
Multi-Step Preference Optimization via Two-Player
Markov Games

Yongtao Wu∗ † Luca Viano∗ † Yihang Chen‡ Zhenyu Zhu†

Quanquan Gu‡ § Volkan Cevher† §

Abstract

Reinforcement Learning from Human Feedback (RLHF) has been highly success-
ful in aligning large language models with human preferences. While prevalent
methods like DPO have demonstrated strong performance, they frame interactions
with the language model as a bandit problem, which limits their applicability in
real-world scenarios where multi-turn conversations are common. Additionally,
DPO relies on the Bradley-Terry model assumption, which does not adequately
capture the non-transitive nature of human preferences. In this paper, we address
these challenges by modeling the alignment problem as a two-player constant-sum
Markov game, where each player seeks to maximize their winning rate against
the other across all steps of the conversation. Our approach Multi-step Prefer-
ence Optimization (MPO) is built upon the natural actor-critic framework [32].
We further develop 0MPO based on the optimistic online gradient descent algo-
rithm [36, 19]. Theoretically, we provide a rigorous analysis for both algorithms on
convergence and show that 0MPO requires O(ϵ−1) policy updates to converge to an
ϵ-approximate Nash equilibrium. We also validate the effectiveness of our method
through experiments on the multi-turn conversations dataset in MT-bench-101.

1 Introduction

In recent years, the integration of large-language models (LLMs) [8, 1, 43] into various applications
has highlighted the need for advanced preference alignment methods [52, 40, 5, 31, 35]. As models
increasingly engage in complex decision making or reasoning scenarios, e.g., GPT-4o and o11,
the ability to align their outputs with user preferences has received more attention. However,
existing works on reinforcement learning from human feedback (RLHF) focus mostly on one-step
preference [35, 26, 27, 3, 49, 50], which neglects indispensable intermediate preferences within the
answer and limits the model’s alignment ability. For example, in multi-round conversations, alignment
must occur at each turn to meet user needs. Similarly, in mathematical reasoning with chain-of-
thought prompting, step-by-step validation is essential to ensure accuracy in the final result. The
reliance on final-output feedback in most existing RLHF methods [46, 38] neglects these intermediate
steps, highlighting the need for multi-step preference optimization to enhance alignment capabilities.

Meanwhile, earlier alignment methods e.g., DPO and its variants step-DPO [21, 24], typically model
the pairwise preference by the Bradley-Terry model [7], which assigns a score for each answer based
on its preference. This assumption of the model cannot capture the non-transitive preference, which
is often observed in the averaged human preferences from the population [44, 15]. While a recent line
of work has modeled the alignment process under the framework of general preference [3, 27, 49, 37],
and thus bypasses the BT model assumption, the challenge of multi-step preference optimization
remains underexplored. In this paper, we address this gap by making the following contribution:

† EPFL ‡ UCLA * Equal contribution § Equal mentorship
1https://openai.com/o1

NeurIPS 2024 Workshop on Language Gamification.

• We formulate multi-step preference optimization as a two-player partially observable Markov game.
Unlike [46, 41, 38] who focus on the preference feedback at the final state, we assume that the
preference signal is received at each step. Such feedback allows the model to better identify which
steps are correct or erroneous, potentially enhancing learning efficiency and accuracy.

• We propose Multi-step Preference Optimization (MPO) based on the natural actor-critic framework
and Optimistic Multi-step Preference Optimization (0MPO), built upon the optimistic online gradient
descent. Theoretically, we show that 0MPO requires O(ϵ−1) policy updates to converge to an
ϵ-approximate Nash equilibrium, compared to O(ϵ−2) by the algorithms provided in [46, 41, 38].
Our result cannot be trivially extended by [2] due to the partially observable nature of Markov
game. We bypass this difficulty by parameterizing the game over occupancy measures.

• We provide practical implementations of both MPO and 0MPO for LLM alignment. Numerical results
show that the proposed methods achieve considerable improvement on multi-turn conversation
datasets, such as MT-bench-101, compared to the multi-step variant of DPO.

2 Multi-step RLHF as two-player Markov game
We define the prompt to LLM as x and the answer from LLM as a. For a multi-turn conversation
with turn H , the prompts are denoted by a sequence (x1, . . . , xH) and the answers are denoted by a
sequence (a1, . . . , aH). The concatenation of a prompt x and an answer a is denoted by [x, a] and can
be generalized to the concatenation of multiple prompts and answers, e.g., [x1, a1, . . . , xH , aH]. For
any two sentences, e.g., [x, a] and [x′, a′], we define a preference oracle as o([x, a], [x′, a′]) ∈ {0, 1},
which can provide preference feedback with 0-1 scores, where 1 means the conversation [x, a] is
preferred and 0 otherwise. We denote P([x, a] ≻ [x′, a′]) = E[o([x, a] ≻ [x′, a′])] as the probability
that the conversation [x, a] is preferred over [x′, a′]. Moreover, we have P([x, a] ≻ [x′, a′]) =
1− P([x′, a′] ≻ [x, a]). An autoregressive LLM is denoted by π(a|x).
We can cast the multi-step alignment process as a finite-horizon MDP. We define sh =
[x1, a1, . . . , xh−1, ah−1, xh] as the state at h > 1. We define the action ah as the answer given
sh. Particularly, we have s1 = x1. The prompt in the next state is sampled under the transition
xh+1 ∼ f(·|sh, ah), which is equivalent to sh+1 ∼ f(·|sh, ah). The equivalence comes from the fact
sh+1 = [sh, ah, xh+1] by using the concatenation operator between sentences. The terminal state is
sH+1. Next, we define the pair-wise reward function of two state-action pairs as the preference of two
trajectories: r(sh, ah, s′h, a

′
h) = P([sh, ah] ≻ [s′h, a

′
h]) . We define the initial state distribution ν1 is

a distribution over the initial prompt x1. Note that each state in S is a pair of sh and s′h generated by
two policies. Our goal is to identify the Nash equilibrium of the following two-player Markov game:

(π∗, π∗) = argmax
π

min
π′

Es1∼ν1,sh,ah,s′h,a′h
[H∑
h=1

r(sh, ah, s
′
h, a

′
h)
]
, (Game)

where s1 = s′1 = x1, ah ∼ π(·|sh), a′h ∼ π′(·|s′h), sh ∼ f(·|sh−1, ah−1), s′h ∼ f(·|s′h−1, a
′
h−1).

By Lemma 1, we can rewrite Eq. (Game) as follows:

(π∗, π∗) = argmax
π

min
π′

Es1∼ν1V π,π
′
(s1, s1) , (1)

with the value function is defined at Appx. A. Due to the constrained space, we defer the definition
of value function, Q-function, and occupancy measures dh to Appx. A.

3 MPO with natural actor-critic
This section presents our first method to find an approximate solution to equation Game. In order to
find an ϵ-approximate Nash equilibrium, the MPO method builds upon Lemma 2 which decomposes
the difference of two value functions to the Q function at each step. By setting π′ = π = πt in
Lemma 2 and π = π⋆ and summing from t = 1 to T we obtain:

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉
= Es1∼ν1

H∑
h=1

T∑
t=1

Es∼dπ⋆h |s1

[〈
E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′), π⋆h(·|s)− πth(·|s)
〉]

.

Since the sum over t commutes with the expectation, we see that we can decompose the global regret∑T
t=1

〈
ν1, V

π⋆,πt − V πt,πt
〉

into a weighted sum of local regrets at each stage. Therefore, we can

2

Algorithm 1 MPO (Theory Version)

input: reference policy π1, preference oracle P, learning rate β =
√

log π−1

TH2 , total iteration T
for t = 1, 2, . . . , T do

πt+1
h (a|s) ∝ πth(a|s) exp

[
βE

s′,a′∼dπth |s1(s)Q
πt,πt

h (s, a, s′, a′)
]
∀h ∈ [H], ∀s, a.

end for
output: π̄T (such that dπ̄

T

h = 1
T

∑T
t=1 d

πt

h , ∀h ∈ [H].).

Algorithm 2 0MPO (Theory Version)
input: occupancy measure of reference policy π1 denoted as d1, preference oracle P (i.e. reward
function r), learning rate β, Bregman divergence D, iteration T
for t = 1, 2, . . . , T do

dt+1
h = argmax

d∈Fs1
β
〈
d, 2Es′,a′∼dthr(·, ·, s

′, a′)− Es′,a′∼dt−1
h
r(·, ·, s′, a′)

〉
− D(d, dth) ∀h ∈ [H] ∀s1.

end for
πout
h (a|s) = d̄h(s,a|s1)∑

a d̄h(s,a|s1)
with d̄h = T−1

∑T
t=1 d

t
h for all h ∈ [H] for the unique s1 from which

s is reachable.
Output : πout

control the global regret implementing at each state online mirror descent updates ([47], [30, Chapter
6], [9]), i.e., implementing the following update2:

πt+1
h (·|s) = argmax

π
⟨π(·|s),E

s′,a′∼dπth |s1(s)Q
πt,πt

h (s, ·, s′, a′)⟩ − βD(π(·|s)||πth(·|s)) ,

with learning rate β. The solution is πt+1
h (a|s) ∝ πth(a|s) exp{βEs′,a′∼dπth |s1(s)Q

πt,πt

h (s, a, s′, a′)},
which corresponds to natural actor-critic [32] that utilizes a softmax-based method for updating
policies. The number of policy updates needed by MPO (see Alg. 1) can be bounded as follows.
Theorem 1. Consider Alg. 1 and assume that the reference policy is uniformly lower bounded
by π, then there exists a policy π̄T such that dπ̄

T

h = 1
T

∑T
t=1 d

πt

h ,∀h ∈ [H], and it holds that for

T = 16H4 log π−1

ϵ2 the policy pair (π̄T , π̄T) is an ϵ-approximate Nash equilibrium. Therefore, Alg. 1

outputs an ϵ-approximate Nash equilibrium after 16H4 log π−1

ϵ2 policy updates.

