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Abstract

Large language models (LLMs) have achieved
tremendous success in various domains, but
their massive parameter sizes pose challenges
for fine-tuning and inference. Recently, the
common model compression process involves
obtaining a sparse LLM through pruning, fol-
lowed by LoRA-finetuning. However, these
methods often suffer from significant perfor-
mance degradation. We attempted to address
this by introducing additional teacher distilla-
tion, but found limited improvements due to
the gap between the teacher and student mod-
els and constrained training iterations. To over-
come these challenges, we propose Sparse KD,
the first distillation framework specifically de-
signed for sparse models in constrained fine-
tuning scenarios. Our framework includes dy-
namic temperature, knowledge alignment, and
Bayesian distillation optimization strategies.
Dynamic temperature can adaptively align the
strength of the teacher’s knowledge, and the
Knowledge Alignment Module can bridge the
gap by projecting teacher-student knowledge
to the same interval. Applying Bayesian opti-
mization swiftly finds optimal settings based on
these strategies, thereby improving model per-
formance. Comprehensive experiments across
diverse task types have demonstrated that this
combination can be applied to LLMs with ef-
fective and stable results.

1 Introduction

Large language models (LLMs) revolutionize natu-
ral language processing (NLP) by achieving re-
markable performance across domains such as
machine translation, sentiment analysis, question
answering, and text generation (Touvron et al.,
2023b,c; Chiang et al., 2023; Scao et al., 2022;
Zhang et al., 2022). However, their massive param-
eter sizes pose challenges for fine-tuning and de-
ployment in real-world applications. For example,
GPT3, one of the top-performing models, contains
175 billion parameters, requiring approximately

350GB of GPU memory in FP16 for model storage
and inference (Brown et al.). Meeting the compu-
tational demands of these models while efficiently
handling their multitude of parameters presents sig-
nificant processing time and resource allocation
challenges.

The prevailing methodology for mitigating the
computational burden of LLMs involves compress-
ing the models through various techniques (Frantar
and Alistarh, 2023; Sun et al., 2023; Ma et al.,
2023a; Kwon et al., 2022). These approaches in-
clude model pruning, Knowledge Distillation (KD),
parameter quantization, and Low-Rank Adaptation
(LoRA), which are all tailored to LLMs. Among
these, model pruning is a widely adopted compres-
sion technique that eliminates insignificant param-
eters based on their magnitude, resulting in sparse
LLMs that offer improved efficiency during infer-
ence. To further optimize the performance of sparse
LLMs, fine-tuning techniques like LoRA have been
proposed to adapt pruned models for specific down-
stream tasks. The conventional approach of prun-
ing followed by fine-tuning results in significant
performance degradation due to the loss of critical
knowledge during pruning and the limited ability
of fine-tuning to recover this knowledge effectively
(Gu et al., 2023).

To overcome these limitations, we investigate
the potential of teacher distillation, a technique that
transfers knowledge from a large teacher model to
a smaller student model. Currently, there is limited
exploration in distilling LLMs under low-resource
conditions. While the MiniLLM initiative has made
progress in distilling large models, this approach
requires fine-tuning of the student model before dis-
tillation, leading to prolonged training times (Gu
et al., 2023). In this workflow, it becomes crucial to
rapidly and effectively assimilate knowledge from
a limited number of iterations. However, the sig-
nificant disparities across different models pose a
formidable challenge in devising strategies that ef-



fectively mitigate models’ differences to enhance
the efficacy and efficiency of the distillation pro-
cess.

This paper presents Sparse KD, a novel distil-
lation framework specifically designed for sparse
models in constrained fine-tuning scenarios. We
observe from the toy experiment in Fig 1 that even
slight modifications in the distillation temperature
can have an impact on the outcomes, albeit mod-
estly. Based on this insight, we introduce an innova-
tive adaptive temperature mechanism that dynam-
ically adjusts throughout the training phase. No-
tably, our approach incorporates a dual-temperature
strategy, using separate temperatures for the teacher
and student models. This customization accounts
for the unique differences between models, a fea-
ture notably absent in conventional methods. Fur-
thermore, we leverage knowledge alignment mod-
ule by max-min normalization or standardization
to enhance the distillation of intermediate layer fea-
tures more effectively. During our search for the op-
timal KD loss, we employ a Bayesian optimization
(Snoek et al., 2012), employing expected improve-
ment as our acquisition function. This technique,
often overlooked in traditional approaches, allows
us to efficiently identify parameters that align with
optimal performance. Importantly, this paper ex-
plores the impact of our customized distillation
technique on enhancing the generalization perfor-
mance of LLMs across various linguistic tasks.

