd
exp

(
−D

2
M(x)
2σ2

d

)
. (4)

Note that Pd implicitly assumes a uniform distribution of data points on the manifold, so
the only factor that influences the (conditional) probability is the distance from the image x
in the ambient space to the manifold. To account for a non-uniform probability distribution
on the manifold, we define the probability function over the ambient space as a marginal
distribution (see Appendix A.2 for details):

Pnon-u(x) =
∫
Rd

P (x|G(z))P (z)dz,

where the subscript "non-u" stands for non-uniform. In this formulation, the probability
at x is obtained by integrating contributions from all points on the manifold, where the
conditional probability depends solely on the distance to the manifold and is thus purely
geometric. Each contribution is weighted by P (z), which represents the likelihood that the
point G(z) on the manifold corresponds to a clean image. Since the distribution P (z) is
unknown, we estimate it using a kernel density method. Specifically, we define:

P (z) ≈ Pker(z) = 1
Qker

∑
α∈S

exp
(
−||z − zα||2

2σ2
ker

)
, (5)

where S is the set of latent code indices corresponding to clean images, and Qker is the
normalization constant. Note that σker is a hyperparameter that should be chosen carefully.
In Fig. 6, we illustrate Pker(z). Clearly, the encoding of a generic image x in the latent
space, i.e., F (x), may lie in a region with low probability. The probability of a point x
being an image depends on its distance to every point on the manifold, weighted by the
probability of that point in the latent space. Using this kernel approximation together with
the conditional probability from Eq. (3), we can thus approximate the probability function
Pnon-u(x) as

Pnon-u(x) ≈ P̂non-u(x) = 1
QdQker

∑
α∈S

∫
Rd

exp
(
−∥x−G(z)∥2

2σ2
d

)
exp

(
−||z − zα||2

2σ2
ker

)
dz. (6)

3 Geometric View of Diffusion Models

Since the domain of both the encoder F and the distance DM is the ambient space RD,
effectively training mappings that enable the diffusion-like flow from corrupted images back
to clean ones on the manifold requires sampling the high-dimensional ambient space, which
is an inherently challenging task due to the curse of dimensionality. Following the approach
of diffusion models, we generate ambient samples by adding Gaussian noise to the data
points. While this sampling strategy does not cover all possible corruptions, it empirically
produces useful mappings. Notably, although the models are trained using Gaussian noise,
they generalize well to other types of image corruption during testing.
To connect a corrupted image to its clean projection we use the concept of the score. The
score is a D-dimensional vector field defined by s(x) = ∇x log P (x), which points in the
direction of the steepest ascent of the probability density. For the distance-based probability
distribution Pd(x) defined in Eq. (2), we obtain:

sd(x) = ∇x log Pd(x) = ∇xPd(x)
Pd(x)

= − 1
σ2

d

DM(x)∇xDM(x). (7)
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Since DM(x) is the distance to the manifold, its normalized gradient ∇xDM(x)/|∇xDM(x)|
is a unit vector pointing to the closest point on the manifold. Therefore, for σd = 1 we have:

xshift := x + sd(x) = x−DM(x)∇xDM(x)/|∇xDM(x)| = G(F (x)) = x∗, (8)
where x∗ is the point on the manifold closest to x (see Fig. 2).
To incorporate the probability distribution of clean images on the manifold (or equivalently,
in the latent space), we interpret the probability in the ambient space as a marginal distri-
bution. This allows the approximation of the score function using a kernel-based method:

snon-u(x) = ∇x log Pnon-u ≈ ∇x log P̂non-u =: ŝnon-u(x).

Figure 2: The manifold M is illustrated as the curved line. x∗
i is the closest point to x on

the manifold. Ḡ(x) is depicted as well and is not necessarily a point on the manifold.