4 Optimistic MPO: 0MPO
In this section, we propose an alternative algorithm based on the optimistic gradient descent method
and by reformulating the optimization problem over occupancy measures. Here, we show that
optimistic online mirror descent with one projection [19] with an appropriately chosen regularizer
can be used to solve approximately the following program which corresponds to Game lifted to the
space of the occupancy measures.

(d⋆, d⋆) = argmax
d∈F̃

min
d′∈F̃

Es1∼ν1
H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′h(s′, a′|s1) ,

where F̃ is the product set of the Bellman flow constraints for a particular initial state, i.e. F̃ =
×s1∈supp(ν1)Fs1 . We also introduced the Bellman flow constraints for a specific initial state Fs1 ={
d = (d1, . . . , dH) :

∑
a dh+1(s, a) =

∑
s′,a′ f(s|s′, a′)dh(s′, a′), d1(s) = 1 {s = s1}

}
.

The policy pair (π⋆, π⋆) solution of Game can be retrieved from the occupancy measure pair (d⋆, d⋆)
as π⋆(a|s) = d⋆(s,a|s1)∑

a d
⋆(s,a|s1) . Our idea is to apply the optimistic algorithm from [19] to the reformu-

2We denote as s1(s) the only initial state that can lead to s. This is motivated by practical LLM training,
where system prompts such as “user” and “assistant” are inserted before every xh and ah, respectively. As a
result, one can infer a unique s1 for every s.

3

Table 1: Evaluation results on MT-bench-101 dataset. We can observe that both of the proposed
algorithms MPO and 0MPO considerably outperform the baseline in terms of the score.

Model
Perceptivity Adaptability Interactivity

Memory Understanding Interference Rephrasing Reflection Reasoning Questioning

Avg. CM SI AR TS CC CR FR SC SA MR GR IC PI

Base (Mistral-7B-Instruct) 6.223 7.202 7.141 7.477 7.839 8.294 6.526 6.480 4.123 4.836 4.455 5.061 5.818 5.641

DPO (iter=1) 6.361 7.889 6.483 7.699 8.149 8.973 7.098 7.423 3.448 6.123 3.421 4.492 5.639 5.858

DPO (iter=2) 6.327 7.611 6.206 8.106 8.052 9.111 6.670 7.153 3.494 5.884 3.360 4.691 5.837 6.078

DPO (iter=3) 5.391 6.019 4.521 6.890 6.631 8.177 5.437 5.723 3.448 5.295 3.142 4.015 5.256 5.529

SPPO (iter=1) 6.475 7.432 7.464 7.714 8.353 8.580 6.917 6.714 4.136 5.055 4.403 5.400 6.036 5.966

SPPO (iter=2) 6.541 7.516 7.496 7.808 8.313 8.731 7.077 6.867 4.136 5.281 4.488 5.477 6.098 5.751

SPPO (iter=3) 6.577 7.575 7.547 7.944 8.365 8.797 7.040 6.865 4.442 5.185 4.346 5.394 6.092 5.906

Step-DPO (iter=1) 6.433 7.463 7.054 7.790 8.157 8.593 6.827 6.748 4.234 4.849 4.236 5.519 5.982 6.171

Step-DPO (iter=2) 6.553 7.616 7.043 7.925 8.147 8.662 6.790 6.878 4.331 5.048 4.366 5.734 6.391 6.254

Step-DPO (iter=3) 6.442 7.665 7.023 7.767 8.016 8.589 6.723 6.581 4.305 5.014 4.153 5.453 6.202 6.257

MPO⋆ (iter=1) 6.630 7.624 7.846 8.085 8.398 8.947 7.105 7.286 4.208 4.993 4.377 5.264 6.179 5.873

MPO⋆ (iter=2) 6.735 7.838 7.723 8.196 8.590 9.027 7.347 7.209 4.240 5.137 4.469 5.531 6.181 6.061

MPO⋆ (iter=3) 6.733 7.868 7.686 8.289 8.510 9.078 7.330 7.529 4.461 4.829 4.225 5.366 6.198 6.155

0MPO⋆ (iter=2) 6.736 7.733 7.723 8.257 8.478 9.122 7.300 7.421 4.123 5.288 4.506 5.513 6.179 5.923

0MPO⋆ (iter=3) 6.776 7.649 7.792 8.281 8.578 9.136 7.424 7.635 4.377 5.308 4.312 5.455 6.187 5.954

lation of Game over occupancy measures, we present the resulting algorithm, i.e., 0MPO, in Alg. 2.

Remark 1. Lifting the problem to the occupancy measures turns out to be of fundamental importance
to have each agent learning a policy conditioned only on their own state. This is different from the
standard literature on Markov Games [12, 48, 2] that assumes that both agents share a common state.

As the next theorem shows, in the ideal case where the updates can be computed exactly, Alg. 2 finds
an ϵ-approximate Nash equilibrium using fewer updates compared to Alg. 1 and to [41, Algorithm 1].
Theorem 2 (Convergence of 0MPO). Consider Alg. 2 and assume the occupancy measure of the
reference policy is uniformly lower bounded by d. Moreover, let D be 1/λ strongly convex, i.e.

D(p||q) ≥ ∥p−q∥2
1

2λ . Then, setting T = 10H log d−1

βϵ and β ≤ 1√
2λ

, we ensure that the output of Alg. 2

is an ϵ-approximate Nash equilibrium. Therefore, we need at most 10H log d−1

βϵ policy updates.

In addition, not only [41, Algorithm 1] but also 0MPO can be implemented using only one player
since in a constant sum game, the max and min player produce the same iterates. The result is
formalized as follows and the proof is deferred to Appx. E.5.
Theorem 3. Consider a constant sum two-player Markov games with reward such that
r(s, a, s′, a′) = 1 − r(s′, a′, s, a), then for each s1 ∈ supp(ν1) the updates for d in Alg. 2 co-
incides with the updates for the min player that uses the updates

dt+1
h (a|s) = argmin

d∈Fs1
β
〈
d, 2Es′,a′∼dthr(s

′, a′, ·, ·)− Es′,a′∼dt−1
h
r(s′, a′, ·, ·)

〉
+ D(d, dth) .

Furthermore, we can avoid the projection over the set F implementing this update on the policy space
(see Appendix F). We achieve such result following the techniques developed in [6, 45].

5 Experiments

In this section, we validate the proposed algorithm with multi-turn conversations in MT-bench-101 [4].
We choose Mistral-7B-Instruct-v0.2 as the base model [18]. We select iterative DPO [13], iterative
SPPO [49], and iterative Step-DPO as our baselines. We use a pre-trained model PairRM3 as the
preference oracle. Each round of dialogue is rated on a scale of 1 to 10 by GPT-4o mini, with the
mean score reported for each dialogue. All methods are run for a total of 3 iterations. We use the
practical algorithms of MPO and 0MPO in Alg. 3 and 4. Detailed set-up and hyperparameters can be
found at Appx. H. The results are summarized in Tab. 1, showing significant improvements over the
baselines with the proposed MPO and 0MPO approaches.

3https://huggingface.co/llm-blender/PairRM

4

https://huggingface.co/llm-blender/PairRM

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Ahmet Alacaoglu, Luca Viano, Niao He, and Volkan Cevher. A natural actor-critic framework
for zero-sum markov games. In International Conference on Machine Learning, pages 307–366.
PMLR, 2022.

[3] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning
from human preferences. In International Conference on Artificial Intelligence and Statistics,
pages 4447–4455. PMLR, 2024.

[4] Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo
Su, Tiezheng Ge, Bo Zheng, et al. Mt-bench-101: A fine-grained benchmark for evaluating
large language models in multi-turn dialogues. arXiv preprint arXiv:2402.14762, 2024.

[5] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[6] Joan Bas-Serrano, Sebastian Curi, Andreas Krause, and Gergely Neu. Logistic q-learning.
In International conference on artificial intelligence and statistics, pages 3610–3618. PMLR,
2021.

[7] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[9] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

[10] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
Shenghuo Zhu. Online optimization with gradual variations. In Shie Mannor, Nathan Srebro,
and Robert C. Williamson, editors, Proceedings of the 25th Annual Conference on Learning
Theory, volume 23 of Proceedings of Machine Learning Research, pages 6.1–6.20, Edinburgh,
Scotland, 25–27 Jun 2012. PMLR.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[12] Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient
methods for competitive reinforcement learning. Advances in neural information processing
systems, 33:5527–5540, 2020.

[13] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

[14] Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. arXiv preprint arXiv:1512.08562, 2015.

[15] Martin Gardner. Mathematical games. Scientific american, 222(6):132–140, 1970.

[16] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurIPS, 2021.

5

[17] Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

[18] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[19] Pooria Joulani, András György, and Csaba Szepesvári. A modular analysis of adaptive (non-
)convex optimization: Optimism, composite objectives, and variational bounds. In Steve
Hanneke and Lev Reyzin, editors, Proceedings of the 28th International Conference on Algo-
rithmic Learning Theory, volume 76 of Proceedings of Machine Learning Research, pages
681–720. PMLR, 15–17 Oct 2017.

[20] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pages 267–
274, 2002.

[21] Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-
dpo: Step-wise preference optimization for long-chain reasoning of llms. arXiv preprint
arXiv:2406.18629, 2024.

