
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAN RECOMMENDER SYSTEMS TEACH THEMSELVES?
A RECURSIVE SELF-IMPROVING FRAMEWORK WITH
FIDELITY CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

The scarcity of high-quality training data presents a fundamental bottleneck to
scaling machine learning models. This challenge is particularly acute in recom-
mendation systems, where extreme sparsity in user interactions leads to rugged
optimization landscapes and poor generalization. We propose the Recursive Self-
Improving Recommendation (RSIR) framework, a paradigm in which a model
bootstraps its own performance without reliance on external data or teacher mod-
els. RSIR operates in a closed loop: the current model generates plausible user
interaction sequences, a fidelity-based quality control mechanism filters them for
consistency with true user preferences, and a successor model is retrained on the
enriched dataset. Our theoretical analysis shows that RSIR acts as a data-driven
implicit regularizer, smoothing the optimization landscape and guiding models to-
ward more robust solutions. Empirically, RSIR yields consistent, cumulative gains
across multiple benchmarks and architectures. Notably, even smaller models ben-
efit, and weak models can generate effective training curricula for stronger ones.
These results demonstrate that recursive self-improvement is a general, model-
agnostic approach to overcoming data sparsity, suggesting a scalable path for-
ward for recommender systems and beyond. Our anonymized code is available at
https://anonymous.4open.science/status/RSIR-7C5B.

1 INTRODUCTION

The paradigm of scaling models on ever-larger datasets is running into a bottleneck: the scarcity
and cost of high-quality training data (Singh, 2023). This challenge spans domains from natural
language processing (Dang et al., 2024) to computer vision (Wan et al., 2024), and it is especially
acute in recommendation systems (Lai et al., 2024). Recommenders, which power modern digital
platforms, must learn user preferences from interaction histories. Yet any given user engages with
only a tiny fraction of a platform’s catalog, leaving models with extremely sparse signals (Idrissi &
Zellou, 2020). This sparsity produces rugged optimization landscapes, where models often converge
to sharp, brittle minima that generalize poorly (Park & Tuzhilin, 2008; Gunathilaka et al., 2025).

A natural response is data augmentation. Prior work has enriched recommender training data
through curated side information (e.g., metadata, reviews)(Cui et al., 2025) or by leveraging exter-
nal “teach” models such as large language models(Luo et al., 2024). While effective in some cases,
these approaches come with significant drawbacks: curated datasets are expensive and domain-
specific, and reliance on massive teacher models introduces dependencies and risks of distributional
mismatch with true user behavior. Another line of work explores heuristic augmentations such as
item masking(Sun et al., 2019) or cropping(Xie et al., 2022), which provide only alternative views
of existing data. Crucially, they do not generate novel, high-fidelity interaction sequences capable
of densifying user trajectories.

This motivates a fundamentally different paradigm: recursive self-improvement. What if a model
could use its own, partially learned understanding of user behavior to explore and generate its own
training data? We propose to iteratively bootstrap a model’s performance by leveraging its own
predictive capabilities. The core idea is a synergistic loop: the current recommendation model is

1

https://anonymous.4open.science/status/RSIR-7C5B

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Original Data	Dk
Generate

Train

Retrain

Synthetic Data Dk+1
′

Expanded Data Dk+1

Consistent Sequences

Discard

Inconsistent Sequences
Recommender Model 	θk

Figure 1: Overview of the Recursive Self-Improving Recommendation (RSIR) Framework.

used to self-generate new plausible user histories, and a successor model is then retrained on this
richer dataset. A stronger model generates better data, which in turn trains an even stronger model.

However, such a closed-loop system is inherently vulnerable to the amplification of its own biases
and errors. An uncontrolled loop can quickly pollute the training set and lead to performance col-
lapse(Shumailov et al., 2024; Alemohammad et al., 2024). To address this, we introduce a fidelity-
based quality control mechanism that enforces bounded exploration: synthetic sequences must not
only be novel but also remain faithful to a user’s true interests. This prevents error amplification and
ensures that the self-improvement process consistently produces useful data.

We instantiate this paradigm in the Recursive Self-Improving Recommendation (RSIR) frame-
work. At each iteration, as shown in Fig. 1, RSIR (1) generates synthetic interaction sequences
using the current model’s predictive ability, (2) filters them via fidelity-based quality control, and
(3) retrains a new model on the resulting high-quality dataset. Theoretically, we argue that RSIR
functions as a data-driven implicit regularizer, smoothing the optimization landscape by reinforcing
stable knowledge. Empirically, we show that RSIR improves performance across multiple bench-
marks and architectures, including smaller models. Notably, even weaker models have the ability to
bootstrap themselves, generating training data that can enhance the performance of stronger models.
This underscores the efficiency and wide applicability of RSIR. Our contributions are as follows:

• We propose RSIR, the first framework that enables recommendation models to bootstrap their own
training signals without reliance on external models or data.

• We introduce a mechanism that stabilizes recursive self-improvement by preventing error ampli-
fication and ensuring generated data remains faithful to user preferences.

• We provide a novel analysis showing that RSIR acts as an implicit regularizer that smooths the
loss landscape, improving generalization.

• We conduct extensive experiments across diverse datasets and backbones, demonstrating that
RSIR delivers consistent, cumulative performance gains and enables weak-to-strong transfer of
synthetic training data.

2 RELATED WORKS

2.1 SELF-IMPROVING

Spurred by aspirations for general artificial intelligence, self-improvement has recently emerged as a
major focus in machine learning. Building on this trend, both the areas of natural language process-
ing and computer vision have adopted self-improvement strategies to develop generative models that
can self-improve iteratively. For building self-improving LLMs, methods such as STaR (Zelikman
et al., 2022), reinforced self-training (Gulcehre et al., 2023; Zhang et al., 2024), and self-rewarding
(Yuan et al., 2024; Wang et al., 2024b) employ large language models to identify potential direc-
tions for self-improvement within their generated data, enabling the model to refine itself using its
own outputs. This paradigm has also been extended beyond text. For example, RSIDiff (Zhang
et al., 2025) applies self-generated data to recursively train diffusion models for state-of-the-art
text-to-image generation, while STEP (Qiu et al., 2025) follows a similar self-improving paradigm
to automatically produce reasoning-rich fine-tuning data from raw videos, thereby enhancing its
own performance. Collectively, these developments exemplify a broader shift toward leveraging

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

models’ internal mechanisms and outputs for continual self-improvement. However, most exist-
ing self-improving methods rely on evaluations beyond the generative model itself, such as large
language models, external executors, and predefined rules, to assess data quality and iteratively re-
fine their outputs. In contrast, our approach depends solely on the intrinsic characteristics of the
dataset, achieving self-improvement by expanding decision boundaries. Moreover, to the best of
our knowledge, we are the first to introduce a self-improving framework for data generation in the
recommender systems domain.

2.2 SEQUENTIAL RECOMMENDATION

In recent years, recommender systems have attracted public attention and achieved substantial
progress, generating considerable social and economic value, with the sequential recommendation
system(SRS) being important due to its ability to leverage temporal dependencies in user–item inter-
actions. Traditionally, SRS have been dominated by deep learning–based methods (Tang & Wang,
2018; Chang et al., 2021) which automatically learn rich representations and capture high-order in-
teraction patterns for improved prediction of future behaviors. More recently, research has diversi-
fied into two directions: model-centric and data-centric approaches (Lai et al., 2024). Model-centric
research increasingly focuses on generative architectures, particularly transformer-based decoders
for modeling user interaction sequences (Zhai et al., 2024; Deng et al., 2025; Lee et al., 2025).
Data-centric approaches, in contrast, emphasize improving the quality and utility of data itself and
are often more effective than model-centric methods at alleviating sparsity and enhancing robust-
ness. Within this paradigm, data augmentation techniques (Dang et al., 2025; Cui et al., 2025)
introduce diverse perturbations or auxiliary signals into existing data in a heuristic manner to en-
hance model robustness and alleviate sparsity. Going beyond simple augmentation, data generation
approaches (Liu et al., 2023; Yin et al., 2024; Lin et al., 2025) learn the underlying data distribu-
tion and leverage generative models to synthesize new interaction records, thereby enriching sparse
datasets, improving model generalization, and better capturing complex user–item relationships.
However, most current data-centric methods still depend on fixed external rules or one-shot pro-
cessing and cannot sustain improvements in data quality over time. By contrast, our self-improving
framework dispenses with external knowledge and, through iterative training, produces increasingly
higher-quality data driven by the model’s own understanding, forming a self-reinforcing loop.

3 METHODOLOGY

We formally introduce the Recursive Self-Improving Recommendation (RSIR) framework, a novel
paradigm designed to mitigate data sparsity by enabling a model to iteratively refine its own training
data. The central thesis is that a recommendation model, even one trained on sparse data, contains
a nascent understanding of user preferences. RSIR operationalizes a feedback loop to cultivate this
understanding, using the model itself to explore and generate plausible, high-fidelity user interaction
sequences that densify the training landscape for its successor.

3.1 THE ITERATIVE SELF-IMPROVEMENT LOOP

Let D0 = {su}u∈U be the initial training dataset, where su = (i1, i2, . . . , iT) is the chronologically
ordered interaction sequence for user u from a global item set I . Our objective is to learn a sequence
of increasingly powerful models, represented by their parameters θ0, θ1, . . . , θK , over K iterations.

The RSIR process at iteration k is defined by the following sequence:

1. Model Training: A recommendation model fθk with parameters θk is trained on the cur-
rent dataset Dk. For the initial iteration (k = 0), the model fθ0 is trained on the original
dataset D0. The training objective is a standard next-item prediction task, maximizing the
likelihood P (it|su,<t; θk).

2. Synthetic Sequence Generation: The trained model fθk is employed as a generator to pro-
duce a set of synthetic user interaction sequences, D′

k+1. This generation process, detailed
in Section 3.2, is the core of the self-improvement mechanism.

3. Dataset Expansion: The high-fidelity synthetic sequences are merged with the existing
dataset to form an enriched training set for the next iteration: Dk+1 = Dk ∪D′

k+1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4. Iterative Refinement: A new model fθk+1
is initialized and trained from scratch on the

augmented dataset Dk+1.