To assess the effectiveness and stability of our
approach, we conduct comprehensive experiments
across a wide range of task types, including ma-
chine translation, sentiment analysis, and question
answering. The results substantiate the efficacy of
our combined approach, showcasing the potential
for efficient and stable deployment of LLMs. We
further perform zero-shot experiments using a suite
of eleven datasets, including those from the GLUE
(Wang et al., 2018) and SuperGLUE (Wang et al.,
2019) benchmarks, covering various tasks from
different sub-domains. The experimental results
demonstrate that our proposed method outperforms
leading baseline techniques in terms of effective-
ness and superiority. Additionally, we conduct ab-
lation studies to determine which strategies yield
the most favorable results.

2 Related Work

Knowledge Distillation (Hinton et al., 2015) aims
to transfer knowledge from a large model (teacher
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Figure 1: Toy experiments in TinyLlamal.lb with vary-
ing temperature settings.

model) to a smaller model (student model), en-
abling the latter to mimic the behavior of the for-
mer. KD can be categorized into three main types
based on the nature of the knowledge transferred:
Response-Based KD, which focuses on the model’s
outputs as introduced by Hinton and colleagues in
their pioneering work; Feature-Based KD (Romero
et al., 2014) distils features from intermediate lay-
ers can effectively enhance the student model’s
performance; and Relation-Based KD aims to trans-
fer relational knowledge between layers within the
model, as proposed by Tung and Mori (Tung and
Mori, 2019). Distillation techniques include Of-
fline Distillation, where the teacher model fully
trains before guiding the student model; Online
Distillation (Zhang et al., 2017), enables the simul-
taneous training of both teacher and student mod-
els, offering potential advantages over traditional
offline methods; and Self-Distillation (Furlanello
et al., 2018), where a model improves itself using
its outputs.

Current research has shown the effectiveness of
applying KD to pruned models for performance
enhancement. For instance, Sanh demonstrated
how KD could create a smaller, faster BERT model
(Sanh et al., 2019). Although DistilBERT was not
directly applied to pruned models, the study show-
cased the potential of KD in optimizing LLMs. Fur-
thermore, Sanh introduced a dynamic pruning tech-
nique and enhanced model performance through
fine-tuning, providing insights for performance re-
covery post-pruning (Sanh et al., 2020). Despite
these and other related works offering valuable
insights and methodologies for combining prun-
ing techniques with KD, literature specifically ad-
dressing KD strategies applied to pruned LLMs
remains scarce. This indicates that while signifi-
cant progress has been made in optimizing LLMs
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through KD and model pruning, finer adjustments
of the distillation process to suit the specific needs
of pruned models. Specifically, employing ad-
vanced strategies like dynamic temperature adjust-
ments to further improve the performance and effi-
ciency of pruned models, represents an open and
underexplored research area.

3 Methodology

We started by pruning the model to make it simpler
and more efficient (Ma et al., 2023a). Initially, we
tried LoRA-training but found it to be ineffective.
Therefore, we explored model distillation for mod-
els after LoRA training. At first, we used Kullback-
Leibler (KL) divergence as the main loss function
for distillation. We observed that the temperature
significantly but subtly impacted distillation effec-
tiveness. To address the limitations of fixed tem-
perature settings, we proposed a new approach: dy-
namic temperature settings tailored to the teacher
and student models. This adjustment helps the stu-
dent model distil knowledge more comprehensively
and flexibly. We also improved the hyperparameter
optimization using a modified Bayesian optimiza-
tion and implemented a different knowledge align-
ment strategy. These enhancements aim to make
the distillation process more efficient and adaptable.
Fig 2 provides an overview of the framework.

3.1 Opverall Distillation Optimization

Commencing our experiments, we adopted the dis-
tillation technique using KL divergence, as delin-
eated by Hinton (Hinton et al., 2015) and encap-

sulated in Equation 1. Our primary focus was on
optimizing the KL loss function.

