
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AESCODER: CODE AESTHETICS WITH AGENTIC
REWARD FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have become valuable assistants for developers
in code-related tasks. While LLMs excel at traditional programming tasks such
as code generation and bug fixing, they struggle with visually-oriented coding
tasks, often producing suboptimal aesthetics. In this paper, we introduce a new
pipeline to enhance the aesthetic quality of LLM-generated code. We first con-
struct AesCode-358K, a large-scale instruction-tuning dataset focused on code
aesthetics. Next, we propose agentic reward feedback, a multi-agent system that
evaluates executability, static aesthetics, and interactive aesthetics. Building on
this, we develop GRPO-AR, which integrates these signals into the GRPO al-
gorithm for joint optimization of functionality and code aesthetics. Finally, we
develop OpenDesign, a benchmark for assessing code aesthetics. Experimental
results show that combining supervised fine-tuning on AesCode-358K with rein-
forcement learning using agentic reward feedback significantly improves perfor-
mance on OpenDesign and enhances results on existing benchmarks such as Pan-
dasPlotBench. Notably, our AesCoder-4B surpasses GPT-4o and GPT-4.1, and
achieves performance comparable to large open-source models with 480B–685B
parameters, underscoring the effectiveness of our approach. We will release both
the code and datasets to facilitate further research in code aesthetics.

1 INTRODUCTION

LLMs have become powerful assistants in our daily lives, helping us polish writing, refine code, and
access knowledge (Team, 2025; DeepSeek-AI et al., 2025; OpenAI, 2025). Recently, coding LLMs
have achieved great success in various code related fields, such as code completion, bug fixing, and
software engineering(Anthropic, 2025; Guo et al., 2024). While LLMs have demonstrated remark-
able capabilities in single-text-modality coding tasks, they remain inadequate in visually-oriented
tasks such as chart generation and webpage design, leading to poor visual outcomes like overlap-
ping elements, inconsistent color schemes, and disorganized structures. Consequently, the aesthetic
dimension of LLMs remains an underexplored area.

In this paper, we focus on assessing and improving LLMs ability in visually-oriented coding tasks,
which refer to programming tasks in which the correctness or quality of the code is inherently tied
to its visual output. Typical examples include tasks that generate or manipulate visual artifacts such
as web pages (HTML/CSS), plots and charts (e.g., Matplotlib (Hunter, 2007), Seaborn (Waskom,
2021), Plotly (Inc., 2015)), or graphical scenes (e.g., Python Turtle). Unlike purely algorithmic
coding tasks, these tasks require the model to reason about visual structure, spatial layout, and
aesthetic consistency, in addition to syntactic or functional correctness. For the visually-oriented
coding tasks, a natural question arises: do LLMs possess any awareness of the aesthetics of their
own code? In other words, do they have a sense of aesthetics?

Building on these insights, we propose the code aesthetics concept, which captures the aesthetic
appeal of visually-oriented code. Currently, reward methods for training coding LLMs often focus
on a single textual modality, such as code executability and result correctness (Gehring et al., 2024;
Fu et al., 2023; Le et al., 2022; Dai et al., 2025). These methods have significant limitations when
applied to code aesthetics tasks, as they fail to assess visual aesthetics and are unable to interact with
elements like webpages, making them ineffective as reward sources. To address this challenge, we
propose agentic reward feedback, a new reward framework consisting of three agents, (i) execution

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

agent, which checks the code executability, (ii) static aesthetics agent, which assesses the aesthetics
based on an image of code execution result, and (iii) interactive aesthetics agent, which is specified
to evaluate the function of webpages while interacting with web elements. When receiving a raw
model output, the execution agent will try to extract the code blocks from the output and check
its executability. If passed, static aesthetics agent and interactive aesthetics agent will then run in
parallel to assess the static and interactive aesthetics perspectives respectively. The core idea is
simple: adopting a multi-agent system to provide a comprehensive and systematic reward feedback
from textual, visual, and interactive perspectives, thus giving a comprehensive feedback to better
align the sense of aesthetics of model with human or advanced models. This approach addresses a
key limitation of most open-source coding LLMs, which are confined to a single textual modality
and thus lack awareness of the visual rendering of their code.

To achieve this goal, we first build a large-scale supervised instruction tuning dataset AesCode-358K
of two major code aesthetics tasks: Python-based plot generation and webpage design. Given the ab-
sense of existing benchmarks for evaluating webpage aesthetics, we also construct the OpenDesign
benchmark, which consists of 840 real webpage design cases, to evaluate the aesthetics of webpage
from both visual (static) and interactive aesthetics using LLM-as-a-judge (Zheng et al., 2023; Gu
et al., 2025) method. Consequently, we perform reinforcement learning using GRPO (Shao et al.,
2024) algorithm combined with our Agentic Reward framework (GRPO-AR) to train two models
with different parameter scales—AesCoder 4B and AesCoder 7B. After supervised fine-tuning on
the AesCode-358K dataset and reinforcement learning with GRPO-AR, our models achieve signifi-
cant improvement in PandasPlotBench(Galimzyanov et al., 2025) and OpenDesign, showcasing the
effectiveness of the AesCode-358K dataset and GRPO-AR method.

The key contributions can be summarized as follows:

• We introduce the concept of code aesthetics and investigate whether LLM-generated code
demonstrates its own design aesthetics.

• We construct the first dataset for code aesthetics, AesCode-358K, and introduce the first bench-
mark, OpenDesign, a benchmark specifically designed to assess webpage design aesthetics.

• We propose a novel reward framework for code aesthetics, agentic reward feedback, and com-
bine it with GRPO algorithm for more effective model training in code aesthetics tasks.

2 RELATED WORKS

Aesthetics of AI-Generated Contents. With the rapid advancement of generative artificial intelli-
gence (van der Zant et al., 2013; Sakirin & Kusuma, 2023; Jovanovic & Campbell, 2022), increasing
attention has been directed to the aesthetic taste of AI-generated content (AIGC) (Cao et al., 2025;
Wu et al., 2023) and the alignment between AI aesthetics and human preferences (Zhang et al.,
2024; Liao et al., 2025; Ouyang et al., 2022). Previous works include textual aesthetics (Jiang et al.,
2024; Dilley, 2016), which investigates methods to provides a cleaner layout and better coherence
of LLM’s output (Jiang et al., 2024), and image aesthetics (Deng et al., 2017; Wu et al., 2024),
which focuses on assessing and improving the aesthetic quality of images. However, all these meth-
ods rely on evaluating static image(s) and may not capable to assess contents like webpages which
need interactions. As the growing maturity of AI agents (Achiam et al., 2023; Hurst et al., 2024),
it becomes possible to integrate interactive evaluation into the contents generated by large language
models, thereby providing more comprehensive and systematic feedback.

Reward Systems in Reinforcement Learning. In reinforcement learning, the reward serves as a
scalar feedback signal that quantitatively evaluates the immediate desirability of an agent’s actions,
thereby guiding the learning process toward behaviors that maximize cumulative long-term return
(Kaelbling et al., 1996). In the context of training large language models, the sources of reward can
be broadly categorized into two main types: (i) Model-based Rewards: This approach utilizes a pre-
trained reward model to generate feedback (Ouyang et al., 2022; Christiano et al., 2017; Wang et al.,
2024a; Cui et al., 2023). These models encode human preferences or expert knowledge, providing an
automated and scalable source of reward. (ii) Rule-based Rewards: This type of reward is generated
directly from human-defined rules or logic (Shao et al., 2024; Xie et al., 2025; Mu et al., 2024).
However, in complex tasks, relying solely on a single source of reward can induce biased behaviors,
ultimately driving optimization in an incorrect direction. Some works have been attempting to use

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

 #2. Static Aesthetics Agent

System Prompt

You are an expert evaluator tasked with rigorously
assessing the quality of an HTML webpage generated
by a large language model...
Carefully analyze the user instruction and the webpage
image. Score the webpage on these criteria:

1. Alignment with user instruction... (40 points)
2. Aesthetics and readability... (30 points)
3. Structural integrity and cohesion... (30

points)

Static Aesthetics Score: 93

Model Judging

Looking at the webpage, it effectively meets the brief
with a polished, modern design and intuitive layout that
highlights the menu and ordering features. Its main
shortcomings are the lack of authentic food
photography, an incomplete ordering process, and minor
design flaws like low-contrast text.
```json
{"alignment": 38, "aesthetics": 28, "structural": 27,
"total": 93}
```

Screenshoting Webpage

Pure HTML Code Webpage Screenshot

Playwright

Chrome

Screenshot

User Instruction

GPT-5 Judging

Create a pizza restaurant website with a focus on the menu and online ordering.
 User