This recursive loop can be expressed as:

θk
Generate−−−−→ D′

k+1

Expand−−−−→ Dk+1
Train−−−→ θk+1

systematically producing a trajectory of models (θ0, θ1, . . . , θK), with each trained on an increas-
ingly rich, broader data distribution. The pseudo code is shown in the Appendix A.

3.2 PRINCIPLED SYNTHETIC SEQUENCE GENERATION

The efficacy of RSIR hinges on the ability to generate sequences that are not only novel but also
faithful to plausible user behavior. Generating random, unconstrained sequences would quickly in-
troduce noise and lead to catastrophic performance collapse. To avoid this, we propose a generation
process built on two principles: bounded exploration and fidelity-based quality control.

For each user sequence su ∈ Dk, we generate m synthetic trajectories by autoregressively extending
an initial context. The process begins by seeding the generation with a prefix of the user’s true
history, Sctx = (i1, . . . , ij), where j is chosen randomly.

3.2.1 BOUNDED EXPLORATION VIA A HYBRID CANDIDATE POOL

At each generation step t, the model fθk predicts a probability distribution over the next item given
the current context Sctx. To balance the discovery of new patterns with adherence to established
preferences, we perform top-k sampling from a hybrid candidate pool constructed as follows:

Bounded Exploration

• Exploitation: With probability p, candidates are sampled from the user’s historical inter-
actions su. This encourages the model to find novel sequential patterns and higher-order
connections within items the user has already engaged with.

• Exploration: With probability 1−p, candidates are sampled from the global item set I . This
allows the model to extrapolate beyond the user’s known interactions, cautiously expanding
the boundaries of their preference profile.

This hybrid strategy facilitates a form of bounded exploration, preventing the model from generat-
ing entirely random sequences while still allowing for the discovery of novel, plausible interests.

3.2.2 FIDELITY-BASED QUALITY CONTROL

To prevent the iterative loop from amplifying model biases and drifting into implausible regions
of the data space, we introduce a critical safeguard. After sampling a candidate item igen,t, we
provisionally update the context to S′

ctx = Sctx ∪ {igen,t}. We then verify if this synthetic step
remains consistent with the user’s true future interests.

Formally, let Stgt = su \ Sctx be the set of ground-truth future items in the original sequence. We
accept the generated item igen,t if and only if at least one true future item is still ranked highly by
the model, given the new synthetic context:

∃ij ∈ Stgt such that Rankfθk
(ij |S′

ctx) ≤ τ (1)

where Rankfθk
(ij |S′

ctx) is the predicted rank of item ij by model fθk given the context S′
ctx, and τ

is a hyperparameter defining the rank threshold.

If this condition is satisfied, the step is deemed high-fidelity. The item igen,t is appended to the
synthetic sequence, and the context is updated (Sctx ← S′

ctx) for the next generation step. If the
condition fails, it signals that the generated sequence is beginning to diverge from the user’s under-
lying preferences. The generation for this specific sequence is immediately terminated to prevent
low-quality data from polluting the training set.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This mechanism acts as a crucial regularizer, ensuring that the self-generated data remains “on-
manifold” with respect to the user’s true dynamics, thereby stabilizing the self-improvement loop
and guaranteeing the integrity of the augmented dataset. Finally, all successfully generated se-
quences are collected to form D′

k+1, after filtering for duplicates and minimum length requirements.

3.3 COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the time complexity of RSIR over K iterations. Let N be the number of user sequences,
L the maximum sequence length, d the hidden dimension, and |V| the item vocabulary size. The
computational cost for the backbone model to process one sequence is Cmodel ≈ O(L2d+ Ld2).

The total complexity consists of two phases: Model Training and Sequence Generation. For
training, since the dataset size Nk grows iteratively, the cumulative complexity is

∑K
k=0 O(Nk ·

Cmodel). For generation, performing m attempts per sequence incurs a cost dominated by the fidelity
check. While the theoretical worst-case is O(d|V|) per step, our “Break” mechanism (Sec. 3.2.2)
acts as an adaptive pruner, restricting the effective generated length to Le ≪ L. Additionally, for
large vocabularies, the linear scan can be optimized to O(d log |V|) via approximate retrieval.

Consequently, the overall complexity of RSIR is O (Nk · (E · Cmodel +m · Le · (Cmodel + d|V|))),
which is strictly bounded. The total runtime scales linearly with respect to vocabulary size V and
generation length Le, ensuring practical feasibility and scalability. A rigorous derivation and empir-
ical runtime analysis are provided in Appendix D.

4 DISCUSSION AND THEORETICAL ANALYSIS

In this section, we provide a theoretical grounding for our Recursive Self-Improving Recommenda-
tion (RSIR) framework. A primary challenge hindering recommendation systems is extreme data
sparsity, which forces models to learn from a fragmented signal, often leading them to overfit on
spurious correlations and converge in sharp, brittle minima of the loss landscape. Our RSIR frame-
work directly addresses this by enabling the model to perform a form of bounded exploration. It
explores the boundaries of its own knowledge by generating novel interaction sequences, but this
exploration is constrained by our fidelity-based quality control (Sec. 3.2.2). This mechanism en-
sures the exploration is reliable and faithful to the user’s underlying interests, effectively and safely
densifying the data space around known user trajectories.

4.1 IMPLICIT REGULARIZATION AND LANDSCAPE SMOOTHING

This generation strategy directly impacts the optimization dynamics. The fidelity-based quality
control acts as a filter for model stability; a model with parameters θk in a sharp minimum would
fail the check, as its representations are too brittle to handle contextual perturbations. Therefore, a
synthetic sequence s′ is included in the generated set D′

k+1 only if the model fθk is robust in its
vicinity. This implies that the aggregate loss on the generated set,

Lgen(θ) =
1

|D′
k+1|

∑
s′∈D′

k+1

l
(
fθ(s

′)
)
, (2)

defines a loss surface that is exceptionally smooth and low-curvature around the current solution θk.

The iterative refinement step then optimizes a composite objective:
θk+1 = argmin

θ
[Lk(θ) + λLgen(θ)] , (3)

where Lk(θ) is the loss on the existing (sparse) data from Dk. The Lgen(θ) term, derived from the
densified data, is approximately equivalent to a regularized optimization on the original landscape:

argmin
θ

[
Lk(θ) + Ω

(
θ; θk

)]
, (4)

Here, Ω(θ; θk) is an implicit regularizer that penalizes sharpness (i.e., high curvature) by encour-
aging the model to reach flatter minima. In Appendix E.1, we formally prove that this regularizer
operates geometrically as a Manifold Tangential Gradient Penalty, minimizing the gradient norm
specifically along the directions of the user preference manifold, rather than blindly suppressing all
parameter updates. This leads to our first key insight.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Insight 1: RSIR as an Implicit Regularizer

RSIR functions as a data-driven implicit regularizer. It smooths the loss landscape by
forcing the optimizer to find wider, flatter minima aligned with the user preference man-
ifold that generalize better.

4.2 ERROR ANALYSIS AND STABILITY GUARANTEE

Beyond the geometric interpretation, a critical question remains: does training on self-generated
data lead to error accumulation? In Appendix E.2, we derive the recursive error bound for the RSIR
framework. We prove that the generalization error E(θk+1) is bounded by a linear contraction of the
previous error E(θk), subject to a noise term introduced by potential hallucinations.

E(θk+1) ≤ (1− λ)E0 + λ

 (1− p̃k)ρE(θk)︸ ︷︷ ︸
Contraction from Valid Exploration

+ p̃kEmax︸ ︷︷ ︸
Leakage Penalty

 (5)

Crucially, we identify a Breakdown Point for the fidelity leakage rate p̃k. Convergence is guar-
anteed if and only if the fidelity check is strict enough to keep noise below this threshold. Fur-
thermore, the analysis reveals an “irreducible noise floor” due to non-zero leakage p̃k. As the
model improves (E(θk)→ 0), the marginal benefit of contraction diminishes while the noise penalty
persists. This explains why performance may plateau or slightly degrade in late-stage iterations if
the noise floor outweighs the shrinking gain, underscoring the necessity of our strict fidelity control.

This analysis reframes RSIR from simple data augmentation to a sophisticated, model-guided regu-
larization strategy. Instead of relying on external knowledge from a powerful teacher model, RSIR
demonstrates that a model can bootstrap its own performance by generating its own curriculum.
This directly informs our central thesis about the nature of self-improvement.

Insight 2: Self-Improvement is Not Just for Large Models

Effective self-improvement is not an emergent capability of large models, but a funda-
mental benefit of recursive regularization that is accessible to any model architecture.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

5.1.1 DATASETS

We evaluate our framework on four public benchmark datasets: Beauty, Sports, and Toys from
the Amazon review dataset1, and Yelp2. These datasets are widely used as standard benchmarks
for sequential recommendation tasks (Yin et al., 2024; Xie et al., 2024; Kim et al., 2025). They
are primarily characterized by high data sparsity, which makes them an ideal testbed for evaluating
RSIR’s ability to address this core challenge. Dataset statistics are provided in Appendix B.3.

5.1.2 BACKBONES AND BASELINE MODELS

To demonstrate the broad applicability of RSIR, we integrate it with three representative sequential
recommendation models. The backbone models are as follows: the Transformer-based model SAS-
Rec(Kang & McAuley, 2018), the Contrastive Learning-based model CL4SRec(Xie et al., 2022),
and the Generative Model-based model HSTU(Zhai et al., 2024). For a detailed description of the
method, please refer to Appendix B.1.