Direct computation results in

ŝnon-u(x) = − 1
2σ2

d

(
x− Ḡ(x)

)
, (9)

where Ḡ(x) =
∑

α∈S Ḡα(x), and

Ḡα(x) = 1
P̂non-u(x)QdQker

∫ [
G(z)P (x|G(z)) exp

(
−||z − zα||2

2σ2
ker

)]
dz. (10)

Note that Ḡ(x), which is the mean of the contributions from all points in the manifold to
the probability P (x) does not necessarily lie on the manifold. In contrast, x∗ = G(F (x))
is, by definition, a point on the manifold. See Fig. 2 for an illustration and Fig. 8 for a
synthetic example. The integral over z in the computation of Ḡα(x) is approximated by
randomly sampling the normal distribution centered around the training point zα (see de-
tails in Appendix A).
A noisy or corrupted image x can be viewed as a point in the ambient space. The image gen-
eration then becomes the task of finding an appropriate, though not necessarily orthogonal,
projection of this point onto the manifold of clean, meaningful images. If the mappings and
functions G, F , and DM are perfectly accurate, a single step can move x closer to the cor-
responding clean image. Since the ambient space is sampled sparsely, especially in regions
far from the manifold, the approximations of these mappings become less accurate as the
distance from the manifold increases. To address this, we employ multiple iterative steps,
gradually improving accuracy as we move closer to the manifold. This process resembles
a diffusion-like flow; see Fig. 8 for an illustrative example. Equations 7 and 8 motivate a
diffusion-like process guided by the distance function. The score defines a vector field in the
ambient space. A step in the direction of the closest point on the manifold is

xn+1 = xn − αDM(xn)∇xDM(xn)/|∇xDM(xn)| with 0 < α < 1 and x0 = x . (11)
Equation 11 does not take into account the distribution of training points on the manifold.
To address this limitation, we combine it with the score of the kernel method to obtain:

xn+1 = (1− β)xn + βḠ(xn)− αDM(xn)∇xDM(xn)/|∇xDM(xn)|, (12)
where 0 < α, β, α+β < 1, and x0 = x. The trajectory of x as it moves towards the manifold
is illustrated in Fig. 8 in Appendix D.
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4 Methods

4.1 Manifold-Probabilistic Projection Model (MPPM)

The autoencoder and the distance function are implemented as separate neural networks
and are jointly trained using the loss function in Appendix A.1. Algorithm 1 outlines the
training procedure using the clean dataset X clean and the reconstruction of a noisy point x
in the ambient space. The algorithm is demonstrated for the simple case of a non-uniform
distribution on the circle embedded in R3 in Fig. 9 in Appendix D. All the experimental
and optimization details can be found in appendices C and D.

Algorithm 1 MPPM
function Train(X clean, ϵ ∼ N (0, σ2

d))
G, F,DM ← Train

(
X clean, ϵ,L(F, G,DM)

)
end function
function Reconstruction(x,X clean, α, β,num_steps) ▷ 0 < α, β, α + β < 1

x1 ← x
for n← 1 to num_steps do

xn+1 ← (1−β)xn+β
∑

α Ḡα(xn)−αDM(xn)∇xDM(xn)/|∇xDM(xn)| by 12, 10
end for
return xn+1

end function

4.2 Latent MPPM (LMPPM)

The key difference between the pixel space and the latent space is that, in the latter, we do
not assume that encoded clean and meaningful images lie on a lower-dimensional manifold.
Instead, we treat the set of encoded clean and meaningful images as a point cloud that
occupies the full dimension of the latent space. We model this set as samples from a
probability distribution P (z). Let the set of clean and meaningful images be X clean and the
set of these encoded images be S = {F (X clean)}. In this context, S serves the role that
the manifold M played in the previous section, in the sense that the distance function DS

is now computed in the latent space with respect to the set S. Let x ∈ RD be an image
and z = F (x) ∈ Rd its latent representation. The reconstructed image is then given by
x̂ = G(z). Let us define a distance function DS : Rd → R such that DS(z) measures the
distance from z to the set S in the latent space. Using this, we define a shift in the latent
space as: zshift := z −DS(z)∇zDS(z)/|∇zDS(z)|. The loss function is then given by

