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ABSTRACT 
Combinatorial drug recommendation involves recommending a 
personalized combination of medication (drugs) to a patient over 
his/her longitudinal history, which essentially aims at solving a com-
binatorial optimization problem that pursues high accuracy under 
the safety constraint. Among existing learning-based approaches, 
the association between drug substructures (i.e., a sub-graph of the 
molecule that contributes to certain chemical efect) and the target 
disease is largely overlooked, though the function of drugs in fact ex-
hibits strong relevance with particular substructures. To address this 
issue, we propose a molecular substructure-aware encoding method 
entitled MoleRec that entails a hierarchical architecture aimed at 
modeling inter-substructure interactions and individual substruc-
tures’ impact on patient’s health condition, in order to identify 
those substructures that really contribute to healing patients. Specif-
ically, MoleRec learns to attentively pooling over substructure rep-
resentations which will be element-wisely re-scaled by the model’s 
inferred relevancy with a patient’s health condition to obtain a 
prior-knowledge-informed drug representation. We further design 
a weight annealing strategy for drug-drug-interaction (DDI) objec-
tive to adaptively control the balance between accuracy and safety 
criteria throughout training. Experiments on the MIMIC-III dataset 
demonstrate that our approach achieves new state-of-the-art per-
formance w.r.t. four accuracy and safety metrics. Our source code is 
publicly available at: https://github.com/yangnianzu0515/MoleRec 
and MoleRec has been incorporated into the PyHealth package as 
a benchmark method for the combinatorial drug recommendation 
task: https://github.com/sunlabuiuc/PyHealth. 
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1 INTRODUCTION 
Learning-based predictive models have shown promising efects 
for improving the accuracy and safety of clinical decisions [31, 
44, 49], which could be applied to web-based disease-diagnosis 
systems [2, 25, 47], with the increasing availability of individual 
medical data e.g., longitudinal electronic health records (EHR) [9, 
14]. In particular, combinatorial drug recommendation1 aims to 
provide a proper combination of drugs as fnal prescription for 
individual patient according to his/her health conditions. 

The problem defnition basically shares some similar spirits with 
sequential recommendation [4, 23, 37, 52, 60] that involves a se-
quential decision-making procedure over a patient’s multiple vis-
its. Still, the fundamental challenges lie in two-folds: 1) drug rec-
ommendation aims at returning a combination set of items (i.e., 
drugs) instead of a single item targeted by conventional recom-
mendation tasks; 2) the recommended drug set needs to meet 
certain safety requirements, i.e., suppress the adverse chemical 
reactions among the fnal recommended drugs, namely drug-drug-
interaction (DDI) [3, 6, 35, 42]. DDIs often occur when a drug is 
co-administered with another or multiple drugs, whose efect can 
be life-threatening [3, 6, 35, 42]. For instance, Tachycardia can of-
ten be triggered when the two drugs Adenosine and Ephedrine 

1In this paper, we use “combinatorial drug recommendation” and “medication combi-
nation recommendation” interchangeably. 
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are taken together. The DDI rate [50, 67] is an important indicator 
referring to the rate of the number of confict drug pairs against 
the total number of recommended drug pairs for a patient and both 
of them are accumulated over visits. The pairwise drug-to-drug 
confict relation table is often given in advance by knowledge. 

The starting works [55, 69] on medication combination recom-
mendation ignore the sequential nature of the problem. They only 
focus on the current patient visit and ignore the history visits 
which can be informative for personalization. Some subsequent 
works [30, 50] start to consider the longitudinal patient history and 
the recommendation turns out to be more efective. Yang et al. [67] 
proposes to accommodate the information of an entire drug mole-
cule, yet it fails to identify the association between substructures 
inside each drug molecule and the target disease, which can be infor-
mative as demonstrated by many of recent works on learning-based 
drug design [20, 21, 28, 58]. More recently, a symptom-based set-to-
set small and safe drug recommendation method called 4SDrug [51] 
is developed. However, it tends to recommend a relatively smaller 
drug package to avoid DDIs and then meet the safety principle, 
which may result in lower recommendation accuracy. 

In this paper, we observe that the biochemical activities of a drug 
are usually associated with a few privileged molecular substruc-
tures [24, 26, 45, 71], which is in fact a well-recognized agreement 
in literature especially for drug design. Hence we argue that pa-
tient’s health condition can be related to the function of some 
particular substructures in drug molecules, and thus making pre-
scriptions at a molecular substructure-aware may yield more de-
sirable efcacy and explainability. Furthermore, it is shown in [43] 
that drug-drug-interaction essentially stems from substructure-
substructure-interaction, suggesting that modeling the interactions 
among substructures would improve the recommendation safety. 

To fll this gap, in this paper, we propose a novel molecular 
substructure-aware attentive learning method for sequential medi-
cation recommendation namely MoleRec to an individual patient. 
Our approach models the high-order interactions among molecular 
substructures, and learns the relevancy between the given patient’s 
health condition and substructures. MoleRec is aimed at discrimi-
nating those substructures efectively contributing to the cure of 
patients. It learns substructures’ representations and attentively 
aggregates these representations to obtain a substructure-aware 
representation for each drug, where the representations of substruc-
tures are scaled by their corresponding relevancy with patient’s 
health condition before aggregation. These substructure-aware 
drug representations are then used for fnal prediction. To more 
explicitly improve the safety, inspired by [53], we further design 
an annealing-based re-weighting strategy for the DDI loss which 
can be derived from the drug-drug confict table. The goal is to 
stabilize the training and better achieve trade-of between accuracy 
and safety of recommendation. 

The highlights of this paper are as follows: 
1) We develop a substructure-aware attentive method that mod-

els substructures’ interactions and relevancy to patient’s health con-
dition. It extracts pairwise features based on the input of patient’s 
health history and drug combination information. To our knowl-
edge, this is the frst work for explicitly modeling the substructure-
level drug information in medication combination recommendation 
(or equivalently, combinatorial drug recommendation). 

2) We devise a simple yet efective annealing-based weight ad-
justing approach that adaptively controls the importance of DDI 
loss to handle the constrained optimization problem of drug recom-
mendation in consideration of both accuracy and safety criteria. 