 LLM
Okay, I will design a polished HTML webpage with embedded CSS and javascript.

```html ... ```

HTML Data Construction

Seed Keyword Instruction Corpus HTML Generation Data Filtering

Plot Data Construction

Instruction Extraction Code Generation Runtime Validation
AesCode-358K

Model Training

Sft on AesCode-358K RL with GRPO-AR

             #3. Interactive Aesthetics Agent

GUI Agent

Iterate max_iter Times

Score Aggregation

Score list by each iteration: [1, 0, 1] Total score: 1+0+1=2

Total reward = wexec * rexec + wstatic * rstatic + winteract * rinteract

Return
Directly

Screenshot

Hosting the webpage Action

Agent Planning and Trajectory

Make a plan list of 
elements to interact Choose an action Analyze the result, 

and score for this iteration

             #1. Execution Agent

Original Output Pure HTML Code

HTML Code Extraction

Basic Grammar Checking

1. Start with <!DOCTYPE html>
2. End with </html>
3. ......HTML5 Standard

Scoring

Failed: Score -1 All passed: Score 1
Parallel
Running

Figure 1: Overview of the AesCoder pipeline, which integrates data construction, model training,
and a weighted scoring mechanism. GRPO-AR coordinates performing GRPO with three special-
ized reward agents—Execution, Static Aesthetics, and Interactive Aesthetics—for comprehensive
reward feedback.

agents, which combine human preference rewards with verifiable signals, to provide more reliable
rewards (Peng et al., 2025).

3 THE AESCODE-358K DATASET

To investigate code aesthetics, we focus on domains where both the visual outcome and the im-
plementation style matter. In this context, two representative areas are considered: Python-based
plot generation, which emphasizes clarity and expressiveness in visualization, and webpage design,
where aesthetic factors directly influence layout and user experience. In this section, we introduce
AesCode-358K, a large-scale supervised instruction-tuning dataset designed for two key areas of
code aesthetics.

3.1 PYTHON-BASED PLOT DATA CONSTRUCTION

We adapted instructions from the existing VisCode-200K dataset (Ni et al., 2025). While the orig-
inal dataset contains 200K data points, we found that some of the Python code snippets were not
executable. To ensure high quality, we used Qwen3-Coder-480B-A35B-Instruct-FP8 (Team, 2025;
Hui et al., 2024) to regenerate the Python code.

We enforced quality control in two ways. First, we limited the Python environment to essential
libraries like matplotlib, seaborn, and plotly to prevent unexpected imports. Second, we
validated the code’s executability using Jupyter Notebook runtime checks, ensuring that the gener-
ated code runs without errors and produces the correct visualizations. After this rigorous filtering,
we obtained 158K high-quality plot data points.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 WEBPAGE DESIGN DATA CONSTRUCTION

We developed a four-step process to create a large-scale webpage design dataset. First, we used
GPT-4o to generate a seed keyword corpus across five webpage categories: General Website, 3D
Design, Data Visualization, Game Dev, and UI Component. Next, GPT-4o was used to produce di-
verse webpage design instructions from these keywords. We then projected the instructions into an
embedding space and applied t-SNE visualization to examine category overlap. To remove redun-
dancy, we further applied large-scale clustering and retained only representative samples, resulting
in a refined instruction dataset (details in Appendix B.2). Finally, we employed GPT-5 (OpenAI,
2025) and Qwen3-Coder-480B-A35B-Instruct-FP8 (Team, 2025) to generate HTML code for each
instruction. We present dataset statistics and keyword generation prompts in Appendix B.

To ensure the quality of the generated HTML code, we first confirmed that it was executable. We
then rendered the webpages using playwright 1 and selenium 2 and asked GPT-5 to score the
two outputs based on their rendered images. We selected the code with the higher score as our final
data.

4 AGENTIC REWARD FRAMEWORK

For coding tasks, mainstream reward signals typically include execution or unit test success (Gehring
et al., 2024; Fu et al., 2023), process-aware reward models (Le et al., 2022; Dai et al., 2025), and
human preference feedback (Shen et al., 2023). However, these approaches mainly focus on textual
modality and lack vision-oriented reward signals, rendering them unsuitable for evaluating code
aesthetics. In visually grounded code generation, we highlight three essential dimensions:

• Code Executability. The generated code must run successfully, which forms the fundamental
requirement of all code-related tasks.

• Static Aesthetics. This dimension captures the visual quality of the rendered output. An ef-
fective design should be concise, well-structured, and visually coherent, with elements properly
aligned and exhibiting a clear sense of design.

• Interactive Aesthetics. Beyond static visuals, interactive aspects are crucial for web-
pages—especially those featuring 3D objects or browser-based games. This dimension eval-
uates whether page elements are not only visually appealing but also functionally meaningful
and reasonably interactive.

Based on these dimensions, we propose an agentic reward framework that leverages a multi-agent
system to assess each aspect, integrates their evaluations, and generates comprehensive feedback for
webpage design from multiple perspectives.

4.1 EXECUTION AGENT

The execution agent verifies whether the model’s output is executable and reports the result to the
feedback system. Specifically, it assigns sexec = 1 if the output passes all validations, and sexec = −1
otherwise. For a raw model output, the agent first attempts to extract the HTML code from the html
block; if not found, the entire output is treated as HTML. Given that web browsers tolerate many
structural and syntactic errors, strict execution checking is unsuitable for HTML. Instead, we use
HTMLHint 3 to implement a rule-based HTML checker to validate the basic syntax. The detailed
rules can be seen in Appendix G.7.

4.2 STATIC AESTHETICS AGENT

The static aesthetics agent evaluates visual quality using full-page webpage screenshots. For an
HTML file, it first hosts the page locally using playwright in headless mode, then captures a
full-page screenshot for subsequent visual assessment. We identify three dimensions essential for
evaluating a webpage screenshot:

1https://playwright.dev/
2https://www.selenium.dev/
3https://htmlhint.com/

4

https://playwright.dev/
https://www.selenium.dev/
https://htmlhint.com/


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Instructional Alignment. Evaluates consistency between the page’s style and user instructions.
• Visual Elements. Assesses the effective use of modern design features such as lighting, trans-

parency, and gradients.
• Layout and Cohesion. Examines whether the structure is functional, responsive, and visually

coherent, with concise yet design-aware typography.

We select GPT-5 (OpenAI, 2025) as the judge for its strong multimodal reasoning ability. Given an
HTML file generated by the model under a prompt, the page is first rendered into a static image.
Using a chain-of-thought approach (Wei et al., 2023), the judge evaluates this image and provides
both a score and a rationale for each dimension. While both scores and explanations are required
to ensure reliable evaluation (Wei et al., 2023; Yao et al., 2023), we retain only the final aggregated
score as the output of the static aesthetics agent. The detailed prompts are provided in Appendix G.2.

4.3 INTERACTIVE AESTHETICS AGENT

For webpage design, evaluation based only on static screenshots is insufficient, as it overempha-
sizes visual appearance while neglecting usability. This issue is particularly critical for interactive
webpages such as 3D design platforms or browser-based games. To address this, we introduce the in-
teractive aesthetics agent, which autonomously navigates, explores, and interacts with webpages to
provide usability-aware feedback. Given the HTML code, the agent launches the page in a headless
environment, interacts with its elements, and evaluates their functionality. We adopt WebVoyager
(He et al., 2024) as the base framework and GPT-4o (OpenAI, 2024) as the multimodal model.

Agent Planning. At the start of evaluation, the agent generates an initial list of interaction can-
didates by reasoning about which elements are most relevant to the user instruction and webpage
content. It then ranks these candidates and selects the top N for execution. To ensure evaluations re-
main offline, interactions requiring internet access (e.g., social media logins) are excluded, focusing
only on the core webpage functionality.

Agent Interacting and Scoring. The agent then executes the planned interactions step by step,
recording whether each attempt succeeds or fails. After completing all interactions, it outputs a
binary score list indicating success (1) or failure (0) for each action, and aggregates them into a final
interaction score: sinteract =

∑N
i=1 si. This score is then returned to the agentic reward framework

(see Appendix G.3 for the full prompt).

Discussions. Current web agents can handle most webpage operations (He et al., 2024), but
may still struggle with certain corner cases, such as confusing webpage elements or being misled by
irrelevant textual content (Cemri et al., 2025; Wang et al., 2024b). Such agent failures lead to a score
of 0 in the corresponding iteration, since we assign a score of 1 only when the webpage responds
correctly. This may cause the agent to make incorrect judgments, resulting in scores lower than
the true values. On the other hand, agent failures also partially reveal non-standard or sub-optimal
aspects of webpage design. Therefore, despite these limitations, using web agents as evaluators
provides a reasonable proxy for assessing overall webpage aesthetics and interactivity.

4.4 REWARD AGGREGATION

The results from the three agents are integrated by the agentic reward framework, which jointly
evaluates execution, static aesthetics, and interactive aesthetics to provide comprehensive feedback
on each webpage. Let rexec, rstatic, and rinteract denote the rewards from the respective agents. The
overall reward is then computed as

r = wexec · rexec + wstatic · rstatic + winteract · rinteract, (1)

where w represents the weight assigned to each agent.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 AESCODER TRAINING

5.1 STAGE I: SUPERVISED FINE-TUNING ON AESCODE-358K

We perform supervised fine-tuning on two different model with different parameter scales on our
AesCode-358K dataset: Qwen3-4B-Instruct-2507 (Team, 2025) and Qwen2.5-Coder-7B-Instruct
(Hui et al., 2024). This validates the generalizability of AesCode-358K dataset and establish a
robust foundation for next stage reinforcement learning.

5.2 STAGE II: REINFORCEMENT LEARNING WITH AGENTIC REWARD FEEDBACK

After supervised fine-tuning in stage I, the model acquires substantial high-quality knowledge. How-
ever, the model at this stage still exhibits limited generalization beyond the training distribution (Chu
et al., 2025), especially in webpage design tasks. This limitation highlights the necessity of rein-
forcement learning (RL), which allows the model to adapt more flexibly and robustly to diverse and
unseen scenarios. Thus, we perform reinforcement learning using the GRPO-AR method, which
integrates the GRPO (Shao et al., 2024) algorithm with our Agentic Reward framework to enhance
the model’s ability.

Data Preparation for RL. For avoiding overlap with the data in AesCode-358K, which the model
has already “seen” in stage I, we pick 20K RL data from WebSight v0.2 dataset (Laurençon et al.,
2024). However, the user instructions in WebSight v0.2 are not categorized, so we use the original
user instructions as seeds and use GPT-4o (OpenAI, 2024) to rewrite the instructions for clearer
semantic expression. Prompts refer to Appendix G.6.

