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Abstract

Large language models (LLMs) have achieved001
tremendous success in various domains, but002
their massive parameter sizes pose challenges003
for fine-tuning and inference. Recently, the004
common model compression process involves005
obtaining a sparse LLM through pruning, fol-006
lowed by LoRA-finetuning. However, these007
methods often suffer from significant perfor-008
mance degradation. We attempted to address009
this by introducing additional teacher distilla-010
tion, but found limited improvements due to011
the gap between the teacher and student mod-012
els and constrained training iterations. To over-013
come these challenges, we propose Sparse KD,014
the first distillation framework specifically de-015
signed for sparse models in constrained fine-016
tuning scenarios. Our framework includes dy-017
namic temperature, knowledge alignment, and018
Bayesian distillation optimization strategies.019
Dynamic temperature can adaptively align the020
strength of the teacher’s knowledge, and the021
Knowledge Alignment Module can bridge the022
gap by projecting teacher-student knowledge023
to the same interval. Applying Bayesian opti-024
mization swiftly finds optimal settings based on025
these strategies, thereby improving model per-026
formance. Comprehensive experiments across027
diverse task types have demonstrated that this028
combination can be applied to LLMs with ef-029
fective and stable results.030

1 Introduction031

Large language models (LLMs) revolutionize natu-032

ral language processing (NLP) by achieving re-033

markable performance across domains such as034

machine translation, sentiment analysis, question035

answering, and text generation (Touvron et al.,036

2023b,c; Chiang et al., 2023; Scao et al., 2022;037

Zhang et al., 2022). However, their massive param-038

eter sizes pose challenges for fine-tuning and de-039

ployment in real-world applications. For example,040

GPT3, one of the top-performing models, contains041

175 billion parameters, requiring approximately042

350GB of GPU memory in FP16 for model storage 043

and inference (Brown et al.). Meeting the compu- 044

tational demands of these models while efficiently 045

handling their multitude of parameters presents sig- 046

nificant processing time and resource allocation 047

challenges. 048

The prevailing methodology for mitigating the 049

computational burden of LLMs involves compress- 050

ing the models through various techniques (Frantar 051

and Alistarh, 2023; Sun et al., 2023; Ma et al., 052

2023a; Kwon et al., 2022). These approaches in- 053

clude model pruning, Knowledge Distillation (KD), 054

parameter quantization, and Low-Rank Adaptation 055

(LoRA), which are all tailored to LLMs. Among 056

these, model pruning is a widely adopted compres- 057

sion technique that eliminates insignificant param- 058

eters based on their magnitude, resulting in sparse 059

LLMs that offer improved efficiency during infer- 060

ence. To further optimize the performance of sparse 061

LLMs, fine-tuning techniques like LoRA have been 062

proposed to adapt pruned models for specific down- 063

stream tasks. The conventional approach of prun- 064

ing followed by fine-tuning results in significant 065

performance degradation due to the loss of critical 066

knowledge during pruning and the limited ability 067

of fine-tuning to recover this knowledge effectively 068

(Gu et al., 2023). 069

To overcome these limitations, we investigate 070

the potential of teacher distillation, a technique that 071

transfers knowledge from a large teacher model to 072

a smaller student model. Currently, there is limited 073

exploration in distilling LLMs under low-resource 074

conditions. While the MiniLM initiative has made 075

progress in distilling large models, this approach 076

requires fine-tuning of the student model before dis- 077

tillation, leading to prolonged training times (Gu 078

et al., 2023). In this workflow, it becomes crucial to 079

rapidly and effectively assimilate knowledge from 080

a limited number of iterations. However, the sig- 081

nificant disparities across different models pose a 082

formidable challenge in devising strategies that ef- 083
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fectively mitigate models’ differences to enhance084