L(F, G,DS) = λ1
∑
zi /∈S

(DS(zi)− ∥zi − z∗
i ∥])2 + λ2

∑
zi∈S

(
xclean

i −G(zi)
)2

λ3
∑
zi∈S

|DS(zi)|2 + λ4
∑
zi

(DS(zi)− |DS(zi)|)2

+ λ5
∑
zi /∈S

∥∥zshift
i − z∗

i

∥∥ + λ6
∑
zi /∈S

∥∥G(zshift
i )− x∗

i

∥∥ ,

(13)

where x∗
i = arg minx̃∈X clean ∥xi−x̃∥, and z∗

i = F (x∗
i ). These definitions ensure that a generic

point x in the ambient space, whose closest clean image in the dataset is x∗ is mapped to
z = F (x) such that its nearest neighbor in S is z∗ = F (x∗). It is important to note that
the set S evolves over training iterations as the encoder F and decoder G are updated, and
the distance function DS is adjusted accordingly. The first three terms are the heart of the
algorithm. The 4th element ensures positivity. The 5th and 6th terms improve consistency
between all three networks. Ablation study empirically proves that these terms contribute
to the performance of the method. By the kernel method, we obtain

z̄ = 1
Q

∑
xj∈X

F (xj) exp
(
− (z − F (xj))2

2σ2
ker

)
. (14)

The complete procedure is described in Algorithm 2.
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Algorithm 2 LMPPM
function Train(X clean, ϵ ∼ N (0, σ2

d))
G, F,DS ← Train

(
X clean, ϵ,L(F, G,DS)

)
by 13

end function
function Reconstruction(x,X clean, α, β,num_steps) ▷ 0 < α, β, α + β < 1

z1 ← F (x)
for n← 1 to num_steps do

zn+1 ← (1− β)zn + βz̄n − αDS(zn)∇zDS(zn)/|∇zDS(zn)| by 14
end for
return Gĉ(zn+1)

end function

5 Experiments

We evaluated our MPPM method on synthetic data and our LMPPM method on real-world
image datasets, where we simultaneously trained an autoencoder-like network for F and
G, and a different network for the distance function DM and DS . It is important to note
that training was performed exclusively with Gaussian noise degradation, while at inference
time we evaluated the models under a variety of other degradation types. We compared
our results with standard denoising autoencoders (DAE) (Vincent et al., 2008) and latent
diffusion models (LDM) (Rombach et al., 2022). For synthetic experiments, we evaluated
on a one-dimensional manifold: a half-circle lying in the xy plane and embedded in R3.
The points in the circle are sampled according to angular coordinates drawn from truncated
normal distributions (see Fig. 8).
For real-world data, we experiment with MNIST (LeCun, 1998) and the SCUT-FBP5500
facial beauty dataset (Liang et al., 2018). To evaluate restoration performance, we apply
three types of degradation to MNIST: Gaussian noise, downsampling (super-resolution),
and elastic deformation, each at two severity levels. For SCUT-FBP5500, we consider four
types of degradation: Gaussian noise, downsampling, random scribbles, and black patches
(inpainting), also applied at two severity levels. We train our proposed methods and the
comparison baselines to assess their performance across the different datasets. Detailed
architecture specifications and hyperparameters are provided in appendices B and C. For
synthetic data, we implement MPPM using MLP architectures. For MNIST, we employ a
CNN-based autoencoder for both DAE and our LMPPM method, while for SCUT-FBP5500
we adopt a U-Net architecture with skip connections. In addition, we construct an extra set
of skip connections from the latent space and combine them with the original skips through
weighted summation (see Appendix B). The distance functions DM and DS are implemented
as MLPs with progressively decreasing layer sizes to perform dimensionality reduction. For
LDM, we integrate the corresponding DAE backbone (in place of the autoencoder) with a
standard diffusion model, using 2000 diffusion steps.

5.1 Results

MNIST Results: For the MNIST dataset, we set the latent space dimension to 18 and the
additive noise to ϵ = 0.4. To calculate FID, we trained an MNIST classifier and computed an

Figure 3: Top: Digit generation from pure noise, with an FID of 19.53 computed over 2000
images. Bottom: Progression of digit generation over 16 steps.

