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Abstract

Foundation models (FMs) for computer vision learn rich and robust representations,
enabling their adaptation to task/domain-specific deployments with little to no fine-tuning.
However, we posit that the very same strength can make applications based on FMs vul-
nerable to model stealing attacks. Through empirical analysis, we reveal that models
fine-tuned from FMs harbor heightened susceptibility to model stealing, compared to
conventional vision architectures like ResNets. We hypothesize that this behavior is due
to the comprehensive encoding of visual patterns and features learned by FMs during
pre-training, which are accessible to both the attacker and the victim. We report that
an attacker is able to obtain 94.28% agreement (matched predictions with victim) for a
Vision Transformer based victim model (ViT-L/16) trained on CIFAR-10 dataset, com-
pared to only 73.20% agreement for a ResNet-18 victim, when using ViT-L/16 as the
thief model. We arguably show, for the first time, that utilizing FMs for downstream tasks
may not be the best choice for deployment in commercial APIs due to their susceptibil-
ity to model theft. We thereby alert model owners towards the associated security risks,
and highlight the need for robust security measures to safeguard such models against
theft. Code is available at https://github.com/rajankita/foundation_
model_stealing.

1 Introduction

Model Stealing Attacks. Driven by a huge surge in the capabilities of Machine Learning
(ML) techniques, many companies now deploy trained ML models on the cloud, and mone-
tize by providing paid access to users via Application Programming Interfaces (APIs). The
trained model and the training dataset are often the intellectual property of the company, and
therefore the model internals, including the training dataset, model architecture, and weights
are kept hidden, providing only black-box access to users. However, such models are vul-
nerable to model stealing attacks [28, 30, 41], wherein malicious users replicate the behavior
of a model by querying the API on a select set of inputs, and training a substitute model on
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Figure 1: (a) Standard model stealing setup: An adversary picks images from a proxy dataset
and queries from the victim model to obtain labels. This labeled proxy dataset is used to train
the thief model. (b) Victims derived from foundation models are more prone to stealing: We
steal three victim models trained on the CIFAR-10 dataset, using a ViT-L/16 thief. Even
though using stronger victims based on foundation models like ViT-L/16 improves victim
accuracy, but the agreement between the victim’s and thief’s predictions also increases at the
same time, underlining the increased severity of the threat.

the acquired predictions (see Figure 1(a)). The model thus obtained can either be used as
a substitute for the victim model, thereby extracting commercial value from it, or to launch
further attacks like adversarial [13, 26] or model inversion [47] on the victim model (called
adversarial transfer). In either case, the integrity of the victim model is compromised.

Foundation Models. Recent development in foundation models such as Vision Transform-
ers [10], and powerful pre-trained encoders like CLIP [33] and ALIGN [20] have greatly
advanced the field of Computer Vision. The availability of foundation models pre-trained
on massive datasets has greatly enhanced the capabilities of model owners, who can train
task-specific models on downstream applications easily by fine-tuning these models. The re-
sulting downstream models boast high accuracy, causing model owners to be more inclined
towards choosing foundation models over conventional vision architectures [16, 39]. While
ViTs [10] are known to be more robust compared to convolutional architectures in terms of
both adversarial attacks [37] and common corruptions [31], the model stealing risks associ-
ated with downstreaming these models for commercial APIs have not been systematically
investigated.

Our Focus. In this paper, we study the vulnerability of image classification APIs based
on foundation models to model stealing attacks. The victim models are foundation mod-
els (ViTs) fine-tuned on downstream datasets that are made accessible via black-box APIs.
We consider both final layer fine-tuning, aka linear probing, and full fine-tuning. Firstly,
we show that using more accurate victim models may not always be the best bet for model
owners from the perspective of model stealing. This is because, not only the model own-
ers, but attackers can also avail of these powerful pre-trained models. Assuming a well
equipped thief, which has access to at least as strong a foundation model as the victim, we
show that victim models obtained by fine-tuning from foundation models have a heightened
susceptibility to theft compared to smaller models like ResNets. This is due to the extensive
knowledge encapsulated within these foundation models, which is now available to both
victim and adversary/thief models. Secondly, attackers armed with access to a foundation


Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2014

Citation
Citation
{Mazeika, Li, and Forsyth} 2022

Citation
Citation
{Zhang, Jia, Pei, Wang, Li, and Song} 2020

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Jia, Yang, Xia, Chen, Parekh, Pham, Le, Sung, Li, and Duerig} 2021

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Shao, Shi, Yi, Chen, and Hsieh} 2022

Citation
Citation
{Paul and Chen} 2022


RAJ ET AL.: FOUNDATION MODELS AND MODEL STEALING 3

model, by virtue of stronger representation available, can execute model theft with relative
ease, when compared to shallower thieves.