the efficacy and efficiency of the distillation pro-085

cess.086

This paper presents Sparse KD, a novel distil-087

lation framework specifically designed for sparse088

models in constrained fine-tuning scenarios. We089

observe from the toy experiment in Fig 1 that even090

slight modifications in the distillation temperature091

can have an impact on the outcomes, albeit mod-092

estly. Based on this insight, we introduce an innova-093

tive adaptive temperature mechanism that dynam-094

ically adjusts throughout the training phase. No-095

tably, our approach incorporates a dual-temperature096

strategy, using separate temperatures for the teacher097

and student models. This customization accounts098

for the unique differences between models, a fea-099

ture notably absent in conventional methods. Fur-100

thermore, we leverage knowledge alignment mod-101

ule by max-min normalization or standardization102

to enhance the distillation of intermediate layer fea-103

tures more effectively. During our search for the op-104

timal KD loss, we employ a Bayesian optimization105

(Snoek et al., 2012), employing expected improve-106

ment as our acquisition function. This technique,107

often overlooked in traditional approaches, allows108

us to efficiently identify parameters that align with109

optimal performance. Importantly, this paper ex-110

plores the impact of our customized distillation111

technique on enhancing the generalization perfor-112

mance of LLMs across various linguistic tasks.113

To assess the effectiveness and stability of our114

approach, we conduct comprehensive experiments115

across a wide range of task types, including ma-116

chine translation, sentiment analysis, and question117

answering. The results substantiate the efficacy of118

our combined approach, showcasing the potential119

for efficient and stable deployment of LLMs. We120

further perform zero-shot experiments using a suite121

of eleven datasets, including those from the GLUE122

(Wang et al., 2018) and SuperGLUE (Wang et al.,123

2019) benchmarks, covering various tasks from124

different sub-domains. The experimental results125

demonstrate that our proposed method outperforms126

leading baseline techniques in terms of effective-127

ness and superiority. Additionally, we conduct ab-128

lation studies to determine which strategies yield129

the most favorable results.130

2 Related Work131

Knowledge Distillation (Hinton et al., 2015) aims132

to transfer knowledge from a large model (teacher133

Figure 1: Toy experiments in TinyLlama1.1b with vary-
ing temperature settings.

model) to a smaller model (student model), en- 134

abling the latter to mimic the behavior of the for- 135

mer. KD can be categorized into three main types 136

based on the nature of the knowledge transferred: 137

Response-Based KD, which focuses on the model’s 138

outputs as introduced by Hinton and colleagues in 139

their pioneering work; Feature-Based KD (Romero 140

et al., 2014) distils features from intermediate lay- 141

ers can effectively enhance the student model’s 142

performance; and Relation-Based KD aims to trans- 143

fer relational knowledge between layers within the 144

model, as proposed by Tung and Mori (Tung and 145

Mori, 2019). Distillation techniques include Of- 146

fline Distillation, where the teacher model fully 147

trains before guiding the student model; Online 148

Distillation (Zhang et al., 2017), enables the simul- 149

taneous training of both teacher and student mod- 150

els, offering potential advantages over traditional 151

offline methods; and Self-Distillation (Furlanello 152

et al., 2018), where a model improves itself using 153

its outputs. 154

Current research has shown the effectiveness of 155

applying KD to pruned models for performance 156

enhancement. For instance, Sanh demonstrated 157

how KD could create a smaller, faster BERT model 158

(Sanh et al., 2019). Although DistilBERT was not 159

directly applied to pruned models, the study show- 160

cased the potential of KD in optimizing LLMs. Fur- 161

thermore, Sanh introduced a dynamic pruning tech- 162

nique and enhanced model performance through 163

fine-tuning, providing insights for performance re- 164

covery post-pruning (Sanh et al., 2020). Despite 165

these and other related works offering valuable 166

insights and methodologies for combining prun- 167

ing techniques with KD, literature specifically ad- 168

dressing KD strategies applied to pruned LLMs 169

remains scarce. This indicates that while signifi- 170

cant progress has been made in optimizing LLMs 171
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Figure 2: Overview of the framework, which includes distillation strategies, Bayesian Seach and also prunning
procedure.