Our primary evaluation focuses on the performance gains achieved when applying RSIR to these
backbones. As our work introduces the first recursive self-improvement paradigm, we compare

1http://jmcauley.ucsd.edu/data/amazon/
2https://www.yelp.com/dataset

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison on Three Backbone Models. The Best and Second-best Results
Are Shown in Bold and Underlined. RSIR-FT and RSIR denote the fine-tuning variant and the
re-training version of our method, respectively. The ‘Improv’ row reports the relative improvement
of our methods (RSIR-FT or RSIR) compared to the best baseline. (p-value < 0.05)

Method amazon-toys amazon-beauty amazon-sport yelp

NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10

SA
SR

ec

Base 0.0477 0.0795 0.0290 0.0548 0.0271 0.0474 0.0183 0.0371
+Reordering 0.0488 0.0831 0.0285 0.0520 0.0265 0.0465 0.0186 0.0373
+Insertion 0.0493 0.0834 0.0295 0.0545 0.0276 0.0472 0.0190 0.0379
+ASReP 0.0492 0.0820 0.0286 0.0522 0.0282 0.0481 0.0188 0.0373
+DiffuASR 0.0480 0.0806 0.0298 0.0554 0.0279 0.0475 0.0186 0.0366
+DR4SR 0.0499 0.0830 0.0300 0.0557 0.0286 0.0495 0.0191 0.0378
+RSIR-FT 0.0507 0.0860 0.0322 0.0594 0.0290 0.0500 0.0200 0.0393
+RSIR 0.0508 0.0872 0.0303 0.0578 0.0293 0.0512 0.0200 0.0399
Improv 1.80% 4.56% 7.33% 6.64% 2.45% 3.43% 4.71% 5.28%

C
L

4S
R

ec

Base 0.0519 0.0870 0.0307 0.0579 0.0284 0.0491 0.0205 0.0392
+Reordering 0.0514 0.0868 0.0303 0.0565 0.0283 0.0488 0.0208 0.0407
+Insertion 0.0532 0.0877 0.0294 0.0550 0.0288 0.0495 0.0200 0.0397
+ASReP 0.0518 0.0873 0.0306 0.0575 0.0289 0.0481 0.0198 0.0388
+DiffuASR 0.0482 0.0808 0.0308 0.0582 0.0288 0.0487 0.0198 0.0392
+DR4SR 0.0535 0.0887 0.0310 0.0590 0.0289 0.0500 0.0213 0.0416
+RSIR-FT 0.0541 0.0926 0.0344 0.0649 0.0301 0.0523 0.0219 0.0422
+RSIR 0.0543 0.0927 0.0318 0.0596 0.0297 0.0517 0.0224 0.0441
Improv 1.50% 4.51% 10.97% 10.00% 4.15% 4.60% 5.16% 6.01%

H
ST

U

Base 0.0512 0.0869 0.0302 0.0568 0.0285 0.0492 0.0192 0.0373
+Reordering 0.0497 0.0837 0.0308 0.0558 0.0282 0.0482 0.0198 0.0384
+Insertion 0.0501 0.0871 0.0302 0.0563 0.0284 0.0493 0.0197 0.0386
+ASReP 0.0487 0.0815 0.0288 0.0537 0.0284 0.0483 0.0195 0.0379
+DiffuASR 0.0462 0.0785 0.0310 0.0578 0.0288 0.0497 0.0192 0.0379
+DR4SR 0.0507 0.0867 0.0304 0.0567 0.0294 0.0515 0.0196 0.0384
+RSIR-FT 0.0536 0.0914 0.0324 0.0599 0.0299 0.0521 0.0204 0.0403
+RSIR 0.0544 0.0924 0.0324 0.0596 0.0305 0.0531 0.0209 0.0411
Improv 6.25% 6.08% 4.52% 3.63% 3.74% 3.11% 5.56% 6.48%

against two common heuristic-based data augmentation methods and three learnable data generation
methods, which represent the closest alternative for enriching the training data without external
models or knowledge. For a detailed description of the method, please refer to Appendix B.2.

5.1.3 IMPLEMENTATION DETAILS

We adopt the leave-one-out strategy for evaluation (last item for test, second-to-last for validation).
For evaluating retrieval performance, we use NDCG@K, Recall@K as metrics, which are widely
used in related works (He et al., 2017; 2020), and we set the K value to 10 and 20. We train for
a maximum of 1000 epochs with an early stopping patience of 20. All models are implemented
using the RecStudio framework (Lian et al., 2023) and trained on a single GPU. For the RSIR
process, we employ a grid search to find the optimal hyperparameters for the fidelity threshold
τ ∈ {1, 3, 5, 10, 20, 50, 100}, the number of generation attempts per sequence m ∈ {5, 10, 20}, and
the historical sampling probability p ∈ {0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0}. The general paradigm for
sequential recommendation and details of our experimental setup are presented in Appendix H.

5.2 MAIN RESULTS: EFFICACY OF RSIR

5.2.1 SINGLE-ITERATION PERFORMANCE

First, we investigate the core premise of our work: whether a model can effectively improve itself
by training on its own generated data. As shown in Table 1, applying a single iteration of RSIR
yields consistent and significant performance improvements across all three backbone models and
all four datasets. For instance, RSIR improves the Recall@10 of the powerful HSTU model by
7.71% on Sports and 7.14% on Yelp. This result empirically confirms our central hypothesis from
Section 4. RSIR’s bounded exploration generates high-fidelity data that densifies meaningful user
trajectories, which in turn enables the model to find a more generalizable solution. Furthermore,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0-th 1-th 2-th 3-th 4-th 5-th 6-th 7-th 8-th
0.026

0.027

0.028

0.029

0.030

0.031

0.046

0.048

0.050

0.052

0.054

0.056

nd
cg
@
10

ndcg@10 recall@10

recall@
10

(a) Performance on Amazon-Sport

0-th 1-th 2-th 3-th 4-th 5-th 6-th 7-th 8-th
0.018

0.019

0.020

0.021

0.022

0.036

0.038

0.040

0.042

0.044

nd
cg
@
10

ndcg@10 recall@10

recall@
10

(b) Performance on Yelp

Figure 2: Performance of RSI Across Different Iterations on Amazon-Sport and Yelp.

RSIR consistently outperforms the heuristic-based data augmentation baselines. This demonstrates
that principled, model-guided generation is superior to simply increasing data volume with noisy or
uninformative sequences (e.g., via item insertion or reordering).

Result 1. RSIR provides significant, model-agnostic performance gains in a single iteration.

5.2.2 RECURSIVE MULTI-ITERATION PERFORMANCE

We further explore if these gains compound over multiple iterations. Fig. 2 plots model performance
over the RSIR recursion. The results clearly show that performance continues to rise through several
cycles. On the Sports dataset, the initial 8.02% gain in Recall@10 for HSTU extends to 13.92%
after three iterations. This powerfully demonstrates the virtuous cycle of the recursive loop: a
stronger model generates higher-quality data, which in turn trains an even stronger successor.
Performance eventually saturates, which we attribute to the gradual amplification of systemic model
biases outweighing the benefits of data densification. Despite this, the substantial multi-iteration
gains affirm the efficacy and power of the recursive process.

Result 2. RSIR’s gains are cumulative across multiple iterations, validating the core recur-
sive mechanism where model improvement and data quality mutually reinforce each other.

5.3 ABLATION AND ANALYSIS

5.3.1 THE CRITICAL ROLE OF FIDELITY-BASED QUALITY CONTROL.

Table 2: Ablation results on amazon-sport.
‘w/o’ denotes without the fidelity-based
quality control module. (p-value < 0.05)

NDCG@10 Recall@10
SASRec 0.0271 0.0474

RSIR-1th w/o 0.0273 0.0472
w 0.0293 0.0512

RSIR-2th w/o 0.0209 0.0384
w 0.0294 0.0517

RSIR-3th w/o 0.0119 0.0210
w 0.0298 0.0528

To verify the importance of our fidelity-based quality
control module, we conduct an ablation study where
it is removed (i.e., all generated items are accepted).
As shown in Table 2, while uncontrolled generation
shows marginal gains in the first iteration, it leads
to catastrophic performance collapse in subsequent
iterations. This is because model errors and biases
are amplified without constraint, rapidly polluting the
training data. This result validates that bounded ex-
ploration is critical; simply increasing data volume
with unconstrained generation is harmful.

Furthermore, Fig. 3a analyzes the sensitivity to the
fidelity threshold τ . The general performance trend illustrates the crucial trade-off between genera-
tion diversity and data fidelity. Overly strict thresholds (τ → 1) choke the model, preventing it from
generating diverse sequences, while overly permissive thresholds (τ →∞) allow noisy, low-fidelity
data into the training set, both of which degrade performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
0.0275

0.0280

0.0285

0.0290

0.0295

0.046

0.047

0.048

0.049

0.050

0.051

0.052

nd
cg
@
10

ndcg@10 recall@10

recall@
10

(a) Model Performance vs. τ

0.0 0.2 0.4 0.6 0.8 1.0
0.0275

0.0280

0.0285

0.0290

0.0295

0.047

0.048

0.049

0.050

0.051

0.052

nd
cg
@
10

ndcg@10 recall@10

recall@
10

(b) Model Performance vs. p

Figure 3: Comparison of Model Performance with Respect to Different Parameters.

5.3.2 ANALYSIS OF THE BOUNDED EXPLORATION STRATEGY

Fig. 3b shows the impact of the historical sampling probability p, which governs the exploitation-
exploration trade-off. Performance peaks around p = 0.5. Pure exploitation (p = 1.0) fails to
expand the model’s knowledge boundary by discovering novel interests, while pure exploration
(p = 0.0) is inefficient and risks generating irrelevant data that would be filtered by the quality
control. This confirms that the most effective data is generated when the model is encouraged to
both find new connections within known interests and cautiously explore beyond them.

Result 3. Principled data generation, governed by strict fidelity control and a balanced
exploration strategy, is essential for stable and effective self-improvement.

5.4 CAN WEAKER MODELS TEACH STRONGER MODELS?

Figure 4: Improvement Rate Heatmap.

First, we validate the core premise of our recursive frame-
work: a model’s ability to generate high-quality data im-
proves as it becomes stronger. Observing the rows of the
heatmap, we see a clear trend: for any given student, a
stronger teacher model provides a superior training cur-
riculum. This empirically confirms the logic behind our
recursive loop—the pursuit of iterative self-improvement
is the optimal path to maximizing absolute performance.