GRPO with Agentic Reward. To generalize model’s webpage design ability, we adopt our agen-
tic reward system as a reliable and robust reward provider and perform reinforcement learning using
GRPO (Shao et al., 2024) algorithm. We call this training method as GRPO-AR. For each prompt
p in our RL dataset DRL, GRPO-AR samples a group of outputs {o1, o2, . . . , oG} from the old
policy model πθold and our agentic reward framework will give each output a total reward ri from
execution, static aesthetics, and interactive aesthetics perspectives respectively, yielding G rewards
{r1, r2, . . . , rG} respectively. The advantage Âi,t can be caculated as follows:

Âi,t =
ri − mean(r)

std(r)
(2)

Accordingly, the policy model is optimized by maximizing the GRPO objective under our agentic
reward framework (GRPO-AR):

JGRPO(θ) = E[p ∼ DRL, {oi}Gi=1 ∼ πθSFT(O|p)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t|p, oi,<t)

πθSFT(oi,t|p, oi,<t)
Âi,t, clip

(
πθ(oi,t|p, oi,<t)

πθSFT(oi,t|p, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
− βDKL [πθ||πref]

} (3)

6 THE OPENDESIGN BENCHMARK

Design Arena4 is a widely used platform for benchmarking web page design, supported by a com-
munity of hundreds of thousands of voters. It allows users to submit web page designs and receive
community feedback through voting. While effective, this voting process is time-consuming and
impractical for large-scale evaluation.

To address this limitation, we introduce the OpenDesign Benchmark, which enables efficient and
automated assessment of web page designs using large language models. The benchmark evaluates
both static and interactive aspects of design and includes 840 real-world web page cases. A detailed
breakdown of categories and their case counts is provided in the Appendix C.

We assess model performance from two perspectives: static aesthetics and interactive aesthetics.
Static evaluation: given a prompt, the HTML generated by a model is rendered into a static image.
The prompt and the image are then assessed by the static aesthetics agent (see Sec. 4.2), which pro-

4https://designarena.ai/

6

https://designarena.ai/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Comparison of relative
model rankings between Open-
Design and Design Arena.

(b) Agreement rates among
GPT and human evaluators. H-i
refers to human evaluators.

duces a static aesthetics score. In-
teractive evaluation: using the same
prompt and HTML code, the interac-
tive aesthetics agent (see Sec. 4.3) as-
signs an interactive aesthetics score.
The final benchmark score for a
model is obtained by averaging these
results across all benchmark cases.

To evaluate the quality and reli-
ability of the OpenDesign bench-
mark, we adopt two complemen-
tary perspectives: (1) ranking consis-
tency between OpenDesign and De-
sign Arena, and (2) alignment between LLM scoring and human preference.

To assess the reliability of our OpenDesign Benchmark, we compare the rankings of 10 mainstream
foundation models against the Design Arena leaderboard5. We measure consistency using Spear-
man’s and Kendall’s rank correlation coefficients, obtaining strong agreement: Spearman = 0.98
(p < 1.5× 10−6) and Kendall = 0.91 (p < 3.0× 10−5). Additionally, OpenDesign achieves 66.7%
top-3 and 80.0% top-5 overlap with Design Arena. These results indicate that OpenDesign closely
reflects large-scale human judgment. Figure 2a plots model ranks across both benchmarks. Points
align closely with the diagonal, confirming OpenDesign as a reliable proxy for human preferences
in webpage aesthetics.

We sampled 200 HTML page pairs generated by the 10 models under the same prompts. Two eval-
uator groups—GPT judge and 10 humans (3 professors, 7 graduate students)—performed pairwise
comparisons (win/tie/lose), yielding 2,000 annotations. Figure 2b shows agreement ratios: human-
human = 68.7%, GPT-human = 80.9%. These are comparable to MT-Bench results (66% and 70%,
respectively) (Bai et al., 2024; Zheng et al., 2023), supporting LLM-as-a-Judge as an effective, ro-
bust method for assessing code aesthetics.

7 EXPERIMENTS AND RESULTS

7.1 EXPERIMENTAL SETUP

We evaluate the model’s plot generation using PandasPlotBench (Galimzyanov et al., 2025) with
the head descriptor and vis mode. For each case, the model generates code from an instruction;
executability is checked, and if an image is produced, it is compared to the ground truth. GPT-4o
scores each case from 0 to 100. This results in three quantitative results, (i) error rate, which refers
to the portion of cases do not pass the executability check, (ii) average score, which is the average
GPT-4o score among all test cases, and (iii) good rate, which refers to the portion of scores higher
than 75. Webpage design ability is assessed using our OpenDesign benchmark (see Section 6).
Training settings are provided in the Appendix E.

7.2 MAIN RESULTS

As shown in Table 1, both AesCoder-4B and AesCoder-7B achieve consistent improvements over
their respective baselines. On PandasPlotBench, they achieve lower error rates and higher reliabil-
ity, indicating stronger capability in generating correct plotting code. On OpenDesign, AesCoder
achieves substantial improvements in both static aesthetics (alignment, visual appeal, and struc-
ture) and interactive aesthetics, surpassing all other open-source models. In particular, AesCoder
matches or outperforms models with 30B–685B parameters, establishing new state-of-the-art results
among open-source systems.

When compared with proprietary models, AesCoder-4B not only surpasses GPT-4o and GPT-4.1
on both PandasPlotBench and OpenDesign, but also delivers results competitive with substantially
larger systems. Although GPT-5 and Claude Sonnet 4 still retain a slight overall advantage, our

5Rankings are taken as of September 22, 2025; Design Arena updates dynamically.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison between proprietary and open-source models across various
benchmarks. In PandasPlotBench, Err., Avg., Good. refer to error rate, average score, good rate
respectively. In OpenDesign, Align., Aes., Struct. refer to the three score perspectives: instructional
alignment with user instruction, visual elements aesthetics, and structural cohesion respectively. To-
tal. means the total score of the sum of three aspects’ scores, and InterAes. refers to the score of
interactive evaluation stage. Note: Lower is better for Err., higher is better for all other metrics. Best
results are in bold, second-best results are underlined (among all open-source models together).

Model Size
PandasPlotBench OpenDesign

Err. (↓) Avg. (↑) Good. (↑) Static Aesthetics InterAes. (↑)
Align. (↑) Aes. (↑) Struct. (↑) Total. (↑)

Proprietary Models

GPT-4o-mini - 0.15 64 0.57 14.29 14.13 12.77 41.19 0.40
GPT-4o - 0.09 68 0.60 16.90 16.05 15.13 48.08 0.44
GPT-4.1 - 0.09 69 0.61 23.53 21.99 20.27 65.79 0.74
GPT-5 (minimal) - 0.04 75 0.66 30.38 25.94 24.71 81.03 1.37
Claude Sonnet 4 - 0.04 74 0.65 29.60 25.92 25.53 81.05 0.92

Open-Source Large Language Models

Qwen3-Coder-30B-A3B 30B 0.07 72 0.62 27.04 23.79 22.75 73.66 0.52
GLM-4-32B-0414 32B 0.07 70 0.59 24.67 22.90 21.80 69.40 0.48
GLM-4.5-Air 110B 0.08 71 0.63 29.29 24.83 24.04 78.16 0.93
Qwen3-Coder-480B-A35B 480B 0.05 73 0.66 30.13 25.16 24.62 79.90 0.70
DeepSeek-V3.1 685B 0.09 69 0.58 29.35 24.37 24.00 77.72 0.88
DeepSeek-R1-0528 685B 0.08 70 0.63 30.02 24.69 24.09 78.86 0.77

Open-Source Small Language Models

Qwen3-4B-Instruct-2507 4B 0.13 65 0.55 27.52 23.01 22.73 73.26 0.67
Qwen2.5-Coder-7B-Instruct 7B 0.22 60 0.50 16.38 15.13 14.73 46.27 0.38
AesCoder-4B (Ours) 4B 0.09 70 0.63 30.42 26.19 25.31 81.92 1.04
AesCoder-7B (Ours) 7B 0.09 67 0.57 30.03 25.98 25.18 81.23 0.94

models achieve comparable scores across several aesthetic dimensions. These findings underscore
the effectiveness of GRPO-AR, demonstrating that reinforcement learning with agentic reward feed-
back consistently enhances performance across different architectures and scales.

We further conducted human evaluation (Appendix F), and the results show that AesCoder-4B
consistently outperforms strong open-source baselines (GLM-4-32B-0414 and Qwen3-Coder-30B-
A3B-Instruct), which further validates our results.

7.3 ANALYSIS

0 50 100 150 200 250
Training Steps

0.30

0.35

0.40

0.45

0.50

0.55

Re
w

ar
d 

Sc
or

e

Qwen2.5-Coder-7B-Instruct-SFT
Qwen3-4B-Instruct-2507-SFT

Figure 3: Reward curves during GRPO-
AR.

Generalization of agentic reward. We further analyze
the reward dynamics during reinforcement learning, as il-
lustrated in Figure 3. Both Qwen2.5-Coder-7B-Instruct-
SFT and Qwen3-4B-Instruct-2507-SFT exhibit steadily
increasing reward scores with training steps. This consis-
tent upward trend indicates that the agentic reward frame-
work provides stable and informative feedback, enabling
continuous improvement across different model families
and sizes. The results highlight the robustness of the
framework as a general training signal, independent of
specific architecture choices.

Effect of Agentic Reward. To isolate the contribution
of the proposed agentic reward, we conduct a controlled comparison against a variant that does not
incorporate it. Specifically, instead of leveraging the full agentic reward framework, we directly
employ the underlying reward model to score model-generated HTML outputs along three static
dimensions—Instructional Alignment, Visual Design and Aesthetics, and Structural Coherence and
Usability—and use these scores as the sole reward signal (see Appendix G.4 for the exact prompt).
The policy optimization strictly follows the same procedure as in §5.2, with the updates computed
according to Eq. 3, thereby ensuring a fair comparison.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison with DPO, RFT, and abla-
tions on Agentic Reward for Qwen3-4B-Instruct-
2507 and Qwen2.5-Coder-7B-Instruct.

Training Strategy Align Aes Struct InterAes

Qwen3-4B-Instruct-2507
Baseline 28.50 25.27 24.36 0.62
RFT 29.32 25.30 24.67 0.71
DPO 28.79 25.31 24.38 0.70
GRPO-AR w/o Agentic Reward (ablation) 29.16 25.20 24.67 0.71
GRPO-AR w/ Agentic Reward (ours) 30.42 26.19 25.31 1.04

Qwen2.5-Coder-7B-Instruct
Baseline 28.85 25.23 24.37 0.70
RFT 29.73 25.35 24.85 0.75
DPO 29.75 25.33 24.87 0.71
GRPO-AR w/o Agentic Reward (ablation) 28.81 25.02 24.41 0.72
GRPO-AR w/ Agentic Reward (ours) 30.03 25.98 25.18 0.94

As reported in Table 2, this simplified variant
consistently underperforms the full method that
integrates agentic reward feedback. The perfor-
mance gap highlights that merely reusing the
reward model in a static fashion is insufficient.
In contrast, our agentic reward framework,
which incorporates multi-perspective evalua-
tions including execution, static, and interactive
aesthetics, provides richer and more reliable
feedback. These results demonstrate that agen-
tic reward is essential for aligning the model
with both functional correctness and human-
perceived aesthetics.

Comparison with DPO and RFT. To further validate the effectiveness of our proposed method
GRPO-AR, we additionally compare it with two RLHF methods: Direct Preference Optimization
(DPO) (Rafailov et al., 2024) and Rejection Sampling Fine-Tuning (RFT) (Yuan et al., 2023). Both
methods are applied to the Stage I checkpoint πθSFT

, using the same training data as in Stage II to
ensure a fair comparison. Implementation details of DPO and RFT are provided in Appendix D.
As shown in Table 2, our method consistently surpasses both DPO and RFT on OpenDesign across
static and interactive aesthetics. These improvements highlight that incorporating agentic reward
feedback not only enhances the visual quality of generated webpages but also strengthens their
usability and structural robustness, confirming the superiority of GRPO-AR.

8 CASE STUDY

We further conduct case studies on the OpenDesign benchmark to qualitatively compare AesCoder-
4B with Claude Sonnet 4 (Anthropic, 2025) and DeepSeek-R1-0528 (DeepSeek-AI et al., 2025). We