through KD and model pruning, finer adjustments172

of the distillation process to suit the specific needs173

of pruned models. Specifically, employing ad-174

vanced strategies like dynamic temperature adjust-175

ments to further improve the performance and effi-176

ciency of pruned models, represents an open and177

underexplored research area.178

3 Methodology179

We started by pruning the model to make it simpler180

and more efficient (Ma et al., 2023a). Initially, we181

tried LoRA-training but found it to be ineffective.182

Therefore, we explored model distillation for mod-183

els after LoRA training. At first, we used Kullback-184

Leibler (KL) divergence as the main loss function185

for distillation. We observed that the temperature186

significantly but subtly impacted distillation effec-187

tiveness. To address the limitations of fixed tem-188

perature settings, we proposed a new approach: dy-189

namic temperature settings tailored to the teacher190

and student models. This adjustment helps the stu-191

dent model distil knowledge more comprehensively192

and flexibly. We also improved the hyperparameter193

optimization using a modified Bayesian optimiza-194

tion and implemented a different knowledge align-195

ment strategy. These enhancements aim to make196

the distillation process more efficient and adaptable.197

Fig 2 provides an overview of the framework.198

3.1 Overall Distillation Optimization199

Commencing our experiments, we adopted the dis-200

tillation technique using KL divergence, as delin-201

eated by Hinton (Hinton et al., 2015) and encap-202

sulated in Equation 1. Our primary focus was on 203

optimizing the KL loss function. 204

In Equation 1, u signifies the input, ordinarily a 205

question from the dataset, whereas v symbolizes 206

the text generated by the model in response to u. 207

The variable p represents the teacher model’s con- 208

ditional probability distribution, while q reflects 209

that of the student model. The expectation function 210

Eu is tasked with computing across the spectrum 211

of possible inputs u and their respective outputs v. 212

p(v|u), and q(v|u) are correspondingly rendered 213

as softmax
(
T
t′

)
and softmax

(
S
t′

)
, where S and T 214

denote logits. t′ is temperature. 215

In the conducted toy experiment in Fig 1, it 216

was observed that performance on most test sets 217

improved with temperature increasing, but some, 218

like BoolQ, showed an initial improvement fol- 219

lowed by a decline. This indicates that the dis- 220

crepancy between teacher and student models can 221

disrupt knowledge distillation at extreme tempera- 222

tures(high or low temperature). Only optimal tem- 223

perature ensures effective knowledge transfer from 224

teacher to student models. 225

To optimize the student model’s learning, we 226

revised the loss function L(ϕ), incorporating dy- 227

namic temperature adjustments for distillation. The 228

batch size and token length per sample are denoted 229

by N and M , respectively. We introduce σt,i and 230

σs,i as the standard deviations for the teacher and 231

student models at the ith sample in Equation 4, to 232

adjust the logits Pt,i,j and Qs,i,j . This allows for a 233

nuanced knowledge transfer by softening the log- 234

its with temperature-sensitive softmax functions in 235

Equation 3. In the second component, L denotes 236
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selectively matched layers from the teacher to the237

student model, each modulated by a unique scaling238

factor βl. Here, S and T respectively signify the239

hidden states at layer l for the student and teacher240

models, in the ith token of the mth batch.241

This dynamic temperature method softens the242

probability distributions, making them smoother.243

This "softening" spreads probabilities across a244

wider range of tokens, encouraging more nuanced245

learning from the teacher model. This approach not246

only makes the distillation process more effective247

but also ensures a deeper and more comprehensive248

transfer of knowledge to the student model.249

ϕ = argmin
ϕ

L(ϕ) = argmin
ϕ

DKL [p∥qϕ]

= argmin
ϕ

Eu

[
log

(
p(v | u)
qϕ(v | u)

)] (1)250

251

L(ϕ) = 1

N2

N∑
i=1

M∑
j=1

α ·KL [Pt,i,j∥Qs,i,j ] +

L∑
l=1

βl
N ×M

N∑
i=1

M∑
j=1

∥Sl,i,j − Tl,i,j∥22

(2)252

3.2 Dynamic Temperature Strategy253

To improve knowledge transfer between teacher254

and student models, our research proposes dy-255

namic temperature, moving beyond the limitations256

of static distillation temperatures. This approach257

not only optimizes knowledge transfer by adjust-258

ing the focus during distillation but also softens259

the teacher model’s logits to reveal complex token260

relationships, as delineated in Equation 2.261

The dual-temperature mechanism provides dis-262

tinct softening levels for teacher and student mod-263

els, enabling precise control over the quality and264

quantity of information transferred. This method265

allows the student model to filter out irrelevant266

noise and focus on crucial structural insights, reduc-267

ing the risk of overfitting while maintaining impor-268

tant characteristics. Consequently, this approach269

markedly improves the student model’s ability to270

generalize on new tasks, effectively utilizing struc-271

tural knowledge from the teacher model to excel in272

zero-shot situations.273

Pt,i,j = softmax

(
Lt[i, j]