3) Experimental results on MIMIC-III show that our method 
outperforms state-of-the-art methods by a notable margin w.r.t. 
both accuracy and safety, whereby ablation studies further verify 
the efectiveness of our two new techniques. 

2 RELATED WORKS 
Medication Combination Recommendation. The majority of 
existing methods for medication combination recommendation 
fall into instance-based and longitudinal medication recommenda-
tion methods. Instanced-based methods focus on current patient’s 
health condition but ignore the history. One early work refers to 
LEAP [69] that formulates the medication recommendation into a 
multi-instance multi-label sequential decision making process and 
adopts a variant of sequence-to-sequence model based on content-
attention mechanism to make prescriptions. 

In contrast, longitudinal methods leverage the temporal depen-
dencies within clinical visits [7, 36]. Among them, RETAIN [8] is 
based on a two-level neural attention model that detects infuen-
tial past visits and signifcant clinical variables within those vis-
its. However, safety is little considered in RETAIN. Accordingly, 
GAMENet [50] considers DDI confict relations by jointly mod-
eling the longitudinal patient records as an EHR graph and drug 
knowledge base as a DDI graph. One step further, SafeDrug [67] ex-
tracts and encodes rich molecule structure information to improve 
the medication recommendation safety. The recent 4SDrug [51] 
recommends drugs with a small number to ensure safety. 

This paper aims to explore the interactions among molecular 
substructures as well as the relevance between patient’s health 
condition and substructures, which achieves notable improvement 
over the state-of-the-art models. 

Learning Molecule Representation. Existing molecule repre-
sentation learning methods can also be classifed into two categories. 
The frst is SMILES-based methods where SMILES refers to Sim-
plifed Molecular Input Line Entry System [1]. They use language 
models to process the textual representation (SMILES) of a mol-
ecule, for example, Transformer [54] or BERT [12]. SMILES is a 
linear encoding for molecules and highly depends on the traverse 
order of molecule graphs. Therefore its expressiveness is limited 
for problems like medication recommendation which we believe 
calls for fne-grained molecular structure extraction. 

Beyond the above linear encoding protocol, structure-based 
methods are also developed, which can be further classifed into 
fngerprint-based and graph neural networks (GNN)-based meth-
ods. The molecular fngerprint techniques date back to the Morgan 
fngerprints [40]. However, those fngerprint-based methods are 
often handcrafted and not trained in an end-to-end fashion [18]. 
Since molecules can be viewed as structured graphs, graph neural 
networks have been widely used to learn molecule representation, 
especially for drug design thanks to the high volume of available 
structure candidates [21]. 

A surge of works across bioinformatics, pharmacy and data min-
ing [24, 26, 45, 71] have shown such a phenomenon that biochemi-
cal activities of a drug are usually associated with a few privileged 
molecular substructures. Thus, the signifcance of substructures 
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has been emphasized in a rich literature of molecule representation 
learning recently [5, 56, 57, 68, 70]. For example, based on this phe-
nomenon and the causal invariance principle [41, 63], a recent work 
named MoleOOD [68] proposes to leverage those environment-
invariant2 substructures for learning robust molecular representa-
tions against distribution shifts. In this paper, also inspired by this 
widely-observed phenomenon, we aim to learn substructure-aware 
molecular representations for medication combination recommen-
dation to provide safer and more accurate prescriptions. 

3 PROBLEM FORMULATION 
Given the patient’s visit history, the model aims to predict his/her 
suitable medication combination for the current visit, in the sense 
of both accuracy compared with the ground truth provided by the 
doctor, as well as the safety as approximately measured here by 
the DDI rate which will increase if two related drugs (according 
to a prior DDI relation table) are recommended to the patient at 
the same time. Unless otherwise specifed, all the vectors are row 
vectors in this paper. 

Input Data (Electrical Health Records – EHR). For patient 
� , the corresponding EHR is represented as a sequence V = 
[v(1) , v(2) , . . . , v(�� ) ], where v(� ) represents the �-th visit and 
�� is the total number of visits for � . Specifcally, v(� ) can be 
represented by a concatenation of multi-hot diagnosis, procedure 

(� ) (� ) (� )(i.e. surgery) and medication vectors, i.e., v(� ) = [v , v� , v� ].� 
(� ) (� ) (� )v ∈ {0, 1}|D | , v ∈ {0, 1}|P | and v ∈ {0, 1}|M| , where � � � 
D, P and M are diagnosis, procedure and medication code sets, 
respectively. 

Known DDI Relation Matrix. We use a symmetric matrix 
D ∈ {0, 1}|M|×|M| to denote the known DDI relation which is 
used as prior, where D� � = 1 if there exists interaction between 
drug � and � . As mentioned above, when the prescription contains 
two related drugs, its DDI score will decrease and become worse. 
These drug-drug-interation information is generated from Adverse 
Event Reporting Systems (AERS)3. 

Medication Combination Recommendation. Given the lon-
gitudinal diagnosis sequence and procedure sequence till time � 
t (1) (2) (� ) t (1) (2) (� )v = [v , v , . . . , v ] and v = [v , v , . . . , v ], the DDI � � � � � � � � 

relation matrix D, we aim to learn a medication combination rec-
ommendation function, � (·) that generates a multi-label output 
ô (� ) ∈ {0, 1}|M| . Note that ô (� ) = � (vt , v� 

t ). During the training 
� 

stage, we use the ground-truth recommendation o(� ) as supervision 
(� )to penalize ô . 

4 THE PROPOSED APPROACH: MOLEREC 
As shown in Fig. 1, MoleRec is composed of: 1) patient represen-
tation module encoding the longitudinal diagnosis and procedure 
information of patients. 2) medication representation module 
generating substructure-aware representations for drugs by pa-
tients’ diferent condition 3) prediction module responsible for 
making prescription only using substructure-aware representations 
of drugs. In particular, in medication representation module, we 

2Environment-invariant substructures refer to the substructures that stably relate with 
the labels across environments (e.g. diferent scafolds or sizes).
3The AERS is a database widely used to support post-marketing safety surveillance 
programs for all approved drug and therapeutic biologic products [16]. 

model substructures’ internal interactions and their relevancy by 
patient’s health condition. It outputs a substructure-aware repre-
sentation for each drug molecule as the input for prediction. 