select five representative cases from the five categories in OpenDesign for comparison. As illustrated
in Figure 4, AesCoder-4B achieves results that are superior to or on par with state-of-the-art models
across all five web design task categories. These results highlight the effectiveness of our approach
in aligning code generation with both usability and aesthetic quality.

9 CONCLUSION

In this work, we introduce the concept of code aesthetics and present AesCode-358K, OpenDesign,
and an agentic reward framework (GRPO-AR) that jointly enhance executability, static design,
and interactivity in code generation. Through supervised tuning and reinforcement learning with
GRPO-AR, our AesCoder models achieve state-of-the-art results on PandasPlotBench and Open-
Design, rivaling much larger models. These results demonstrate that multi-agent reward feedback
can effectively align coding LLMs with both functional correctness and human-perceived aesthetics,
paving the way for more capable and user-friendly coding assistants.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

AesCoder-4B (Ours) Claude Sonnet 4 DeepSeek-R1-0528

Prompt: Create a user-friendly website for a landing page dedicated to selling dog-related products, ensuring easy navigation and an appealing
design for pet owners.

Prompt: Create a template to display traffic data using interactive charts and graphs.

Prompt: Create a blocky virtual landscape reminiscent of Minecraft, where players can explore and interact with a pixelated 3D world.

Prompt: Create an interactive Tic-Tac-Toe game for the browser, allowing two players to take turns marking Xs and Os on a 3x3 grid.

Prompt: Create a user interface for partners aiming to improve sexual compatibility, explore interests, and understand each other's moods. This helps
address issues like lack of intimacy and reduces awkwardness or rejection when initiating interactions.

Figure 4: Case study comparing AesCoder-4B and baseline models on OpenDesign. The categories
from top to bottom are: General Website, Data Visualization, 3D Design, Game Dev, UI Component.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, May
2025.

Anthropic. Claude code: Best practices for agentic coding. https://www.anthropic.com/
engineering/claude-code-best-practices, 2025. Accessed: 2025-09-25.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su,
Tiezheng Ge, Bo Zheng, and Wanli Ouyang. Mt-bench-101: A fine-grained benchmark for eval-
uating large language models in multi-turn dialogues. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7421–7454.
Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.acl-long.401. URL
http://dx.doi.org/10.18653/v1/2024.acl-long.401.

Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip Yu, and Lichao Sun. A survey of
ai-generated content (aigc). ACM Computing Surveys, 57(5):1–38, 2025.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
Gonzalez, and Ion Stoica. Why do multi-agent llm systems fail?, 2025. URL https://arxiv.
org/abs/2503.13657.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. 2023.

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei Shi, Xing Jin, Guanlin Liu, Chen Dun,
Liang Huang, and Lin Yan. Process supervision-guided policy optimization for code generation,
2025. URL https://arxiv.org/abs/2410.17621.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng

11

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/engineering/claude-code-best-practices
https://www.anthropic.com/engineering/claude-code-best-practices
https://arxiv.org/abs/2108.07732
http://dx.doi.org/10.18653/v1/2024.acl-long.401
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2410.17621


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Yubin Deng, Chen Change Loy, and Xiaoou Tang. Image aesthetic assessment: An experimental
survey. IEEE Signal Processing Magazine, 34(4):80–106, 2017.

Paul C Dilley. Textual aesthetics. The Red Monastery Church: Beauty and Asceticism in Upper
Egypt, pp. 175, 2016.

Qiang Fu, Xiao Han, Wei Yang, Deheng Ye, Kaiwen Xiao, Jiate Liu, and Yiqin Zhu. Rltf: Rein-
forcement learning from unit test feedback, 2023. URL https://arxiv.org/abs/2307.
04349.

Timur Galimzyanov, Sergey Titov, Yaroslav Golubev, and Egor Bogomolov. Drawing pandas: A
benchmark for llms in generating plotting code, 2025. URL https://arxiv.org/abs/
2412.02764.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, and Gabriele Syn-
naeve. Rlef: Grounding code llms in execution feedback with reinforcement learning. ArXiv,
abs/2410.02089, 2024.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
models from glm-130b to glm-4 all tools, 2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL https://arxiv.org/abs/
2411.15594.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models,
2024. URL https://arxiv.org/abs/2401.13919.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

12

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2307.04349
https://arxiv.org/abs/2307.04349
https://arxiv.org/abs/2412.02764
https://arxiv.org/abs/2412.02764
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.13919


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Plotly Technologies Inc. Collaborative data science, 2015. URL https://plot.ly.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Lingjie Jiang, Shaohan Huang, Xun Wu, and Furu Wei. Textual aesthetics in large language models.
arXiv preprint arXiv:2411.02930, 2024.

Mladan Jovanovic and Mark Campbell. Generative artificial intelligence: Trends and prospects.
Computer, 55(10):107–112, 2022.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots
into html code with the websight dataset, 2024.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Hoi. CodeRL:
Mastering code generation through pretrained models and deep reinforcement learning. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
WaGvb7OzySA.

Zhichao Liao, Xiaokun Liu, Wenyu Qin, Qingyu Li, Qiulin Wang, Pengfei Wan, Di Zhang, Long
Zeng, and Pingfa Feng. Humanaesexpert: Advancing a multi-modality foundation model for
human image aesthetic assessment. arXiv preprint arXiv:2503.23907, 2025.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

Tong Mu, Alec Helyar, Johannes Heidecke, Joshua Achiam, Andrea Vallone, Ian Kivlichan, Molly
Lin, Alex Beutel, John Schulman, and Lilian Weng. Rule based rewards for language model
safety. Advances in Neural Information Processing Systems, 37:108877–108901, 2024.

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda
Wu, Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie Chen, Viet Dac Lai, Zhouhang Xie,
Sungchul Kim, Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur,
Seunghyun Yoon, Lina Yao, Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou,
Ryan A. Rossi, and Franck Dernoncourt. Gui agents: A survey, 2025. URL https://arxiv.
org/abs/2412.13501.

Yuansheng Ni, Ping Nie, Kai Zou, Xiang Yue, and Wenhu Chen. Viscoder: Fine-tuning llms for
executable python visualization code generation. arXiv preprint arXiv:2506.03930, 2025.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:
2025-09-13.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/,
2025. Accessed: 2025-09-13.

OpenAI. Gpt-5 system card. https://openai.com/index/gpt-5-system-card/, Au-
gust 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin Xu, Lei Hou, and Juanzi Li. Agentic reward
modeling: Integrating human preferences with verifiable correctness signals for reliable reward
systems. arXiv preprint arXiv:2502.19328, 2025.

13

https://plot.ly
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://openreview.net/forum?id=WaGvb7OzySA
https://openreview.net/forum?id=WaGvb7OzySA
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2412.13501
https://arxiv.org/abs/2412.13501
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/gpt-5-system-card/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Tam Sakirin and Siddartha Kusuma. A survey of generative artificial intelligence techniques. Baby-
lonian Journal of Artificial Intelligence, 2023:10–14, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang Wang. Pangu-coder2: Boosting large
language models for code with ranking feedback, 2023. URL https://arxiv.org/abs/
2307.14936.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Tijn van der Zant, Matthijs Kouw, and Lambert Schomaker. Generative artificial intelligence. In
Philosophy and theory of artificial intelligence, pp. 107–120. Springer, 2013.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845,
2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024b. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1.

Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6
(60):3021, 2021. doi: 10.21105/joss.03021. URL https://doi.org/10.21105/joss.
03021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Hong Lin. Ai-generated content
(aigc): A survey. arXiv preprint arXiv:2304.06632, 2023.

Xun Wu, Shaohan Huang, and Furu Wei. Multimodal large language model is a human-aligned
annotator for text-to-image generation. arXiv preprint arXiv:2404.15100, 2024.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023. URL https://arxiv.org/abs/2308.01825.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue
Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large language model-
brained gui agents: A survey, 2025. URL https://arxiv.org/abs/2411.18279.

14

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2307.14936
https://arxiv.org/abs/2307.14936
https://arxiv.org/abs/2505.09388
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2411.18279


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Miaosen Zhang, Yixuan Wei, Zhen Xing, Yifei Ma, Zuxuan Wu, Ji Li, Zheng Zhang, Qi Dai, Chong
Luo, Xin Geng, et al. Aligning vision models with human aesthetics in retrieval: Benchmarks
and algorithms. Advances in Neural Information Processing Systems, 37:86399–86434, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models, 2024.
URL https://arxiv.org/abs/2403.13372.

15

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2403.13372


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

A large language model (ChatGPT) was used to aid and polish the writing of the paper, including
minor grammar correction and language refinement.

B DETAILS OF WEB PAGE DATA CONSTRUCTION

B.1 KEYWORD CORPUS AND INSTRUCTION GENERATION

We classified webpages into five categories: General Website, 3D Design, Data Visualization, Game
Dev, and UI Component. Using GPT-4o, we generated 9K seed keywords for the General Website
category, and 2.5K keywords for each of the remaining four categories. Table 3 summarizes the
distribution.

Table 3: Seed keywords statistics across categories.

Category General Website 3D Design Data Visualization Game Dev UI Component

Seed Keywords 9,000 2,500 2,500 2,500 2,500

Based on the seed corpus, GPT-4o was asked to generate 20 non-redundant and semantically di-
verse instructions for each keyword. This resulted in a total of 400,000 webpage design instructions
for further processing.

B.2 SEMANTIC ANALYSIS AND DEDUPLICATION

We embedded all instructions using openai-text-embedding-3-large (3072 dimensions).
From each category, 2,000 instructions were randomly sampled and visualized with t-SNE (perplex-
ity = 30, max iter = 1000). As shown in Figure 5, the raw dataset exhibited significant overlaps
across categories, along with several dense clusters.

To filter out redundancy, we applied K-Means clustering with K = 200K on the embedded vectors
and kept only the sample nearest to each cluster center. This resulted in a refined dataset of 200K
instructions. The t-SNE visualization of the refined dataset shows clearer class boundaries and
reduced overlap across categories, demonstrating the effectiveness of our filtering.

(a) t-SNE of raw data (b) t-SNE of filtered data

Figure 5: Visualization of instruction embeddings before and after filtering.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Distribution of OpenDesign Benchmark Categories (Total: 840 cases)