[22] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

[23] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[24] Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, and Mingjie Zhan.
Step-controlled dpo: Leveraging stepwise error for enhanced mathematical reasoning. arXiv
preprint arXiv:2407.00782, 2024.

[25] Yura Malitsky and Matthew K Tam. A forward-backward splitting method for monotone
inclusions without cocoercivity. SIAM Journal on Optimization, 30(2):1451–1472, 2020.

[26] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

[27] Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al.
Nash learning from human feedback. In Forty-first International Conference on Machine
Learning, 2024.

[28] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized
markov decision processes, 2017.

[29] Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation
and bandit feedback. Advances in Neural Information Processing Systems, 34:10407–10417,
2021.

[30] Francesco Orabona. A modern introduction to online learning, 2023.

[31] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[32] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

[33] Leonid Denisovich Popov. A modification of the arrow-hurwitz method of search for saddle
points. Mat. Zametki, 28(5):777–784, 1980.

[34] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., USA, 1st edition, 1994.

6

[35] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2023.

[36] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In
Conference on Learning Theory, pages 993–1019. PMLR, 2013.

[37] Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with
general preferences. arXiv preprint arXiv:2404.03715, 2024.

[38] Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila
Noga, Orgad Keller, Bilal Piot, Idan Szpektor, et al. Multi-turn reinforcement learning from
preference human feedback. arXiv preprint arXiv:2405.14655, 2024.

[39] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences,
39(10):1095–1100, 1953.

[40] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[41] Gokul Swamy, Christoph Dann, Rahul Kidambi, Steven Wu, and Alekh Agarwal. A minimaxi-
malist approach to reinforcement learning from human feedback. In Forty-first International
Conference on Machine Learning, 2024.

[42] Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark
Rowland, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot.
Generalized preference optimization: A unified approach to offline alignment. arXiv preprint
arXiv:2402.05749, 2024.

[43] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[44] Amos Tversky. Intransitivity of preferences. Psychological review, 76(1):31, 1969.

[45] Luca Viano, Angeliki Kamoutsi, Gergely Neu, Igor Krawczuk, and Volkan Cevher. Proximal
point imitation learning. Advances in Neural Information Processing Systems, 35:24309–24326,
2022.

[46] Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical
perspective. Advances in Neural Information Processing Systems, 2023.

[47] Manfred K Warmuth, Arun K Jagota, et al. Continuous and discrete-time nonlinear gradient de-
scent: Relative loss bounds and convergence. In Electronic proceedings of the 5th International
Symposium on Artificial Intelligence and Mathematics, volume 326. Citeseer, 1997.

[48] Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Last-iterate convergence of
decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games.
In Conference on Learning Theory, pages 4259–4299. PMLR, 2021.

[49] Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

[50] Yuheng Zhang, Dian Yu, Baolin Peng, Linfeng Song, Ye Tian, Mingyue Huo, Nan Jiang, Haitao
Mi, and Dong Yu. Iterative nash policy optimization: Aligning llms with general preferences
via no-regret learning. arXiv preprint arXiv:2407.00617, 2024.

[51] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

[52] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

7

Acknowledgements

This work was supported by Hasler Foundation Program: Hasler Responsible AI (project number
21043). This work was supported by the Swiss National Science Foundation (SNSF) under grant
number 200021_205011. This work is funded (in part) through a PhD fellowship of the Swiss Data
Science Center, a joint venture between EPFL and ETH Zurich. This research was sponsored by the
Army Research Office and was accomplished under Grant Number W911NF-24-1-0048.

Contents of the appendix

The Appendix is organized as follows:

• In Appx. A, we summarize the symbols and notation used in this paper.

• Preliminaries on single-step RLHF can be found in Appx. B.

• A detailed discussion of related work is present in Appx. C.

• In Appx. D, we give several auxiliary lemmas for our analysis.

• In Appx. E, we provide the proofs for the theoretical results.

• Appx. F shows the implementation of Alg. 2 with updates over policies.

• The practical version of MPO and 0MPO are present in Appx. G.

• Additional experimental detail and result are given in Appx. H.

• Limitation and future work can be found at Appx. J.

A Symbols and Notation

We include the core symbols and notation in Tab. 2 to facilitate the understanding of our work.

Table 2: Core symbols and notations used in this paper.

Symbol Dimension(s) & range Definition

xh - Prompt at step h
ah - Answer (action) at step h
sh - State at step h

s1(sh) - The only initial state that can lead to sh
π Language model (policy)
ν1 Initial distribution of state s1

dπh(s, a) [0, 1] Occupancy measure of π at stage h
f Transition function

Pr(sh = s, ah = a) [0, 1] Joint probability of sh = a and ah = a
o {0, 1} Preference oracle

P([s, a], [s′, a′)] [0, 1] Winning probability of [s, a] against [s′, a′)]
D(p∥q) KL divergence of two probability distributions p and q
D(p∥q) Bregman Divergences between two points q and p.
Dt Dataset buffet at iteration t
∆X [0, 1]|X| Set of probability distributions over the set X

O, o, Ω and Θ - Standard Bachmann–Landau order notation

Definition 1 (Value function). We define the pair-wise value function as follows:

V π,π
′

h (s, s′) = E
[H∑
ĥ=h

r(sĥ, aĥ, s
′
ĥ
, a′
ĥ
)|sh = s, s′h = s′

]
,

where aĥ ∼ πĥ(·|sĥ), a
′
ĥ
∼ π′

ĥ
(·|s′

ĥ
), sĥ+1 ∼ f(·|sĥ, aĥ), and s′

ĥ+1
∼ f(·|s′

ĥ
, a′
ĥ
).

8

Definition 2 (Q-function). We define the Q-function as

Qπ,π
′

h (s, a, s′, a′) = rh(s, a, s
′, a′) + E

[H∑
ĥ=h+1

r(sĥ, aĥ, s
′
ĥ
, a′
ĥ
)
]
,

where sĥ+1 ∼ f(·|sĥ, aĥ) and s′
ĥ+1
∼ f(·|s′

ĥ
, a′
ĥ
).

We can define the MDP as a tupleM = (S,A, f, r, ν1, H), where S is the state space, A is the
action space, H is the horizon (total steps). We will often denote V π,π

′

1 omitting the footnote, i.e. as
V π,π

′
. Moreover, notice that we consider potentially non stationary policies, i.e. they are indexed

by h. We denote by π such non stationary policy and by πh the distribution over actions at stage h
corresponding to the non stationary policy π.
Definition 3. A policy π is said an ϵ-approximate Nash equilibrium if it holds that

⟨ν1, V π,π⟩ −min
π̄∈Π

〈
ν1, V

π,π̄
〉
≤ ϵ, and max

π̄∈Π

〈
ν1, V

π̄,π
〉
− ⟨ν1, V π,π⟩ ≤ ϵ.

Definition 4 (Occupancy measures). Given the policy π, the occupancy measure of π, is defined
at stage h as dπh(s, a) = Pr(sh = s, ah = a) where s1 = x1 ∼ ν1, ah ∼ πh(·|sh), sh ∼
f(·|sh−1, ah−1). We also define dπh(s, a)|s1 = Pr(sh = s, ah = a|s1 = s1) . In addition, given
the policies π, π̄, the occupancy measure of (π, π̄) at stage h is defined as dπ,π̄h (s, a, s′, a′) =
Pr(sh = s, ah = a, s′h = s′, a′h = a′), where s1 = s′1 = x1 ∼ ν1, ah ∼ π(·|sh), a′h ∼ π′(·|s′h),
sh ∼ f(·|sh−1, ah−1), and s′h ∼ f(·|s′h−1, a

′
h−1).

We additionally use a compact notation for representing the Bellman flow constraints. We denote by
E ∈ R|S|×|A||S| the matrix such that (Ez)(s, a) = z(s) for all vectors z ∈ R|S|. Additionally, we
denote by F the matrix such that (Fz)(s, a) =

∑
s′ f(s

′|s, a)z(s′) for all vectors z ∈ R|S|.

Remark: The value function can be represented as an inner product between the reward function and
the occupancy measure, i.e., V π,π̄ =

∑H
h=1

〈
rh, d

π,π̄
h

〉
. Given the structure of the game where the

sequences of sentences and answers are generated independently by the two agents, we find that the
joint occupancy measure at each step can be factorized as the product of the two agents occupancy
measures. In particular, dπ,π̄h (s, a, s′, a′) = dπh(s, a)d

π̄
h(s

′, a′) for all h, s, a, s′, a′.

B Preliminary on Single-step RLHF and motivation of multi-step RLHF

In this section, we review the earlier methods in single-step RLHF. Classical RLHF methods [52, 31]
assume that the preference oracle can be expressed by an underlying Bradley-Terry (BT) reward
model [7], i.e.,

P([x1, a1] ≻ [x1, a
′
1]) = σ(r(x1, a1)− r(x1, a′1)) .

Thus, one can first learn a reward model and optimize the policy based on the following KL-
constrained RL objective with PPO:

π⋆ = argmax
π

Ex1∼ν1,a1∼π(·|x1)(r(x1, a1)− βD(π(·|x1)||πref(·|x1))) ,

where β is a parameter controlling the deviation from the reference model πref . Another line of work,
e.g., DPO [35] avoids explicit reward modeling and optimizes the following objective over pair-wise
preference data (x1, a

w
1 , a

l
1).

π⋆ = argmax
π

E(x1,aw1 ,a
l
1)∼D

[
log σ

(
β log

π(aw1 |x1)
π1(aw1 |x1)

− β log π(al1|x1)
π1(al1|x1)

)]
.