In Equation 1, u signifies the input, ordinarily a
question from the dataset, whereas v symbolizes
the text generated by the model in response to .
The variable p represents the teacher model’s con-
ditional probability distribution, while g reflects
that of the student model. The expectation function
E, is tasked with computing across the spectrum
of possible inputs u and their respective outputs v.
p(v|u), and g(v|u) are correspondingly rendered
as softmax (%) and softmax (FS/), where S and T’
denote logits. ' is temperature.

In the conducted toy experiment in Fig 1, it
was observed that performance on most test sets
improved with temperature increasing, but some,
like BoolQ, showed an initial improvement fol-
lowed by a decline. This indicates that the dis-
crepancy between teacher and student models can
disrupt knowledge distillation at extreme tempera-
tures(high or low temperature). Only optimal tem-
perature ensures effective knowledge transfer from
teacher to student models.

To optimize the student model’s learning, we
revised the loss function £(¢), incorporating dy-
namic temperature adjustments for distillation. The
batch size and token length per sample are denoted
by N and M, respectively. We introduce oy ; and
05, as the standard deviations for the teacher and
student models at the 7*” sample in Equation 4, to
adjust the logits P; ; ; and Q5 ; ;. This allows for a
nuanced knowledge transfer by softening the log-
its with temperature-sensitive softmax functions in
Equation 3. In the second component, L denotes



selectively matched layers from the teacher to the
student model, each modulated by a unique scaling
factor ;. Here, S and T respectively signify the
hidden states at layer [ for the student and teacher
models, in the i token of the m!" batch.

This dynamic temperature method softens the
probability distributions, making them smoother.
This "softening" spreads probabilities across a
wider range of tokens, encouraging more nuanced
learning from the teacher model. This approach not
only makes the distillation process more effective
but also ensures a deeper and more comprehensive
transfer of knowledge to the student model.
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3.2 Dynamic Temperature Strategy

To improve knowledge transfer between teacher
and student models, our research proposes dy-
namic temperature, moving beyond the limitations
of static distillation temperatures. This approach
not only optimizes knowledge transfer by adjust-
ing the focus during distillation but also softens
the teacher model’s logits to reveal complex token
relationships, as delineated in Equation 2.

The dual-temperature mechanism provides dis-
tinct softening levels for teacher and student mod-
els, enabling precise control over the quality and
quantity of information transferred. This method
allows the student model to filter out irrelevant
noise and focus on crucial structural insights, reduc-
ing the risk of overfitting while maintaining impor-
tant characteristics. Consequently, this approach
markedly improves the student model’s ability to
generalize on new tasks, effectively utilizing struc-
tural knowledge from the teacher model to excel in
zero-shot situations.
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3.3 Knowledge Alignment Strategy

During distillation, we align the varying logit di-
mensions from student and teacher models to a
uniform size, employing a fixed-dimension method
for consistency, as illustrated in Equation 2. This
process ensures both models’ logits match dimen-
sion M. To avoid gradient explosion before feeding
logits into Equation 2, we preprocess them using
Min-Max Normalization (Equation 5) and Stan-
dardization (Z-score Normalization) (Equation 6),
with a preference for Standardization in our tests.
This normalization technique is consistently ap-
plied across intermediate layer distillation as well.

x; —min(L)
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3.4 Bayesian Distillation Optimization

Beyond the outlined techniques, we utilized
Bayesian optimization during the distillation phase
to streamline the hyperparameter selection process
and boost the model performance.

Given the dataset (X,Y"), where X represents
hyperparameters and Y represents corresponding
evaluation results, a Gaussian Process (GP), f ~
GP(u, K), is employed as a surrogate model to
approximate the predictive function. Defined by a
mean function, which is typically assumed to be
zero initially but updates after training in (X,Y),
and a covariance function encapsulated by a kernel,
the GP captures the correlation between points,
providing a foundation for model predictions.

The acquisition function, Expected Improvement
(ED) in Equation 7, is calculated based on the GP’s
predictions, aiming to identify the x,e,; from a
set of potential hyperparameters x*, described in
Table 1, that offers the maximum expected improve-
ment over the current best observation. y (z*) and
o (x*) denote the predicted mean and variance at
x*. f(z7) is the best observed function value in
(X,Y). £ is a small positive parameter to balance
exploration and exploitation, and ¢ and ¢ are the



Hyperparameter Values

Hard Label Weight 0.1,1,10,20

Soft Label Weight le—8,1e—7,1e — 3,1,10,20
Temperature 1,5,8,16, 20,30

won

Logits Normalization "none", "Max-Min", "standardize"

Dataset

OpenBookQA (OPQA) (Mihaylov et al., 2018)
ARC Easy (ARC_E) (Clark et al., 2018)

ARC Challenge (ARC_C)(Clark et al., 2018)
BoolQ (Clark et al., 2019)

QNLI (Wang et al., 2018)

Category

Question Answering

"none", "Max-Min", "standardize"
None, Last_Layer,

Last_Middle Layer,
Last_Middle_Start Layer

KLD, Dynamic Temperature

Hidden States Normalization

Intermediate Layer Config!