General Website 3D Design Data Visualization Game Dev UI Component Total

60.9% 14.6% 4.8% 13.6% 4.9% 100%

C OPENDESIGN BENCHMARK CATEGORIES

D IMPLEMENTATION DETAILS FOR DPO AND RFT

In this section, we describe the construction pipeline of training data for both DPO and RFT used
in §7.3. We adopt the same set of queries as in GRPO-AR for offline sampling. For each query q,
we sample N responses from the SFT policy πθSFT , yielding

O(q) =
{
oi
}N

i=1
. (4)

A reward model Rϕ then scores each response conditioned on q:

R(q) =
{
r(oi | q)

∣∣ oi ∈ O(q)
}
, where r(o | q) ≡ Rϕ(o | q). (5)

DPO. For DPO, we construct a preference dataset by taking, for each q, the highest- and lowest-
scoring responses:

DDPO =
{
(q, ow, ol)

∣∣∣ ow = arg max
o∈O(q)

r(o | q), ol = arg min
o∈O(q)

r(o | q)
}
. (6)

We then optimize πθ (initialized from πθSFT ) with the standard DPO objective (Rafailov et al., 2024):

max
θ

E(q,ow,ol)∼DDPO

[
log σ

(
β
(
log πθ(ow|q)

πθSFT
(ow|q) − log πθ(ol|q)

πθSFT
(ol|q)

))]
, (7)

where σ(·) is the sigmoid and β > 0 is a scaling hyperparameter.

RFT. For RFT, we select only the top-scoring response per query:

DRFT =
{
(q, o)

∣∣∣ o = arg max
o∈O(q)

r(o | q)
}
. (8)

The model is then trained with a standard supervised objective:

LRFT(θ) = −E(q,o)∼DRFT

 |o|∑
t=1

log πθ(ot | q, o1:t−1)

 . (9)

Implementation. We implement both DPO and RFT with LLaMA-Factory (Zheng et al., 2024)6.
For a fair comparison with GRPO-AR, we keep the same learning rate, batch size, and the total
number of training samples as in Stage II.

E TRAINING SETTINGS.

For stage I, all models are trained for 3 epochs with the AdamW optimizer, employing a 10% linear
warmup followed by a cosine learning rate decay schedule. The maximum learning rate is set to
1e−5, with a batch size of 128 and a maximum sequence length of 8k tokens. Training the 7B
model in the SFT phase takes approximately 2 days on 1 nodes of 8xMI300 GPUs.

For stage II, we use VeRL (Sheng et al., 2024) to conduct experiments. By default, we use a constant
3× 10−6 learning rate together with AdamW optimizer for policy model, and use a batch size of 64
and micro batchsize of 8. The rollout stage collects 64 prompts and samples 8 responses for each
prompt. We set KL coefficient to 0.001 and ϵ = 0.5 in Eq. 3 in all experiments. The RL phase

6https://github.com/hiyouga/LLaMA-Factory

17

https://github.com/hiyouga/LLaMA-Factory


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

takes approximately 7 days on 1 nodes of 8xMI300 GPUs. In agentic reward framework, we set
wexec = 0.1, wstatic = 0.8, and winteract = 0.1. Given the currently low success rate of GUI
agents (Zhang et al., 2025; Nguyen et al., 2025; He et al., 2024), we limit the number of interactive
elements to 3 during training. Additionally, when the GUI agent lists the interactive elements, we
instruct it to prioritize them based on their importance. This ensures that the most critical and
prominent elements are interacted with, thereby mitigating the impact of the GUI agent’s limited
success rate on our GRPO-AR training.

F HUMAN EVALUATION

(a) AesCoder 4B (b) AesCoder 7B

Table 5: Human preference result visualization of AesCoder and other models.

To validate the effectiveness of our model, we select four mainstream models, Claude Sonnet 4 (An-
thropic, 2025), GPT-5 (OpenAI, 2025), GLM-4-32B-0414(GLM et al., 2024) and Qwen3-Coder-
30B-A3B-Instruct (Team, 2025) and randomly sampled 100 test cases from OpenDesign, resulting
in 100 HTML pairs ⟨πours(p), πothers(p)⟩. Then we perform the same human preference annota-
tions as Section 6. Results are shown in Figure 5. AesCoder achieves a win rate of over 55% in
comparisons with mid- to large-scale open-source models (GLM-4-32B-0414 and Qwen3-Coder-
30B-A3B-Instruct), and maintains a near 50% win rate when compared to state-of-the-art propri-
etary models (Claude Sonnet 4 and GPT-5), demonstrating the effectiveness of our agentic reward
framework.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G PROMPT

G.1 PROMPT TEMPLATE FOR PAIRWISE EVALUATION

Prompt Template for pairwise Evaluation

You are a highly-skilled and impartial AI evaluator. Your task is to distinctively evaluate two
HTML webpage images, Image A and Image B, generated from the same user instruction
but by different models. Your evaluation should emphasize clear differentiation and ranking
between the two images, avoiding similar or average scores unless they are truly of equal
quality. Always highlight meaningful differences.

You will be provided with the following:
- The general topic of the generated webpages: {topic}
- The original user instruction used to generate the webpages: {user instruction}
- Image A, representing the output of the first model, which will be given later.
- Image B, representing the output of the second model, which will be given later.

Scoring Criteria (Total: 100 points per image):

1. Alignment with User Instruction (40 points):
- Score how well each image aligns with the details and intent of the provided user
instruction.
- Assess whether all requested elements, content, and functionalities are present and
correctly implemented.
- Evaluate if the overall structure and layout match the user’s requirements.

2. Aesthetics and Readability (30 points):
- Score the visual appeal, design quality, and overall polish of each webpage.
- Assess factors like color scheme, typography, use of whitespace, and visual hierarchy.
- Evaluate the ease of reading and understanding the content. Is the text clear? Are the
sections well-defined?

3. Structural Integrity and Responsiveness (30 points):
- Score the logical organization and structure of the webpage.
- Assess the overall layout and how the different components are arranged.
- Evaluate how well the design would adapt to different screen sizes (e.g., mobile, tablet,
desktop), based on visual cues in the image.

Scoring Instructions:
- Distinctiveness is required: Avoid giving similar or average scores to both images unless
they truly have no meaningful difference.
- Justify both high and low scores: If one image is clearly better in any aspect, assign a
noticeably higher score.
- If an image has major flaws, do not hesitate to give a low score for that criterion.
- Do not use safe scores. Use the full range of the scoring scale if appropriate.

Your output must contain specific scores for each criterion of the two images, and the
overall comparison symbol. The template of the output should strictly obey the following
json format (alignment score, aesthetics score, structure score are just the abbreviation of
Alignment with User Instruction score, Aesthetics and Readability score, and Structural
Integrity and Responsiveness score):

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

{
"Image A Score": {
"alignment_score": score_A_1,
"aesthetics_score": score_A_2,
"structure_score": score_A_3,
"Total Score": total_score_A

},
"Image B Score": {
"alignment_score": score_B_1,
"aesthetics_score": score_B_2,
"structure_score": score_B_3,
"Total Score": total_score_B

},
"Overall Comparison": "comparison_symbol"
"feedback": "feedback"

}

Where:
- For scores:
- score A 1, score A 2, score A 3 are the scores for Image A in each category.
- score B 1, score B 2, score B 3 are the scores for Image B in each category.
- total score A and total score B are the sum of the individual scores for each image.

- For comparison symbol:
- If Image A is far superior to B, the comparison symbol should be [[A¿¿B]].
- If Image A is better than B, the comparison symbol should be [[A¿B]].
- If Image A and B are of equal quality, the comparison symbol should be [[A=B]].
- If Image A is worse than B, the comparison symbol should be [[A¡B]].
- If Image A is far inferior to B, the comparison symbol should be [[A¡¡B]].

- For feedback:
- A concise summary (about 50 words) of your evaluation, explaining the strengths and
weaknesses of the webpage in relation to the scores you’ve given.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G.2 PROMPT TEMPLATE FOR POINTWISE EVALUATION

Prompt Template for Pointwise Evaluation

You are an expert evaluator tasked with rigorously assessing the quality of an HTML
webpage generated by a large language model. You will be given an image of the rendered
HTML webpage and the original user instruction.

Your primary goal is to provide an objective, accurate, and discriminative score, using the
full range of the scoring scale (0–100). Do not hesitate to give low or moderate scores if
the webpage is average or has flaws. Only award high scores to webpages that are truly
exceptional and nearly flawless according to professional standards.

You will be provided with:
- The general topic of the generated webpage: {topic}
- The original user instruction: {user instruction}
- Image A, representing the output of the model to evaluate

Evaluation Instructions:
1. Carefully analyze the user instruction and the webpage image.
2. Score the webpage on the following criteria (use the full scoring range):

Alignment with User Instruction (40 points):
- Does the webpage fully and precisely satisfy all explicit and implicit requirements of the
user’s prompt?
- Are all requested elements present and correctly implemented?
- Does the content and structure directly correspond to the instruction?

Aesthetics and Readability (30 points):
- Is the webpage visually appealing, modern, and professionally designed?
- Are color, font, and spacing choices effective and consistent?
- Is the text easy to read and the layout clear?

Structural Integrity and Cohesion (30 points):
- Is the structure logical, well-organized, and cohesive?
- Do all sections flow smoothly and intuitively?
- Is the user experience (based on the image) seamless and easy to follow?

Scoring Principles (Read Carefully):
- Use the full range for each criterion (e.g., 0–40, 0–30). Average or flawed webpages
should receive average or below-average scores.
- High scores (top 20% of each range) should be awarded only for work that meets or
exceeds professional standards with virtually no flaws.
- If the webpage is missing elements, has visual issues, or organizational problems, score
accordingly low.
- Provide a brief justification for any high or low score.

Score Interpretation Reference:
- 90–100: Outstanding, professional, nearly perfect.
- 70–89: Good but with noticeable issues or minor flaws.
- 50–69: Average, with clear limitations or several weaknesses.
- 30–49: Below average, significant flaws or missing requirements.
- 0–29: Poor, major requirements missing, very low quality.

Provide your final output in the following JSON format:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

{
"alignment_score": <score out of 40>,
"aesthetics_score": <score out of 30>,
"structure_score": <score out of 30>,
"total_score": <sum out of 100>,
"feedback": "<concise summary (about 30 words) explaining the

strengths and weaknesses and justifying the scores>"
}

Remember: As an expert evaluator, do not inflate scores. Always judge by high professional
standards and make full use of the scoring scale.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.3 PROMPT TEMPLATE FOR INTERACTIVE AESTHETICS AGENT

Prompt Template for Interactive Aesthetics Agent

Imagine you are a distinguished website design judger. Now you are given a task about eval-
uating the practicality and aesthetic about the interactivity of a webpage. The webpages you
are given are all single-paged, offline html files. User will later provide you with the specific
topic (Only in these five topics: [”General website”, ”Game dev”, ”Data visualization”, ”3D
design”, ”UI component”]) and the detailed description of this webpage. You should eval-
uate the webpage’s interactivity and aesthetic based on the topic and the detailed description.

When evaluating the aesthetic of interactivity of a webpage, you should consider the
following aspects:
- First, think thoroughly about all the ways of interactions with the webpage based on the