Higher Accuracy or Better Privacy? By carrying out this study, we aim to raise awareness
about the risks associated with using foundation models in the Machine Learning as a Service
(MLaaS) setup. While it is always beneficial for an adversary to use foundation models for
stealing, the victim needs to be more careful in their choice, and must choose between higher
accuracy and better privacy. Our study also underscores the necessity for robust security
protocols and countermeasures in the deployment and utilization of these models.

Contributions. We make the following contributions: (1) We conduct a thorough system-
atic study on three datasets, seven victim models, and four thief models to evaluate the model
stealing vulnerability of victim models obtained from foundation models, particularly ViTs,
either via linear probing or by fine-tuning all layers. (2) Our studies conclude that, under
a strong attack wherein the thief has access to pre-trained foundation models, models fine—
tuned from ViTs are more vulnerable to theft as compared to models fine-tuned from convo-
lutional architectures. Using a ViT-L/16 thief, we report agreements of 94.28%, 60.52% and
62.94% for victim models based on ViT-L/16 model trained on CIFAR-10, Indoor-67 and
Caltech-256 datasets respectively, compared to agreements of 73.20%, 40.22% and 46.23%
respectively for ResNet-18 based victims. (3) Even when the victim model is not fine-tuned
from a foundation model, we show that foundation models greatly enhance the attacker’s
capabilities. When stealing a ResNet-18 victim trained on CIFAR-10 dataset, we report an
agreement of 77.12% for a ViT-B/16 CLIP-based thief, compared to 64.53% agreement for
a ResNet-34 thief (refer Figure 3).

2 Related Work

Model Stealing Attacks. Model stealing attacks aim to replicate black-box machine learn-
ing models, either by extracting exact weights or hyperparameters of the victim model [2, 4,
11, 18, 19, 27], or by approximately mimicking the victim model’s predictions [2, 11, 18].
The latter method involves iteratively querying the victim on a designated set of inputs, often
referred to as a "proxy" dataset, and subsequently training a substitute model based on the
acquired predictions. Some studies [7, 28, 29, 45] use natural images from publicly avail-
able datasets as the proxy data, devising techniques to select the most informative samples
to minimize the attacker’s cost. Another school of methods [3, 21, 35, 42, 44, 48] gener-
ates synthetic data for querying the victim, eliminating the reliance on natural images but
incurring significant costs for the attacker due to the necessity of millions of queries. In this
work, we adopt an approximate model stealing setup utilizing natural images, recognizing
its practicality and resemblance to real-world attack scenarios.

Foundation Models in Computer Vision. Foundation models, initially conceived within
the NLP domain, have found widespread adoption within the computer vision community.
Trained on massive amounts of data in a supervised or self-supervised manner, these models
learn rich, generalized representations that can serve as the backbone for various downstream
tasks. Among these, Vision Transformers (ViTs) [10] stand out as prominent foundation
models in vision research that excel in capturing global dependencies and contextual infor-
mation from visual data using self-attention mechanisms. Since the original Vision Trans-
former (ViT) [10] model, several variants have been proposed including DeiT [40], Swin
Transformer [25], DINO [5], etc. Additionally, models like CLIP [33] and ALIGN [20] have
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further expanded the horizon of foundation models in vision, by aligning visual and textual
representations into a shared embedding space.

Foundation Models and Model Stealing. In the NLP domain, Krishna et al. [22] demon-
strated that models fine-tuned from large pretrained language models like BERT can be
stolen by issuing semantically irrelevant input queries. In computer vision, model steal-
ing attacks have been studied only for CNN based victim models for the image classification
task. Battis et al. evaluated the role of ViTs in model stealing, but only from the attacker’s
perspective. An emerging thread of work [12, 24, 36] deals with stealing large pre-trained
image encoders like SimCLR [6], MoCo [17], BYOL [15] and CLIP [33]. These methods
aim to steal general-purpose encoders that return rich feature embeddings rather than model
posteriors or labels, rendering them highly vulnerable to theft. Differently, in our work, we
steal classification models fine-tuned from large foundation models on downstream tasks.