7
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Table 1: Quantitative results on MNIST

Elastic 2.3 Elastic 1.8
SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.66 69.36 0.59 134.60
LDM 0.64 66.52 0.58 124.05
LMPPM (ours) 0.63 12.61 0.59 16.38

Downsample 0.5 Downsample 0.35
SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.79 31.66 0.54 133.66
LDM 0.75 31.61 0.53 128.80
LMPPM (ours) 0.67 11.27 0.52 22.65

Table 2: Quantitative results on SCUT-FBP5500

Miss pixels 0.04 Miss pixels 0.08 Miss pixels 0.1
SSIM ↑ FID ↓ SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.917 33.90 0.798 49.00 0.745 47.94
LDM 0.914 27.35 0.798 41.47 0.738 44.41
LMPPM (ours) 0.881 16.20 0.862 23.92 0.832 34.13

Scribble 6 Scribble 13 Scribble 20
SSIM ↑ FID ↓ SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.921 34.83 0.889 45.66 0.860 51.68
LDM 0.919 29.31 0.887 39.02 0.859 44.66
LMPPM (ours) 0.879 16.73 0.878 17.35 0.869 18.46

Sharpen 8 Sharpen 10 Sharpen 18
SSIM ↑ FID ↓ SSIM ↑ FID ↓ SSIM ↑ FID ↓

DAE 0.902 28.53 0.883 29.80 0.815 33.82
LDM 0.898 20.79 0.878 21.73 0.807 25.37
LMPPM (ours) 0.878 16.79 0.874 17.33 0.853 19.48

embedding distribution for each class. After reconstructing a degraded digit, we classified
it and compared its embedding with the corresponding pre-computed class distribution.
Table 1 reports the mean SSIM and FID metrics. Our method consistently outperforms both
DAE and LDM baselines across all degradation types in terms of FID scores. Notably, DAE
occasionally achieved higher SSIM values, although its visual results were inferior. Fig. 10
in Appendix D illustrates restoration examples for Gaussian noise, elastic deformation, and
downsampling. Additional experiment included the generation of digits from a pure noise.
We generated 200 images from random Gaussian noise and managed to obtain realistic digits
(FID=19.5) as can be seen in Fig. 3.
SCUT-FBP5500 Results: Figure 4 shows restoration results on facial images with several
degradation functions: excessive Gaussian noise, randomly missing pixels, random scribbles
and over sharpening. The quantitative results in Table 2 support these visual observations,
with our approach achieving consistently lower FID values across all degradation types. We
set the latent dimension to 1024 and the additive noise to ϵ = 0.2. While in some cases the
DAE method achieves higher SSIM values, the visual quality of its reconstructions is no-
ticeably inferior. Additional results for Gaussian noise, downsampling, and over-sharpening
are provided in Appendix D.

6 Summary and Conclusions

This work emphasizes the Manifold Hypothesis and interprets established image restora-
tion and generation methods through a novel geometric perspective. Beyond presenting a

8
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Figure 4: Variety of degradations: noise, missing pixels, scribbles and over sharpening. Left
to right: degraded, DAE, LDM, LMPPM (ours), and original.

Figure 5: Left to right: over-sharpened input, DAE, LDM, LMPPM (ours), and original.
LMPPM remains realistic despite changes to the face.