σt,i

)
Qs,i,j = softmax

(
Ls[i, j]

σs,i

) (3)274

σt,i =

√√√√ 1

M

M∑
j=1

(Lt[i, j]− µt,i)2

σs,i =

√√√√ 1

M

M∑
j=1

(Ls[i, j]− µs,i)2

(4) 275

3.3 Knowledge Alignment Strategy 276

During distillation, we align the varying logit di- 277

mensions from student and teacher models to a 278

uniform size, employing a fixed-dimension method 279

for consistency, as illustrated in Equation 2. This 280

process ensures both models’ logits match dimen- 281

sion M . To avoid gradient explosion before feeding 282

logits into Equation 2, we preprocess them using 283

Min-Max Normalization (Equation 5) and Stan- 284

dardization (Z-score Normalization) (Equation 6), 285

with a preference for Standardization in our tests. 286

This normalization technique is consistently ap- 287

plied across intermediate layer distillation as well. 288

L′
i =

xi −min(L)

max(L)−min(L) + ϵ
(5) 289

290

Li =
xi − µ

σ + ϵ
(6) 291

3.4 Bayesian Distillation Optimization 292

Beyond the outlined techniques, we utilized 293

Bayesian optimization during the distillation phase 294

to streamline the hyperparameter selection process 295

and boost the model performance. 296

Given the dataset (X,Y ), where X represents 297

hyperparameters and Y represents corresponding 298

evaluation results, a Gaussian Process (GP), f ∼ 299

GP (µ,K), is employed as a surrogate model to 300

approximate the predictive function. Defined by a 301

mean function, which is typically assumed to be 302

zero initially but updates after training in (X,Y ), 303

and a covariance function encapsulated by a kernel, 304

the GP captures the correlation between points, 305

providing a foundation for model predictions. 306

The acquisition function, Expected Improvement 307

(EI) in Equation 7, is calculated based on the GP’s 308

predictions, aiming to identify the xnext from a 309

set of potential hyperparameters x∗, described in 310

Table 1, that offers the maximum expected improve- 311

ment over the current best observation. µ (x∗) and 312

σ (x∗) denote the predicted mean and variance at 313

x∗. f (x+) is the best observed function value in 314

(X,Y ). ξ is a small positive parameter to balance 315

exploration and exploitation, and Φ and ϕ are the 316
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Hyperparameter Values
Hard Label Weight 0.1, 1, 10, 20

Soft Label Weight 1e− 8, 1e− 7, 1e− 3, 1, 10, 20

Temperature 1, 5, 8, 16, 20, 30

Logits Normalization "none", "Max-Min", "standardize"
Hidden States Normalization "none", "Max-Min", "standardize"

Intermediate Layer Config1
None, Last_Layer,
Last_Middle Layer,
Last_Middle_Start Layer

KD Type KLD, Dynamic Temperature

Table 1: Overview of hyperparameters search space.
KLD is Kullback–Leibler divergence.

cumulative distribution function and probability317

density function of the standard normal distribu-318

tion, respectively. Z is a standardized value calcu-319

lated from the predicted mean, variance, and the320

current best value in Equation 8.321

By optimizing EI, Bayesian optimization de-322

termines the xnext of evaluation, updates the GP323

model with (xnext , f (xnext )), and repeats this iter-324

ative process until a predefined stopping criterion325

is met, such as a maximum number of iterations or326

a threshold of improvement in the target function.327

In summary, Bayesian optimization efficiently328

identifies the optimum of a function with lim-329

ited evaluations through precise estimation using330

a Gaussian Process model and guiding the search331

process with the Expected Improvement acquisi-332

tion function. This method is advantageous for333

its global search capability and efficiency under334

limited evaluations.335

EI(x∗) =
(
µ(x∗)− f

(
x+

)
− ξ

)
Φ(Z)

+ σ(x∗)ϕ(Z)
(7)336

Z =
µ(x∗)− f (x+)− ξ

σ(x)
(8)337

4 Experimental Setup338

4.1 Datasets339

We extracted 13,000 training and 2,000 valida-340

tion samples from the cleaned Alpaca dataset2 for341

LoRA fine-tuning and distillation. For evaluation,342

1The “Intermediate Layer Config” options allow for cus-
tom specification or removal of layers from teacher models to
student models, where “Last”, “Middle”, and “Start” do not
denote the number of layers but rather the regions within the
architecture where specified layers are located. Each option
offers a flexible way to define the involvement of intermediate
layers in the model.