4.1 Patient Representation Module 
The patient health is encoded by the diagnosis and procedure infor-
mation. We defne two learnable embedding tables, E� ∈ R |D |×ℎ 

and E� ∈ R | P |×ℎ , corresponding to diagnosis and procedure, re-
spectively, where ℎ is the embedding size. Each row of E� or E� 
maintains a representation vector for a diagnosis or procedure. 
Given the multi-hot diagnosis and procedure vector at the �-th visit 
(� ) (� )v and v , we pick out the corresponding diagnosis and proce-� � 

dure embeddings and sum them up by vector-matrix dot product, 
(� ) (� ) (� ) (� )e = v e = v (1)
� � E� , � � E� . 

In line with [50, 67], we use a Dual-RNN to model history diag-
nosis and procedure: 

h(� ) (� ) 
, h(� −1) h(� ) (� ) 

, h(� −1)
= RNN� (e ), = RNN� (e ) (2)� � � � � � 

, h(� )where h(� ) ∈ Rℎ are hidden states of RNN� and RNN� . We � � 

set h(0) and h(0) as zero vectors. Next, we concatenate the hidden � � 

diagnosis state h(� ) and hidden procedure state h(� ) of the Dual-� � 
RNN to obtain a fnal patient representation, 

e(� ) = CONCAT[h(� ) , h(� ) ] . (3)� � 

4.2 Medication Representation Module 
Entirety-level Representation. We use Graph Neural Networks 
(GNNs) to encode the drug and obtain the entirety-level represen-
tation. GNNs updates node features iteratively using a neighbor 
aggregation strategy, i.e., updating a node’s representation by ag-
gregating representations of its neighbors. In general, we have:

({ })
h(� −1)a(� ) (�) = AGG(� ) (�), h� (�, �) |� ∈ N(�) ,� 

( ) (4) 
h(� ) (�) = COMBINE(� ) a(� ) (�), h(� −1) (�) ,� � 

where h(� ) (�) is the node feature of node� in the �-th layer, h(0) (�)� � 
is the initial feature of node �, h� (�, �) is the edge feature of edge 
(�, �), and N(�) denotes the neighbor of node � on the graph. 

A drug molecule can be represented as a graph � = (� , �), where 
� is the graph’s node set corresponding to atoms and � denotes 
the graph’s edge set corresponding to chemical bonds. Given a 
molecule � , the entirety-level representation is generated via a 
�-layer GNN followed by a readout function which aggregates all 
node features in the �-th layer, 

({ })
h(�)� h� (�) = READOUT (�) |� ∈ � . (5) 

In this paper, we use GIN [65], which is widely used as backbone 
in recent works related to molecules [19, 39, 59], as our Graph 
Neural Network in practical implementation. We leave the detailed 
description of GIN in Appendix C due to limited space. Note that 
diferent from previous work, this entirety-level representation 
is not utilized directly for fnal recommendation in our method. 
Finally, all representations of drug molecules are collected together 

∈ R |M |×ℎand compose an embedding table E� , of which each 
row corresponds to a drug. 
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Figure 1: MoleRec: At the �-th visit of patient, we frst use a Dual-RNN to encode longitudinal diagnosis and procedure (i.e. 
(� )surgery) information and obtain a patient representation e . Next, medication representation module models the interactions 

among all substructures and the relevancy between substructures and patient’s health condition. Finally, the prediction 
module predicts each drug �’s probability of appearing in the combination based on each corresponding substructure-aware 

(� )representation r¥ . Those with probabilities larger than a given threshold are recommended in the fnal prescription. 
� 

Substructure-aware Representation. Assuming that the prop-
erty of a drug molecule depends on its particular substructures and 
a treatment to a patient’s disease also relies on some certain sub-
structures’ function, we aim to make full use of substructure-aware 
information of drugs. Breaking retrosynthetically interesting chem-
ical substructures (BRICS) [11] method is adopted to decompose 
drug molecules into substructures, which is available as an API in 
RDKit [29] package. We decompose all drug molecules and obtain 

∈ R |S |×ℎa substructure set S. We defne a embedding table E� , 
where each row denotes a embedding for a particular substructure. 

Because substructures always function in a group instead of in 
isolation, we need to model high-order interactions among them. 
Thus, a Substructure Interaction Module (SIM) is designed to 
achieve this goal. We use the Set Attention Block (SAB) proposed 
in [32] as our Substructure Interaction Module here. SIM block takes 
the set of embeddings of all substructures, i.e., E� , and performs 
self-attention between the elements in the set, resulting in a set 

∈ R |S |×ℎ ∈ R |S |×ℎ is a of equal size denoted as E∗ . Note that E� ∗ � 
new embedding table which encodes pairwise interactions among 
substructures. SIM is defned as below: 

E∗ = SIM(Es) = LN(H + FF1 (H)),� 

where H = LN(E� + A������� (E� )), 
(6) 

where FF1 is a feed-forward network and LN is layer normalization. 
A������� denotes the vanilla self-attention [54] defned by: 

� 
A������� (X) = Softmax ( 

Q√� K⊤ 
) V� , (7) 

�� 

where �� is the dimension of key embedding, all W are projection 
matrices, Q� , K� and V� are separately the query, key and values 
matrices obtained by diferent transformations of the input X. Next, 
we devise a module entitled Substructure Relevancy Module 
(SRM) responsible for explicitly modeling the degree at which the 
treatment is dependent on each substructure. Given the patient 
representation e(� ) , we apply a feed-forward network FF2 : R2ℎ → 

R |S | with a sigmoid activation function � (·), 

c(� ) = SRM(e(� ) ) = � (FF2 (e(� ) )). (8) 

Each entry of c(� ) ∈ R |S | depicts the contribution of each substruc-
ture to treating the patient’s disease at the �-th visit. 