More recently, several studies [41, 27, 49, 50, 37] have circumvented the Bradley-Terry (BT) assump-
tion by directly modeling the general oracle P, avoiding the reliance on the reward model which is
transitive. Specifically, the goal is to identify the Nash equilibrium (or von Neumann winner) of the
following two-player constant-sum game:

(π∗, π∗) = argmax
π

min
π′

Ex1∼ν1,a1∼π(·|x1),a′1∼π′(·|x1)P([x1, a1] ≻ [x1, a
′
1]) .

Our multi-step setting covers a number of alignment problems, and we list some examples below.

9

Example 4 (Single-step alignment). In single-step alignment, a language model receives one prompt
and outputs one answer. Our framework covers the single-step alignment by dissecting the answer
into single tokens. Specifically, we set x1 as the prompt, x2, . . . , xH+1 as empty sentences, and the
answer ah at each turn consists of only one token. Then the horizon H is the number of tokens in the
answer. The transition between each state is deterministic.
Example 5 (Chain-of-thought reasoning alignment). In the chain-of-thought reasoning, the horizon
H denotes the reasoning step, where x1 is the initial prompt and x2, . . . , xH+1 are empty. Each ah
corresponds to a reasoning step. The transition between each state is deterministic.
Example 6 (Mutli-turn conversation alignment). In the mutli-turn conversation, the horizon H
denotes the total turn of conversation. In the h-th turn, xh is the prompt, and ah is the answer. The
prompt in the terminal state xH+1 is the empty sentence. The transition between each state can be
deterministic or stochastic.

Here we make a few remarks on the benefit of incorporating human preferences at each step.
Remark 2. Let s1 denote the question particularly those framed with chain-of-though prompting, i.e.,

“answer this question step by step”. If two answers of length H + 1 (sH+1 and s′H+1) are globally
similar but differ in the early reasoning steps (e.g., s1 and s2 are better than s′1 and s′2), more credit
should be assigned to sH+1, encouraging the model to align with it. This follows the principle that
humans typically master simpler tasks before progressing to more complex ones.
Remark 3. From a practical standpoint, including per-step preference data generates a richer
dataset for training, helping the model learn which reasoning steps are correct or wrong. This
incremental feedback can enhance overall performance by reinforcing the importance of foundational
steps in reasoning.

C Related work

RLHF under Bradley-Terry model. Over the years, significant strides have been made towards
developing RLHF algorithms from various perspectives under the Bradley-Terry model [7]. Earlier
RLHF pipelines usually included supervised fine-tuning, learning a reward model, and reinforcement
learning optimization with PPO [52, 40, 5, 31]. Due to the instability and scaling issues of such a
pipeline, direct alignment methods such as DPO have been proposed to bypass the training of the
reward model [35]. Several follow-up methods, such as generalized preference optimization (GPO,
(author?) 42), use offline preference data to directly optimize pairwise preferences against a fixed
opponent. A number of works have proposed reference-model-free method [26, 17]. In [26], the
impact of sequence length is mitigated by averaging the likelihood over the length of the sequence. In
the multi-step scenario, several multi-step variants of DPO are introduced in the math reasoning task.
[24] initiate from an intermediate step in a correct reasoning process and increase the temperature to
produce a flawed reasoning path leading to an incorrect answer. Meanwhile, [21] leverage GPT-4 to
detect the first incorrect step in a multi-step reasoning trajectory, then regenerate from that point to
obtain the correct path. Together, these serve as the pair of samples for DPO.

RLHF under general preferences. The reward model in the Bradley-Terry model inherently implies
transitivity in preferences. However, human preferences, especially the resulting averaged human
preferences from populations, are usually nontransitive [44, 15]. To this end, [3] outline a general
framework for RLHF starting from general preference optimization and shows that DPO is a special
case with the assumption of Bradley-Terry model. They further proposed IPO without such an
assumption. Subsequently, [27] try to solve the alignment of non-transitive general preferences
using two-player nash learning in a bandit setting. In their work, preferences are regularized through
KL divergence to a reference policy, and they prove the convergence of the last iterative. In [41],
multi-step alignment is considered while preference signals are only applied at the final step. [41] do
not demonstrate the effectiveness of this framework in large language models. [49] propose SPPO,
studying bandit alignment under general preferences. They introduce a novel loss function that
increases the log-likelihood of the selected response while decreasing that of the rejected response,
in contrast to DPO. [37] start with the nash learning framework and propose Online DPO, which
is an iterative version of DPO. [46] provide theoretical analysis on multi-step RLHF under general
preference while practice application is not explored. In [46], the preference signal is given for the
entire trajectory of an MDP while in this paper it is step-wise. [38] study multi-step alignment under
general preferences. However, unlike their approach where only preferences at the final states are

10

considered, our work is built on a two-player Markov game which assumes that human preference
is received at each step rather than only at the final step. Additionally, we leverage the optimistic
online gradient descent to achieve a better convergence rate than [46, 38], and utilize Monte Carlo
estimation with a small-scale pairwise reward model, avoiding the need for an additional function
approximator for the critic network.

Two-player Markov game & optimistic online gradient descent. Two-player Markov games have
been widely studied since the seminal work [39]. Particularly relevant to our work is the research line
on policy gradient algorithms for two-player Markov games such as [12, 48, 2]. Our 0MPO is strictly
related to the idea of optimistic online gradient descent [33, 10, 36] originally proposed in online
learning to achieve small regret in case of slow varying loss sequences. Our update that uses only one
projection per update was proposed in [19]. The name of our method is due to a similar algorithm
introduced in the context of variational inequalities by [25].

D Auxiliary Lemma

Lemma 1. The value function and Q-value function satisfy the following Bellman equation for all
h ∈ [H].

Qπ,π
′

h (s, a, s′, a′) = rh(s, a, s
′, a′) + Eŝ∼f(·|s,a),s̄∼f(·|s′,a′)[V π,π

′

h+1 (ŝ, s̄)] .

V π,π
′

h (s, s′) = Ea∼πh(·|s),a′∼π′
h(·|s′)Q

π,π′

h (s, a, s′, a′).

Lemma 2. For a finite horizon MDP with initial distribution ν1 it holds that:

〈
ν1, V

π,π̄ − V π
′,π̄
〉
= Es1∼ν1

H∑
h=1

Es∼dπh|s1
[〈

Es′,a′∼dπ̄h|s1Q
π′,π̄
h (s, ·, s′, a′), πh(·|s, s1)− π′

h(·|s, s1)
〉]
.

The lemma 2 is the extension of [20] to the multi-agent setting where the dynamics are controlled
independently by each player but the reward depends on the joint-state action tuple.

E Proofs

E.1 Proof of Lemma 1

Proof. By the definition of the state action value function for the policy pair (π, π′) we have that

Qπ,π
′

h (s, a, s′, a′) = r(s, a, s′, a′) + E
[H∑
h′=h+1

r(sh′ , ah′ , s′h′ , a′h′)
]
.

Now, using tower property of the expectation we have that

Qπ,π
′

h (s, a, s′, a′)

= r(s, a, s′, a′) + Es′′∼f(·|s,a),s̄∼f(·|s′,a′)
[
E
[H∑
h′=h+1

r(sh′ , ah′ , s′h′ , a′h′)|sh+1 = s′′, s′h+1 = s̄
]]

= r(s, a, s′, a′) + Es′′∼f(·|s,a),s̄∼f(·|s′,a′)
[
V π,π

′
(s′′, s̄)

]
,

where the last equality follows from the definition of the state value function.

E.2 Proof of Lemma 2

Proof. Let us consider the Bellman equation in vectorial form for the policy pair (π′, π̄), that is

rh + FV π
′,π̄

h+1 = Qπ
′,π̄
h ,

11

where F denoted the transition matrix induced by the transition function f : S2 ×A → ∆S×S . Now,
multiplying by the occupancy measure of the policy pair (π, π̄) at stage h we obtain〈

dπ,π̄h , rh
〉
+
〈
dπ,π̄h , FV π

′,π̄
h+1

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h

〉
.

At this point, using the Bellman flow constraints [34], it holds that

FT dπ,π̄h = ET dπ,π̄h+1,

where E ∈ R|S|2|A|×|S|2 such that (ET v)(s, a) = V (s) for all V ∈ R|S|2 . Plugging this equality in
the Bellman equation above we obtain〈

dπ,π̄h , rh
〉
+
〈
dπ,π̄h+1, EV

π′,π̄
h+1

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h

〉
.

Now, subtracting on both sides
〈
dπ,π̄h , EV π

′,π̄
h

〉
and rearranging, it holds that〈

dπ,π̄h , rh
〉
+
〈
dπ,π̄h+1, EV

π′,π̄
h+1

〉
−
〈
dπ,π̄h , EV π

′,π̄
h

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

After this, taking sum from h = 1 to H and recognizing that for all policy pairs (π, π′) it holds that
V π,π

′

H+1 = 0, it holds that

H∑
h=1

〈
dπ,π̄h , rh

〉
−
〈
dπ,π̄1 , EV π

′,π̄
1

〉
=

H∑
h=1

〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

Then, notice that for all policies π, π̄ it holds that
∑H
h=1

〈
dπ,π̄h , rh

〉
= ⟨ν1, V π,π̄⟩. Plugging in these

observations, we get 〈
ν1, V

π,π̄ − V π
′,π̄
〉
=

H∑
h=1

〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

Therefore, expanding the expectation, and noticing that dπ,π̄h (s, a, s′, a′|s1) =
dπh(s, a|s1)dπ̄h(s′, a′|s1) for all h, s, a, s′, a′ and conditioning s1, we get that〈

ν1, V
π,π̄ − V π

′,π̄
〉

= Es1∼ν1
H∑
h=1

Es∼dπh|s1
[〈

Es′,a′∼dπ̄h|s1Q
π′,π̄
h (s, ·, s′, a′), πh(·|s, s1)− π′

h(·|s, s1)
〉]
.