2https://huggingface.co/datasets/yahma/
alpaca-cleaned

Category Dataset

Question Answering

OpenBookQA (OPQA) (Mihaylov et al., 2018)
ARC Easy (ARC_E) (Clark et al., 2018)
ARC Challenge (ARC_C)(Clark et al., 2018)
BoolQ (Clark et al., 2019)
QNLI (Wang et al., 2018)

Textual Entailment QQP (Chen et al., 2017)
Text Classification SST-2 (Socher et al., 2013)
Language Modeling Dataset WikiText-2 (Merity et al., 2016)

Commonsense Reasoning
PIQA (Bisk et al., 2020)
HellaSWAG (Zellers et al., 2019)
Winogrande (Sakaguchi et al., 2021)

Table 2: Overview of datasets categorized by task.

we selected 11 datasets across various NLP do- 343

mains to assess model performance comprehen- 344

sively on a zero-shot basis, testing generalization 345

across diverse tasks. The datasets are detailed in 346

Table 2, showcasing the range of NLP areas exam- 347

ined. 348

4.2 Baseline Methods 349

We established a comprehensive experimental set 350

by selecting four advanced LLMs as student base- 351

lines: Bloom-7b1 (Workshop et al., 2022), Llama- 352

7b-hf (Touvron et al., 2023a), Vicuna-7b-v1.1 353

(Zheng et al., 2023), and TinyLlama-1.1b (Zhang 354

et al., 2024), which will be distilled with a sin- 355

gle teacher model baseline, Llama-13b (Touvron 356

et al., 2023a). Our approach was strategically de- 357

signed with an emphasis on efficiency, focusing 358

on enhancing the performance of pruned LLMs. 359

Consequently, our experimental design included 360

a variety of configurations involving the teacher 361

model, student models, and student models’ pruned 362

counterparts, with and without the application of 363

LoRA for fine-tuning. 364

4.3 Ablation Details 365

In this research, we employed the TinyLlama-1.1b 366

model in conjunction with Sparse KD across a se- 367

ries of ablation studies to rigorously evaluate the 368

relative efficacy of our innovative strategies: dy- 369

namic temperature, and intermediate layer feature 370

distillation. The knowledge alignment cannot be re- 371

moved because the logits between the teacher and 372

student model must be aligned. These strategies 373

formed the core of our experimental investigation, 374

carefully orchestrated to assess each method’s con- 375

tribution. By methodically altering the elements 376

incorporated into the evaluation, our goal was to 377

delineate and ascertain the distinct impacts of our 378

fusion methodology on TinyLlama-1.1b, as well 379

as the individual contributions of dynamic temper- 380

ature and feature distillation across layers, on the 381
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cumulative performance.382