Second, and more strikingly, the process itself is funda-
mentally effective, regardless of the teacher’s capacity. The
results show that even a weak teacher provides a signifi-
cant +1.95% performance lift to a strong student. This is
a crucial finding that directly confirms our theoretical con-
clusion from Sec. 4: the primary benefit of RSIR stems
from the process of recursive regularization itself. The targeted data densification and landscape
smoothing are effective even when the generating model has limited power.

These two findings offer a powerful dual perspective on RSIR. The first finding justifies the recur-
sive loop as the best strategy for achieving state-of-the-art performance. The second highlights the
framework’s notable potential for practice, where a computationally inexpensive model can be used
to generate a powerful training curriculum for a large-scale production model, balancing perfor-
mance gains with resource constraints.

Result 4. Stronger models are better teachers, yet even weak models can significantly im-
prove stronger ones.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.0004 0.0004
0.0005 0.0005

0.0005

0.0010

0.0016

Raw
 D

ata

Reo
rd

er
In

ser
t

RSIR
-1t

h

RSIR
-2t

h

RSIR
-4t

h

RSIR
-8t

h
0.0000

0.0003

0.0006

0.0009

0.0012

0.0015

0.0018

D
en

sit
y

(a) Data Density

0.3408 0.3403

0.3136

0.3674
0.3725 0.3719

0.3861

Raw
 D

ata

Reo
rd

er
In

ser
t

RSIR
-1t

h

RSIR
-2t

h

RSIR
-4t

h

RSIR
-8t

h
0.300

0.325

0.350

0.375

0.400

A
pE

n

(b) Information Density

Figure 5: Generated Data Analysis.

5.5 ANALYSIS OF GENERATED DATA

To provide direct, data-level evidence for RSIR’s efficacy, we analyze the properties of the generated
sequences. First, we confirm that RSIR directly addresses the problem of data sparsity. As shown
in Fig. 5a, the density of the training data increases progressively with each RSIR iteration, reaching
a +342.14% improvement after eight iterations.

However, merely increasing data density is insufficient, as this may introduce noise and degrade
performance. To measure the quality and informativeness of the generated data, we employ Ap-
proximate Entropy (ApEn) (shown in Appendix G)(Pincus, 1991; Shen et al., 2024), a metric for
sequence complexity. As shown in Fig. 5b, RSIR consistently increases the ApEn of the dataset,
demonstrating that the newly generated sequences are rich in information and add novel patterns.

This stands in stark contrast to the heuristic ”Insertion” baseline. While Insertion also increases data
density, it simultaneously decreases the dataset’s ApEn. This provides quantitative proof that naive
augmentation pollutes the training set with simple, uninformative noise. RSIR, on the other hand,
generates not just more data, but fundamentally better data.

Result 5. RSIR addresses data sparsity in a principled manner by generating sequences that
are both voluminous and information-rich.

6 CONCLUSION

In this work, we tackled the fundamental challenge of extreme data sparsity in recommendation
systems. We proposed the Recursive Self-Improving Recommendation (RSIR) framework, which
enables models to bootstrap their own performance by iteratively generating and refining training
data without reliance on external sources. A fidelity-based quality control mechanism stabilizes this
loop, ensuring that synthetic interactions remain faithful to user preferences and preventing error am-
plification. Our theoretical analysis shows that RSIR functions as a data-driven implicit regularizer,
smoothing the optimization landscape and guiding models toward robust solutions. Experiments
across multiple benchmarks and architectures confirm that RSIR delivers consistent, cumulative
gains, with fidelity control playing a critical role. Notably, even weak models can generate effective
training curricula for stronger models.

REFERENCES

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. International Conference on Learning Representations (ICLR), 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Pseudo-labeling
and confirmation bias in deep semi-supervised learning. In 2020 International joint conference
on neural networks (IJCNN), pp. 1–8. IEEE, 2020.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of machine learning research, 7
(11), 2006.

Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and Yong Li.
Sequential recommendation with graph neural networks. In Proceedings of the 44th international
ACM SIGIR conference on research and development in information retrieval, pp. 378–387, 2021.

Ziqiang Cui, Yunpeng Weng, Xing Tang, Xiaokun Zhang, Dugang Liu, Shiwei Li, Peiyang Liu,
Bowei He, Weihong Luo, Xiuqiang He, et al. Semantic retrieval augmented contrastive learning
for sequential recommendation. arXiv preprint arXiv:2503.04162, 2025.

Yizhou Dang, Enneng Yang, Yuting Liu, Guibing Guo, Linying Jiang, Jianzhe Zhao, and Xing-
wei Wang. Data augmentation for sequential recommendation: A survey. arXiv preprint
arXiv:2409.13545, 2024.

Yizhou Dang, Jiahui Zhang, Yuting Liu, Enneng Yang, Yuliang Liang, Guibing Guo, Jianzhe Zhao,
and Xingwei Wang. Augmenting sequential recommendation with balanced relevance and diver-
sity. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 11563–
11571, 2025.

Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
alignment. arXiv preprint arXiv:2502.18965, 2025.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Thennakoon Mudiyanselage Anupama Udayangani Gunathilaka, Prabhashrini Dhanushika Manage,
Jinglan Zhang, Yuefeng Li, and Wayne Kelly. Addressing sparse data challenges in recommen-
dation systems: A systematic review of rating estimation using sparse rating data and profile
enrichment techniques. Intelligent Systems with Applications, pp. 200474, 2025.

Ruining He, Wang-Cheng Kang, and Julian McAuley. Translation-based recommendation. In Pro-
ceedings of the eleventh ACM conference on recommender systems, pp. 161–169, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Nouhaila Idrissi and Ahmed Zellou. A systematic literature review of sparsity issues in recom-
mender systems. Social Network Analysis and Mining, 10(1):15, 2020.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Hye-young Kim, Minjin Choi, Sunkyung Lee, Ilwoong Baek, and Jongwuk Lee. Diff: Dual side-
information filtering and fusion for sequential recommendation. In Proceedings of the 48th In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
1624–1633, 2025.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain
adaptation. In International conference on machine learning, pp. 5468–5479. PMLR, 2020.

Riwei Lai, Rui Chen, and Chi Zhang. A survey on data-centric recommender systems. arXiv preprint
arXiv:2401.17878, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sunkyung Lee, Minjin Choi, Eunseong Choi, Hye-young Kim, and Jongwuk Lee. Gram: Generative
recommendation via semantic-aware multi-granular late fusion. arXiv preprint arXiv:2506.01673,
2025.

Defu Lian, Xu Huang, Xiaolong Chen, Jin Chen, Xingmei Wang, Yankai Wang, Haoran Jin, Rui
Fan, Zheng Liu, Le Wu, et al. Recstudio: Towards a highly-modularized recommender system.
In Proceedings of the 46th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 2890–2900, 2023.

Jianghao Lin, Yang Cao, Yong Yu, and Weinan Zhang. Diffusion models for recommender sys-
tems: From content distribution to content creation. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V. 2, pp. 6074–6085, 2025.

Qidong Liu, Fan Yan, Xiangyu Zhao, Zhaocheng Du, Huifeng Guo, Ruiming Tang, and Feng Tian.
Diffusion augmentation for sequential recommendation. In Proceedings of the 32nd ACM Inter-
national conference on information and knowledge management, pp. 1576–1586, 2023.

Yue Liu, Shihao Zhu, Jun Xia, Yingwei Ma, Jian Ma, Xinwang Liu, Shengju Yu, Kejun Zhang,
and Wenliang Zhong. End-to-end learnable clustering for intent learning in recommendation.
Advances in Neural Information Processing Systems, 37:5913–5949, 2024.

Zhiwei Liu, Yongjun Chen, Jia Li, Philip S Yu, Julian McAuley, and Caiming Xiong. Con-
trastive self-supervised sequential recommendation with robust augmentation. arXiv preprint
arXiv:2108.06479, 2021a.

Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S Yu. Augmenting sequential recommendation with
pseudo-prior items via reversely pre-training transformer. In Proceedings of the 44th international
ACM SIGIR conference on Research and development in information retrieval, pp. 1608–1612,
2021b.

Sichun Luo, Yuxuan Yao, Bowei He, Yinya Huang, Aojun Zhou, Xinyi Zhang, Yuanzhang Xiao,
Mingjie Zhan, and Linqi Song. Integrating large language models into recommendation via mu-
tual augmentation and adaptive aggregation. arXiv preprint arXiv:2401.13870, 2024.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.

Yoon-Joo Park and Alexander Tuzhilin. The long tail of recommender systems and how to leverage
it. In Proceedings of the 2008 ACM conference on Recommender systems, pp. 11–18, 2008.

Steven M Pincus. Approximate entropy as a measure of system complexity. Proceedings of the
national academy of sciences, 88(6):2297–2301, 1991.

Haiyi Qiu, Minghe Gao, Long Qian, Kaihang Pan, Qifan Yu, Juncheng Li, Wenjie Wang, Siliang
Tang, Yueting Zhuang, and Tat-Seng Chua. Step: Enhancing video-llms’ compositional reasoning
by spatio-temporal graph-guided self-training. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 3284–3294, 2025.

Parikshit Ram and Alexander G Gray. Maximum inner-product search using cone trees. In Pro-
ceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 931–939, 2012.

Tingjia Shen, Hao Wang, Chuhan Wu, Jin Yao Chin, Wei Guo, Yong Liu, Huifeng Guo, Defu Lian,
Ruiming Tang, and Enhong Chen. Optimizing sequential recommendation models with scaling
laws and approximate entropy. arXiv preprint arXiv:2412.00430, 2024.

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner prod-
uct search (mips). Advances in neural information processing systems, 27, 2014.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 631(8022):755–759,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Prerna Singh. Systematic review of data-centric approaches in artificial intelligence and machine
learning. Data Science and Management, 6(3):144–157, 2023.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from transformer. In Proceedings
of the 28th ACM international conference on information and knowledge management, pp. 1441–
1450, 2019.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the eleventh ACM international conference on web search and data
mining, pp. 565–573, 2018.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
In International conference on machine learning, pp. 6438–6447. PMLR, 2019.