E.3 Proof of Thm. 1

Proof. We set π̄Th (ah|sh) =
∑T
t=1 d

πt

h (sh,ah)∑T
t=1 d

πt

h (sh)
, where d(s) is the marginal distribution of d(s, a) on

state s, and π̄T = (π̄Th)
H
h=1. We shows that dπ̄

T

h = 1
T

∑T
t=1 d

πt

h by induction. h = 1 holds by
definition. Assuming on step h, the equation holds, we have

dπ̄
T

h+1(sh+1, ah+1) = dπ̄
T

h+1(sh+1)π̄
T
h+1(ah+1|sh+1)

=
∑

sh,ah∼π̄Th (·|sh)

dπ̄
T

h (sh, ah)f(sh+1|sh, ah)π̄Th+1(ah+1|sh+1)

=
∑

sh,ah∼π̄Th (·|sh)

1

T

T∑
t=1

dπ
t

h (sh, ah)f(sh+1|sh, ah)π̄Th+1(ah+1|sh+1)

=
1

T

T∑
t=1

dπ
t

h+1(sh+1)π̄
T
h+1(ah+1|sh+1)

=
1

T

T∑
t=1

dπ
t

h+1(sh+1, ah+1),

12

where the last equation holds by definition of π̄Th+1. Therefore, h+ 1 holds, and the π̄T satisfy all
equations for h ∈ [H].

Using the value difference Lemma 2 we have that for any π⋆ ∈ Π〈
ν1, V

π⋆,πt − V π
t,πt
〉

= Es1∼ν1
H∑
h=1

Es∼dπ⋆h |s1

[〈
E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′), π⋆h(·|s)− πth(·|s)
〉]
.

Therefore, summing over t from t = 1 to T we obtain

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉

= Es1∼ν1
H∑
h=1

Es∼dπ⋆h |s1

[
T∑
t=1

〈
E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′), π⋆h(·|s)− πth(·|s)
〉]

.

Therefore, we need to control the local regrets at each state s with loss ℓth(s, s1) :=

E
s′,a′∼dπth |s1Q

πt,πt

h (s, ·, s′, a′). To this end, we can invoke a standard convergence result for online
mirror descent [30, Theorem 6.10] we obtain that at each state we have

T∑
t=1

〈
ℓth(s, s1), π

⋆(·|s)− πt(·|s)
〉
≤ D(π⋆(·|s), π1(·|s))

β
+ β

T∑
t=1

∥ℓth(s, s1)∥
2
∞.

Now, noticing that we have ∥ℓth(s, s1)∥∞ ≤ H it holds that

T∑
t=1

〈
ℓth(s), π

⋆
h(·|s)− πth(·|s)

〉
≤ D(π⋆h(·|s), π1

h(·|s))
β

+ βTH2.

Finally, using the assumption that π1(a|s) ≥ π for all s, a ∈ S×A it holds thatD(π⋆(·|s), π1(·|s)) ≤
log π−1. Therefore, choosing β =

√
log π−1

TH2 it holds that

T∑
t=1

〈
ℓth(s, s1), π

⋆(·|s)− πt(·|s)
〉
≤ 2H

√
T log π−1.

Thus, we conclude that
T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉
≤ 2H2

√
T log π−1.

By the antisimmetry of the game, the same proof steps

T∑
t=1

〈
ν1, V

πt,πt − V π
t,π̄⋆
〉
≤ 2H2

√
T log π−1.

Therefore, it holds that for all π⋆, π̄⋆ ∈ Π

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,π⋆
〉
≤ 4H2

√
T log π−1.

Then, define π̄T the trajectory level mixture policy as in [41], i.e. such that dπ̄
T

h = 1
T

∑T
t=1 d

πt

h for
all stages h ∈ [H]. This implies that V π̄

T ,π⋆ = 1
T

∑T
t=1 V

πt,π⋆ , and V π
⋆,π̄T = 1

T

∑T
t=1 V

π⋆,πt .

Therefore, we have that 〈
ν1, V

π⋆,π̄T − V π̄
T ,π̄⋆

〉
≤ 4H2

√
log π−1

T
.

13

Finally, selecting π⋆ =
〈
ν1, argmaxπ∈Π V

π,π̄T
〉

and π̄⋆ =
〈
ν1, argminπ∈Π V

π̄T ,π
〉

, we obtain
that

max
π∈Π

〈
ν1, V

π,π̄T
〉
−min
π∈Π

〈
ν1, V

π̄T ,π
〉
≤ 4H2

√
log π−1

T
.

This implies that 〈
ν1, V

π̄T ,π̄T
〉
−min
π∈Π

〈
ν1, V

π̄T ,π
〉
≤ 4H2

√
log π−1

T
,

and

max
π∈Π

〈
ν1, V

π,π̄T
〉
−
〈
ν1, V

π̄T ,π̄T
〉
≤ 4H2

√
log π−1

T
,

Therefore, setting T = 16H4 log π−1

ϵ2 we obtain an ϵ-approximate Nash equilibrium.

E.4 Proof of Theorem 2

Proof. The optimization problem

argmax
d∈F̃

min
d′∈F̃

Es1∼ν1
H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′h(s′, a′|s1)

can be carried out individually over possible initial states. That is for each s1 ∈ supp(ν1) we aim at
solving

argmax
d∈Fs1

min
d′∈Fs1

H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′h(s′, a′|s1)

To this end for any s1, we consider ϕth ∈ F and ψth ∈ F which are generated by the following
updates

ϕt+1
h = argmax

ϕ∈Fs1
β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth),

and

ψt+1
h = argmin

ψ∈Fs1
β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s

′, a′, ·, ·)
〉
+ D(ψ,ψth),

In order to prove convergence to an ϵ-approximate Nash equilibrium, we need to control the quantity

Gaps1 =
1

T

H∑
h=1

T∑
t=1

〈
θth, ϕ

t
h − ϕ⋆h

〉
+

1

T

H∑
h=1

T∑
t=1

〈
ζth, ψ

t
h − ψ⋆h

〉
,

for θth(s, a) =
∑
s′,a′ ψ

t
h(s

′, a′)rh(s, a, s
′, a′) and ζth(s, a

′) = −
∑
s,a ϕ

t
h(s, a)rh(s, a, s

′, a′). At
this point, we bound the local regret term with the 0MPO update. We have that for any ϕh ∈ F

β
〈
2θth − θt−1

h , ϕh − ϕt+1
h

〉
= β

〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth + θt+1

h − θt−1
h , ϕh − ϕt+1

h

〉
= β

〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
+ β

〈
θt+1
h , ϕh − ϕt+1

h

〉
.

At this point, we work on the third summand above

β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
≤ β2λ∥θth − θt−1

h ∥2∞ +
1

4λ
∥ϕth − ϕt+1

h ∥
2
1.

14

In addition, we have that∥θth − θ
t−1
h ∥∞ ≤ ∥ψth − ψ

t−1
h ∥1 and we can apply the 1/λ strong convexity

of D, we obtain

β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
≤ λβ2∥ψth − ψt−1

h ∥21 +
1

2
D(ϕt+1

h , ϕth).

On the other hand, by the three point identity we have that for all ϕ ∈ F

D(ϕh, ϕt+1
h) = D(ϕh, ϕth)− D(ϕt+1

h , ϕth) +
〈
∇D(ϕt+1

h , ϕth), ϕ
t+1
h − ϕh

〉
Then, using the property of the update rule, we obtain that〈

∇D(ϕt+1
h , ϕth), ϕ

t+1
h − ϕh

〉
≤ β

〈
2θth − θt−1

h , ϕh − ϕt+1
h

〉
.

Putting all the pieces together we have that

D(ϕh, ϕt+1
h) ≤ D(ϕh, ϕth)− D(ϕt+1

h , ϕth) + β
〈
2θth − θt−1

h , ϕh − ϕt+1
h (·|s)

〉
≤ D(ϕh, ϕth)− D(ϕt+1

h , ϕth)

+ β
〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β2∥ψth − ψt−1
h ∥21 +

1

2
D(ϕt+1

h , ϕth)

+ β
〈
θt+1
h , ϕh − ϕt+1

h

〉
.

Now, rearranging the terms we get

β
〈
θt+1
h , ϕh − ϕt+1

h

〉
≤ D(ϕh, ϕth)− D(ϕh, ϕt+1

h)− 1

2
D(ϕt+1

h , ϕth)

+ β
〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β2λ∥ψth − ψt−1
h ∥21.

Now, denoting Φtϕ := D(ϕh, ϕth) + β
〈
θth − θ

t−1
h , ϕh − ϕth

〉
and summing over t we obtain

β

T∑
t=1

〈
θth, ϕh − ϕth

〉
≤

T∑
t=1

Φt−1
ϕ − Φtϕ −

1

2

T∑
t=1

D(ϕth, ϕ
t−1
h) + β2λ

T∑
t=1

∥ψt−1
h − ψt−2

h ∥21.

Similarly we get

β

T∑
t=1

〈
ζt(s, ·), ψth − ψth

〉
≤

T∑
t=1

Φt−1
ψ − Φtψ −

1

2

T∑
t=1

D(ψth, ψ
t−1
h) + β2λ

T∑
t=1

∥ϕt−1
h − ψt−2

h ∥21.