topic, the detailed description given by the user and the webpage screenshot. Output your
planned interations at the beginning of the task in your thought.
- Then, evaluate the interactivity of the webpage in order according to your planned
interations. For each time of interaction, carefully compare the webpage before and after
the interaction. The webpage should change according to the interaction. If the webpage is
not changed or the change is not expected, it should not be considered as a good webpage.
- Since the webpage is offline, we do not expect changes which need internet connection.
Specially, for textbox, you should plan both typing in the textbox and clicking the search
button. It cannot be considered as a successful interation if only you successfully type in
the textbox, but the webpage has not changed at all after clicking the search button.
- When your interaction does produce feedback, you still need to carefully consider whether
that feedback is correct and logical. For example, if you click on a list and it merely displays
the list, but clicking on an item within the list does not trigger any response, then no points
should be awarded. Only correct feedback can earn points.
- Sometimes when you click a navigation button, the webpage will not change simply
because it is already in the page you want to go. You should try to click another navigation
button and click back again to check the interactivity of this navigation button.
- {GAME EXTRA PROMPT}

In each iteration, you will receive an Observation that includes a screenshot of a webpage
and some texts. This screenshot will feature Numerical Labels placed in the TOP LEFT
corner of each Web Element. Carefully analyze the visual information to identify the
Numerical Label corresponding to the Web Element that requires interaction, then follow
the guidelines and choose one of the following actions:
1. Click a Web Element.
2. Delete existing content in a textbox and then type content.
3. Wait. Typically used to wait for unfinished webpage processes, with a duration of 1
seconds.
4. Press the up arrow key. (Only can be used when the topic of the webpage is game dev)
5. Press the down arrow key. (Only can be used when the topic of the webpage is game dev)
6. Press the left arrow key. (Only can be used when the topic of the webpage is game dev)
7. Press the right arrow key. (Only can be used when the topic of the webpage is game dev)
8. FINISH. This action should only be chosen when all evaluations in your plan list have
been finished.

Correspondingly, Action should strictly follow the format:
- Click [Numerical Label]
- Type [Numerical Label]; [Content]
- Wait
- UP
- DOWN
- LEFT
- RIGHT

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

- FINISH

Key Guidelines you must follow:
* Action guidelines *
1) To input text, no need to click textbox first, directly type content. After typing, the
system automatically hits ENTER key. Sometimes you should click the search button to
apply search filters. Try to use simple language when searching.
2) If you have seen a scrollbar in the webpage (not for the whole window, since the webpage
is always single-paged, but for a certain area or element of the webpage, such as a 3D object
to be rotated or zoomed), do not directly try to scroll it. Instead, find if any interactable
element such as button ’-’ or ’+’ and click the button instead.
3) If you click a button and then a pop-up window is displayed, you should close the
pop-up window and return to the original webpage after you have finished evaluating the
interaction.
4) If the topic of the webpage is game dev, it may not have many interactable elements to
click. Instead, you can use the up, down, left, right arrow keys to control the game, and plan
dynamically when the game running. Don’t miss up the role in the game with interactable
elements.
5) You must distinguish between textbox and search button, don’t type content into the
button. If no textbox is found, you may need to click the search button first before the
textbox is displayed.
6) Execute only one action per iteration.
7) Strictly avoid repeating the same action if the webpage remains unchanged. You may
have selected the wrong web element or numerical label. Continuous use of the Wait is also
not allowed.
8) When a complex Task involves multiple questions or steps, select FINISH only at the
very end, after addressing all of your planned interations. Flexibly combine your own
abilities with the information in the webpage.

* Web Browsing Guidelines *
1) Don’t try to go to other urls. Just focus on the given offline html page. All your
interations can be done offline (without internet connection).
2) Focus on the numerical labels in the TOP LEFT corner of each rectangle (element).
Ensure you don’t mix them up with other numbers (e.g. Calendar) on the page.

Your reply should strictly follow the format:
For the first iteration (the planning stage):
Thought: {Your thorough plan to interact with all the interactable elements of the webpage}

For the other iterations (the interaction stage):
Thought: {Your brief thoughts (briefly summarize the info that will help you score the
previous interaction, and your brief plan for the next interaction)}
Numerical Label: {The numerical label of the previous interaction}
Score: {The score of the previous interaction. Only 0, 1, NaN is allowed. 0 means the
interaction is failed or incorrect, 1 means successful. Output NaN if no interation is done in
this iteration. Specially for textbox, you should output NaN when you finished typing in the
textbox, and the actual score when you clicked the search button or something else.}
Reasoning: {Your brief reasoning for the score. Similarly, you must output N/A if no
interation is done in the previous iteration}
Action: {One Action format you choose for the next interaction}

Then the User will provide:
Observation: {A labeled screenshot Given by User}

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.4 PROMPT TEMPLATE FOR ABLATION WITHOUT AGENTIC REWARD

Prompt Template for Ablation without Agentic Reward

You are an expert evaluator tasked with assessing the quality of an HTML webpage
generated by a large language model. You will be given the HTML code of the webpage
and the original user instructions.

You will be provided with:
- The general topic of the generated webpage: {topic}
- The original user instruction: {user instruction}
- The html code of the webpage: {html}

Your objective is to assign precise, rigorous scores, using the full 0–100 range. Only award
high scores for webpages that are absolutely flawless, meeting all design and functional
expectations. Penalize harshly for even the smallest imperfections—there is zero tolerance
for errors.

Key Evaluation Areas:

1. Instructional Alignment (20 points)
Evaluate how closely the webpage follows the user’s instructions. Only this in aspect,
your criteria can be relatively low, since we expect some flexibility in interpretation and
should more pay more attention in another two aspects (Visual Design and Aesthetics and
Structural Coherence and Usability below).

Score levels and their explanations:
- Good alignment (10–20): The webpage almost matches the user’s instructions.
- Severe misalignment (0–9): The page fails to meet basic requirements. Major elements
are missing or misrepresented.

2. Visual Design and Aesthetics (50 points)
Assess the overall professionalism and polish of the design. Only award high marks for
designs that look flawless, balanced, and intentional.

Some golden rules you should obey when scoring:
- Always cherish detailed, refined, and innovative design. A highly refined design is always
better than a plain one, which means we value pages with highly rich design elements more
than simple and plain designs. This includes an exquisite transparent dynamic background,
elements or special effects floating in the background, gradient color text, rich yet beautiful
color matching, and so on.
- NO PLACEHOLDERS! Always cherish real images and expressive (real or abstract)
icons, instead of placeholders. A website with rich, real, and appropriate images or icons
should score higher(85 or above), while a website with placeholders or broken images
should score below 50. Abstract modern icon are also preferable, but they should be
well-designed and are NOT placeholders.
- Simplicity is not a lack of content. A simple design can still be rich and engaging if it uses
space, color, and typography effectively.
- The overall impression is important. Make sure the webpage has NO broken/partially
visible words or elements. NO partially loaded elements.

Score levels and their explanations:
- Perfect design (40-50): The design is exceptionally professional, with a well-executed
color palette, typography, and spacing. The page has a polished and intentional feel.
- Minor flaws (20-39): The design is good, but there are small issues (e.g., slight inconsis-
tency in font sizes or spacing). These should still impact the score significantly.
- Significant flaws (10–19): The design has major issues (e.g., poor readability, awkward

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

layout, or jarring color choices).
- Unacceptable design (0–9): The page is unprofessional, with severe flaws such as
overlapping text, unreadable fonts, or broken layouts / images.

3. Structural Coherence and Usability (30 points)
The page must have a logical and intuitive structure. Even the smallest structural mistake
(misalignment, broken flow, or inconsistent layout) will severely affect the score.

Key scoring rules:
- Overall impression comes first. This stresses the importance of adopting a modern, con-
cise, refined framework. Encourage websites to use modern, beautiful design frameworks
instead of simple, mediocre designs. Webpages with appropriate use framework can score
above 85, while those with poor or no framework should score below 50.
- Highlight the integrity of the overall structure. Check carefully whether the page has a
complete structural layout, with no missing elements or broken sections. If the page has any
broken sections, it should score below 50.

- Flawless structure (20–30): The page has a perfect structure: well-organized, logical flow,
and easy navigation.
- Minor structural issues (15–19): The structure is good, but there are small usability issues
(e.g., slightly misaligned sections or awkward navigation).
- Major structural problems (10–14): The page has significant usability flaws, such as
broken layouts or confusing content organization.
- Unusable structure (0–9): The page has severe structural issues, making it difficult to use
or navigate effectively.

Fine-Grained Scoring Guidelines:

- Strict threshold for high scores: Only give scores above 90 if the webpage is absolutely
flawless. If there is even a minor issue (e.g., a single broken element, misalignment, or
poorly chosen font), do not award high marks. Scores 95+ should be reserved for near
perfection.
- Minor flaws are heavily penalized: If the webpage has any noticeable flaw (such as text
overlapping an image, improper spacing, or a lack of balance), this will result in low overall
score! (e.g., 10–30)
- Zero tolerance for bad design: If the webpage looks unprofessional (e.g., excessive white
space, unaligned content/text, unreadable text, or poor contrast), the overall score should be
0-30!

Example Evaluation:

For a webpage with:
- Perfect alignment with instructions (everything is present and correct),
- Excellent visual design, but with slightly misaligned text,
- Clear structure with one misaligned image,

You might score:
- Instructional Alignment: 20/20 (perfect alignment with instructions),
- Visual Design: 35/50 (good design but minor flaw—misaligned text),
- Structural Coherence: 20/30 (minor misalignment of an image),
- Total Score: 75/100 (not good, but OK).

Final Output Format (alignment score, aesthetic score, structure score are just the abbrevi-
ation of Instructional Alignment score, Visual Design and Aesthetics score, and Structural