Zhijing Wan, Zhixiang Wang, Cheukting Chung, and Zheng Wang. A survey of dataset refinement
for problems in computer vision datasets. ACM computing surveys, 56(7):1–34, 2024.

Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. Denoising implicit feed-
back for recommendation. In Proceedings of the 14th ACM international conference on web
search and data mining, pp. 373–381, 2021.

Wenjie Wang, Honghui Bao, Xinyu Lin, Jizhi Zhang, Yongqi Li, Fuli Feng, See-Kiong Ng, and
Tat-Seng Chua. Learnable item tokenization for generative recommendation. In Proceedings of
the 33rd ACM International Conference on Information and Knowledge Management, pp. 2400–
2409, 2024a.

Zhaoyang Wang, Weilei He, Zhiyuan Liang, Xuchao Zhang, Chetan Bansal, Ying Wei, Weitong
Zhang, and Huaxiu Yao. Cream: Consistency regularized self-rewarding language models. arXiv
preprint arXiv:2410.12735, 2024b.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training with
deep networks on unlabeled data. arXiv preprint arXiv:2010.03622, 2020.

Wenjia Xie, Rui Zhou, Hao Wang, Tingjia Shen, and Enhong Chen. Bridging user dynamics: Trans-
forming sequential recommendations with schrödinger bridge and diffusion models. In Proceed-
ings of the 33rd ACM International Conference on Information and Knowledge Management, pp.
2618–2628, 2024.

Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin Ding, and Bin
Cui. Contrastive learning for sequential recommendation. In 2022 IEEE 38th international con-
ference on data engineering (ICDE), pp. 1259–1273. IEEE, 2022.

Mingjia Yin, Hao Wang, Wei Guo, Yong Liu, Suojuan Zhang, Sirui Zhao, Defu Lian, and Enhong
Chen. Dataset regeneration for sequential recommendation. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3954–3965, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 3, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong,
Fangda Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential
transducers for generative recommendations. arXiv preprint arXiv:2402.17152, 2024.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, Yipeng Zhang, Haitao Mi, and Helen Meng.
Self-tuning: Instructing llms to effectively acquire new knowledge through self-teaching. arXiv
preprint arXiv:2406.06326, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xulu Zhang, Xiaoyong Wei, Jinlin Wu, Jiaxin Wu, Zhaoxiang Zhang, Zhen Lei, and Qing Li.
Generating on generated: An approach towards self-evolving diffusion models. arXiv preprint
arXiv:2502.09963, 2025.

Peilin Zhou, You-Liang Huang, Yueqi Xie, Jingqi Gao, Shoujin Wang, Jae Boum Kim, and Sunghun
Kim. Is contrastive learning necessary? a study of data augmentation vs contrastive learning in
sequential recommendation. In Proceedings of the ACM Web Conference 2024, pp. 3854–3863,
2024.

A PSEUDO CODE FOR RSIR FRAMEWORK

Algorithm 1: Recursive Self-Improving Recommendation Framework
Input: D0: initial dataset; fθ: recommendation model; m: number of synthetic sequences per

user; T : maximum sequence length; p: Exploitation probability; K: number of
iterations; τ : rank threshold.

Output: Final augmented dataset DK

for k = 0, 1, 2, . . . ,K − 1 do
// Phase 1: Model Training
Train model fθk on Dk:
// Phase 2: Quality Control Generation
for user sequence su = (i1, . . . , iT) in Dk do

for j = 1 to m do
// Sctx: current context
// Stgt: remaining true items
Initialize Sctx ← (i1), Stgt ← su;
for t = 2 to T do

Construct hybrid candidate pool C:
Exploitation with prob. p : sample from user’s history
Exploration with prob. 1− p : sample from global item set

Generate next item igen,t ∼ fθk(Sctx) from C;
Form new context S′

ctx ← Sctx ∪ {igen,t};
if ∃ij ∈ Stgt such that Rankfθk (ij |S

′
ctx) ≤ τ then

Update Sctx ← S′
ctx;

Update Stgt ← Stgt \ {igen,t};
else

Break;

if |Sctx| ≥ 2 and Sctx not duplicate then
add Sctx to D′

k+1;

// Phase 3: Data Expansion
Form new training set Dk+1 ← Dk ∪D′

k+1;

B BASELINES AND BENCHMARK DATASETS STATISTICS

B.1 BACKBONES

The three baselines we used are described as follows:

• SASRec(Kang & McAuley, 2018): a widely adopted Transformer-based model for sequential
recommendation, which leverages self-attention to capture user interaction patterns.

• CL4SRec(Xie et al., 2022): a contrastive learning–enhanced sequential recommendation model
that augments user interaction sequences to improve representation learning.

• HSTU(Zhai et al., 2024): a SOTA generative recommendation model that employs hierarchical
self-attention to efficiently model long and heterogeneous user interaction sequences.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 BASELINES

• Heuristic-based Data Augmentation
– Reordering(Zhou et al., 2024): Randomly shuffles items within a subsequence.
– Insertion(Liu et al., 2021a): Adds items to the original sequence.

• Learnable Data Generation
– ASREP(Liu et al., 2021b): Extends sequence length via forward generation.
– DiffuASR(Liu et al., 2023): Diffusion-based data generation.
– DR4SR(Yin et al., 2024): Augments data quantity by regenerating new sequences.

B.3 DATASET STATISTIC

Table 3 showcases the statistics of four benchmark datasets after 5-core filtering. Avg. length
indicates the average number of interactions per user.

Table 3: Statistics of Benchmark Datasets after Preprocessing.

Dataset amazon-toys amazon-beauty amazon-sport yelp

U 19,412 22,363 35,598 30,431
V 11,876 12,066 18,281 20,014
Interactions 106,254 127,598 187,694 216,733
Avg. length 5.47 5.71 5.27 7.12
Sparsity 0.999539 0.999527 0.999712 0.999644

C DETAILED EXPERIMENT RESULTS

C.1 GENERATED DATASET STATISTICS

Table 4 shows the scale and sparsity of the expanded datasets, generated after one iteration of self-
improvement for different backbone generative models on four datasets, and compares them with
the scale and sparsity of the original datasets.

Table 4: Dataset Statistics: Original vs. Generated via Different Backbone Models.

Dataset amazon-toys amazon-beauty

Original SASRec CL4SRec HSTU Original SASRec CL4SRec HSTU

Sequences 19412 21728 23942 27244 22363 32684 35162 28351
U 19412 19412 19412 19412 22363 22363 22363 22363
V 11876 11876 11876 11876 12066 12066 12066 12066
Interactions 106254 112582 121512 130880 127598 178051 185255 151179
Sparsity 0.999539 0.999512 0.999473 0.999432 0.999527 0.999340 0.999313 0.999440

Dataset amazon-sport yelp

Original SASRec CL4SRec HSTU Original SASRec CL4SRec HSTU

Sequences 35598 50233 51291 52357 30431 47810 48250 33868
U 35598 35598 35598 35598 30431 30431 30431 30431
V 18281 18281 18281 18281 20014 20014 20014 20014
Interactions 187694 239636 243094 246004 216733 285178 289004 225716
Sparsity 0.999712 0.999632 0.999626 0.999622 0.999644 0.999532 0.999525 0.999629

C.2 PERFORMANCE COMPARISON WITH DATA-CENTRIC METHODS

We evaluated our method against traditional data augmentation on four datasets using different back-
bone models. Table 5 shows the results over four datasets, measured by NDCG@20 and Recall@20.
The ‘Improv’ row indicates the relative improvement of our method over the augmentation baselines.
It is important to note that our method was run for only a single self-improvement iteration.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Performance Comparison on Three Backbone Models (Metrics @20). The Best and
Second-best Results Are Shown in Bold and Underlined. RSIR-FT and RSIR denote the fine-
tuning variant and the re-training version of our method, respectively. The ‘Improv’ row reports the
relative improvement of our methods compared to the best baseline. (p-value < 0.05)

Method amazon-toys amazon-beauty amazon-sport yelp

NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20

SA
SR

ec

Base 0.0553 0.1095 0.0359 0.0821 0.0320 0.0669 0.0240 0.0599
+Reordering 0.0551 0.1084 0.0343 0.0751 0.0314 0.0661 0.0248 0.0619
+Insertion 0.0560 0.1102 0.0361 0.0806 0.0327 0.0672 0.0246 0.0603
+ASReP 0.0559 0.1089 0.0350 0.0779 0.0332 0.0681 0.0248 0.0609
+DiffuASR 0.0545 0.1064 0.0364 0.0814 0.0328 0.0669 0.0244 0.0599
+DR4SR 0.0564 0.1106 0.0367 0.0816 0.0337 0.0696 0.0246 0.0599
+RSIR-FT 0.0578 0.1135 0.0394 0.0879 0.0342 0.0708 0.0261 0.0637
+RSIR 0.0573 0.1133 0.0373 0.0858 0.0345 0.0717 0.0259 0.0637
Improv 2.48% 2.62% 7.36% 7.06% 2.37% 3.02% 5.24% 2.91%

C
L

4S
R

ec

Base 0.0599 0.1186 0.0378 0.0862 0.0331 0.0679 0.0267 0.0639
+Reordering 0.0582 0.1139 0.0368 0.0824 0.0331 0.0679 0.0272 0.0662
+Insertion 0.0610 0.1187 0.0363 0.0822 0.0335 0.0684 0.0259 0.0631
+ASReP 0.0587 0.1144 0.0374 0.0843 0.0337 0.0674 0.0258 0.0628
+DiffuASR 0.0547 0.1066 0.0384 0.0881 0.0340 0.0693 0.0256 0.0625
+DR4SR 0.0610 0.1184 0.0386 0.0880 0.0337 0.0694 0.0276 0.0666
+RSIR-FT 0.0615 0.1223 0.0440 0.0961 0.0353 0.0730 0.0282 0.0674
+RSIR 0.0613 0.1222 0.0392 0.0890 0.0352 0.0734 0.0288 0.0693
Improv 0.82% 3.03% 13.99% 9.08% 3.82% 5.76% 4.35% 4.05%