Now, using 1/λ strong convexity of D and summing the two terms we have that

βTGaps1,h ≤ Φ0 − ΦT−1 − 1

2

T∑
t=1

(D(ψth, ψ
t−1
h) + D(ϕth, ϕ

t−1
h))

+ 2β2λ

T∑
t=1

(D(ψt−1
h , ψt−2

h) + D(ϕt−1
h , ϕt−2

h)),

with Φt = Φtϕ +Φtψ . At this point, setting β ≤ 1√
2λ

, we obtain a telescopic sum

βTGaps1,h

≤ Φ0 − ΦT−1 − 1

2

T∑
t=1

(D(ψth, ψ
t−1
h) + D(ϕth, ϕ

t−1
h)− D(ψt−1

h , ψt−2
h)− D(ϕt−1

h , ϕt−2
h))

≤ Φ0 − ΦT−1 +
1

2

(
D(ψ1

h, ψ
0
h) + D(ϕ1h, ϕ0h)

)
.

15

Now recalling that by assumption the occupancy measure of the reference policy is lower bounded,
i.e. dπ

1 ≥ d, we can upper bound Φ0 − ΦT ≤ 2 log d−1 + 8β that allows to conclude that for all
n ∈ [N] and setting ψ0

h = ψ1
h and ϕ1h = ϕ0h,

Gaps1,h ≤
2 log d−1 + 8β

βT
≤ 10 log d−1

βT
.

Now, notice that Gap can be rewritten as

Gaps1 =

H∑
h=1

Gaps1,h

=
1

T

T∑
t=1

H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s
′, a′)rh(s, a, s

′, a′)ϕth(s, a)

− 1

T

T∑
t=1

H∑
h=1

∑
s,a,s′,a′

ψth(s
′, a′)rh(s, a, s

′, a′)ϕ⋆h(s, a)

=

H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s
′, a′)rh(s, a, s

′, a′)
1

T

T∑
t=1

ϕth(s, a)

−
H∑
h=1

∑
s,a,s′,a′

1

T

T∑
t=1

ψth(s
′, a′)rh(s, a, s

′, a′)ϕ⋆h(s, a)

=

H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s
′, a′)rh(s, a, s

′, a′)ϕ̄h(s, a)−
H∑
h=1

∑
s,a,s′,a′

ψ̄h(s
′, a′)rh(s, a, s

′, a′)ϕ⋆h(s, a) .

At this point, let us define πout
ϕ (a|s) = ϕ̄(s,a)∑

a ϕ̄(s,a)
and πout

ψ (a|s) = ψ̄(s,a)∑
a ψ̄(s,a)

. For such policies and
by appropriate choice for ψ⋆ and ϕ⋆ it follows that

Gaps1 = max
ψ

V π
out
ϕ ,ψ(s1)−min

ϕ
V ϕ,π

out
ψ (s1).

By the bound on Gaps1 for each s1 ∈ supp(ν1), it follows that〈
ν1,max

ψ
V π

out
ϕ ,ψ −min

ϕ
V ϕ,π

out
ψ

〉
= Es1∼ν1Gaps1 ≤

10H log d−1

βT
,

therefore T ≥ 10H log d−1

βϵ . The proof is concluded invoking Thm. 3 that ensures that the policies
πout
ψ and πout

ϕ coincide.

E.5 Proof of Theorem 3

Proof. Let us consider two players performing the following updates

ϕt+1
h = argmax

ϕ∈Fs1
β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth),

and

ψt+1
h = argmin

ψ∈Fs1
β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s

′, a′, ·, ·)
〉
+ D(ψ,ψth).

The goal is to proof that the iterates generated by the two updates are identical. We will prove this
fact by induction. The base case holds by initialization which gives ϕ0h = ψ0

h for all h ∈ [H]. Then,

16

let us assume by the induction step that ψth = ϕth for all h ∈ [H], then

ϕt+1
h

= argmax
ϕ∈Fs1

β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth)

= argmax
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s

′, a′, ·, ·)
〉
− D(ϕ, ϕth) + β ⟨ϕ,1⟩

(Antisymmetric Reward)

= argmax
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s

′, a′, ·, ·)
〉
− D(ϕ, ϕth) + β

(Normalization of ϕ)

= argmax
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s

′, a′, ·, ·)
〉
− D(ϕ, ϕth)

(β does not depend on ϕ)

= argmax
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ϕtrh(s′, a′, ·, ·) + Es′,a′∼ϕt−1rh(s

′, a′, ·, ·)
〉
− D(ϕ, ψth)

(Inductive Hypothesis)

= argmin
ϕ∈Fs1

β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s

′, a′, ·, ·)
〉
+ D(ψ,ψth)

(Renaming the optimization variable and argmax
x

f(x) = argmin
x

−f(x))

= ψt+1
h .

F Implementation of Algorithm 2 with updates over policies.

In this section, we explain how the update in Algorithm 2 for different choices of D. In both
cases, we will derive an update that can be summarized by following template. Let us define
rth(s, a) = Es′,a′∼dthr(s, a, s

′, a′) and rt−1
h (s, a) = Es′,a′∼dt−1

h
r(s, a, s′, a′)

• Compute the Qth function corresponding to the reward function 2rth − r
t−1
h minimizing a

loss function that depends on the choice of D.

• Update the policy as

πt+1
h (a|s) ∝ πth(a|s) exp

(
βQth(s, a)

)
.

Finally, in Appx. F.3 we show that for D being the conditional relative entropy and for β small enough
the value function Qth is well approximated by the standard Bellman equations.

Remark 4. Both choices of the Bregman divergence are 1 strongly convex so Thm. 2 applies with
λ = 1.

In the following we consider a generic reward function r̃. In our setting, we will apply the following
results for r̃h = 2rth − r

t−1
h in order to implement the updates of Alg. 2 for the different values of h

and t.

F.1 D chosen as the sum of conditional and relative entropy

In this section, we explain how to implement the occupancy measure update in Algorithm 2 over
policies. We use the machinery for single agent MDPs introduced in [6]. In particular, we consider the
Bregman divergence given by the sum of the relative entropy D(d, d′) =

∑
s,a d(s, a) log

(
d(s,a)
d′(s,a)

)
and of the conditional relative entropy given, i.e. H(d, d′) =

∑
s,a d(s, a) log

(
πd(a|s)
πd′ (a|s)

)
with

πd(a|s) = d(s, a)/
∑
a d(s, a). Under this choice for D, the update of Algorithm 2 for particular

17

values of h, t, s1 corresponds to the solution of the following optimization program

dt+1
h = argmax

d∈∆H

H∑
h=1

⟨dh, r̃h⟩ −
1

β
D(dh, d

t
h)−

1

β
H(dh, d

t
h),

s.t. ET dh = FT dh−1 ∀h ∈ [H]. (Update I)

Theorem 7. The policy πt+1
h with occupancy measure dt+1

h defined in Eq. (Update I) can be computed
as follows

πt+1
h (a|s) ∝ πth(a|s) exp

(
βQth(s, a)

)
,

where Qth is the minimizer of the following loss

1

β

H∑
h=1

log
∑
s,a

µth(s, a) exp (β(2r̃h + PVh+1 −Qh)(s, a)) + ⟨ν1, V1⟩ ,

while V th+1 is given by the following closed form.

V th+1(s) =
1

β
log
∑
a

πth(a|s) exp(βQth+1(s, a)).

Proof. Let us introduce an auxiliary variable µh = dh for all h ∈ [H], then we can rewrite the
optimization program as

argmax
d∈∆H

max
µ∈∆H

H∑
h=1

⟨µh, r̃h⟩ −
1

β
D(µh, µ

t
h)−

1

β
H(dh, d

t
h),

s.t. ET dh = FTµh−1 ∀h ∈ [H],

s.t. µh = dh ∀h ∈ [H].

Then, by Lagrangian duality we have that

max
d∈∆H

max
µ∈∆H

min
Q,V

H∑
h=1

⟨µh, r̃⟩ −
1

β
D(µh, µ

t
h)−

1

β
H(dh, d

t
h)

+
〈
−ET dh + FTµh−1, Vh

〉
+ ⟨Qh, dh − µh⟩

= max
d∈∆H

max
µ∈∆H

min
Q,V

H∑
h=1

⟨µh, r̃ + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1

β
D(µh, µ

t
h)−

1

β
H(dh, d

t
h)

+ ⟨ν1, V1⟩ = L⋆ .
Then, by Lagrangian duality, we have that the objective is unchanged by swapping the min and max

L⋆ = min
Q,V

max
d∈∆H

max
µ∈∆H

H∑
h=1

⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1

β
D(µh, µ

t
h)−

1

β
H(dh, d

t
h) + ⟨ν1, V1⟩ .

The inner maximization is solved by the following values
µ+
h (Q,V) ∝ µth ⊙ exp (β(r̃h + FVh+1 −Qh)) ,

π+
h (Q,V ; s) ∝ πth(·|s)⊙ exp (β(Qh(s, ·)− Vh(s))) ,

where ⊙ denotes the elementwise product between vectors. Then, replacing these values in the
Lagrandian and parameterizing the functions Vh by the functions Qh to ensure normalization of the
policy, i.e. Vh(s) = 1

β log
∑
a π

t
h(a|s) exp(βQh(s, a)) we have that

L⋆ = min
Q

1

β

H∑
h=1

log
∑
s,a

µth(s, a) exp (β(r̃h + FVh+1 −Qh)(s, a)) + ⟨ν1, V1⟩ .