Each drug molecule � is corresponding to a set of its substruc-
tures denoted as S� ⊆ S. Given a drug molecule � , we pick out its 
entirety-level representation r¤ � from E� and its substructures’ rep-
resentations from E� ∗ . We denote the representation of substructure 
� as r� . Next, we can compute the attention coefcient for � that 
indicates the importance of substructure �’s features to whole drug, 

⊤exp(r¤ � W��� W⊤ r� )��� a�,� = Í ⊤ , (9) 
� ∈S� � exp(r¤ � W��� W⊤ r )

��� 

where W��� and W��� are linear transformations for r¤ � and r� , 
respectively. For each � , we scale its representation according to its 
contribution to curing the patient’s disease: 

(� ) (� )
� ∀� ∈ S� , r̃� = c r� , (10) 

(� )where c is the entry in c(� ) corresponding to substructure � .� 
Finally, we aggregate the scaled substructures’ representation at-

(� )tentively and obtain a substructure-aware representation r¥ for
� 

a given drug molecule � , ∑ (� ) (� )r¥ = a�,� r̃� . (11)
� 

� ∈S� 

All drugs’ substructure-aware representations make up R(� ) .� 

4.3 Recommendation Prediction Module 
Given all the substructure-aware representations R(� ) for drug set � 
M as input, we apply a feed-forward network FF3: Rℎ → R and a 
sigmoid activation function progressively, 

m̂ (� ) = � (FF3 (R(� ) )), (12)� 
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where m̂ (� ) represents appearance probability of each drug in the 
(� )prescription. Then we can obtain a multi-hot prediction vector ô 

by picking out the entries of m̂ (� ) whose the value is greater than 
a predefned threshold value � . 

4.4 Training and Inference 
In training, we optimize all the learnable parameters. In the infer-
ence phase, model works in the same pipeline as training. In this 
section, we introduce a combined loss used to fnd a better balance 
between safety and accuracy. 

Multi-Label Prediction Loss. We treat the recommendation 
task as multi-label classifcation task. Thus, we adopt two common 
loss functions for multi-label classifcation, i.e., the binary cross-
entropy loss L��� and the multi-label margin loss L����� . Note that 
L����� is necessary due to that it make the predicted probability of 
ground truth labels has at least 1 margin larger than others. Their 
defnitions are: 

|M |∑ (� ) (� ) (� ) (� )L��� = − o
� log(m̂ 

� ) + (1 − o
� ) log(1 − m̂ 

� ), 
� =1 

(� ) (� )∑ max(0, 1 − (m̂ − m̂ )) � � L����� = ,|M| (� ) (� )
�,�:o =1,o =0� � 

where the superscript � denotes the �-th entry of the vector. 
DDI Loss. We defne the DDI loss according to [50, 67]: 

|M | |M | ∑ ∑ ∑ (� ) (� )L��� = (m̂ � · m̂ � ) · D��, 
� �=1 �=1 

(� ) (� )where (m̂ · m̂ ) · D�� gives the pairwise DDI probability. � � 
Combined Controllable Loss Function. We adopt the weighted 

sum form of combined loss [13, 67], 
L = � · (� · L��� + (1 − �) · L����� ) + (1 − �) · L��� , (13) 

where � and � are hyperparameters. Because that DDI also exists in 
real EHR data, the correct predicted results may increase DDI rate 
as well as incorrect ones. Therefore, we can dynamically adjust � 
in the training phase to balance multi-label prediction loss and DDI 
loss, i.e., to fnd an accurate model with low DDI rate meanwhile. 

Weight Annealing for DDI Loss (WA). In training, the ac-
curacy and DDI rate often increase together [50]. However, what 
we expect is an accurate model with low DDI rate in the mean-
time. Hence, fnding the balance between and safety and accuracy 
is the key. Similar to [50, 67], we denote the expected DDI rate 
as � (recall its defnition in the beginning of Sec. 1), which is a 
hyper-parameter requiring fne-tuning to strike a balance between 
accuracy and safety. If the DDI rate � ≥ � , we have to optimize DDI 
loss and can adjust the value of � dynamically according to the gap 
between � and � . Otherwise, we only consider the multi-label pre-
diction loss. Similar to [53], we also want to stabilize and facilitate 
training stage. Motivated by this, we propose a weight annealing 
scheme. Specifcally, we adjust � by the following strategy: 

1 � < � 
� = { � , (14)

min{1, exp(� (1 − ))} � ≥ � 
� 

where � is the current DDI rate and � is a hyper-parameter. 
� Notice that (1−exp(� (1− ))) is a concave function of � instead
� 

of the linear one in [67], which we call linear adjusting in this paper. 

Figure 2: Comparison of linear adjusting and WA. 

As shown in Fig. 2, when the gap between � and � is still large (e.g. 
on interval [�3, �4]), the value of � will decrease slowly to keep the 
weight of DDI loss still at a high level. When the gap is small (e.g. 
on interval [�1, �2]), � will decline sharply and the model turns its 
focus on optimizing multi-label prediction loss. 

5 EXPERIMENTS 
In this section, we conduct extensive experiments to make a com-
prehensive evaluation of our proposed MoleRec. 

5.1 Setup Protocol 
Due to that limited EHR data are publicly available, in line with [67], 
we adopt bootstrapping sampling in the evaluation stage, which is 
better suited for limited samples [10, 46]. Ten times of bootstrapping 
sampling is conducted with mean and standard deviation reported. 
All experiments are conducted on a Linux machine with 48 CPU 
cores, 128GB memory and a 10.8GB NVIDIA RTX2080Ti GPU. 

Dataset. We use the EHR data from MIMIC-III [22]. In line 
1 1with [50, 67], we split train-validation-test by 23– 6– 6 . It contains 

14, 995 visits from 6, 350 patients. It includes 131 drugs and the 
average number of used drug is 19.19. 

Evaluation Metrics. We use four popular metrics in medication 
recommendation, Drug-Drug-Interaction Rate (DDI), Jaccard Simi-
larity Score (Jaccard), F1-score and Precision Recall AUC (PRAUC). 
Among them, DDI is a measurement for safety that computes the 
rate of the combination prediction that contains two or multiple 
drugs whose relation in the DDI matrix is positive. while the others 
are for accuracy as commonly used in general recommendation 
literature. We give the detailed defnitions of evaluation metrics 
adopted in our paper as follows: 

Drug-Drug-Interaction Rate (DDI). For a certain patient � , the 
corresponding DDI is defned as:Í�� 

Í 
�=1 �,� ∈{ � :ô(� ) =1} 1{D�� = 1}

DDI = Í 
� 

, (15)Í�� 
(� ) 1

�=1 �,� ∈{ � :ô =1}
� 

(� )where �� represents the total number of visits for patient � , o 
(� )denotes the multi-label predictions at the �-th visit, o denotes
� 

(� )the �-th entry of o , D is the prior DDI relation matrix and 1 is 
an indicator function which returns 1 when D�� = 1, otherwise 0. 