KD Type

Table 1: Overview of hyperparameters search space.
KLD is Kullback—Leibler divergence.

cumulative distribution function and probability
density function of the standard normal distribu-
tion, respectively. Z is a standardized value calcu-
lated from the predicted mean, variance, and the
current best value in Equation 8.

By optimizing EI, Bayesian optimization de-
termines the zpex; Of evaluation, updates the GP
model with (Zpext , f (Znext )), and repeats this iter-
ative process until a predefined stopping criterion
is met, such as a maximum number of iterations or
a threshold of improvement in the target function.

In summary, Bayesian optimization efficiently
identifies the optimum of a function with lim-
ited evaluations through precise estimation using
a Gaussian Process model and guiding the search
process with the Expected Improvement acquisi-
tion function. This method is advantageous for
its global search capability and efficiency under
limited evaluations.

4 Experimental Setup

4.1 Datasets

We extracted 13,000 training and 2,000 valida-
tion samples from the cleaned Alpaca dataset” for
LoRA fine-tuning and distillation. For evaluation,

!The “Intermediate Layer Config” options allow for cus-
tom specification or removal of layers from teacher models to
student models, where “Last”, “Middle”, and “Start” do not
denote the number of layers but rather the regions within the
architecture where specified layers are located. Each option
offers a flexible way to define the involvement of intermediate
layers in the model.

https://huggingface.co/datasets/yahma/
alpaca-cleaned

Textual Entailment QQP (Chen et al., 2017)

Text Classification SST-2 (Socher et al., 2013)
Language Modeling Dataset ~ WikiText-2 (Merity et al., 2016)
PIQA (Bisk et al., 2020)
HellaSWAG (Zellers et al., 2019)
Winogrande (Sakaguchi et al., 2021)

Commonsense Reasoning

Table 2: Overview of datasets categorized by task.

we selected 11 datasets across various NLP do-
mains to assess model performance comprehen-
sively on a zero-shot basis, testing generalization
across diverse tasks. The datasets are detailed in
Table 2, showcasing the range of NLP areas exam-
ined.

4.2 Baseline Methods

We established a comprehensive experimental set
by selecting four advanced LLLMs as student base-
lines: Bloom-7b1 (Workshop et al., 2022), Llama-
7b-hf (Touvron et al., 2023a), Vicuna-7b-v1.1
(Zheng et al., 2023), and TinyLlama-1.1b (Zhang
et al., 2024), which will be distilled with a sin-
gle teacher model baseline, Llama-13b (Touvron
et al., 2023a). Our approach was strategically de-
signed with an emphasis on efficiency, focusing
on enhancing the performance of pruned LLMs.
Consequently, our experimental design included
a variety of configurations involving the teacher
model, student models, and student models’ pruned
counterparts, with and without the application of
LoRA for fine-tuning.

4.3 Ablation Details

In this research, we employed the TinyLlama-1.1b
model in conjunction with Sparse KD across a se-
ries of ablation studies to rigorously evaluate the
relative efficacy of our innovative strategies: dy-
namic temperature, and intermediate layer feature
distillation. The knowledge alignment cannot be re-
moved because the logits between the teacher and
student model must be aligned. These strategies
formed the core of our experimental investigation,
carefully orchestrated to assess each method’s con-
tribution. By methodically altering the elements
incorporated into the evaluation, our goal was to
delineate and ascertain the distinct impacts of our
fusion methodology on TinyLlama-1.1b, as well
as the individual contributions of dynamic temper-
ature and feature distillation across layers, on the
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cumulative performance.

4.4 Pruning and Distillation

The pruning strategy was standardized at a 25%
ratio, effectively retaining approximately 75% of
the original parameters. Due to the nature of block-
based pruning, the exact retention of parameters
cannot be precisely 75% (Ma et al., 2023b). The
experimental results, including the count of train-
able parameters post-pruning and distillation re-
sults, have been meticulously documented in Table
4 and Table 3.