18

Therefore, denoting

Qth = argmin
Q

1

β

H∑
h=1

log
∑
s,a

µth(s, a) exp (β(r̃h + FVh+1 −Qh)(s, a)) + ⟨ν1, V1⟩ ,

and V th = 1
β log

∑
a π

t
h(a|s) exp(βQth(s, a)), we have that the policy πt+1

h (·|s) = π+
h (Q

t, V t; s)

has occupancy measure equal to dt+1
h for all h ∈ [H]. This is because by the constraints of the

problem we have that dt+1
h satisfies the Bellman flow constraints and that the policy πt+1

h satisfies
πt+1
h (a|s) = dth(s, a)/

∑
a d

t
h(s, a).

F.2 D chosen as conditional relative entropy [28]

In this section, we study the update considering D chosen as sum of the conditional relative entropy
over the stages h′ s.t. 1 ≤ h′ ≤ h, i.e. we study the following update.4

dt+1 = argmax
d∈∆H

H∑
h=1

(
⟨dh, r̃h⟩ −

1

β

h∑
h′=1

H(dh′ , dth′)

)
,

s.t. ET dh = FT dh−1 ∀h ∈ [H]. (2)

Theorem 8. The policy πt+1
h with occupancy measure dt+1

h defined in Eq. (2) can be computed as
follows

πt+1
h (a|s) ∝ πth(a|s) exp

(
β

H − h+ 1
(Qth(s, a))

)
,

where Qth and V th+1 satisfies the following recursion

Qth = r̃h + FV th+1

V th+1(s) =
H − h+ 1

β
log
∑
a

πth(a|s) exp
(

β

H − h+ 1
Qth+1(s, a)

)
.

Remark 5. The above recurrencies are sometimes called soft Bellman equations [51, 14].

Proof. Let us introduce an auxiliary variable µh = dh for all h ∈ [H], then we can rewrite the
optimization program as

argmax
d∈∆H

max
µ

H∑
h=1

(
⟨µh, r̃h⟩ −

1

β

h∑
h′=1

H(dh′ , dth′)

)
s.t. ET dh = FTµh−1 ∀h ∈ [H]

s.t. µh = dh ∀h ∈ [H].

4The sum over previous stages is taken to ensure 1-strong convexity. Indeed, it holds that∑h
h′=1 H(dh′ , d′h′) ≥ D(dh, d

′
h) ≥ 1

2
∥dh − d′h∥21. The first inequality is proven in [29, Lemma 7].

19

Notice that importantly, we do not constraint the variable µ. Then, by Lagrangian duality we have
that

max
d∈∆H

max
µ

min
Q,V

H∑
h=1

⟨µh, r̃h⟩ −
1

β

h∑
h′=1

H(dh′ , dth′)

+
〈
−ET dh + FTµh−1, Vh

〉
+ ⟨Qh, dh − µh⟩

= max
d∈∆H

max
µ

min
Q,V

H∑
h=1

⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1

β

h∑
h′=1

H(dh′ , dth′) + ⟨ν1, V1⟩

= min
Q,V

max
d∈∆H

max
µ

H∑
h=1

⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− H − h+ 1

β
H(dh, d

t
h) + ⟨ν1, V1⟩ = L̃⋆,

where the last equality holds by Lagrangian duality and by
∑H
h=1

∑h
h′=1H(dh′ , dth′) =

∑H
h=1(H−

h+1)H(dh′ , dth′). Now since µ is unconstrained we have that maxµ
∑H
h=1 ⟨µh, r̃h + FVh+1 −Qh⟩

is equivalent to impose the constraint r̃h + FVh+1 = Qh for all h ∈ [H]. More-
over, as in the proof of Thm. 7 the optimal dh needs to satisfies that πdh(a|s) =

dh(s, a)/
∑
a dh(s, a) is equal to π+

h (Q,V ; s) = πth(·|s) ⊙ exp
(

β
H−h+1 (Qh(s, ·)− Vh(s))

)
for

Vh(s) =
H−h+1

β log
∑
a π

t
h(a|s) exp(

β
H−h+1Qh(s, a)). Plugging in, these facts in the expression

for L̃⋆, we have that

L̃⋆ = min
Q
⟨ν1, V1⟩ s.t. r̃h + FVh+1 = Qh ∀h ∈ [H].

Since the above problem as only one feasible point, we have that the solution is
the sequence Qth satisfying the recursion r̃h + FV th+1 = Qth with V th(s) =
H−h+1

β log
∑
a π

t
h(a|s) exp(

β
H−h+1Q

t
h(s, a)).

F.3 Approximating soft Bellman equations by standard Bellman equations.

Unfortunately, implementing the update for the V value as in Theorem 7 is often numerically instable.
In this section, we show a practical approximation which is easy to implement and shown to be
accurate for β sufficiently small.

Theorem 9. Let us denote βh = β
H−h+1 and let us assume that the values Qth generated by the soft

Bellman equations in Thm. 8 are uniformly upper bounded by Qmax, and let us choose βh ≤ 1
Qmax

for all h ∈ [H]. Then, it holds that

〈
πth(·|s), Qth(s, ·)

〉
≤ 1

βh
log
∑
a

πth(a|s) exp(βhQth(s, a)) ≤
〈
πth(·|s), Qth(s, ·)

〉
+ βhQ

2
max .

Proof.

1

βh
log
∑
a

πth(a|s) exp(βhQth(s, a)) ≥
1

βh

∑
a

πth(a|s) log exp(βhQth(s, a))

=
〈
πth(·|s), Qth(s, ·)

〉
,

20

Algorithm 3 MPO (Practical version)
input: reference policy π1, preference oracle P, learning rate β, number of generated samples K,
horizon H , total iteration T .
for t = 1, 2, . . . , T do

Generates response by sampling s11 ∼ ν1 and a1h ∼ πt(·|s1h) for h ∈ [H].
Clear the dataset buffer Dt.
for h = 1, 2, . . . ,H do

Set sKh =, . . . ,= s2h = s1h.
Generate K conversations by sampling a1:K

ĥ
∼ πt(·|s1:K

ĥ
) for ĥ ∈ [h,H].

Estimate Eak′h Q
πt,πt(s1h, a

k
h, s

1
h, a

k′

h),∀k, k′ ∈ [K] via Eq. (5) with query to P.

Form the data pair {(s1h, akh,Eak′h Q
πt,πt(s1h, a

k
h, s

1
h, a

k′

h)}k∈[K] , add to Dt .
end for
Optimize πt+1 over Dt according to

πt+1 ← argmin
π

E
(
log

(
π(akh|s1h)
πt(akh|s1h)

)
− β

(
Eak′h Q

πt,πt(s1h, a
k
h, s

1
h, a

k′

h)− H − h+ 1

2

))2

.

end for
output: πT+1

where the above inequality holds for Jensen’s. For the upper bound, we first use the inequality
ex ≤ 1 + x+ x2 for x ≤ 1 we have that

1

βh
log
∑
a

πth exp(βhQ
t
h(s, a))

≤ 1

βh
log
∑
a

πth(1 + βhQ
t
h(s, a) + β2

hQ
2
max) (Using Qth(s, a) ≤ Qmax)

=
1

βh
log(1 + βh

∑
a

πth(a|s)Qth(s, a) + β2
hQ

2
max)

≤ 1

βh

(∑
a

πth(a|s)βhQth(s, a) + β2
hQ

2
max

)
(Using log(1 + x) ≤ x)

≤
〈
πth(·|s), Qth(s, ·)

〉
+ βhQ

2
max.

Remark 6. Given this result, in the implementation for deep RL experiment, i.e. Algorithm 4 we
compute the standard Q value satisfying the standard Bellman equations (given in Lemma 1) rather
than the soft Bellman equation in Thm. 7. In virtue of Thm. 9, the approximation is good for β
reasonably small.

G Additional algorithms

Practical Relaxations of Alg. 1 According to Thm. 1, MPO requires the access of the Q function,
which is unknown. Next, we are going to develop a practical algorithm to efficiently estimate the Q
function and implement Alg. 1. Equivalently, the update in Alg. 1 can be written as

πt+1
h (a|s) =

πth(a|s) exp{βEs′,a′∼dπth |s1(s)Q
πt,πt

h (s, a, s′, a′)}
Zth(s)

, (3)

where Zth(s) is the partition function. Next, we express Eq. (3) as follows:

log
πt+1
h (a|s)
πth(a|s)

= βE
s′,a′∼dπth |s1(s)Q

πt,πt

h (s, a, s′, a′)− logZth(s) . (4)

21

Algorithm 4 0MPO (Practical version)
input: reference policy π1, preference oracle P, learning rate β, number of generated samples K,
horizon H , total iteration T , tunable bias term τ .
for t = 1, 2, . . . , T do

Generates response by sampling s11 ∼ ν1 and a1h ∼ πt(·|s1h) for h ∈ [H].
Clear the dataset buffer Dt.
for h = 1, 2, . . . ,H do

Set sKh =, . . . ,= s2h = s1h.
Generate K conversations by sampling a1:K

ĥ
∼ πt(·|s1:K

ĥ
) for ĥ ∈ [h,H].