Jaccard Similarity Score (Jaccard). For a certain patient � at the 
�-th visit, the defnition of Jaccard is as follows: 

(� ) (� )|{� : ô = 1} ∩ {� : o = 1}| 
� � Jaccard(� ) = , (16)(� ) (� )|{� : ô = 1} ∪ {� : o = 1}| 
� � 
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Table 1: Performance on MIMIC-III in terms of DDI rate, Jaccard, F1-score and PRAUC. The best and the runner-up results are 
highlighted in bold and underline respectively under t-tests, at the level of 95% confdence level. 

Method DDI ↓ Jaccard ↑ F1-score ↑ PRAUC ↑ Avg.# of Drugs 
Logistic Regression 
ECC [48] 

0.0816 ± 0.0007 
0.0817 ± 0.0007 

0.4924 ± 0.0030 
0.4856 ± 0.0031 

0.6509 ± 0.0027 
0.6438 ± 0.0028 

0.7589 ± 0.0026 
0.7590 ± 0.0026 

16.7474 ± 0.1131 
16.2578 ± 0.0992 

RETAIN [8] 
LEAP [69] 
DMNC [30] 
GAMENet [50] 
SafeDrug [67] 
4SDrug [51] 

0.0871 ± 0.0013 
0.0760 ± 0.0008 
0.0801 ± 0.0011 
0.0859 ± 0.0005 
0.0773 ± 0.0006 
0.0703 ± 0.0011 

0.4866 ± 0.0034 
0.4540 ± 0.0027 
0.4550 ± 0.0031 
0.5037 ± 0.0015 
0.5126 ± 0.0028 
0.4800 ± 0.0027 

0.6471 ± 0.0032 
0.6158 ± 0.0025 
0.6160 ± 0.0031 
0.6601 ± 0.0014 
0.6691 ± 0.0023 
0.6404 ± 0.0024 

0.7593 ± 0.0035 
0.6598 ± 0.0026 
0.6757 ± 0.0029 
0.7673 ± 0.0024 
0.7655 ± 0.0022 
0.7611 ± 0.0026 

18.5941 ± 0.2186 
18.6739 ± 0.0661 
20.0000 ± 0.0000 
27.2603 ± 0.1929 
20.8940 ± 0.1086 
16.1684 ± 0.1280 

MoleRec 0.0724 ± 0.0008 0.5305 ± 0.0033 0.6843 ± 0.0029 0.7736 ± 0.0027 21.0893 ± 0.1788 

where ô (� ) and o(� ) denote the multi-label predictions and ground-
truth recommendation, respectively. Note that ∗� represents the 
�-th entry of ∗. Then, we take the average over all the patient’s 
visits to obtain the fnal Jaccard Similarity Score for patient � , 

��∑ 1Jaccard = Jaccard(� ) , (17)
�� �=1 

where �� represents the total number of visits for patient � . 

F1-score. We frst provide the defnitions of Precision and Re-
call for a patient � at the �-th visit, 

(� ) (� )|{� : ô = 1} ∩ {� : o = 1}| 
� � Precision(� ) = , (18)(� )|{� : ô = 1}| 

� 
(� ) (� )|{� : ô = 1} ∩ {� : o = 1}| 
� � Recall(� ) = . (19)(� )|{� : o = 1}| 

� 

The F1-score is the harmonic mean of Precision and Recall, 
2F1(� ) = 1 1 . (20) 

Precision(� ) + 
Recall(� ) 

Then, we average over all visits and obtain F1 score for patient � , 
��∑ 1F1 = F1(� ) , (21)

�� �=1 

where �� represents the total number of visits for patient � . 

Precision Recall AUC (PRAUC). Note that we treat medication 
combination recommendation as an information retrieval problem. 
For the patient � at the �-th visit, PRAUC is defned as follows: 

|M |∑ 
PRAUC(� ) = Precision(�) (� ) ΔRecall(�) (� ) , (22) 

�=1 

ΔRecall(�) (� ) = Recall(�) (� ) − Recall(� − 1) (� ) , (23) 

where � is the rank in the sequence of the retrieved drugs, |M| 
denotes the number of drugs. Precision(�) (� ) represents repre-
sents the precision at cut-of � in the ordered retrieval list and 
ΔRecall(�) (� ) denotes the change of recall from drug � − 1 to � . We 
also average over all visits and then obtain the PRAUC value for 

patient � , 
��∑ 1PRAUC = PRAUC(� ) , (24)

�� �=1 

where �� represents the total number of visits for patient � . 
Compared Methods. We compare our method with the repre-

sentative state-of-the-art baselines as follows: 
Logistic Regression (LR) is an instance-based classifer with �2 

regularization. We adopt One-vs-the-Rest (OvR) multi-class strategy 
for the multi-label prediction setting, i.e., ftting one classifer per 
class. We implement LR by scikit-learn package and adopt One-vs-
the-Rest (OvR) multi-class strategy for the multi-label prediction 
setting, i.e., ftting one classifer per class. LBFGS is chosen as the 
optimizer. 

Ensemble Classifer Chain (ECC) [48] is a multi-label model 
that arranges LR classifers into a chain. Each classifers gets the 
predictions of the preceding classifers in the chain as features. We 
implement a 10-member ensemble of ClassiferChains by scikit-
learn package. Each ClassiferChain adopts LBFGS as optimizer. 

RETAIN [8] is based on a two-level neural attention model 
that detects infuential past visits and signifcant clinical variables 
within those visits. We implement two 64-dim GRUs as the two-
level RNN. The dropout rate for the output embedding is set to 0.5. 
We adopt Adam as the optimizer and learning rate ranges from 
{1� − 5, 5� − 4, 1� − 4}. 