During distillation, we scaled intermediate layer
losses to prevent gradient explosion from large loss
values, ensuring training stability. We also added a
specific hard label loss proportion, optimized via
Bayesian optimization to balance it with soft label
loss. Soft labels were scaled down by 1le—7, and
hard label loss was increased tenfold, equalizing
their scales to prevent gradient issues.

The pruned models underwent distillation em-
ploying Sparse KD: dynamic temperature with in-
termediate layer feature distillation, knowledge
alignment, and Bayesian distillation optimization
strategies.

This comprehensive approach, meticulously de-
signed, aims to optimize distillation efficiency be-
tween student and teacher models, enhancing the
refined capabilities of pruned models through tar-
geted strategies. It integrates pruning strategies and
Sparse KD to improve overall distillation outcomes.

4.5 Evaluation

In our study, we designed four distinct experimen-
tal groups to examine the impact of post-distillation
pruning on the performance of LLMs, including
an unpruned baseline (comprising both student and
teacher models), and pruned student models, with
and without distillation. We further distinguished
the outcomes within distillation scenarios using
Bayesian optimization and random search meth-
ods. Ablation studies were conducted utilizing the
TinyLlama-1.1b model, evaluated through a lan-
guage model evaluation toolkit (Sutawika et al.,
2023) in Table 2. The focus of our evaluations was
on accuracy, and, for certain cases like Wikitext-2,
on Perplexity (PPL), where higher accuracy and
lower PPL denote performance improvement.

Shttps://github.com/EleutherAl/
Im-evaluation-harness

S Results and Analysis
5.1 Results

The main results are presented in Table 3. It is
evident from the table that our method (Distil-
lation with Bayesian Search) surpasses all base-
line methods across most tasks. Results high-
lighted in bold indicate the best performance within
each experimental group for models post-pruning,
across Sparse Model (without LoRA and with
LoRA), Stand KD, Sparse KD (Random Search),
and Sparse KD (Bayes Search).

Through the application of Sparse KD, the mod-
els TinyLlama-1.1B, Llama7B, Vicuna-7Bvl.1,
and Bloom7b exhibited average improvements of
2.58, 1.90, 2.78, and 2.97 respectively across 11
datasets, surpassing the performance of Sparse
Models (with LoRA). Compared to Stand KD,
these improvements further stand at 1.07, 4.40,
7.30, and 2.84 respectively for each model, which
indicate that Sparse KD method is better than
Stand KD but it is more suitable for larger mod-
els. Notably, in experiments with TinyLlama-1.1B
and Vicuna-7Bvl.1, models distilled using Sparse
KD achieved results very close to Dense Model.
We also observed an interesting phenomenon on
the QNLI test set, where Sparse Model (Without
LoRA) actually outperformed the original model
in Llama7b. Some Sparse Models experienced a
decline in performance in Stand KD compared with
Sparse Model (wo LoRA), such as in the Llama7b,
Vicuna-7B and Bloom-7B groups in QNLI and
SST-2. This could be because a uniform temper-
ature setting does not account for the differences
between various student models.