unifying framework, which is valuable in its own right, we propose incorporating a learned
distance function to the manifold. By leveraging distances to the manifold, we establish a
connection between the geometric structure and a probability density approximation. By
employing a kernel-like method to approximate the probability distribution on the manifold,
or equivalently on the latent space, we integrate geometry and probability in a novel manner.
We induce a vector field in the ambient space via the score of these probability densities.
This vector field directs each point toward the manifold of clean images, considering both
the structure and the distribution of clean and meaningful images on the manifold.
In this work, we utilize a (denoising) autoencoder in conjunction with the distance function.
Providing an approach where both F and G define the manifold while maintaining their
coupling to the distance function D from it. However, due to potential errors in the outputs
of the three networks G, F and D, especially when x is far from the manifold, this vector field
is not exact. Therefore, rather than applying a single-step (weighted) projection onto the
manifold, we proceed iteratively, advancing in small steps along the noisy vector field. We
are currently exploring an analogous approach where VAE and GAN are coupled with the
distance function. A key practical advantage of our approach is its application in the latent
space. This dimensionality reduction significantly enhances the accuracy of the distance
function, thereby improving restoration and generation results. Indeed, as shown in our
experiments (Section 5.1), comparisons with other leading methods indicate the superior
performance of our methods, particularly under severe distortions for different data sets and
different distortions.

9
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A Appendix: Detailed Theory

A.1 MPPM

The loss function for the MPPM is
L(F, G,DM) = λ1

∑
xi /∈M

(DM(xi)− ∥xi − x∗
i ∥])2 + λ2

∑
xi∈M

(
xclean

i −G(F (xclean
i )

)2

+ λ3
∑

xi∈M
|DM(xi)|2 + λ4

∑
xi∈RD

(DM(xi)− |DM(xi)|)2 + λ5
∑

xi∈RD

(
xshift

i − x∗
i

)2
,

(15)
where x∗ = G(F (x)). The first term defines the distance function assuming a perfect
autoencoder; the second is the standard autoencoder loss. The third term enforces the
boundary condition on the distance function and the fourth ensures its positivity. The last
term enforces the geometric consistency of Eq. (8) (see also Fig. 1).

A.2 Kernel method

Detailed computation of eq. 2

Pnon-u(x) =
∫

M
P (x, y = G(z))dy =

∫
M

P (x|y = G(z))P (y)dy

=
∫
Rd

P (x|G(z))P (G(z))√gdz =
∫
Rd

P (x|G(z))P (z)dz,

where the subscript "non-u" stands for non-uniform. Here dy = √gdz is the manifolds
volume element, where g = det G and Gµν =

∑D
i=1 J i

µJ i
ν is the induced metric, with the

Jacobian of the embedding map given by J i
µ = ∂Gi(z)/∂zµ. In the last equality, we use the

identity P (G(z)) = P (z)(√g)−1.

A.3 score function

snon-u(x) = ∇x log Pnon-u ≈ ∇x log P̂non-u =: ŝnon-u(x).

Direct computation results in

ŝnon-u(x) = − 1
2σ2

d

(
x− Ḡ(x)

)
, (16)

where Ḡ(x) =
∑

α∈S Ḡα(x), and

Ḡα(x) = 1
P̂non-u(x)QdQker

∫ [
G(z)P (x|G(z)) exp

(
−||z − zα||2

2σ2
ker

)]
dz. (17)

Specifically,

ŝnon-u(x) = 1
P̂non-u

∇xP̂non-u = 1
P̂non-u

∇x

(∫
P (x | G(z))Pker(z)dz

)
.

Now,

(∇xP (x | G(z))) Pker(z) = − 1
2σ2

dQd
(x−G(z)) exp

(
−∥x−G(z)∥2

2σ2
d

)
1

Qker

∑
α∈S

exp
(
−||z − zα||2

2σ2
ker

)
.

(18)

The integral of z in the computation of Ḡα(x) is approximated by randomly sampling the
normal distribution centered around the training point zα. Explicitly, we approximate the
mean using and average over n samples from Pker∫ [

G(z)P (x|G(z)) exp
(
−||z − zα||2

2σ2
ker

)]
dz ≈ 1

n

∑
zi∈N (zα,σ2

ker)

G(zi) exp
(
−∥x−G(zi)∥2

2σ2
d

)
,

(19)
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where α denotes an index in the training set (see Fig. 6). The calculation of Ḡα(x) requires
evaluating Pnon-u(x) in the denominator. In particular, we approximate∫ [

P (x|G(z)) exp
(
−||z − zα||2

2σ2
ker

)]
dz ≈ 1

n

∑
zi∈N (zα,σ2

ker)

exp
(
−∥x−G(zi)∥2

2σ2
d

)
. (20)

Note that in the computation of Ḡα all constant factors Qd, Qker and 1
n , are canceled

between the numerator and the denominator.