Estimate Eak′h Q
πt,πt(s1h, a

k
h, s

1
h, a

k′

h)∀k, k′ ∈ [K] via Eq. (5).
if t > 1 then

Estimate Eak′h Q
πt,πt−1

(s1h, a
k
h, s

1
h, a

k′

h) ∀k, k′ ∈ [K] via Eq. (5).
Add {(s1h, akh,Eak′h Q

πt,πt(s1h, a
k
h, s

1
h, a

k′

h),Eak′h Q
πt,πt−1

(s1h, a
k
h, s

1
h, a

k′

h)}k∈[K] into Dt.
else

Add {(s1h, akh,Eak′h Q
πt,πt(s1h, a

k
h, s

1
h, a

k′

h)} into Dt.
end if

end for
if t > 1 then

Optimize πt+1 over Dt according to

πt+1 ← argmin
π

E
(
log

(
π(akh|s1h)
πt(akh|s1h)

)
− β

(
2Eak′h Q

πt,πt(s1h, a
k
h, s

1
h, a

k′

h)− Eak′h Q
πt,πt−1

(s1h, a
k
h, s

1
h, a

k′

h)− τ
))2

.

else
Optimize πt+1 over Dt according to

πt+1 ← argmin
π

E
(
log

(
π(akh|s1h)
πt(akh|s1h)

)
− β

(
Eak′h Q

πt,πt(s1h, a
k
h, s

1
h, a

k′

h)− H − h+ 1

2

))2

.

end if
end for
output: πT+1

Next, we approximate Eq. (4) with an approximate solution of the following optimization program

πt+1 = argmin
π

H∑
h=1

E s1∼ν1
(sh,ah)∼dπ

t

h |s1

[
log

π(ah|sh)
πth(ah|sh)

− (E
s′,a′∼dπth |s1Q

πt,πt

h (sh, ah, s
′, a′)− logZth(sh))

]2
.

Unfortunately, solving the above minimization exactly is out of hope. The first difficulty is the
efficient estimation of E

s′,a′∼dπth |s1Q
πt,πt

h (sh, ah, s
′, a′). In particular, since s′ and s are sampled

from the same distribution, we will sample a′ from the state sh and use the Monte Carlo estimator:

Ea′∼πt(·|sh)Q
πt,πt

h (sh, ah, sh, a
′) ≈ 1

K

K∑
k=1

H∑
ĥ=h

P([sĥ,k, aĥ,k], [s
′
ĥ,k
, a′
ĥ,k

]) , (5)

where the sequences
{
(sĥ,k, aĥ,k, s

′
ĥ,k
, a′
ĥ,k

)
}H
ĥ=h

for k ∈ [K] are generated by rollouts of the

policies pair (πt, πt). The second difficulty is Zth(s), which is difficult to compute for large action
spaces. In all states s, we replace logZth(s) with βH−h+1

2 .

Remark 7. The heuristics is motivated by the next observation. If the preference between ah and a′h
in Eq. (5) results in a tie, then with such logZth(s), the solution of Eq. (5) is πt+1 = πt, leaving the
model unchanged.

In summary, we provide a practical version of MPO in Alg. 3. In practice, we used a stationary policy
that we find to be sufficient to obtain convincing results.

22

CM
SI

AR

TS

CC

CR

FRSC

SA

MR

GR

IC

PI

0 1 2 3 4 5 6 7 8 9

model
Base model (Mistral-7B-Instruct)
OMPO (iter=1)
OMPO (iter=2)
OMPO (iter=3)

(a) Radar chart on different categories.

0 1 2 3
Iterations

50

55

60

65

70

75

80

85

W
in

ni
ng

 R
at

e
(%

)

MPO (Q function by one step)
MPO (Q function by entire trajectory)

(b) Winning rate against the base model.

Figure 1: (a): Radar chart result of 0MPO on the MT-bench-101 dataset; (b) Winning rate against the
base model when using different approximations for the Q functions.

H Additional experimental detail and result on MT-Bench101

The tasks in MT-Bench101 include Context Memory (CM), Anaphora Resolution (AR), Separate
Input (SI), Topic Shift (TS), Content Confusion (CC), Content Rephrasing (CR), Format Rephrasing
(FR), Self-correction (SC), Self-affirmation (SA), Mathematical Reasoning (MR), General Reasoning
(GR), Instruction Clarification (IC), and Proactive Interaction (PI).

Given two conversations [sh, ah] and [s′h, a
′
h], PairRM will return a score that indicates the probability

that [sh, ah] is better than [s′h, a
′
h], which can be used to considered as the preference oracle P

defined in the previous section. For both DPO and SPPO, we sample K = 5 complete conversations
starting from s1, and estimate the winning rate P([skH+1, a

k
H+1] ≻ (sk

′

H+1, a
k′

H+1])∀k, k′ ∈ [K].
Then we select both the best and worst conversations according to their winning rates against other
answers, which is defined as 1

K

∑K
k′=1 P([skH+1, a

k
H+1] ≻ [sk

′

H+1, a
k′

H+1]) for the conversation
[skH+1, a

k
H+1]. Such a pair is used to train DPO while the winning rate is used to train SPPO. For

both iterative DPO and iterative SPPO, we sample K = 5 complete conversations starting from s1,
and estimate the winning rate P([skH+1, a

k
H+1] ≻ (sk

′

H+1, a
k′

H+1]) ∀k, k′ ∈ [K]. Then we select both
the best and worst conversations according to their winning rates against others, which is defined
as 1

K

∑K
k′=1 P([skH+1, a

k
H+1] ≻ [sk

′

H+1, a
k′

H+1]) for the conversation [skH+1, a
k
H+1]. Such a pair

is used to train DPO while the winning rate is used to train SPPO. For both Step-DPO, MPO, and
0MPO, we do the same strategy with starting at sh. In MPO, and 0MPO, we estimate Q(sh, ah, sh, a

′
h)

by P([sh, ah], [sh, a′h]) to enhance the efficiency. For 0MPO, the Qπ
t,πt−1

term is estimated by
calculating the winning rate between two answers (the best and the worst) generated by the current
policy πt and the five answers previously generated by πt−1, the τ is selected as zero. Each method
is trained with epochs number selected from {1, 2}, learning rates from {5e-6, 5e-7}, and β values
from {0.1, 0.01, 0.001}. The final model is chosen based on the highest winning rate against the
base model, as determined by the PairRM model. We use full-parameter fine-tuning for all methods
with bf16 precision. A batch size of 64 is used. The maximum output length and maximum prompt
length during training are both set as 2048. We use AdamW optimizer [23] and cosine learning rate
schedule [22] with a warmup ratio of 0.1.

Each round of dialogue is rated on a scale of 1 to 10 by GPT-4o mini, with the mean score reported
for each dialogue. All methods are run for a total of 3 iterations. The results are summarized in Tab. 1,
showing significant improvements over the baselines with the proposed MPO and 0MPO approaches.
In Fig. 1(a), we present the Radar chart on different categories and we can see that the proposed 0MPO
leads to improvements generally along the iterations. Fig. 1(b) shows that using the entire trajectory
to estimate the Q function can lead to subtle improvement at the first two iterations while it finally
achieves a similar winning rate when compared to the one that only use one step.

23

I Additional experiments on math reasoning

As discussed in Appx. B, our framework can also cover the alignment of chain-of-thought reasoning.
In this section, we validate the proposed methods on math reasoning tasks. We select two widely used
datasets: MATH [16] and GSM8K [11]. We use Qwen2-7B-Instruct as the base model and follow
the same evaluation procedure as in [21]. For step-DPO, we use the checkpoint provided in [21].
For both MPO and 0MPO, we perform full-parameter finetuning for 1 epoch with learning rate 5e−7

and β tuned in the range of {0.1, 0.01, 0.001}. For both MPO and 0MPO, we select the Llama-3-based
model as the preference oracle5 and set the log z are set as 0.5. Unlike the MT-bench-101 benchmark,
the final state with the answer is important in this task, so we use H+1 in the calculation of the Q
function and ignore comparisons with all previous states. We use AdamW optimizer [23] and cosine
learning rate schedule [22] with a warmup ratio of 0.1. The result is provided in Appx. I, showing
that the proposed methods achieve performance comparable to step-DPO. Notably, MPO and 0MPO do
not require the ground truth label of the dataset during fine-tuning while [21] require. Additionally,
MPO and 0MPO only need access to an oracle Llama-3 to compare two answers whereas step-DPO
[21] requires GPT-4 to locate the identify the incorrect reasoning step in an answer.

Table 3: Performance of math reasoning on MATH and GSM8K dataset across various models.

Method GSM8K Math

Base (Qwen2-7B-Instruct) 0.8559 0.5538
Step-DPO [21] 0.8680 0.5836
MPO (iter=1) 0.8734 0.5734
MPO (iter=2) 0.8734 0.5786
0MPO (iter=1) 0.8734 0.5734
0MPO (iter=2) 0.8779 0.5786

J Limitation and future work

This work presents a novel framework to enhance the preference alignment of large language models
in multi-step settings by casting the alignment process as a two-player Markov game. We introduce
novel algorithms based on natural actor-critic and optimistic online gradient descent, supported by
both theoretical analysis and empirical results. However, the limitations of this work include the
finite-horizon assumption in our theoretical framework, which may not fully capture real-world
conversations or reasoning processes that often span with different steps instead of a fixed step
H . Additionally, our practical algorithm requires querying a preference oracle, which may limit
its applicability in cases where such preference oracles are unavailable or when collecting human
feedback is costly. Future work should explore extending the theoretical framework to infinite-horizon
settings and finding more scalable methods for gathering preference feedback.

5https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B

24

	Introduction
	Multi-step RLHF as two-player Markov game
	MPO with natural actor-critic
	Optimistic MPO: 0MPO
	Experiments
	Symbols and Notation
	Preliminary on Single-step RLHF and motivation of multi-step RLHF
	Related work
	Auxiliary Lemma
	Proofs
	Proof of lemma:bellman
	Proof of lemma:valuediff
	Proof of thm:converge
	Proof of Theorem 2
	Proof of Theorem 3

	Implementation of Algorithm 2 with updates over policies.
	D chosen as the sum of conditional and relative entropy
	D chosen as conditional relative entropy neu2017unified
	Approximating soft Bellman equations by standard Bellman equations.

	Additional algorithms
	Additional experimental detail and result on MT-Bench101
	Additional experiments on math reasoning
	Limitation and future work