We also observed that for relatively simpler tasks
such as BoolQ, QNLI, QQP, and SST-2, some mod-
els that were pruned and then distilled exceeded
the performance of Dense Model. These four tasks,
predominantly in the question-answering category,
can also be classified as classification tasks. BoolQ
involves answering true or false to questions based
on a passage, QNLI entails determining whether
textl implies text2, QQP assesses whether two
questions are duplicates, and SST-2 is about bi-
nary sentiment classification. Thus, distillation
following model compression is particularly ef-
fective for classification tasks. Although the re-
sults on Wikitext-2 were not as favorable, they
were not significantly different from those achieved
through LoRA fine-tuning. Our Sparse KD method
in pruned models, which are Distillation(Bayes
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Hella- Wino- Aver- | Wiki-
Model Method OPQA PIQA  ARC_E BoolQ ARC_COQNLI QQP SST-2
SWAG grande age Text2
Llama Teacher Model 4480 79.07 72777 80.09 7471 7798 47.61 50.74 46.37 69.04 6432, 11.58
13B Teacher Model(lora) 46.40 80.68 72.85 80.69 77.10 80.89 50.68 50.05 48.40 49.08 63.68 | 11.76
Dense Model 36.00 59.20 59.12 7329 5535 57.83 30.12 4849 5428 69.61 5433 ! 16.53
Tiny- Sparse Model (wo LoRA)  32.00 50.82 55.72 6942 46.84 53.67 27.47 5052 5033 65.02 50.181 30.29
Llama Sparse Model (w LoRA) 33.00 52.13 57.46 71.22 48.11 5370 29.69 5049 47.07 73.05 5159 27.59
LIB Stand KD 3440 5407 5746 7121 4924 5492 29.18 53.18 5573 71.56 53.10 | 22.15
Sparse KD(Random Search) ~ 34.12 5329 5793 69.15 46.59 6327 29.69 4946 38.06 50.92 49.25| 2543
Sparse KD(Bayes Search)  34.00 54.34 5825 70.78 4945 54.19 29.78 52.61 57.36 80.96 54.17! 22.00
Dense Model 4440 76.21 69.85 79.16 72.81 75.11 4471 51.16 48.00 76.38 63.78 1 12.62
Sparse Model (wo LoRA) 3620 6245 5943 73.18 51.14 58.69 32.17 5318 46.14 7454 5471 22.54
Lla- Sparse Model (w LoRA) 3940 67.18 62.12 7465 5934 5737 36.86 51.53 4895 84.40 58.18; 19.58
Stand KD 38.60 67.34 62.67 7388 59.81 6235 3797 51.60 4650 56.08 55.68 ! 20.56
ma7b Sparse KD(Random Search) ~ 39.20 64.17 63.47 7323 5250 67.74 3345 5139 5740 4929 55.18! 27.29
Sparse KD(Bayes Search)  44.60 72.01 6536 78.10 65.81 67.80 39.59 52.08 5536 60.09 60.08 1 19.05
Dense Model 4340 7464 70.09 78.56 72.01 7832 43777 50.60 60.70 5424 62.63 16.10
Sparse Model (wo LoRA) 3420 60.18 59.04 72.04 5446 49.82 33.02 5138 58.85 72.02 54.50, 28.83
Vine- Sparse Model (w LoRA) 39.00 65.72 63.77 7340 5998 53.00 36.26 50.54 5644 7695 57.51! 20.60
unaTh Stand KD 33.20 54.66 58.64 71.05 49.83 59.41 30.29 5828 55.11 5940 52991 2273
Sparse KD(Random Search) ~ 40.20 68.33  65.51 7530 61.75 6222 3644 5470 56.57 70.30 59.13 1 23.35
Sparse KD(Bayes Search)  41.20 69.59 6598 7639 61.79 56.15 37.96 5640 60.22 77.18 60.29 | 20.93
Dense Model 3580 6226 6440 73,56 57.28 6291 3345 51.18 41.87 49.08 53.18 | 26.58
Sparse Model (wo LoRA)  31.60 38.13 5635 67.79 46.84 6199 2671 4933 3813 61.01 47.79 ! 75.51
Bloom Sparse Model (w LoRA) 31.20 3395 57.22 6578 4449 4630 2585 4629 49.78 5195 4528 ! 190.57
Stand KD 29.00 35.01 5595 6528 4541 60.86 2551 49.50 36.80 50.80 45411 149.58
7 Sparse KD(Random Search) ~ 31.60 38.12 5635 67.79 46.84 6198 26.71 4933 38.13 61.01 4799 135.66
Sparse KD(Bayes Search)  32.20 39.36 55.09 68.55 46.89 61.74 27.65 50.25 39.39 61.35 4825, 12449
Table 3: The main results from our multi-task testing, with the exception of Wikitext-2, were derived from the

Language Model Evaluation Harness®. For Wikitext-2, the Perplexity (PPL) metric was employed, whereas accuracy
served as the metric for all other tasks. Results highlighted in bold indicate the best performance within each
experimental group for models post-pruning. This methodological approach ensures a rigorous and comprehensive
evaluation of our models’ effectiveness across a diverse array of tasks, adhering to the high standards of academic
rigor and professionalism expected at scholarly conferences.

Type | Model Base Pa- Pruned Final
rameters Parame- Pruned
B) ters (B) Ratio
Teacher | Llamal3B 13B - -
Model
Tiny- 1.1B 0.961B 0.8735
Student | Llamal.1B
Model Bloom7b  7.069B 6.282B 0.8887
Vincuna7b 6.738B 5.423B 0.8048
Llama7b  6.738B 5.423B 0.8048

Table 4: verview of model parameter adjustments. All
parameter values are expressed in billions (B).