3 Methodology

3.1 Victim Model

The victim model is a neural network fy trained for image classification. The model owner
trains fy on labeled images from training data distribution Py (X). To ease the training, the
model owner uses an open-source pre-trained model, and fine-tunes it on their dataset, called
victim dataset. The pre-trained model could either be conventional architectures popularly
used in computer vision, e.g., VGG [38] or ResNet [16], or modern large foundation models
like ViT [10] or CLIP [33] which are pretrained on huge datasets and come with strong
representation power. The output of the model, y € {1,...K}, is a distribution over K classes.

The trained victim model is deployed on a cloud service platform as a black-box. In
this setting, the victim’s architecture and weights are hidden, but a user can query the model
via an API and obtain its predictions on a given image. This setup allows the victim to
monetize from their model by charging the user on query basis. Several previous works
assume the availability of the full probability vector fi (x) € RX (also known as soft labels)
as the victim’s output. However, many real-world APIs only return the topmost prediction
argmax;c(y .y fv (x); for a queried image, also known as hard-label. We adapt the hard-

label setup in our experiments, on account of it being closest to real-world scenario.

3.2 Attacker’s Goal

The attacker’s objective is to replicate the behaviour of the victim model. We don’t mean to
replicate the exact weights of the victim neural network, but to train a substitute/thief model
fr that is functionally equivalent to the victim model in terms of predictions on the victim’s
held-out test set.

3.3 Attack Method

A major constraint for the attacker is that it does not have access to the victim’s training data
distribution Py (X). It therefore, uses a proxy distribution P4(X) to query the victim model.
The attacker selects a subset of images {x'}" | from P4(X) and receives predictions for the
queried images, thus constructing a labeled set D; = {(x/, fy (x')}", of size m which is then
used to train the thief model fr. Fundamentally, a thief model uses information obtained
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from the victim in the form of queried labels to learn similar decision boundaries as the
victim model. The performance of the thief model depends on the following factors:

Proxy dataset. For computer vision applications, the proxy dataset can be constructed from
publicly accessible natural images, or by generating synthetic images. In line with previous
works [28, 29], we use large scale publicly available datasets of natural images as the proxy
distribution.

Query selection method. For practical model stealing attacks, the thief has to work under
limited query budgets. As such, there is a large body of works dedicated to selecting the
best set of samples from the proxy dataset to query the victim model. This includes the
reinforcement-learning methods by [28], active learning based methods by [29] and GRAD-
CAM based methods by [45]. In this work, we adopt the simple yet effective Random
selection strategy [28] for most of our experiments. The impact of changing the sample
selection technique is studied in Section 5.4.

Thief architecture. Typically, the attacker has no knowledge of the victim model’s architec-
ture or hyper-parameters. However, several works on model stealing assume that the attacker
uses the same architecture as the victim model, for ease of experimentation, and also owing
to the belief that the thief model’s architecture does not significantly affect the model stealing
performance. However, given the easy availability of large and powerful foundation models,
it would be prudent for an attacker to use these larger models instead. We therefore assume
that an informed thief is able to use open-source pretrained models that are available on the
internet, and fine-tunes the model on the labeled dataset D; constructed from the proxy data.
For completeness, we also study the special case scenario when the thief model has the same
architecture as the victim (in the Supplementary).

4 Experimental Setup

4.1 Victim Datasets and Architectures

Datasets. We adopt three commonly-used image recognition datasets to train our victim
models. CIFAR-10 [23], Caltech-256 [14], and Indoor-67 [32]. Of these, CIFAR-10 and
Caltech-256 are general-purpose object recognition datasets with 10 and 256 object classes
respectively, while Indoor-67 is a fine-grained classification dataset comprising 67 types of
indoor scenes.

Architectures. We work with seven different victim architectures in our experiments. These
include four conventional CNN architectures: ResNet-18, ResNet-34, ResNet-50 and ResNet-
101 [16] pre-trained on ImageNet-1K dataset [34] containing 1.2M images, and three vi-
sion foundational models: ViT-S/16, ViT-B/16 and ViT-L/16 [10] pre-trained on the larger
ImageNet-21K dataset [9] containing 14M images from 21,841 classes. The power of these
models comes not only from the deeper architectures, but also from stronger pre-training on
massive datasets.