H
ST

U

Base 0.0580 0.1135 0.0370 0.0838 0.0338 0.0704 0.0250 0.0602
+Reordering 0.0570 0.1125 0.0371 0.0811 0.0329 0.0671 0.0256 0.0616
+Insertion 0.0573 0.1154 0.0377 0.0862 0.0336 0.0701 0.0252 0.0606
+ASReP 0.0555 0.1086 0.0349 0.0780 0.0338 0.0697 0.0254 0.0614
+DiffuASR 0.0529 0.1052 0.0379 0.0845 0.0342 0.0697 0.0252 0.0616
+DR4SR 0.0576 0.1136 0.0377 0.0840 0.0346 0.0726 0.0253 0.0611
+RSIR-FT 0.0608 0.1199 0.0394 0.0878 0.0358 0.0745 0.0268 0.0640
+RSIR 0.0620 0.1223 0.0389 0.0851 0.0363 0.0762 0.0272 0.0660
Improv 6.90% 5.98% 3.96% 1.86% 4.91% 4.96% 6.25% 7.14%

C.3 EVALUATION ON COMPREHENSIVE METRICS

In the main text, we primarily adopted NDCG and Recall as evaluation metrics, following standard
conventions in sequential recommendation. However, to provide a more holistic view of the model’s
performance and ensure that the improvements are robust across different evaluation perspectives,
we extend our analysis to include Precision, F1-score, and Mean Reciprocal Rank (MRR).

Table 6 presents the performance comparison between the Base model (SASRec) and the RSIR-
enhanced model across four datasets.

Analysis. As shown in the Table 5, RSIR achieves consistent and significant improvements across
all five metrics on all datasets.

• Precision & F1-score: The simultaneous increase in Precision and Recall (and conse-
quently F1-score) is encouraging. In data augmentation scenarios, a common risk is intro-
ducing noise that might boost Recall (by covering more items) but degrade Precision (by
recommending irrelevant items). The observed gains in Precision@10 (e.g., from 0.0080 to
0.0087 on Amazon-Toys) confirm that RSIR’s fidelity control mechanism effectively filters
out noise, ensuring that the densified signals remain highly relevant to user interests.

• MRR: The improvement in MRR (e.g., +11.1% on Yelp, from 0.0126 to 0.0140) indicates
that RSIR not only retrieves relevant items but also ranks the first ground-truth item higher
in the rank list. This suggests that the landscape smoothing effect of RSIR helps the model
distinguish fine-grained preference differences, leading to more accurate ranking.

These comprehensive results further validate the generalizability and robustness of the RSIR frame-
work, demonstrating that the performance gains are not an artifact of a specific metric but reflect a
fundamental improvement in recommendation quality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Performance Comparison on Different Datasets (Metrics @ 10). The best results are high-
lighted in bold.

Dataset
Precision@10 F1-score@10 MRR@10 NDCG@10 Recall@10

Base +RSIR Base +RSIR Base +RSIR Base +RSIR Base +RSIR

amazon-toys 0.0080 0.0087 0.0145 0.0158 0.0380 0.0396 0.0477 0.0508 0.0795 0.0872
amazon-beauty 0.0055 0.0058 0.0100 0.0105 0.0212 0.0219 0.0290 0.0303 0.0548 0.0578
amazon-sport 0.0047 0.0051 0.0086 0.0093 0.0210 0.0227 0.0271 0.0293 0.0474 0.0512
yelp 0.0037 0.0040 0.0068 0.0072 0.0126 0.0140 0.0183 0.0200 0.0371 0.0399

C.4 RECURSIVE SELF-IMPROVING PERFORMANCE

Figures 6a and 6b illustrate the performance of Recursive self-improving (RSI) on the Amazon-Sport
and Yelp datasets, showing how the quality of the data evolves over iterations. The horizontal axis
corresponds to the number of iterations, while the vertical axis indicates NDCG@20 and Recall@20.

0-th 1-th 2-th 3-th 4-th 5-th 6-th 7-th 8-th
0.031

0.032

0.033

0.034

0.035

0.036

0.066

0.068

0.070

0.072

0.074

0.076

0.078

nd
cg
@
20

ndcg@20 recall@20

recall@
20

(a) Performance on Amazon-Sport

0-th 1-th 2-th 3-th 4-th 5-th 6-th 7-th 8-th
0.023

0.024

0.025

0.026

0.027

0.028

0.058

0.060

0.062

0.064

0.066

0.068

0.070

nd
cg
@
20

ndcg@20 recall@20

recall@
20

(b) Performance on Yelp

Figure 6: Performance of RSI Across Different Iterations on Amazon-Sport and Yelp.

Table 6 presents the performance of RSI on the Amazon-Sport and Yelp datasets across 8 iterations,
along with the relative improvement compared to the previous round.

Table 7: Performance of RSI Across Multiple Iterations on Amazon-Sport and Yelp.(p-value < 0.05)

amazon-sport yelp

NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20

0-th 0.0271 0.0320 0.0474 0.0669 0.0183 0.0240 0.0371 0.0599
1-th 0.0293 0.0345 0.0512 0.0717 0.0200 0.0259 0.0399 0.0637
Improv 8.12% 7.81% 8.02% 7.17% 9.29% 7.92% 7.55% 6.34%
2-th 0.0294 0.0348 0.0517 0.0731 0.0198 0.0258 0.0399 0.0637
Improv 0.34% 0.87% 0.98% 1.95% -1.00% -0.39% 0.00% 0.00%
3-th 0.0298 0.0351 0.0528 0.0740 0.0212 0.0278 0.0420 0.0683
Improv 1.36% 0.86% 2.13% 1.23% 7.07% 7.75% 5.26% 7.22%
4-th 0.0301 0.0358 0.0527 0.0754 0.0210 0.0275 0.0419 0.0679
Improv 1.01% 1.99% -0.19% 1.89% -0.94% -1.08% -0.24% -0.59%
5-th 0.0294 0.0349 0.0533 0.0751 0.0209 0.0271 0.0411 0.0661
Improv -2.33% -2.51% 1.14% -0.40% -0.48% -1.45% -1.91% -2.65%
6-th 0.0300 0.0354 0.0540 0.0757 0.0206 0.0269 0.0408 0.0661
Improv 2.04% 1.43% 1.31% 0.80% -1.44% -0.74% -0.73% 0.00%
7-th 0.0298 0.0352 0.0530 0.0744 0.0209 0.0275 0.0413 0.0673
Improv -0.67% -0.56% -1.85% -1.72% 1.46% 2.23% 1.23% 1.82%
8-th 0.0286 0.0343 0.0513 0.0739 0.0211 0.0273 0.0423 0.0668
Improv -4.03% -2.56% -3.21% -0.67% 0.96% -0.73% 2.42% -0.74%

C.5 HYPERPARAMETER ANALYSIS

Table 8 and 9 report the performance of our method on the amazon-sport dataset under different rank
threshold τ and exploitation probability p, respectively. The evaluation metrics include NDCG@10,
NDCG@20, Recall@10, and Recall@20.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Performance of τ on amazon-sport.

τ NDCG@10 NDCG@20 Recall@10 Recall@20

base 0.0271 0.0320 0.0474 0.0669

1 0.0277 0.0327 0.0469 0.0666
5 0.0288 0.0342 0.0507 0.0724
10 0.0280 0.0338 0.0495 0.0726
20 0.0293 0.0345 0.0512 0.0717
50 0.0286 0.0338 0.0505 0.0714

Table 9: Performance of p on amazon-sport.

p NDCG@10 NDCG@20 Recall@10 Recall@20

base 0.0271 0.0320 0.0474 0.0669

0 0.0281 0.0336 0.0499 0.0716
0.3 0.0284 0.0331 0.0491 0.0679
0.5 0.0293 0.0345 0.0512 0.0717
0.7 0.0293 0.0347 0.0498 0.0714
0.9 0.0280 0.0327 0.0487 0.0677
1 0.0278 0.0330 0.0478 0.0683

C.6 COMPATIBILITY WITH EXTERNAL KNOWLEDGE-ENHANCED MODELS

A prevalent approach to mitigating data sparsity is the incorporation of external knowledge, such
as utilizing Large Language Models (LLMs) to generate item descriptions or employing Semantic
IDs to capture hierarchical category information. In this section, we explore whether RSIR remains
effective when the model already benefits from such external information.

We posit that RSIR is orthogonal to external knowledge integration. Methods leveraging external
knowledge focus on enriching item representations with outside information, whereas RSIR focuses
on maximizing the utility of the available interaction data through recursive self-generation. These
distinct data augmentation perspectives allow the two strategies to work in parallel. To empirically
validate this compatibility, we apply RSIR to a Semantic ID-based recommendation model (Wang
et al., 2024a), which leverages external content hierarchies to map items into structured identifiers.

Table 10 presents the results on the Amazon-Toys dataset. The Semantic ID baseline (NDCG@10 =
0.0507) outperforms the standard ID-based SASRec (NDCG@10 = 0.0477, see Table 1), confirming
that external knowledge effectively alleviates sparsity. Remarkably, applying RSIR on top of the
Semantic ID model yields further significant improvements, boosting Recall@20 by 4.89%.

This result demonstrates that RSIR is not redundant with external knowledge. Even when the model
possesses rich, content-aware representations, RSIR’s recursive mechanism can still further refine
the model’s performance by densifying the training data. Thus, RSIR can be seamlessly combined
with knowledge-enhanced architectures.

Table 10: Performance comparison with semantic IDs on amazon-toys.

Method amazon-toys

NDCG@10 NDCG@20 Recall@10 Recall@20

semantic id 0.0507 0.0579 0.0837 0.1124
+ RSIR 0.0518 0.0594 0.0877 0.1179
Improv. 2.17% 2.59% 4.78% 4.89%

D DETAILED COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we provide a formal derivation of the time complexity for the RSIR framework.

D.1 NOTATIONS AND PRELIMINARIES

We define the following notations for the complexity analysis:

• Nk: The number of sequences in the training dataset at iteration k.