LEAP [69] formulates medication recommendation to sequential 
decision making, with recurrent decoder to model label dependen-
cies and content-based attention to capture label instance mapping. 
We also search learning rate from {1� − 5, 5� − 4, 1� − 4}. Due to the 
fact that LEAP is a sequence-based models, we set the max drug 
combination size to 20. 

DMNC [30] is multi-view sequential learning method via mem-
ory augmented neural network based on diferentiable neural com-
puter (DNC). We use 64-dim embedding tables to represent medical 
codes. Using dnc package, we implement a 16-cell DNC as encoder. 
Decoder is a 64-dim GRU. Same as LEAP, we also set the max drug 
combination size to 20. 

GAMENet [50] is based on memory networks with memory 
bank enhanced by integrated drug usage, DDI graphs and dynamic 
memory with patient history. We use hyperparameters provided by 
authors yield the best results. We adopt 64-dim embedding tables 
and 64-dim GRU as RNN. 
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Figure 3: Comparison of combinations of backbone models 
(ours and SafeDrug) and loss adjusting strategies. 

SafeDrug [67] is a recent work that extracts and encodes mole-
cule structure information to augment the medication recommen-
dation task. We look for the optimal learning rate over {1� − 5, 5� − 
4, 1� − 4}, and other parameters that yield the best results in the 
original paper are used in our experiments. 

4SDrug [51] is designed for recommending small drug sets to 
ensure less drug-drug interactions. The learning rate is searched 
within {1� − 2, 5� − 3, . . . , 1� − 5}. 

5.2 Implementation Details. 
For embedding tables E� , E� and E� , we set the embedding size to 
64. For RNN� and RNN� , we use gate recurrent unit (GRU) with 64 
hidden units. The dropout rate of two GRU cells’ inputs is set as 
0.7. As metioned before, we choose a 4-layer GIN [65] with hidden 
embedding size of 64. For each molecule graph, the 9-dimensional 
initial node features contains atomic number and chirality, as well 
as other additional atom features, while the 3-dimensional edge 
features contains bond type, bond stereochemistry and whether 
the bond is conjugated [17]. The feed-forward network FF1 and FF3 
are implemented as one biased linear layer and the feed-forward 
network FF2 is implemented as two biased linear layers. We choose 
the hyper-parameters according to the performance on the valida-
tion set, where threshold � = 0.5, weight � = 0.95, � = 2.5 and the 
target DDI rate � = 0.06. The model is built on Pytorch 1.9.0 and 
the model parameters are trained with Adam optimizer. 

5.3 Quantitative Study 
This study evaluates the accuracy and safety of our method and the 
baselines as summarized previously. Each baseline is confgured 
by using default settings in the original paper or our fne-tuned 
parameters leading to best performance. 

Table 1 summarizes the prediction performance of all methods. 
For these traditional classifers that are not DL-based, LR and ECC, 
even though they recommend rather less drugs, there still exists 
a lot of drug-drug-interactions in the fnal medication combina-
tion set. Those methods treating medication recommendation task 
as sequence generation task, ECC, LEAP and DMNC, show poor 
performance among all methods. Hence, formulating medication 
recommendation into multi-label prediction may be more reason-
able. RETAIN does not consider DDI relations, resulting in a high 
DDI rate. As for GAMENet, since it is highly dependent on histori-
cal combinations while the DDI rate may be high in ground-truth 
history, it also yields poor DDI rate. 4SDrug aims to reduce the 
size of recommended drug sets and we can see that 4SDrug does 

s2 s5 s9 s14 s19
Substructure

0.0

0.5

1.0

Figure 4: Top: relevancy prediction between patient’s health 
and 22 substructures �� . Bottom: binary value decided if �� is 
a component of ground-truth drugs. There is a coherence be-
tween prediction and ground truth for this patient example. 

s3 s7s4
Substructure

0.0

0.5

1.0

Figure 5: Top: relevancy prediction between patient’s health 
condition and 10 substructures �� which make up an inte-
grated drug molecule. Bottom: attention score of the cor-
responding substructures learned by MoleRec. There is a 
deviation between the prediction and attention score for this 
drug example. 
recommends the least drugs while sacrifcing the accuracy. Due to 
encoding molecule structural information, SafeDrug nearly beats 
all other baselines. But it still makes predictions at a molecular 
entirety-level and neglects the efect of molecule substructures and 
the interactions among them. With modeling interactions among 
substructures and dependencies between patient’s health condi-
tion and substructures, our method that is based on molecular 
substructure-aware representations can provide more accurate med-
ication combination and outperforms all baselines with a notable 
margin. Additionally, equipped with the proposed weight annealing 
strategy, MoleRec gains further improvement on both accuracy and 
safety and still balance them well. 

5.4 Qualitative Study 
Analysis of Our Adjusting Strategy for Loss. To verify the efec-

tiveness of our proposed WA in stabilize and facilitate the training 
procedure, as demonstrated in Fig. 3, we compare the combinations 
of diferent backbone models (ours and SafeDrug) and diferent 
loss adjusting strategies. From the DDI loss evolving tendencies 
on both SafeDrug and MoleRec with diferent strategies, we can 
see that equipped with our weight annealing strategy, DDI loss 
goes down at a faster rate. Our strategy is superior is mainly due 
to adaptively re-weighting DDI loss at a dynamic rate according to 
the gap between the current DDI rate and the target. 

Case Study. We also qualitatively evaluate the correlations be-
tween patient’s health condition and substructures learned by Mol-
eRec. Fig. 4 shows the learned relevancy between a patient’s health 
condition and some substructures. For the substructures composing 
ground-truth drugs e.g., �5 and �9, MoleRec learns that they are 
closely related to patient’s health condition compared with �2 and 
�19. But �14 shows low relevancy, and Fig. 5 could explain this excep-
tion next. As for Fig. 5, it compares each substructure’s relevancy 
with a patient’s health condition and attention score to the whole 
drug. We can see that though substructure �4 has the highest atten-
tion score, its relevancy is much lower than �3 and �7. The reason 
may lies in that the drug molecule has many structures �4 but �4 is 
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Table 2: Ablation study on MIMIC-III in terms of DDI rate, Jaccard, F1-score and PRAUC. The best and the runner-up results 
are highlighted in bold and underline respectively under t-tests, at the level of 95% confdence level. We also present the results 
of SafeDrug, and it shows the best overall performance among baselines. 