Training details. Fine-tuning on ImageNet-pretrained weights is a widely adopted method
of training CNN models. However, with the advent of powerful foundation models, fine-
tuning only the final layer (a.k.a linear probing) is gaining popularity, as it offers good results
at low training costs. We, therefore, consider both scenarios in our experiments. All models
are initialized using publicly available ImageNet [34] pre-trained weights: the ResNet mod-
els are pre-trained on ImageNet-1K, and the ViTs are pre-trained using the larger ImageNet-
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21K dataset. All pre-trained weights are obtained from open-source libraries like Pytorch
hub [1] or timm [46]. All victim models are trained using SGD optimizer for 100 epochs,
with a momentum of 0.9, weight decay of 5 x 10~#, and batch size of 128. An initial learning
rate is 0.002 is decayed by a factor of 10 after every 30 epochs. All input images are resized
to 224 x 224 and augmented using random cropping and random horizontal flipping.

4.2 Thief Datasets and Architectures

Dataset. We use publicly available unannotated images from the training set of ILSVRC-
2012 challenge dataset [34] as the thief’s proxy dataset. Commonly known as ImageNet, the
dataset contains 1.2 million images of varying sizes, of which we only use a subset of 128K
images resized to 224 x 224.

Architectures. We consider multiple model architectures for the thief model. These include
a CNN model ResNet-34 [16], two ViT models: ViT-B/16 and ViT-L/16 [10], as well as a
multimodal foundation model ViT-B/16 CLIP [33]. In general, we assume that the thief has
access to all publicly available pre-trained models that the victim has access to.

Training details. Thief models are trained using SGD optimizer for 100 epochs, with a
momentum of 0.9, weight decay of 5 x 10~ and a batch size of 128 (for ResNet-34), 32
(for ViT-B/16 and ViT-B/16 CLIP) or 64 (ViT-L/16). The initial learning rate is 0.001, and it
is decayed by a factor of 10 after 50 epochs. For stealing CIFAR-10 vicitm, input images are
resized to 224 x 224, and augmented using random cropping, random rotation and random
horizontal flip. For stealing other victims, we use random crop, random horizontal flip and
RandAugment [8]. All networks are initialized from ImageNet-pretrained weights. For
ResNet thieves, all layers are fine-tuned, whereas for ViT’s only the final layer is fine-tuned.

Sample Selection. For majority of our experiments, we consider the random-adversary
based sample selection method from Knockoff Nets [28], and limit the thief’s query budget
to 5000 samples. Of these, 10% samples are set aside as validation data for hyper-parameter
selection, and the rest are used for training. In Section 5.4, we evaluate the impact of the
sample selection method and query budget on our findings.

4.3 Evaluation Metrics

We use two evaluation metrics prevalent in the literature. Accuracy measures the perfor-
mance of the thief model on the victim model’s held-out test set, while Agreement measures
how often the thief’s prediction matches the victim’s. Note that the held-out victim dataset
is not accessible to the thief, and is only used for evaluation.

S Experiments and Results

5.1 Foundation Model Victims are Easy to Steal

In this section, we try to answer the question: Is a victim fine-tuned from a foundation model
more vulnerable to model stealing compared to a victim fine-tuned from a shallower model?
To do so, we train multiple victim models, including both conventional architectures and
foundation models. For the thief model, we assume a well-equipped attacker who utilizes
large, publicly available pre-trained foundation models, as reasoned in 3.3.
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Victim architecture | ResNet-18 ResNet-34  ResNet-50 ResNet-101  ViT-S/16  ViT-B/16  ViT-L/16

Params (M) 11.18 21.29 23.53 42.52 21.66 85.80 303.31

Pretraining dataset IN-1K IN-1K IN-1K IN-1K IN-21K IN-21K IN-21K
ez  Victim accuracy 80.74 81.96 80.24 84.64 86.38 94.12 97.61
é Thief accuracy 82.97 88.92 81.17 83.92 90.49 93.79 94.53
© Thief agreement 73.20 77.85 71.56 75.39 82.31 91.10 94.28
5 Victim accuracy 54.70 58.06 45.97 51.49 78.51 82.76 87.39
—§ Thief accuracy 36.87 39.70 34.10 29.85 51.49 46.57 59.03
~  Thief agreement 40.22 39.63 44.70 36.72 49.70 46.79 60.52
-5 Victim accuracy 67.75 74.36 58.47 74.78 84.78 87.67 94.13
i‘é Thief accuracy 47.42 54.86 35.38 53.63 58.20 5791 62.83
O Thief agreement 46.23 52.39 44.80 56.75 54.22 54.72 62.94

Table 1: Model stealing results for linear-probed victim models on three victim datasets.
Thief model is ViT-L/16. IN stands for ImageNet.