• L: The maximum length of user sequences.

• d: The hidden state dimension of the model.

• |V|: The size of the item vocabulary.

• m: The number of generation attempts per sequence.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• K: The total number of self-improvement iterations.

The backbone model fθ typically consists of self-attention layers. The complexity for a forward
pass on a single sequence, denoted as Cmodel, is dominated by the attention mechanism:

Cmodel ≈ O(L2d+ Ld2) (6)

D.2 COMPLEXITY DERIVATION

The RSIR process at iteration k involves two distinct phases: (1) Training the model on Dk, and (2)
Generating the augmented set D′

k+1.

Phase 1: Model Training. At iteration k, the model is trained on Nk sequences. Assuming
convergence requires a constant number of epochs E, the training time complexity T (k)

train is:

T (k)
train = O(E ·Nk · Cmodel) (7)

Note that Nk grows progressively. Let α be the effective expansion rate after fidelity filtering (where
0 ≤ α≪ m). Then Nk ≈ N0(1 + α)k. Since α is strictly controlled by the fidelity threshold τ , the
dataset size remains within a manageable magnitude.

Phase 2: Sequence Generation. For each of the Nk sequences, we conduct m generation trials.
Let Le be the average effective length of the generated segments before the ”Break” mechanism is
triggered. For each generation step, the complexity includes:

1. Inference: Computing the hidden state, costing Cmodel.

2. Fidelity Check: Calculating the dot product to rank candidates. A naive linear scan costs
O(d|V|).

Thus, the generation complexity T (k)
gen is:

T (k)
gen = O (Nk ·m · Le · (Cmodel + d|V|)) (8)

Total Complexity. Summing over K iterations, the total time complexity Ttotal is:

Ttotal =

K−1∑
k=0

O (Nk · (E · Cmodel +m · Le · (Cmodel + d|V|))) (9)

Given that the number of iterations K is a small constant and the dataset expansion is strictly
bounded, the cumulative time complexity scales linearly with respect to the initial dataset size N0,
vocabulary size V and generation length Le, ensuring the framework remains computationally scal-
able.

D.3 OPTIMIZATION AND SCALABILITY

To address potential concerns regarding scalability on large datasets, we highlight two key proper-
ties:

1. Effective Length Reduction (Le ≪ L): The fidelity control mechanism serves as an early-
stopping regularizer. If a generated item deviates from the user’s preference manifold, the generation
breaks immediately. This ensures that Le remains small, significantly reducing the multiplicative
constant in Tgen.

2. Sub-linear Fidelity Check: The term d|V| represents a Maximum Inner Product Search
(MIPS) problem(Shrivastava & Li, 2014). By employing approximate retrieval structures (e.g.,
HNSW(Malkov & Yashunin, 2018) or Tree-based indexing(Ram & Gray, 2012)), the complexity
of the fidelity check reduces from linear O(d|V|) to logarithmic O(d log |V|). This ensures that the
cost does not explode even when the vocabulary size |V| is extremely large.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.4 EMPIRICAL RUNTIME ANALYSIS

To validate our theoretical complexity analysis, we conduct an empirical runtime comparison against
competitive generative baselines, including DR4SR(Yin et al., 2024) and ASReP(Liu et al., 2021b).
The experiments are conducted on the same hardware environment to ensure fairness. The results
are reported in Table 12.

Generation Efficiency. As shown in Table 12, RSIR demonstrates a substantial advantage in
the data generation phase. Specifically, RSIR is approximately 18× faster than the pattern-based
method DR4SR (3m vs. 68m) and 5× faster than ASReP. This empirical result strongly corrobo-
rates our theoretical assertion: by utilizing the backbone recommendation model itself as the gener-
ator and employing the ”Break” mechanism to constrain the effective generation length (Le), RSIR
avoids the heavy computational burden associated with complex external generators.

Training Efficiency. A striking observation from Table 12 is that the retraining time of RSIR
(2m16s) is comparable to, or even slightly faster than, the training time of the Base model (2m34s),
despite the increased data volume. This counter-intuitive result empirically supports our theoretical
insight regarding implicit regularization (Section 4). The high-fidelity synthetic data generated by
RSIR smooths the optimization landscape, enabling the optimizer to converge more quickly to a
robust solution. Compared to baselines like DR4SR (approx. 10m training time), RSIR maintains
orders-of-magnitude superior efficiency, confirming that full retraining is computationally feasible
and efficient in our framework.

Deployment Potential and Acceleration. It is important to note that the reported generation
time for RSIR was measured using a sequential implementation without parallelization strate-
gies. Consequently, significant room for acceleration remains via standard engineering optimiza-
tions. We provide a preliminary exploration and validation of such parallel strategies in Appendix
D.5. Furthermore, the data generation phase is decoupled from training and can be executed offline.
Combined with our findings in Section 5.4—where weak models can effectively instruct stronger
ones—practitioners can utilize a lightweight, high-throughput model for offline data generation to
efficiently train a large-scale production model, maximizing industrial viability.

D.5 SCALABILITY OPTIMIZATION VIA CLUSTERING-BASED RETRIEVAL

A primary challenge in deploying RSIR to large-scale industrial systems is the computational cost of
the fidelity check (Appendix D.2), which theoretically requires scanning the entire item vocabulary
|V|. To validate the feasibility of accelerating this process without compromising performance, we
propose a Clustering-based Approximate Retrieval strategy.

Implementation Strategy. We adopt a two-stage retrieval approach to prune the candidate space:

1. Clustering: We partition the global item set into C clusters (Liu et al., 2024) and compute
a centroid for each cluster.

2. Approximate Search: During the generation phase, instead of scanning all items, the
model first calculates the similarity between the current context and cluster centroids to
select the top-k most relevant clusters. The candidate pool Vsub is then restricted to items
within these clusters.

This strategy reduces the complexity of the fidelity check from linear O(|V|) to sub-linear, making
it scalable to millions of items.

Empirical Validation. We simulated this strategy on the Amazon-Sport and Yelp datasets. The
results are presented in Table 11.

RSIR-Cluster consistently outperforms the Base (SASRec) model by a significant margin. It also
achieves performance highly comparable to the exact RSIR implementation. The performance gap is
negligible (e.g., < 1.7% drop in Recall@10 on Amazon-Sport), and in some cases (e.g., NDCG@10
on Yelp), RSIR-Cluster even marginally outperforms the exact version. This suggests that clustering
may act as an additional denoising filter by excluding irrelevant items.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Ablation study of clustering module on amazon-sport and yelp datasets.

Method amazon-sport yelp

NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20

SASRec 0.0271 0.0320 0.0474 0.0669 0.0183 0.0240 0.0371 0.0599
+ RSIR 0.0293 0.0345 0.0512 0.0717 0.0200 0.0259 0.0399 0.0637
+ RSIR-Cluster 0.0283 0.0340 0.0503 0.0729 0.0201 0.0258 0.0397 0.0635

Table 12: Time Efficiency Comparison of Different Methods (measured on Amazon-Toys). Note
that RSIR involves retraining from scratch, yet remains highly efficient.

Phase Base RSIR DR4SR ASReP

Data Generation Phase - 3m45.922s 68m48.733s 20m13.968s
Training Phase 2m34.605s 2m16.159s 10m40.349s 3m44.264s

These results confirm that approximate retrieval effectively captures the on-manifold candidates
required for self-improvement while drastically reducing the search space, thereby resolving the
deployment bottleneck associated with large vocabularies.

E THEORETICAL ANALYSIS AND PROOFS

In this section, we provide the formal proofs supporting the theoretical claims made in Section 4.
We first derive the geometric form of the implicit regularizer introduced by RSIR (Section E.1) and
then provide the derivation for the recursive error bound and convergence conditions (Section E.2).

E.1 PROOF OF MANIFOLD TANGENTIAL GRADIENT PENALTY

Problem Statement: We aim to characterize the implicit regularization term Ω(θ; θk) imposed by
minimizing the loss on the generated dataset D′

k+1.

Assumption 1 (Manifold Hypothesis): User preferences lie on a low-dimensional manifold M
embedded in the high-dimensional item space(Belkin et al., 2006).

Assumption 2 (Local Consistency): A generated sequence s′ ∈ D′
k+1 is a local neighbor of a real

sequence sctx, such that the difference vector v = s′ − sctx lies approximately in the tangent space
TsM of the manifold.

Derivation: The regularization effect arises from enforcing consistency between the model’s pre-
dictions on the context sctx and its generated neighbor s′. We define the regularization objective as
the expected squared difference:

Ω(θ) = Esctx∼D,s′∼P (·|sctx)
[
∥fθ(s′)− fθ(sctx)∥2

]
(10)

Using a first-order Taylor expansion of fθ(s′) around sctx:

fθ(s
′) ≈ fθ(sctx) +∇sfθ(sctx)

⊤(s′ − sctx) (11)

Let v = s′ − sctx. Substituting this into the objective:

Ω(θ) ≈ E
[
∥∇sfθ(sctx)

⊤v∥2
]
= E

[
v⊤∇sfθ∇sf

⊤
θ v

]
(12)

Using the trace trick (x⊤Ax = Tr(Axx⊤)):

Ω(θ) ≈ Tr
(
∇sfθ∇sf

⊤
θ E[vv⊤]

)
(13)

Since RSIR explores the local neighborhood of the user’s preference manifold, the covariance of the
perturbation v is proportional to the projection matrix PM onto the tangent space TsM. Letting
E[vv⊤] = σ2PM:

Ω(θ) ∝ Tr
(
∇sfθ∇sf

⊤
θ PM

)
= ∇sf

⊤
θ PM∇sfθ (14)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Since PM is an orthogonal projection matrix (idempotent, P⊤
MPM = PM), we have:

∇sf
⊤
θ P⊤

MPM∇sfθ = ∥PM∇sfθ∥2 ≡ ∥∇Mfθ∥2 (15)

Conclusion: The implicit regularizer minimizes ∥∇Mfθ∥2, the norm of the gradient projected onto
the manifold. This confirms that RSIR enforces smoothness specifically along valid user preference
trajectories.