Figure 6: An illustration of the kernel approximation Pker(z) of the probability distribution
P (z) in the latent space.

B Appendix: Detailed Experimental Setup

B.1 Notation and Abbreviations

Table 3: Glossary of abbreviations and terms used throughout the paper

Term Definition
DAE Denoising Autoencoder
MPPM Manifold Projection and Propagation Method (our proposed approach)
LMPPM Latent Manifold Projection and Propagation Method (our proposed approach)
LDM Latent Diffusion Model
SSIM Structural Similarity Index Measure
BN Batch Normalization

Table 4: Summary of experimental datasets used for evaluating restoration performance

Dataset Description
MNIST 60,000 training/10,000 test grayscale images (28× 28 pixels)
SCUT-FBP5500 5,500 facial images with beauty scores (resized to 120× 120)

B.2 Degradations

Degradation Parameters We apply six degradation types to simulate real-world image
corruption scenarios. Each degradation is applied at three severity levels (mild, intermediate,
and severe) to test the robustness of restoration methods:

12
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Table 5: Degradation parameters at different severity levels. Note: Lower σ values for elastic
deformation indicate more severe distortion due to increased localized displacement

Degradation Mild Severe
Gaussian noise (σ) 0.2 0.3
Elastic deformation (σ) 1.5 1.1
Super-resolution (downsampling factor) 0.5 0.35
Missing Pixels 0.04 0.1
Number of Scibbles 13 20
Over Sharpening 10 18

Degradation Methods Brief descriptions of each degradation type:

• Gaussian noise: Additive zero-mean Gaussian noise that simulates sensor noise
or transmission errors.

• Elastic deformation: Non-rigid distortions implemented using
torchvision.transform.ElasticTransform(α = 34,σ) that simulate warping ef-
fects.

• Super-resolution: Downsampling followed by upsampling to original resolution,
simulating reconstruction from low-resolution data.

• Missing Pixels: Set black patches with some coverage portion;
• Scribbles Add n random scribbles with random colors
• Over Sharpening by factor s: I = I + s(I − I ∗ σs)

B.3 Model Architectures

We implemented three main architectures across all experiments, with design choices tailored
to each dataset’s complexity.

Synthetic Data Model Synthetic data for MPPM experiments use MLP-based networks
with a latent dimension of 8, selected based on the low intrinsic dimensionality of these
manifolds:

Table 6: Network architectures for synthetic data experiments. All models use fully-
connected layers

Component Architecture
Encoder 3→ 64→ 32→ 16→ 8 with ReLU
Decoder 8→ 16→ 32→ 64→ 3 with ReLU
Distance Network 8→ 64→ 32→ 16→ 1 with ReLU, dropout=0.2

MNIST Models MNIST experiments use CNN-based models with latent dimension 18,
chosen to capture the variability among handwritten digits while promoting compact rep-
resentations.

Table 7: Network architectures for MNIST experiments

Component Architecture
Encoder Conv2d(1→ 32→ 64, kernel = 3, stride = 2)→ Flatten→ Linear(64× 7× 7→ 18)
Decoder Linear(18→ 64× 7× 7)→ Reshape→ ConvTranspose2d(64→ 32→ 1)→ Sigmoid
Distance Network 18→ 100→ 50→ 20→ 1 with ReLU, dropout=0.2

SCUT-FBP5500 Models Facial image experiments employ a U-Net with skip connec-
tions and a latent dimension of 1024, which accommodates the higher complexity of facial
features while enabling detailed reconstruction. Facial image experiments employ a U-Net