4.4 Pruning and Distillation383

The pruning strategy was standardized at a 25%384

ratio, effectively retaining approximately 75% of385

the original parameters. Due to the nature of block-386

based pruning, the exact retention of parameters387

cannot be precisely 75% (Ma et al., 2023b). The388

experimental results, including the count of train-389

able parameters post-pruning and distillation re-390

sults, have been meticulously documented in Table391

4 and Table 3.392

During distillation, we scaled intermediate layer393

losses to prevent gradient explosion from large loss394

values, ensuring training stability. We also added a395

specific hard label loss proportion, optimized via396

Bayesian optimization to balance it with soft label397

loss. Soft labels were scaled down by 1e−7, and398

hard label loss was increased tenfold, equalizing399

their scales to prevent gradient issues.400

The pruned models underwent distillation em-401

ploying Sparse KD: dynamic temperature with in-402

termediate layer feature distillation, knowledge403

alignment, and Bayesian distillation optimization404

strategies.405

This comprehensive approach, meticulously de-406

signed, aims to optimize distillation efficiency be-407

tween student and teacher models, enhancing the408

refined capabilities of pruned models through tar-409

geted strategies. It integrates pruning strategies and410

Sparse KD to improve overall distillation outcomes.411

412

4.5 Evaluation413

In our study, we designed four distinct experimen-414

tal groups to examine the impact of post-distillation415

pruning on the performance of LLMs, including416

an unpruned baseline (comprising both student and417

teacher models), and pruned student models, with418

and without distillation. We further distinguished419

the outcomes within distillation scenarios using420

Bayesian optimization and random search meth-421

ods. Ablation studies were conducted utilizing the422

TinyLlama-1.1b model, evaluated through a lan-423

guage model evaluation toolkit (Sutawika et al.,424

2023) in Table 2. The focus of our evaluations was425

on accuracy, and, for certain cases like Wikitext-2,426

on Perplexity (PPL), where higher accuracy and427

lower PPL denote performance improvement.428

3https://github.com/EleutherAI/
lm-evaluation-harness

5 Results and Analysis 429

5.1 Results 430

The main results are presented in Table 3. It is 431

evident from the table that our method (Distil- 432

lation with Bayesian Search) surpasses all base- 433

line methods across most tasks. Results high- 434

lighted in bold indicate the best performance within 435

each experimental group for models post-pruning, 436

across Sparse Model (without LoRA and with 437

LoRA), Stand KD, Sparse KD (Random Search), 438

and Sparse KD (Bayes Search). 439

Through the application of Sparse KD, the mod- 440

els TinyLlama-1.1B, Llama7B, Vicuna-7Bv1.1, 441

and Bloom7b exhibited average improvements of 442

2.58, 1.90, 2.78, and 2.97 respectively across 11 443

datasets, surpassing the performance of Sparse 444

Models (with LoRA). Compared to Stand KD, 445

these improvements further stand at 1.07, 4.40, 446

7.30, and 2.84 respectively for each model, which 447

indicate that Sparse KD method is better than 448

Stand KD but it is more suitable for larger mod- 449

els. Notably, in experiments with TinyLlama-1.1B 450

and Vicuna-7Bv1.1, models distilled using Sparse 451

KD achieved results very close to Dense Model. 452

We also observed an interesting phenomenon on 453

the QNLI test set, where Sparse Model (Without 454

LoRA) actually outperformed the original model 455

in Llama7b. Some Sparse Models experienced a 456

decline in performance in Stand KD compared with 457

Sparse Model (wo LoRA), such as in the Llama7b, 458

Vicuna-7B and Bloom-7B groups in QNLI and 459

SST-2. This could be because a uniform temper- 460

ature setting does not account for the differences 461

between various student models. 462

We also observed that for relatively simpler tasks 463

such as BoolQ, QNLI, QQP, and SST-2, some mod- 464

els that were pruned and then distilled exceeded 465

the performance of Dense Model. These four tasks, 466

predominantly in the question-answering category, 467

can also be classified as classification tasks. BoolQ 468

involves answering true or false to questions based 469

on a passage, QNLI entails determining whether 470

text1 implies text2, QQP assesses whether two 471

questions are duplicates, and SST-2 is about bi- 472

nary sentiment classification. Thus, distillation 473

following model compression is particularly ef- 474

fective for classification tasks. Although the re- 475

sults on Wikitext-2 were not as favorable, they 476

were not significantly different from those achieved 477

through LoRA fine-tuning. Our Sparse KD method 478

in pruned models, which are Distillation(Bayes 479
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Model Method OPQA
Hella-
SWAG

Wino-
grande

PIQA ARC_E BoolQ ARC_C QNLI QQP SST-2
Aver-
age

Wiki-
Text2

Teacher Model 44.80 79.07 72.77 80.09 74.71 77.98 47.61 50.74 46.37 69.04 64.32 11.58Llama
13B Teacher Model(lora) 46.40 80.68 72.85 80.69 77.10 80.89 50.68 50.05 48.40 49.08 63.68 11.76

Dense Model 36.00 59.20 59.12 73.29 55.35 57.83 30.12 48.49 54.28 69.61 54.33 16.53
Sparse Model (wo LoRA) 32.00 50.82 55.72 69.42 46.84 53.67 27.47 50.52 50.33 65.02 50.18 30.29
Sparse Model (w LoRA) 33.00 52.13 57.46 71.22 48.11 53.70 29.69 50.49 47.07 73.05 51.59 27.59

Stand KD 34.40 54.07 57.46 71.21 49.24 54.92 29.18 53.18 55.73 71.56 53.10 22.15
Sparse KD(Random Search) 34.12 53.29 57.93 69.15 46.59 63.27 29.69 49.46 38.06 50.92 49.25 25.43