Coherence and Usability score):

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

{
"alignment_score": <score out of 20>,
"aesthetics_score": <score out of 50>,
"structure_score": <score out of 30>,
"total_score": <sum out of 100>,
"feedback": "<brief summary of strengths and weaknesses, with

justification for the scores>"
}

Strict Scoring Principles:
- Minor mistakes are penalized severely. A single misplaced element, broken layout, or
poor design choice will dramatically affect the score.
- High scores (90+) should only be given for perfect webpages with no errors. If there is
any imperfection, the score should drop significantly.
- No mercy for bad design. Webpages that are visually unappealing or hard to use must
receive low scores (0–9) regardless of other factors.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

G.5 PROMPT FOR KEYWORD

Prompt Template for Website Keyword and Summary Generation

You are a professional website content generator. Generate 300 unique keywords or short
summary descriptions (10–30 words each) for websites of the type ”{catagory}”. Each
summary should:
- Reflect a unique purpose, functionality, or use case for a website.
- Be based on a creatively chosen theme or industry, covering a wide range of domains (e.g.,
healthcare, education, finance, entertainment, environmental, e-commerce, tourism, tech,
art, sports, social impact, etc.) by leveraging your imagination.
- Ensure summaries are specific, diverse, and avoid repetition in functionality, theme, or
wording.

Output as a JSON array, where each entry contains:
- summary: A concise description (10–30 words) of the website’s purpose or functionality,
reflecting the chosen theme.

Ensure maximum diversity by exploring unique and imaginative themes, avoiding overlap
with common website concepts. Return the result in JSON format.

Example output format:

[
{
"summary": "A website for eco-conscious travelers, offering

sustainable tourism guides, ethical lodging options, and
carbon footprint calculators."

},
{
"summary": "An educational platform providing interactive

biology simulations, 3D models, and real-time quizzes for
high school students."

}
]

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

G.6 PROMPT TEMPLATE FOR DATA REWRITING IN RL

Prompt Template for Data Rewriting in RL

You are a content strategist and creative visionary specializing in conceptualizing innovative
digital platforms. Your task is to transform abstract ideas into compelling website concepts
that are both unique and inspiring.

I will provide you with a brief description or seed topic. From this, your goal is to generate
a highly imaginative and detailed website concept. The concept does not need to be directly
correlated to the content I provide. Feel free to draw inspiration from keywords or abstract
elements and create something new and innovative.

Your output should focus on the overall content, purpose, and features of the website,
without going into specific layout, design, or visual details. Think about the theme,
functionality, and interaction possibilities of the site. This will serve as the basis for
generating HTML code for the site.

It has to be noticed that your instruction should not contain any specific layout, design, or
visual elements of the website, but only the content, purpose, and features of the website.

You are required to choose one of the following categories for each website concept you
create. Please try to think creatively and step outside the “General website” category when
possible:

1. General website: A website designed for general use or any topic, focusing on its core
content, purpose, and user interaction.
2. Game development: A browser-based game concept in HTML. Focus on interactive and
engaging content, game mechanics, and user experience.
3. Data visualization: A page that presents dynamic and interactive data, such as charts,
graphs, or visualized datasets. Focus on how the user will interact with and explore the data.
4. UI component: A page dedicated to showcasing a single, highly interactive component.
Focus on the functionality and purpose of the component, without detailing its visual
structure.
5. 3D design: A concept for a 3D scene or interactive experience, focusing on its content
and user interaction, rather than specific rendering or layout details.

For each brief description I provide, follow this structure:
1. Select a category from the list above that best fits the concept.
2. Create a detailed and concise description of the website concept, focusing on its content,
purpose, features, and interactions.
3. Provide a clear instruction (40–60 words) for HTML code generation that can be used to
implement this concept.

Output the response in the following JSON format:

{
"category": "<category name from the list>",
"instruction": "<detailed website concept instruction>"

}

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G.7 EXECUTION AGENT VALIDATION RULES

Execution Agent Validation Rules

The following configuration defines validation and linting rules for HTML, CSS, and
JavaScript within a single HTML file. These rules should be strictly applied when evaluat-
ing or generating webpages.

{
"doctype-html5": true, // Enforce HTML5

doctype declaration
"tagname-lowercase": true, // Enforce lowercase

tag names
"attr-lowercase": true, // Enforce lowercase

attribute names
"attr-value-double-quotes": true, // Enforce double

quotes for attribute values
"tag-pair": true, // Enforce all tags

must have a corresponding closing tag
"tag-self-close": ["br", "img", "input", "link", "meta"], //

Allow self-closing tags for specific elements
"id-unique": true, // Ensure 'id'

attribute is unique in the document
"alt-require": true, // Enforce 'alt'

attribute for all <img> tags for accessibility
"head-script-disabled": false, // Allow <script>

tags in the <head> section
"style-disabled": false, // Allow inline CSS

styles within HTML
"no-inline-style": false, // Allow inline

styles within HTML
"no-inline-script": false, // Allow inline

JavaScript within the HTML file
"lang-require": true, // Enforce 'lang'

attribute in the <html> tag
"meta-charset-utf-8": true, // Ensure UTF-8

charset declaration
"meta-viewport": true, // Enforce inclusion

of the viewport meta tag
"title-require": true, // Enforce inclusion

of the <title> tag
"csslint": {
"important": false, // Allow the use of

!important in CSS
"order-alphabetical": false // Do not enforce

alphabetical order for CSS properties
},
"script-disabled": false // Allow JavaScript

(inline within HTML)
}

G.8 PROMPT TEMPLATE FOR DATASET PROCESSING

Prompt Template for Pointwise Evaluation

You are a professional evaluator tasked with performing a meticulous assessment of an
HTML webpage generated by a large language model. You will receive both the rendered
webpage image and the original user instruction.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Your goal is to assign precise, unbiased, and discriminative scores using a 0–100 scale. Use
lower or mid-range scores for webpages that demonstrate average quality or contain flaws;
reserve high scores exclusively for outputs that meet professional standards with minimal or
no deficiencies.
You will be provided with:

• Webpage topic: {topic}
• Original user instruction: {user instruction}
• Rendered webpage image: Image A

Evaluation Procedure:
1. Examine the user instruction carefully in conjunction with the webpage image.
2. Evaluate the webpage across the following criteria, making full use of the scoring

ranges.
1. Compliance with User Instruction (40 points)

• Does the webpage satisfy all explicit and implicit requirements of the instruction?
• Are all requested elements present, correct, and properly implemented?
• Is the content and structure fully consistent with the user’s instructions?

2. Visual Design and Readability (30 points)
• Is the webpage visually appealing, modern, and professionally designed?
• Are typography, color schemes, and spacing applied consistently and effectively?
• Is the text legible and the layout clean, clear, and easy to follow?

3. Structural Cohesion and Organization (30 points)
• Is the webpage structure logical, coherent, and well-organized?
• Do sections flow naturally and intuitively?
• Based on the image, is the user experience seamless and easy to navigate?

Scoring Guidelines:
• Use the full range of each criterion (0–40, 0–30, 0–30).
• Average or flawed webpages should receive average or below-average scores.
• High scores should be awarded only for outputs that meet professional standards

with virtually no shortcomings.
• Deduct points for missing elements, visual issues, or structural inconsistencies.
• Provide a brief justification for unusually high or low scores.

Score Interpretation:
• 90–100: Outstanding; professional-quality; nearly flawless.
• 70–89: Strong; minor issues or noticeable imperfections.
• 50–69: Moderate; average quality with several limitations.
• 30–49: Weak; significant flaws or missing elements.
• 0–29: Poor; major requirements missing or very low overall quality.

Output Format: Provide your evaluation using the following JSON template:

{
"alignment_score": <score out of 40>,
"aesthetics_score": <score out of 30>,
"structure_score": <score out of 30>,
"total_score": <sum out of 100>,
"feedback": "<concise summary (about 30 words) explaining the

strengths and weaknesses and justifying the scores>"
}

Important: Maintain professional rigor. Avoid inflating scores and evaluate solely based
on the quality observed in the rendered webpage image.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H ADDITIONAL EXPERIMENTS

H.1 ROBUSTNESS OF OPENDESIGN EVALUATION UNDER ALTERNATIVE JUDGES

To assess whether the OpenDesign benchmark is robust to changes in the underlying aesthetic judge
and to rule out circularity effects between training and evaluation, we additionally evaluate all main-
stream foundation models using Qwen3-VL-235B-A22B-Instruct as an alternative judge.
This model is a strong, open-source vision-language model independent of the OpenAI model fam-
ily used in our main results.

Table 6 reports the results obtained by evaluating the same set of models with both GPT-5 and
Qwen3-VL-235B-A22B-Instruct under the identical scoring prompt.

Table 6: OpenDesign evaluation with different judges. Despite differences in absolute score scales,
the relative ranking of all models remains unchanged.

Model Name GPT-5 Eval Qwen3-VL Eval Relative Rank
Claude Sonnet 4 81.05 90.90 1
GPT-5 (minimal) 81.03 90.40 2
Qwen3-Coder-480B-A35B 79.90 90.37 3
DeepSeek-R1-0528 78.86 89.50 4
GLM-4.5-Air 78.16 87.71 5
DeepSeek-V3.1 (Thinking) 77.72 87.62 6
Qwen3-Coder-30B-A3B 73.66 87.16 7
GLM-4-32B-0414 69.40 81.41 8
GPT-4.1 65.79 74.46 9
GPT-4o 48.13 70.52 10

The results show three key findings:

1. OpenDesign evaluation is robust under judge substitution. Although Qwen3-VL-235B-
A22B-Instruct assigns higher absolute scores than GPT-5, the relative ordering of the ten main-
stream models remains identical. This consistency across two unrelated model families indicates
that OpenDesign captures a judge-invariant notion of design quality rather than artifacts tied to a
single evaluator.

2. Improvements from AesCoder reflect genuine capability gains rather than judge-specific
overfitting. Since Qwen3-VL-235B-A22B-Instruct and GPT-5 produce the same ranking across
all baseline models, AesCoder’s improvements cannot be attributed to exploiting idiosyncratic scor-
ing patterns of a particular judge. Instead, the gains generalize across evaluators with different
architectures, training data, and aesthetic priors, confirming that the improvements reflect true en-
hancement in visual coding ability.

3. Both GPT-5 and Qwen3-VL-235B-A22B-Instruct exhibit alignment with human aesthetic
preferences. Figure 2a in the main paper demonstrates strong diagonal agreement between GPT-5
and human pairwise judgments. Our new results show that Qwen3-VL-235B-A22B-Instruct repli-