Method DDI ↓ Jaccard ↑ F1-score ↑ PRAUC ↑ Avg.# of Drugs 
SafeDrug [67] 0.0773 ± 0.0006 0.5126 ± 0.0028 0.6691 ± 0.0023 0.7655 ± 0.0022 20.8940 ± 0.1086 
MoleRec (our full version) 
− temporal dependencies within visits 
− substructure interaction module (SIM) 
− substructure relevancy module (SRM) 
− multi-label prediction loss 
BRICS → RECAP 
embedding table → GNN 
WA → linear adjusting 

0.0724 ± 0.0008 
0.0777 ± 0.0006 
0.0756 ± 0.0006 
0.0812 ± 0.0006 
0.0646 ± 0.0007 
0.0733 ± 0.0008 
0.0716 ± 0.0007 
0.0749 ± 0.0008 

0.5305 ± 0.0033 
0.5259 ± 0.0026 
0.5250 ± 0.0028 
0.4873 ± 0.0028 
0.4619 ± 0.0042 
0.5298 ± 0.0029 
0.5312 ± 0.0039 
0.5258 ± 0.0036 

0.6843 ± 0.0029 
0.6807 ± 0.0023 
0.6797 ± 0.0024 
0.6455 ± 0.0026 
0.6216 ± 0.0039 
0.6838 ± 0.0026 
0.6850 ± 0.0033 
0.6804 ± 0.0031 

0.7736 ± 0.0027 
0.7665 ± 0.0025 
0.7698 ± 0.0025 
0.7317 ± 0.0027 
0.7510 ± 0.0026 
0.7733 ± 0.0024 
0.7751 ± 0.0025 
0.7707 ± 0.0028 

21.0893 ± 0.1788 
21.5592 ± 0.1406 
21.6722 ± 0.1634 
21.5606 ± 0.1743 
14.1569 ± 0.1664 
20.9460 ± 0.1522 
20.5375 ± 0.1583 
20.5263 ± 0.1142 

not the critical factor to drug’s function. Hence, we need to amplify 
the infuence of �3 and �7 that truly determine drug’s function. Two 
examples shows MoleRec can discriminate those substructures that 
really contribute to healing patients. 

5.5 Ablation Study 
We investigate the efects of diferent components to the fnal per-
formance and summarize the results in Table 2. 

Temporal dependencies within visits. To verify the superiority of 
longitudinal methods, we treat each visit as a single training sam-
ple instead of using a RNN to model their temporal dependencies. 
Compared to our longitudinal model, it shows inferior performance. 

Substructure interaction module. We remove the substructure 
interaction module (SIM) from our model and conduct extensive ex-
periments. Table 2 shows that the performance degrades especially 
in terms of safety, which empirically indicates that modeling the in-
teractions among substructures could improve the recommendation 
safety to a great extent. 

Substructure relevancy module. We also discard the proposed sub-
structure relevancy module (SRM) to evaluate its impact. Because 

(� )of the absence of SRM, the substructure-aware representation r¥
� 

(� ) Í
for a given drug molecule � is recalculated by r¥

� = � ∈S� 
a�,� r� , 

where r� is the substructure representation. Also, to make use of 
patient’s information, we use the similar method as SafeDrug to 
recalculated the appearance probability of each drug in the prescrip-
tion, m̂ (� ) = � (R�

(� ) FF4 (e(� ) )), where all drugs’ substructure-aware 

representations make up new R(� ) and FF4 : R2ℎ → Rℎ is a feed � 
forward network. Compared to our proposed SRM, this method 
shows poorer performance. This suggests that SRM could efectively 
model the relevancy between patients and molecule substructures, 
and this substructure-grained drug recommendation is superior. 

Multi-label margin loss. We experiment with leaving out the 
multi-label margin loss L����� . Then, our fnal objective is reduced 
to the weighted sum of only L��� and L��� . Without L����� , we 
can fnd that the our model recommends much less drugs. Hence, 
less DDI will occur and less ground-truth drugs are recommended 
in fnal prescriptions. Results suggest that L����� could efectively 
make the predicted probability of ground truth labels has at least 1 
margin larger than others. 

Molecule segmentation strategy. For all experiments in Table 1, 
we adopt BRICS method to decompose molecules into substructures. 
To evaluate the sensitivity of our model to molecule segmentation 
strategy, we adopt another method called retrosynthetic combinato-
rial analysis procedure (RECAP) [34], which is also available as an 
API in RDKit. According to results in Table 2, RECAP and BRICS 
show competitive performance on our model and both outperform 
the baselines by notable margins. Hence, our model is robust to 
molecule segmentation strategy. 

Substructure representation learning. We simply defne a learn-
able embedding table E� , of which each row corresponds to a repre-
sentation for a particular substructure. Similar to learning entirety-
level molecular representations, we can also use a Graph Neural 
Network to learn substructure representations, i.e. utilizing struc-
tural information to enhance the learned representations. Hence, 
we substitute the original embedding table with GIN and report the 
results in Table 2. We fnd that it brings slight improvement over 
safety and accuracy. But it should be mentioned that the model 
using GIN has approximately 11.14% parameters4 more than that 
using embedding table. Therefore, we stick to using embedding 
table because it is simple yet efcient. 

Re-weighting DDI loss. In this paper, we propose a weight anneal-
ing strategy for DDI loss. We compare it with the linear adjusting 
proposed in SafeDrug [67]. We equipped our model with the linear 
adjusting and make comparisons with our proposed WA. Based on 
the results in Table 2, WA could help the model not only obtain 
safer and more accurate recommendation, but also fnd a better 
equilibrium point between safety and accuracy. We attribute this 
to the ability of WA to adaptively re-weight DDI loss. 

6 CONCLUSION 
We have proposed a novel molecular substructure-aware attentive 
method for medication combination recommendation, entitled Mol-
eRec. It models the interactions among molecular substructures 
and the dependencies between patient’s health condition and sub-
structures. Moreover, we design an adjusting strategy to re-weight 
DDI loss in the training phase, which helps model fnd an better 
balance between recommendation accuracy and safety. Extensive 
experiments on MIMIC-III have demonstrated the efectiveness of 
our approach in terms of both accuracy and safety. 
4Our model using embedding table has 456, 112 parameters while the one using 4-layer 
GIN has 506, 932 parameters 
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APPENDIX 

A NOTATIONS 
Table 3 lists the notations used to facilitate reading. 