13
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Input
3×120×120

Enc1
Conv×2

C: 3→32
H×W: 120×120

Enc2
MaxPool 2×2

Conv×2
C: 32→64

H×W: 60×60

Enc3
MaxPool 2×2

Conv×2
C: 64→128

H×W: 30×30

Enc4
MaxPool 2×2

Conv×2
C: 128→256
H×W: 15×15

Flatten
256×7×7 → 12544

Bottleneck
Linear

12544 → 1024

LeakyReLU

Decoder Dense
Linear

1024 → 12544

LeakyReLU

Reshape
→ 256×7×7

⊕

⊕

⊕

⊕
Dec4

UpConv2d
Conv×2

→ 128 @ 15×15

Dec3
UpConv2d

Conv×2

→ 64 @ 30×30

Dec2
UpConv2d

Conv×2

→ 32 @ 60×60

Dec1
UpConv2d

Conv×2

→ 32 @ 120×120

Final
Upsample → 120×120

Conv 32 → 3 + Sigmoid

Output
3×120×120

Encoder Decoder

injection Ii skip path (pre & post ⊕) blend: (1 − α)e + αI α: injection strength    wi: ei weight    σ: skip noise    skip path (opt.): ×wi  &  +(0, σ)⊕

Figure 7: Modified U-net architecture

with skip connections and a latent dimension of 1024, which accommodates the higher com-
plexity of facial features while enabling detailed reconstruction. Note that in the U-Net
architecture, during the inference process we use iterations (denoted by superscripts) such
that

F (xn) =
(
Sn

1 , Sn
2 , . . . , Sn

k , zn
)T

,

and
xn+1 = G

(
Sn

1 + Ŝn
1 (zn+1), Sn

2 + Ŝn
2 (zn+1), . . . , Sn

k + Ŝn
k (zn+1), zn+1

)
.

Here, each Ŝn
i (zn+1) denotes the projection of the latent space zn+1 onto the corresponding

skip connection Sn
i . Thus, the updated skip connection is formed by adding the original

skip feature Sn
i with the new projected feature Ŝn

i (zn+1) before being passed to G. The
architecture is illustrated in Fig. 7.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Component Structure
EncoderBlock(Cin → Cout) Conv(Cin → Cout)→ BN→ LReLU→

Conv(Cout → Cout)→ BN→ LReLU→ MPool
Encoder EncoderBlock(3→ 32), output: 60× 60

EncoderBlock(32→ 64), output: 30× 30
EncoderBlock(64→ 128), output: 15× 15
EncoderBlock(128→ 256), output: 7× 7
Flatten→ Linear(12544→ 1024)→ LReLU

DecoderBlock(Cin, Cskip, Cout) ConvT(Cin → Cin)→ Cat([Cin, Cskip])→
Conv(Cin + Cskip → Cin)→ BN→ LReLU→
Conv(Cin → Cout)→ BN→ LReLU

Decoder Linear(1024→ 12544)→ Reshape(256, 7, 7)
DecoderBlock(256, 256, 128), output: 15× 15
DecoderBlock(128, 128, 64), output: 30× 30
DecoderBlock(64, 64, 32), output: 60× 60
DecoderBlock(32, 32, 32), output: 120× 120
Conv(32→ 3)→ Sigmoid

Distance Network 1024→ 100→ 50→ 20→ 1 with ReLU, dropout=0.2

Table 8: Network architectures for SCUT-FBP5500 experiments. Skip connections connect
corresponding Encoder and Decoder layers through concatenation. The encoder and de-
coder blocks are represented as parameterized functions (shown in italic font), where Cin,
Cout, and Cskip represent the number of input, output, and skip connection channels re-
spectively. Abbreviations: Conv = Conv2d (kernel=3, padding=1), BN = BatchNorm2d,
LReLU = LeakyReLU(0.2), MPool = MaxPool2d(2), ConvT = ConvTranspose2d(kernel=2,
stride=2), Cat = Concatenation. The bottleneck dimension is 1024.