cates GPT-5’s ranking structure on the same set of models. Since both judges independently recover
the human-preferred ordering, this provides converging evidence that our evaluation methodology
is scientifically well-grounded and reliably aligned with human aesthetic standards.

In summary, these experiments confirm that OpenDesign is robust to evaluator choice and that the
improvements from AesCoder arise from real model capability rather than bias toward any particular
judge model.

H.2 SENSITIVITY ANALYSIS OF REWARD WEIGHT CONFIGURATION

To understand how different reward components influence learning dynamics in our agentic frame-
work, we perform an ablation study by varying the weights (wexec, wstatic, winteract) while keeping the

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

(a) wstatic = 0.0 (b) wstatic = 0.2 (c) wstatic = 0.4

(d) wstatic = 0.6 (e) wstatic = 0.9

Figure 6: Reward curves for five weight configurations in GRPO-AR training.

total mass fixed. This analysis evaluates whether the framework is sensitive to weight perturbations
and whether training remains stable under different reward trade-offs.

Experimental Setup. We keep wexec = 0.1 fixed—reflecting the high tolerance of web browsers
to HTML syntax—and redistribute the remaining mass between the Static Aesthetics and Interactive
Aesthetics components. We select four representative configurations ranging from “pure static” to
“pure interactive.” For each configuration, we run GRPO-AR training for 150 RL steps on the
AesCoder-4Bsft model due to computational constraints. Each trained model is evaluated on the
OpenDesign benchmark using 5 repeated runs to estimate confidence intervals.

Table 7: Effect of reward weight variation on OpenDesign performance. Mean ± std over 5 runs.

wexec wstatic winteract Static Score Interactive Score
0.1 0.0 0.9 78.88± 0.32 0.91± 0.20
0.1 0.2 0.7 79.28± 0.30 0.87± 0.17
0.1 0.4 0.5 79.87± 0.33 0.84± 0.18
0.1 0.6 0.3 80.01± 0.33 0.80± 0.17
0.1 0.9 0.0 80.50± 0.32 0.63± 0.15

Findings. The results reveal a clear and monotonic trade-off: increasing wstatic consistently im-
proves static design quality, while decreasing interactivity; increasing winteract has the opposite ef-
fect. This smooth trend confirms that the agentic reward components are well-behaved and that the
model optimizes rationally according to the specified weight structure.

Importantly, across all configurations tested, the training process remained stable and the reward
curves (included in Figure 6) displayed normal upward trajectories without collapse. This demon-
strates that GRPO-AR provides a controllable and robust optimization signal, and that the framework
remains stable under substantial perturbations of reward composition.

Conclusion. These results indicate that (1) the model’s behavior can be reliably steered by adjust-
ing reward weights, (2) the system is not fragile to moderate weight changes, and (3) the reward
components interact coherently within the GRPO-AR framework. Thus, the reward design is both
flexible and stable, enabling practitioners to tune the model toward different aesthetic–functionality
trade-offs depending on downstream needs.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

H.3 GENERAL CODE ABILITY EVALUATION ON STANDARD CODE BENCHMARKS

To examine whether our aesthetic-oriented reinforcement learning affects general-purpose coding
ability, we evaluate both AesCoder-4B and AesCoder-7B on three standard benchmarks: Live-
CodeBench(Jain et al., 2024), MBPP (Austin et al., 2021; Liu et al., 2023), and MBPP+ (Austin
et al., 2021; Liu et al., 2023). These benchmarks measure algorithmic correctness, functional rea-
soning, and code execution reliability—capabilities orthogonal to our aesthetic training targets.

Table 8: Results of AesCoder and their base models on general-purpose coding benchmarks.

Model LiveCodeBench MBPP MBPP+

Qwen3-4B-Instruct-2507 32.5 86.8 74.3
AesCoder-4B 19.0 73.5 64.3
Qwen2.5-Coder-7B-Instruct 16.8 83.5 71.9
AesCoder-7B 15.3 73.5 63.1

Across all benchmarks, the AesCoder models exhibit noticeable and expected regressions in gen-
eral code accuracy following aesthetic-focused reinforcement learning. This behavior is attributable
to the alignment tax associated with domain specialization: GRPO-AR aggressively optimizes the
model toward code aesthetics (e.g., Python-based plot generation and webpage design), diverging
from the pure algorithmic reasoning objectives measured by standard benchmarks.

Crucially, while the performance drop is significant, it reflects a conscious trade-off between be-
coming a domain expert in visually-oriented coding and maintaining state-of-the-art generalist
capabilities. The results indicate that the aesthetic alignment procedure shifts the model’s distribu-
tion significantly toward design-oriented tasks.

In summary, this evaluation demonstrates that: (1) AesCoder achieves state-of-the-art aesthetic qual-
ity, which necessitates a trade-off in general algorithmic performance, (2) the model retains func-
tional coding competence without suffering from complete catastrophic forgetting, and (3) the
observed regressions are consistent with the behavior of models undergoing intensive fine-tuning
for highly specific domains.

I FAILURE CASE STUDY

I.1 NON-EXECUTABLE & VISUALLY INCORRECT

User Prompt: Design a website about 1+1.

The model’s output is as follows:

2

Analysis. This output is non-executable and visually incorrect. The user requested a webpage
that displays “1+1,” but the model instead produced the direct result “1+1=2,” and the output is not
even in a valid HTML format. Therefore, the Execution Agent fails this sample, and neither the
Static Aesthetic Agent nor the Interactive Aesthetic Agent is triggered.

Final reward. rexec = −1, no rstatic and rinteract (not triggered). The final reward is r = −1.

I.2 NON-EXECUTABLE & VISUALLY CORRECT

User Prompt: Make a simple personal website.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

The HTML code of the webpage is as follows (partial snippet):

<!DOCTYPE html>
<html lang="en">
<head>

...

<div class="section" id="contact-section">
<h2>Contact</h2>
<p>Feel free to reach out to me!</p>
<div class="contact-links">

<a href="mailto:xxxx@example.com">Email</a>
<a href="https://github.com/">GitHub</a>
<a href="https://linkedin.com">LinkedIn</a>

</div>
</div>

<div class="section" id="contact-section">
<h2>Follow Me</h2>
<p>Connect with me on social media!</p>

</div>
</div>

</body>
</html>

The webpage screenshot is Figure 7.

Figure 7: A webpage screenshot of non-executable but visually correct code.

Analysis. A close inspection of the page’s HTML source code (partial snippet shown below)
reveals that both <div> elements use the same id="contact-section" (highlighted in red).
In standard HTML, IDs must be unique within a document, and this violation is correctly detected
by HTMLHint during executability validation. Although the rendered webpage appears visually
normal—with no immediately noticeable defects from a screenshot perspective—the underly-
ing HTML is structurally incorrect.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Because of this, the Execution Agent fails the sample and assigns a reward of rexec = −1. As a result,
neither the Static Aesthetics Agent nor the Interactive Aesthetics Agent is triggered, ensuring that
the model receives no credit for visually plausible but syntactically invalid outputs. This strict gating
mechanism enforces the production of standards-compliant, well-structured HTML, preventing the
model from exploiting aesthetics to bypass fundamental correctness.

Final reward. rexec = −1, no rstatic and rinteract (not triggered). The final reward is r = −1.

I.3 EXECUTABLE BUT VISUALLY BROKEN

User Prompt: Make a simple webpage of an Italian restaurant.

The webpage screenshot is Figure 8

Figure 8: A webpage screenshot of executable but visually broken code.

Analysis. The model generates HTML code that is fully syntactically valid and passes executabil-
ity checks. However, the rendered webpage reveals severely degraded visual quality. As shown in
the screenshot, the design suffers from clashing color combinations (purple–red, blue, and yellow),
low-resolution imagery, and text elements with fonts that are far too small for comfortable reading.

Because of these issues, the Static Aesthetics Agent assigns a very low score (18 points), reflect-
ing that although the page minimally aligns with the user’s instruction, its overall visual presentation
is substandard. Furthermore, since the webpage contains no interactive elements, the Interactive
Aesthetics Agent correctly assigns a score of 0.

This example demonstrates that even when the model produces syntactically correct HTML, the
reward system does not overlook poor design quality: executability alone is insufficient, and the
Static and Interactive agents provide crucial complementary supervision.

Final reward. rexec = 1, rstatic = −0.64 and rinteract = −1. The final reward is r = −0.512.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

I.4 VISUALLY GOOD BUT FUNCTIONALLY WRONG

User Prompt: Design a website for me to manage my daily spending records.

The webpage screenshot is Figure 9

Figure 9: A webpage screenshot of visually good but functionally wrong code.

Analysis. The model generates HTML code that is both syntactically valid and visually well-
designed. The rendered webpage appears polished, with a clean layout and aesthetically pleasing
styling. As a result, the Static Aesthetics Agent assigns a high score of 81 points.

However, despite its strong visual presentation, the webpage fails to satisfy the functional require-
ments specified by the user. The user requested a webpage for recording daily expenses, yet the
“Add Record” button is entirely non-functional: clicking it does not log the expense or trigger any
observable state change. This constitutes a clear violation of the expected interactive behavior. On
the other hand, certain elements—such as the date-selection component—do respond correctly.
Consequently, the Interactive Aesthetics Agent assigns a partial score of 1, reflecting the presence
of some functioning elements but penalizing the non-operational core feature.

This case illustrates why interactive evaluation is essential: a webpage may look correct and receive a
high static score, but without functional alignment, the overall reward must be significantly reduced.

Final reward. rexec = 1, rstatic = 0.62 and rinteract = 0. The final reward is r = 0.596.

37


	Introduction
	Related Works
	The AesCode-358K Dataset
	Python-Based Plot Data Construction
	Webpage Design Data Construction

	Agentic Reward Framework
	Execution Agent
	Static Aesthetics Agent
	Interactive Aesthetics Agent
	Reward Aggregation

	AesCoder Training
	Stage I: Supervised Fine-Tuning on AesCode-358K
	Stage II: Reinforcement Learning with Agentic Reward Feedback

	The OpenDesign Benchmark
	Experiments and Results
	Experimental Setup
	Main Results
	Analysis

	Case Study
	Conclusion
	LLM Usage Statement
	Details of Web Page Data Construction
	Keyword Corpus and Instruction Generation
	Semantic Analysis and Deduplication

	OpenDesign Benchmark Categories
	Implementation Details for DPO and RFT
	Training Settings.
	Human Evaluation
	Prompt
	Prompt Template for pairwise Evaluation
	Prompt Template for Pointwise Evaluation
	Prompt Template for Interactive Aesthetics Agent
	Prompt Template for Ablation without Agentic Reward
	Prompt for keyword
	Prompt Template for Data Rewriting in RL
	Execution Agent Validation Rules
	Prompt Template for Dataset Processing

	Additional Experiments
	Robustness of OpenDesign Evaluation Under Alternative Judges
	Sensitivity Analysis of Reward Weight Configuration
	General Code Ability Evaluation on Standard Code Benchmarks

	Failure Case Study
	Non-executable & Visually Incorrect
	Non-executable & Visually Correct
	Executable but Visually Broken
	Visually Good but Functionally Wrong