Tiny-
Llama
1.1B

Sparse KD(Bayes Search) 34.00 54.34 58.25 70.78 49.45 54.19 29.78 52.61 57.36 80.96 54.17 22.00
Dense Model 44.40 76.21 69.85 79.16 72.81 75.11 44.71 51.16 48.00 76.38 63.78 12.62

Sparse Model (wo LoRA) 36.20 62.45 59.43 73.18 51.14 58.69 32.17 53.18 46.14 74.54 54.71 22.54
Sparse Model (w LoRA) 39.40 67.18 62.12 74.65 59.34 57.37 36.86 51.53 48.95 84.40 58.18 19.58

Stand KD 38.60 67.34 62.67 73.88 59.81 62.35 37.97 51.60 46.50 56.08 55.68 20.56
Sparse KD(Random Search) 39.20 64.17 63.47 73.23 52.50 67.74 33.45 51.39 57.40 49.29 55.18 27.29

Lla-
ma7b

Sparse KD(Bayes Search) 44.60 72.01 65.36 78.10 65.81 67.80 39.59 52.08 55.36 60.09 60.08 19.05
Dense Model 43.40 74.64 70.09 78.56 72.01 78.32 43.77 50.60 60.70 54.24 62.63 16.10

Sparse Model (wo LoRA) 34.20 60.18 59.04 72.04 54.46 49.82 33.02 51.38 58.85 72.02 54.50 28.83
Sparse Model (w LoRA) 39.00 65.72 63.77 73.40 59.98 53.00 36.26 50.54 56.44 76.95 57.51 20.60

Stand KD 33.20 54.66 58.64 71.05 49.83 59.41 30.29 58.28 55.11 59.40 52.99 22.73
Sparse KD(Random Search) 40.20 68.33 65.51 75.30 61.75 62.22 36.44 54.70 56.57 70.30 59.13 23.35

Vinc-
una7b

Sparse KD(Bayes Search) 41.20 69.59 65.98 76.39 61.79 56.15 37.96 56.40 60.22 77.18 60.29 20.93

Dense Model 35.80 62.26 64.40 73.56 57.28 62.91 33.45 51.18 41.87 49.08 53.18 26.58
Sparse Model (wo LoRA) 31.60 38.13 56.35 67.79 46.84 61.99 26.71 49.33 38.13 61.01 47.79 75.51
Sparse Model (w LoRA) 31.20 33.95 57.22 65.78 44.49 46.30 25.85 46.29 49.78 51.95 45.28 190.57

Stand KD 29.00 35.01 55.95 65.28 45.41 60.86 25.51 49.50 36.80 50.80 45.41 149.58
Sparse KD(Random Search) 31.60 38.12 56.35 67.79 46.84 61.98 26.71 49.33 38.13 61.01 47.99 135.66

Bloom
7b

Sparse KD(Bayes Search) 32.20 39.36 55.09 68.55 46.89 61.74 27.65 50.25 39.39 61.35 48.25 124.49

Table 3: The main results from our multi-task testing, with the exception of Wikitext-2, were derived from the
Language Model Evaluation Harness3. For Wikitext-2, the Perplexity (PPL) metric was employed, whereas accuracy
served as the metric for all other tasks. Results highlighted in bold indicate the best performance within each
experimental group for models post-pruning. This methodological approach ensures a rigorous and comprehensive
evaluation of our models’ effectiveness across a diverse array of tasks, adhering to the high standards of academic
rigor and professionalism expected at scholarly conferences.

Type Model Base Pa-
rameters
(B)

Pruned
Parame-
ters (B)

Final
Pruned
Ratio

Teacher
Model

Llama13B 13B - -

Student
Model

Tiny-
Llama1.1B

1.1B 0.961B 0.8735

Bloom7b 7.069B 6.282B 0.8887
Vincuna7b 6.738B 5.423B 0.8048
Llama7b 6.738B 5.423B 0.8048

Table 4: verview of model parameter adjustments. All
parameter values are expressed in billions (B).

Search) or Distillation(Random Search) in the re-480

sults Table, outperformed most Sparse Models481

(w LoRA) in question-answering tasks (such as482

OPQA, ARC_E, ARC_C) and inference tasks (like483

HellaSwag, Winogrande, and PIQA). Moreover,484

models optimized through Bayesian search gener-485

ally exhibited superior performance compared to486

those subjected to random search, as depicted in 487

Table 3. The Baysian optimization also is depicted 488

in Fig 3 to illustrate that most outcomes achieved 489

through Bayesian search are notably positive.