Table 3: Notations for facilitating reading. Note that ∗(� ) cor-
responds to the �-th visit of a patient. 

Notation Description 
V patient electronic health record sequence 
(� )v record of visit 
(� )v
� multi-hot diagnosis vector 
(� )v� multi-hot procedure vector 
(� )v� multi-hot medication vector 
�� total number of visits for patient � 
D DDI relation matrix 

D, P, M diagnosis, procedure, medication code sets 
S substructure code set 
ℎ dimension of vector 

h(� ) , h(� )
� � 
E� , E� 
(� )e

hidden diagnosis and procedure states 
embedding tables for diagnosis and procedure 
patient representation 

E� embedding table for medication 
E� initial embedding table for substructures 
E∗ � embedding table for substructures after SIM 
¤r� entirety-level representation of drug � 
r� representation of substructure � 
a�,� attention weight of substructure � to drug � 
(� )c relevancy between substructures and disease 
(� )r̃� scaled representation of substructure � 
(� )¥r
� substructure-aware representation of drug � 

R(� )� all drugs’ substructure-aware representations 
(� )m̂
(� )ô
(� )o

predicted probabilities 
multi-label predictions 
ground-truth recommendation 

B DATASET DESCRIPTION 
MIMIC-III5 is a large and freely-available database containing dei-
dentifed health-related data, supporting a range of analytic studies, 
e.g. spanning epidemiology and clinical decision-rule improvement. 
However, researchers are required to complete a recognized course 
in protecting human research participants that includes Health In-
surance Portability and Accountability Act (HIPAA) requirements. 
Then, access will be granted. 

C DETAILS OF GIN 
Graph Isomorphism Network (GIN) [65] is a simple architecture, 
which generalizes the Weisfeiler-Lehman test [33]. Therefore, GIN 
can achieve maximum discriminative power among GNNs. Re-
cently, it has been adopted by a rich literature of works related to 
5https://physionet.org/content/mimiciii/1.4/ 
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molecules [19, 39, 59] as their backbone. Recalling that we have 
introduced the general mechanisms of modern GNNs in Sec. 4.2, in 
particular, GIN updates the node representations as follows:

({ })
h(� −1)a(� ) (�) = AGG(� ) (�), h� (�, �) |� ∈ N(�) ,� 

( ( ) ) (25) 
h(� ) (�) = MLP(� ) a(� ) (�) + 1 + � (� ) · h(� −1) (�) ,� � 

where � could be set as a learnable parameter or a fxed scalar, 
and MLP denotes the composition of functions. In principle, in our 
proposed method, GIN can be replaced by other molecular encoding 
methods. 

D CURRENT LIMITATIONS & OUTLOOK 
We discuss the limitations of the present work and shed more lights 
on the potential future directions to pave the way for more follow-
up advances in combinatorial drug recommendation. 

Inductive Learning for New Drugs. Our model assumes that 
drugs and patients appearing in the testing set are all exposed to 
the model in the training stage, i.e., either the drug space or the 
patient space is shared by training and testing data. Such a setting 
is often called transductive learning in the literature. However, 
real-world recommendation system needs to interact with an open 
world where both new unseen users and items could appear in the 
future [62]. In the context of medication recommendation, there 
could be new drugs introduced to the system or new patients asking 
for medical care. And, the ideal model should be equipped with 
the ability to handle these new entities (that are unseen during 
training) without any re-training or fne-tuning on the new data. 
Such a problem setting is called inductive learning [15, 62] which 
refers to that the testing set contains new entities that are unseen 
by the model during training. 

Distribution Shifts & Out-of-Distribution Generalization. 
Another promising direction is to consider the distribution shifts 
between training and testing data, which can be pervasive in prac-
tice and could largely impact the model performance as suggested 
by recent evidence [27]. There could be two types of distribution 
shifts in the drug recommendation. 
• One category of distribution shifts lies in diferent contexts (like 

medical records in diferent hospitals or recorded at diferent 
seasons, etc.) behind the sequential data. For example, the model 
is trained with data collected in the summer and is expected 
to perform well on testing data collected in the winter. Due to 
diferent temperature and epidemic in diferent seasons, the train-
ing distributions can exhibit certain diferences than the testing 
ones. A recent study [66] points out that traditional maximum 
likelihood estimation (used by most of existing models for se-
quential recommendation/prediction) would fail to generalize to 
new distributions due to the confounding bias of latent contexts. 
To alleviate this, it develops a causal intervention approach as 
an efective treatment for model training. 

• Another category of distribution shifts could happen due to spu-
rious features of drugs (e.g., molecule scafolds or sizes). For 
example, the overall sizes of molecules are diferent between 
training and testing sets. These appearance characteristics should 
not afect the model’s generalization ability since they have no 
causal relationship with the target disease. Despite this, these 

spurious features often correlate with the labels due to potential 
bias in observational data, which are called spurious correla-
tion in the literature [41]. A recent work [68] formulates the 
out-of-distribution (OOD) generalization problem for molecular 
representation learning and proposes a domain-invariant learn-
ing approach that can address the spurious correlation and learn 
causal relation from the input molecule to its predicted properties. 
In the problem of this paper, we only focus on the correlation-
based learning that targets the associations between the function 
of drugs and particular substructures, yet ignore their causal 
relation, which might afect the model’s ability to handle new 
data from out-of-distributions. 

As future works, one can naturally formulate the problem of drug 
recommendation (that is associated with both molecular representa-
tion learning and sequential prediction) under certain distribution 
shifts, and based on this explore efective methods. 

More Powerful Graph Encoders. With the rapid development 
in graph machine learning community, there are quite a few recent 
works identifying more powerful encoder architectures for graph-
structured data, i.e., graph Transformers [38, 61, 64], that show 
competitive or even superior performance than commonly used 
GNNs. As a direction orthogonal to our focus as well as above two 
points, one can extend the encoding framework in our work to some 
advanced version with Transformer-like architectures to achieve 
better expressivity and capacity for molecular representations. 
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