Linear-probed Victims. We first consider vic-
tim models that are trained by fine-tuning the  _, ., o rooecr

last layer of the respective pre-trained models, % o W
which is a common practice with foundation
models. The thief model is a ViT-L/16, which is *0 /\/‘\*——/

also linear-probed. We report the victim models’ 40

%

Agreement

. A 2N D D _p© e NS
accuracy, along with the accuracy and agree- R P
ment of the thief models in Table 1. We draw the Victim Architecture
following observations. Firstly, using founda- Figure 2: Agreement between multi-

tion models leads to an increase in victim model ple linear-probed victims (trained on three
accuracy, which is expected. Secondly, the ViT- datasets) and a linear-probed ViT-L/16 thief.
L/16 thief’s accuracy is higher for victims de-

rived from foundation models (ViT-S/16, B/16 and L/16). This can be attributed partly to the
higher victim model accuracy for foundation models. Therefore, we also report the agree-
ment between the victim and thief models, which directly quantifies the similarity between
the predictions of the victim and thief. Thirdly, we see that agreements are also higher for
ViT victims compared to ResNets (see Figure 2). On the Indoor-67 dataset for instance,
agreement for a ResNet-18 victim is only 40.22%, as compared to 60.52% for a ViT-L/16
victim. These findings suggest that while foundation models like ViTs offer higher accuracy
for the victim, they are also more susceptible to theft compared to non-foundation models,
particularly when targeted by well-equipped attackers who utilize foundation models them-
selves.

Fully Fine-tuned Victims. In this section, we evaluate victims obtained by fine-tuning all
layers of the backbone models, while the thief is still a linear-probed ViT-L/16. We show the
results for stealing multiple victim models using a ViT-L/16 thief in Table 2, and once again,
observe higher thief agreements for ViT victims compared to ResNets.

5.2 Foundation Models make Strong Thieves

So far, we have analyzed the impact of using foundation models on the victim’s end. In this
section, we look at the other perspective and try to answer the question: How do foundation
models affect the capabilities of a thief? We vary the thief’s model architecture and study
its impact on model stealing performance for various victim models. We compare the agree-
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Victim architecture | ResNet-18  ResNet-34  ResNet-50 ResNet-101  ViT-S/16  ViT-B/16

Params (M) 11.18 21.29 23.53 42.52 21.66 85.80

Pretraining dataset IN-1K IN-1K IN-1K IN-1K IN-21IK  IN-21K
o  Victim accuracy 96.54 97.41 97.62 98.42 98.33 98.33
é Thief accuracy 92.17 94.74 94.74 93.80 94.67 91.48
©  Thief agreement 90.89 93.96 93.80 93.10 94.01 91.06
5 Victim accuracy 75.60 78.73 81.64 82.61 87.01 86.19
é Thief accuracy 43.21 41.64 47.16 49.63 55.52 52.83
~  Thief agreement 41.27 41.42 48.28 49.48 55.97 53.96
- Victim accuracy 76.78 81.39 86.00 88.70 93.44 95.14
% Thief accuracy 47.73 56.14 61.77 63.20 63.00 57.57
O Thief agreement 44.58 52.78 60.23 61.67 62.25 56.98

Table 2: Model stealing results for fully fine-tuned victim models on three different victim
datasets. Thief model is ViT-L/16. IN stands for ImageNet.
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Figure 3: Agreement for thieves based on foundation models (ViTs) vs. a ResNet-34 based
thief. Victim models are linear-probed.