C Training and Evaluation

Table 9: MPPM training and inference parameters for synthetic data

Parameter Value
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rates AE: 1× 10−3, Distance network: 1× 10−3

Weight decay 1× 10−4

Batch size 550
Training epochs 500
Loss function Composite loss (Equation 15)
Early stopping Patience: 100 epochs
α (distance gradient step) 0.15
β (kernel averaging weight) 0.1
Convergence tolerance 0.005
Maximum iterations 60
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Table 10: LMPPM training parameters across all experiments, determined through prelim-
inary grid search, diffusion steps are define the number of steps in algorithm 2

Parameter Value
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rates AE: 1× 10−3, Distance network: 1× 10−5, LDM: 1× 10−3

Batch size MNIST: 128, SCUT-FBP5500: 32
Training epochs MNIST: 100, SCUT-FBP5500: 75
Loss functions DAE: L2, LDM: MSE, LMPPM: Composite loss 13
Early stopping Patience: 8 epochs
Diffusion steps MNIST: 2000, SCUT-FBP5500: 2000

D Additional Results

Here, we present additional experimental results. Figures 8 and 9 depict the results of the
MPPM algorithm.

Figure 8: The manifoldM is the unit circle lying in the xy-plane and is parametrized by the
azimuth angle θ. It is sampled according to a normal distribution centered at θ0 indicated
by the red line. The reconstruction trajectory is shown in dark red. Note that the final
result of the iterations on x does not converge to x∗ which is the closest point on the circle.
Instead, it is influenced by the data distribution on the manifold through the effect of Ḡ(x).

Next, we present additional results on the MNIST dataset using the LMPPM algorithm.
Figure 10 shows reconstruction results under noise, elastic, and downsampling deforma-
tions, compared with the DAE and LDAM models. Figures 11, 12, 13, and 14 present
reconstruction results for missing pixels, scribbles, noise, and over-sharpening deformations,
respectively for the SCUT-FBP5500 dataset. We compare our method with the DAE and
LDM models. Finally, Figure 15 shows the reconstruction after 4 iterations.
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(a) DAE restoration. MSE = 0.032, max error
= 0.147.

(b) MPPM restoration. MSE = 0.026, max er-
ror = 0.060.

Figure 9: Comparison between the DAE and our proposed MPPM, this example uses the
same setup as in Fig. 8. The error was computed as the deviation from the unit circle in
2D. In regions of the circle with lower probability density, the DAE is more prone to error
than the proposed MPPM method.

Figure 10: Left panel: noise = 0.7; middle panel: elastic (α = 0.34, σ = 1.8); right
panel: downsampling factor = 0.35. In all panels, from left to right: degraded, DAE, LDA,
LMMPM (ours), and original.
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Figure 11: Missing pixels. From left to right: degraded, DAE, Diffusion, LMPPM, original.

Figure 12: 13 scribbles. From left to right: degraded, DAE, Diffusion, LMPPM, original.
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Figure 13: Noise σ = 0.3. From left to right: degraded, DAE, Diffusion, LMPPM, original.

Figure 14: over sharpening. From left to right: degraded, DAE, Diffusion, LMPPM, original.

Figure 15: gradual reconstruction of missing pixels degradation.
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E Use of Large Language Models

Large Language Models (LLMs) were used in this work solely as a language assistance tool
for English polishing and proofreading. Specifically, we employed LLMs to:

• Improve grammar, syntax, and sentence structure in the manuscript
• Enhance clarity and readability of technical descriptions
• Correct spelling and typographical errors
• Suggest more precise word choices and phrasing

The LLMs did not contribute to research ideation, methodology development, experimen-
tal design, data analysis, or the generation of scientific content. All research concepts,
approaches, results, and conclusions presented in this paper are entirely the work of the
human authors. The LLMs were used exclusively for language refinement of content that
was already conceptualized and written by the authors.
Additionally, an LLM was used to assist in drafting this disclosure section itself, based on
the authors’ description of how LLMs were employed in the research process.
We take full responsibility for all content in this manuscript, including any text that was
refined with LLM assistance. All factual claims, scientific interpretations, and conclusions
remain our own work and responsibility.
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