Figure 3: Visualization of search results during
Bayesian distillation optimization.

490

5.2 Ablation Study 491

In this stage, we conducted an ablation study to 492

evaluate the impact of different strategies, Dynamic 493

Temperature, Intermediate Layer Distillation and 494

Kullback–Leibler divergence on the performance 495
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Method OPQA Hella-
SWAG

Wino-
grande

PIQA ARC_E BoolQ ARC_C QNLI QQP SST-2 Average Wiki-
text2

Baseline 32.00 50.82 55.72 69.42 46.84 53.67 27.47 50.52 50.33 65.02 50.18 30.29
+KD 33.20 53.52 58.09 69.53 46.55 62.2 29.18 49.28 45.07 69.27 51.59 25.851

+ KD + ID 34.40 54.07 57.46 71.22 49.24 54.92 29.18 53.18 55.73 71.56 53.10 22.15
+ KD + ID + DT 34.00 54.34 58.25 70.78 49.45 54.19 29.78 52.61 57.36 80.963 54.17 22.00

Table 5: Ablation study results in 0.25 pruning ratio in TinyLlama1.1b on various NLP tasks. KD is KL divergence,
ID is Intermediate Layer Distillation and DT is Dynamic Temperature.

of the TinyLlama1.1B model. Each strategy was496

aimed at enhancing the model’s distillation process497

through different mechanisms, thereby improving498

its performance across a variety of tasks. To ac-499

curately assess the contribution of each strategy,500

we began with a complete model encompassing501

all strategies and systematically removed each one,502

recording the resultant changes in performance met-503

rics.504

Experimental results in Table 5 show that remov-505

ing dynamic temperature led to a 1.076% average506

accuracy decrease across 11 tasks, highlighting507

its crucial role in optimizing model performance.508

Eliminating intermediate layer distillation resulted509

in a performance drop 1.51%, indicating its signifi-510

cant impact on performance improvement.. More-511

over, performance declines occurred with the re-512

moval of Kullback–Leibler divergence, with accu-513

racy decreases of 1.41%, underscoring the influ-514

ence of KL divergence distillation (Stand KD) to515

Sparse Model (wo LoRA).516

Furthermore, comparative experiments between517

random search and Bayesian Search within the518

main results in Table 3 have already substanti-519

ated the superior overall performance of Bayesian520

search, rendering separate ablation studies for521

Bayesian search superfluous.522

These findings confirm the contribution of a523

custom-designed distillation loss function with dual524

dynamic temperature coefficients, final and inter-525

mediate layer feature distillation, and the Bayesian526

optimization to the model’s overall performance527

and reveal their relative importance during the528

model training process.529

6 Conclusion530

In this paper, we introduce three novel strategies for531

knowledge distillation in pruned models. The first532

strategy involves a custom-designed distillation533

loss function that incorporates dual temperature534

coefficients to precisely control the quantity and535

quality of information transferred. This approach536

ensures that the student model is not overwhelmed 537

by noise from the teacher model and retains cru- 538

cial structural knowledge. The second strategy fo- 539

cuses on feature-based distillation from both the 540

final output and intermediate layers with knowl- 541

edge alignment, further enhancing the knowledge 542

transfer process. Lastly, we introduce a method for 543

optimizing the knowledge distillation loss through 544

Bayesian optimization, enabling the identification 545

of optimal parameters. Extensive experiments are 546

conducted on multiple large models and various 547

NLP tasks, including ablation studies. The results 548

demonstrate the effectiveness and stability of the 549

proposed framework, highlighting its potential for 550

efficient knowledge distillation in pruned models. 551

7 Limitations 552

While this work enhances the generalized capa- 553

bilities of pruned models, it does not specifically 554

improve capabilities in categories such as inference 555

and logical analysis, language generation, natural 556

language understanding, knowledge retrieval, and 557

integration. These areas present opportunities for 558

detailed exploration in future research. 559

8 Ethics Statement 560

Our approach solely concentrates on the technical 561

aspects of efficiently deploying LLMs. It does not 562

involve any ethical or social implications. 563
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