Search) or Distillation(Random Search) in the re-
sults Table, outperformed most Sparse Models
(w LoRA) in question-answering tasks (such as
OPQA, ARC_E, ARC_C) and inference tasks (like
HellaSwag, Winogrande, and PIQA). Moreover,
models optimized through Bayesian search gener-
ally exhibited superior performance compared to

those subjected to random search, as depicted in
Table 3. The Baysian optimization also is depicted
in Fig 3 to illustrate that most outcomes achieved
through Bayesian search are notably positive.

Figure 3: Visualization of search results during
Bayesian distillation optimization.

5.2 Ablation Study

In this stage, we conducted an ablation study to
evaluate the impact of different strategies, Dynamic
Temperature, Intermediate Layer Distillation and
Kullback-Leibler divergence on the performance



Method OPQA  Hella- Wino- PIQA ARC_E BoolQ ARC_C QNLI QQP SST-2  Average| Wiki-
SWAG  grande text2

Baseline 32.00 50.82 5572 6942  46.84  53.67 2747  50.52  50.33 65.02  50.18 30.29
+KD 3320 5352 58.09 69.53  46.55 62.2 29.18 4928  45.07  69.27 51.59 | 25.851

+ KD +ID 3440  54.07 5746 7122 4924 5492  29.18  53.18 55.73 71.56  53.10 22.15
+KD +ID + DT 3400 5434 5825 70.78 4945 54.19  29.78  52.61 57.36  80.963  54.17 22.00

Table 5: Ablation study results in 0.25 pruning ratio in TinyLlamal.1b on various NLP tasks. KD is KL divergence,
ID is Intermediate Layer Distillation and DT is Dynamic Temperature.

of the TinyLlamal.1B model. Each strategy was
aimed at enhancing the model’s distillation process
through different mechanisms, thereby improving
its performance across a variety of tasks. To ac-
curately assess the contribution of each strategy,
we began with a complete model encompassing
all strategies and systematically removed each one,
recording the resultant changes in performance met-
rics.

Experimental results in Table 5 show that remov-
ing dynamic temperature led to a 1.076% average
accuracy decrease across 11 tasks, highlighting
its crucial role in optimizing model performance.
Eliminating intermediate layer distillation resulted
in a performance drop 1.51%, indicating its signifi-
cant impact on performance improvement.. More-
over, performance declines occurred with the re-
moval of Kullback-Leibler divergence, with accu-
racy decreases of 1.41%, underscoring the influ-
ence of KL divergence distillation (Stand KD) to
Sparse Model (wo LoRA).

Furthermore, comparative experiments between
random search and Bayesian Search within the
main results in Table 3 have already substanti-
ated the superior overall performance of Bayesian
search, rendering separate ablation studies for
Bayesian search superfluous.

These findings confirm the contribution of a
custom-designed distillation loss function with dual
dynamic temperature coefficients, final and inter-
mediate layer feature distillation, and the Bayesian
optimization to the model’s overall performance
and reveal their relative importance during the
model training process.

6 Conclusion

In this paper, we introduce three novel strategies for
knowledge distillation in pruned models. The first
strategy involves a custom-designed distillation
loss function that incorporates dual temperature
coefficients to precisely control the quantity and
quality of information transferred. This approach

ensures that the student model is not overwhelmed
by noise from the teacher model and retains cru-
cial structural knowledge. The second strategy fo-
cuses on feature-based distillation from both the
final output and intermediate layers with knowl-
edge alignment, further enhancing the knowledge
transfer process. Lastly, we introduce a method for
optimizing the knowledge distillation loss through
Bayesian optimization, enabling the identification
of optimal parameters. Extensive experiments are
conducted on multiple large models and various
NLP tasks, including ablation studies. The results
demonstrate the effectiveness and stability of the
proposed framework, highlighting its potential for
efficient knowledge distillation in pruned models.

7 Limitations

While this work enhances the generalized capa-
bilities of pruned models, it does not specifically
improve capabilities in categories such as inference
and logical analysis, language generation, natural
language understanding, knowledge retrieval, and
integration. These areas present opportunities for
detailed exploration in future research.

8 [Ethics Statement

Our approach solely concentrates on the technical
aspects of efficiently deploying LLMs. It does not
involve any ethical or social implications.
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model. The ablation experiments setting is le — 7
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