ments for four thief architectures: ResNet-34, ViT-B/16, and ViT-L/16, and ViT-B/16 CLIP,
for linear-probed victims in Figure 3 and fully fine-tuned victims in Figure 4. We can see
that for a given victim architecture, especially deeper architectures, a foundation model thief
achieves higher agreement as compared to a regular ResNet thief. More importantly, the
gap in performance between the ResNet thief and ViT thieves increases, as victim models
become deeper. When stealing smaller capacity victim models, the ResNet thief performs as
well as, or even better than the stronger ViT thieves, especially for Indoor-67 and Caltech-
256 datasets. But when the victim model itself is a higher capacity model, the ResNet thief
manages to recover only a small proportion of the victim model’s accuracy. For instance, in
Figure 3, when stealing a ViT-B/16 victim trained on Indoor-67 dataset, a ResNet-34 thief
achieves an agreement of only 25.44%, whereas a ViT-L/16 thief achieves 46.79% agree-
ment. Overall, we observe that foundation models serve as better thieves, particularly when
the victims are also derived from foundation models.

5.3 Qualitative Analysis

To understand why stealing victims fine-tuned from foundation models is more successful,
we visualize embeddings of the pretrained backbone models and the victim models in Fig-
ure 5. Using the CIFAR-10 dataset for ease of visualization, we select five victim models
trained by linear probing. For the backbone, we plot t-SNE embeddings [43] of the penulti-
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Figure 4: Agreement for thieves based on foundation models (ViTs) vs. a ResNet-34 based
thief. Victim models are fully fine-tuned.

Backbone

Victim Model

ResNet-18 ResNet-34 ResNet-50 ViT-B/16 ViT-L/16

Figure 5: t-SNE [43] visualizations of embeddings for backbone models (top row), and
corresponding victim models (bottom row) trained on CIFAR-10 dataset using linear probing
method. Observe that the clusters from the backbone models are much more well-separated
for the foundation models (ViT-B/16 and ViT-L/16) compared to ResNets.

mate layer on CIFAR-10 test set. Since the victim models are obtained by fine-tuning only
the classification head, we do not expect a change in embeddings of the penultimate layer.
We therefore, plot the final classification layer embeddings for the victim models. Notably,
for foundation models like ViT-B/16 and ViT-L/16, the backbone is already strong enough
to form well-separated clusters on CIFAR-10 despite not having been trained on CIFAR-10.
This clear separation of classes extends to the corresponding victim models. We hypothe-
size that due to the rich representations captured by the backbone architecture in foundation
models, the primary computational burden in the victim model resides within this backbone
structure, with relatively minimal reliance on the classification head. Consequently, when
the thief model possesses a similarly robust backbone architecture, stealing the classification
head becomes significantly easier. This stands in contrast to architectures such as ResNet-
18, where the pre-trained features within the backbone are comparatively less potent, thereby
rendering the task of stealing the classification head more challenging.
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5.4 Ablation Study

Impact of query budget. We vary the query budget in the range {2K, 5K, 10K, 20K}
and compute agreement for different linear-probed victims on the Indoor-67 dataset, and
a ViT-B/16 thief. Our findings indicate that the same trend holds for all query budgets:
foundation models can be stolen with higher agreement compared to ResNets. While the
gap in performance of ResNets and ViTs is less for lower budgets, increasing the number of
queries proves more detrimental for ViTs than for ResNets (figure in Supplementary).

Impact of sample selection method. So far, we had used Knockoff Nets’ random sam-
ple selection method [28] to select query points from the proxy dataset. We deploy two
more query-set selection strategies: Entropy-based and kCenter-based methods from Ac-
tiveThief [29] and observe similar trends in agreement for foundation models and ResNets,
for linear-probed victims on the Indoor-67 dataset, stolen using a ViT-B/16 thief (figure in
Supplementary), proving the generality of our findings.

6 Conclusion

We studied the susceptibility of image classification models fine-tuned from powerful foun-
dation models to model stealing attacks. Our findings reveal that victim models derived
from foundation models exhibit greater vulnerability to such attacks from strong, foundation-
model based thieves, compared to those derived from shallower backbones. In stark contrast
to the celebrated robustness of foundation models against adversarial and natural corrup-
tions, our study sheds light on their heightened susceptibility in the model stealing context.
This highlights a crucial trade-off between privacy and accuracy inherent in deploying mod-
els fine-tuned from foundation models in commercial APIs, and emphasizes the necessity
for enhanced security measures in model deployment strategies.
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