E.2 RECURSIVE ERROR BOUND AND CONVERGENCE ANALYSIS

We define E(θk) as the generalization error of the model at iteration k. The dataset at iteration k+1
is a mixture of the original sparse data (ratio 1− λ) and the generated dense data (ratio λ).

Theorem 1 (Recursive Error Bound). Under the RSIR framework, the error dynamics follow the
inequality:

E(θk+1) ≤ (1− λ)E0 + λ [(1− p̃k)ρE(θk) + p̃kEmax] (16)

where ρ < 1 is the contraction rate from valid data expansion, p̃k is the effective noise rate (fidelity
leakage), and Emax is the maximum bounded loss.

Proof. The total error is the convex combination of errors on the original and generated distributions.

1. On the original data D0, the error is bounded by the baseline error E0.

2. The generated data D′
k+1 consists of:

• Valid Sequences (True Positives): Proportion (1−p̃k). These sequences reside on the
true manifold. By the expansion-contraction principle of self-training, optimizing on
these samples contracts the error relative to the previous iteration: Evalid ≤ ρE(θk) Wei
et al. (2020).

• Invalid Sequences (False Positives): Proportion p̃k. These are off-manifold noise.
The error is bounded by the loss function’s maximum value: Einvalid ≤ Emax.

Combining these terms yields the theorem statement.

Corollary (Stability Condition). For the system to self-improve (E(θk+1) < E(θk)), the leakage
rate p̃k must satisfy:

p̃k <
E(θk)(1− λρ)− (1− λ)E0

λ(Emax − ρE(θk))
(17)

This upper bound is the Breakdown Point. If the fidelity control is too loose (τ is too high), p̃k
exceeds this threshold, causing error divergence(Kumar et al., 2020). Conversely, a strict τ ensures
p̃k ≈ 0, leading to monotonic convergence.

Assuming the noise p̃k is negligible due to a strict τ , the dynamics simplify to a linear contraction
mapping. The error converges to a fixed limit E∗:

lim
k→∞

E(θk) =
(1− λ)E0
1− λρ

. (18)

Since ρ < 1, it follows that E∗ < E0, proving that RSIR achieves a lower error than standard super-
vised learning. However, as E(θk) approaches E∗, the term ρE(θk) shrinks, meaning the marginal
gain from each iteration diminishes.

Nevertheless, p̃k is never exactly zero, so p̃k > 0. The term λp̃kEmax acts as an irreducible noise
floor. In early iterations, the improvement from contraction (ρE(θk)) dominates the noise. However,
as the model improves (E(θk) becomes small), the relative impact of the leakage noise p̃kEmax in-
creases. If the noise term eventually outweighs the shrinking contraction benefit, the performance
curve may show a slight degradation after optimal iterations. This theoretical insight underscores

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8
0.02

0.04

0.06

0.08

0.010

0.015

0.020

0.025

0.030

Noise Rate

H
R

@
10

N
D

C
G

@
10

NDCG@10 (RISR)HR@10 (RISR)

HR@10 (Base) NDCG@10 (Base)

(a) Performance trend on Amazon-Sport

0.0 0.2 0.4 0.6 0.8
0.01

0.02

0.03

0.04

0.05

0.01

0.02

0.03

0.04

Noise Rate

H
R

@
10

N
D

C
G

@
10

NDCG@10 (RISR)HR@10 (RISR)

HR@10 (Base) NDCG@10 (Base)

(b) Performance trend on Yelp

Figure 7: Performance comparison under different noise ratios. While performance naturally de-
grades with increased noise, RSIR consistently maintains a significant lead over the Base model.

the importance of our fidelity-based quality control: it is the crucial mechanism for suppressing p̃k
and maintaining the noise floor below the contraction benefit.

F ROBUSTNESS ANALYSIS UNDER DATA NOISE

In real-world scenarios, user interaction logs often contain noise—accidental clicks or irrelevant
interactions—that can mislead the recommender system(Wang et al., 2021). A critical concern
is whether the self-improving loop of RSIR might amplify such noise, leading to error propaga-
tion(Arazo et al., 2020).

To evaluate the robustness of RSIR, we conducted a controlled experiment by injecting varying
ratios of random noise into the training data. Specifically, for each user sequence, we randomly
inserted items from the global item set with a noise ratio η ∈ [0, 0.8]. We compared the performance
of RSIR against the Base model across two datasets, Amazon-Sport and Yelp.

Results and Analysis. Figure 7 illustrates the performance trends, and Table 13 details the numer-
ical results. We observe two key findings:

1. Consistent Superiority: As expected, the absolute performance of both the Base model
and RSIR declines as the noise ratio increases. However, as shown in Figure 7, RSIR con-
sistently stays above the Base baseline across the entire noise spectrum (from 0% to 80%),
demonstrating that our framework does not collapse even under severe data contamination.

2. Increased Relative Gain in Noisy Environments: Crucially, Table 13 reveals that the
relative improvement brought by RSIR tends to increase as the data becomes noisier.

• On Amazon-Sport, at a low noise ratio (η = 0), the improvement in Recall@10 is
8.02%. When noise increases to extreme levels (η = 0.8), the improvement jumps to
14.93%.

• Similarly, on Yelp, the improvement in Recall@10 rises from 7.55% (at η = 0) to
16.42% (at η = 0.8).

Discussion. These results strongly support our theoretical insight regarding Implicit Regulariza-
tion (Section 4). Random noise typically constitutes off-manifold perturbations(Verma et al., 2019).
The fidelity-based quality control mechanism in RSIR effectively filters out these random, low-
probability interactions during the generation phase, preventing them from being reinforced in the
self-training loop. By selectively densifying the valid, on-manifold user trajectories, RSIR acts as
a denoising filter, enabling the model to learn robust preferences even when the original signal is
heavily corrupted.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 13: Performance robustness comparison under varying noise rates. The best performance in
each comparison is highlighted in bold. Improvement percentages are shaded in gray.

Noise Method
amazon-sport yelp

NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20

0
Base 0.0271 0.0320 0.0474 0.0669 0.0183 0.0240 0.0371 0.0599
+RSIR 0.0293 0.0345 0.0512 0.0717 0.0200 0.0259 0.0399 0.0637
Improv. 8.12% 7.81% 8.02% 7.17% 9.29% 7.92% 7.55% 6.34%

0.05
Base 0.0268 0.0319 0.0455 0.0656 0.0181 0.0242 0.0355 0.0598
+RSIR 0.0286 0.0340 0.0495 0.0709 0.0204 0.0264 0.0404 0.0643
Improv. 6.72% 6.58% 8.79% 8.08% 12.71% 9.09% 13.80% 7.53%

0.1
Base 0.0256 0.0302 0.0432 0.0615 0.0174 0.0232 0.0354 0.0583
+RSIR 0.0265 0.0313 0.0467 0.0658 0.0193 0.0250 0.0379 0.0604
Improv. 3.52% 3.64% 8.10% 6.99% 10.92% 7.76% 7.06% 3.60%

0.15
Base 0.0239 0.0282 0.0411 0.0581 0.0176 0.0234 0.0343 0.0574
+RSIR 0.0248 0.0299 0.0437 0.0640 0.0188 0.0250 0.0380 0.0627
Improv. 3.77% 6.03% 6.33% 10.15% 6.82% 6.84% 10.79% 9.23%

0.2
Base 0.0233 0.0275 0.0403 0.0569 0.0174 0.0223 0.0337 0.0534
+RSIR 0.0245 0.0291 0.0424 0.0608 0.0188 0.0244 0.0373 0.0594
Improv. 5.15% 5.82% 5.21% 6.85% 8.05% 9.42% 10.68% 11.24%

0.25
Base 0.0224 0.0263 0.0385 0.0543 0.0168 0.0222 0.0336 0.0548
+RSIR 0.0241 0.0289 0.0412 0.0601 0.0182 0.0236 0.0365 0.0582
Improv. 7.59% 9.89% 7.01% 10.68% 8.33% 6.31% 8.63% 6.20%

0.3
Base 0.0208 0.0248 0.0353 0.0512 0.0164 0.0218 0.0319 0.0535
+RSIR 0.0221 0.0265 0.0394 0.0567 0.0177 0.0229 0.0354 0.0564
Improv. 6.25% 6.85% 11.61% 10.74% 7.93% 5.05% 10.97% 5.42%

0.4
Base 0.0208 0.0246 0.0357 0.0508 0.0157 0.0208 0.0304 0.0511
+RSIR 0.0227 0.0267 0.0387 0.0548 0.0176 0.0228 0.0347 0.0556
Improv. 9.13% 8.54% 8.40% 7.87% 12.10% 9.62% 14.14% 8.81%

0.5
Base 0.0193 0.0226 0.0333 0.0465 0.0146 0.0191 0.0289 0.0471
+RSIR 0.0199 0.0239 0.0346 0.0504 0.0162 0.0212 0.0318 0.0517
Improv. 3.11% 5.75% 3.90% 8.39% 10.96% 10.99% 10.03% 9.77%

0.6
Base 0.0172 0.0204 0.0299 0.0429 0.0140 0.0190 0.0279 0.0476
+RSIR 0.0192 0.0228 0.0335 0.0477 0.0157 0.0204 0.0309 0.0499
Improv. 11.63% 11.76% 12.04% 11.19% 12.14% 7.37% 10.75% 4.83%

0.7
Base 0.0167 0.0200 0.0296 0.0426 0.0132 0.0174 0.0268 0.0437
+RSIR 0.0175 0.0211 0.0311 0.0452 0.0154 0.0201 0.0309 0.0495
Improv. 4.79% 5.50% 5.07% 6.10% 16.67% 15.52% 15.30% 13.27%

0.8
Base 0.0159 0.0189 0.0268 0.0386 0.0137 0.0182 0.0268 0.0446
+RSIR 0.0177 0.0209 0.0308 0.0437 0.0157 0.0205 0.0312 0.0506
Improv. 11.32% 10.58% 14.93% 13.21% 14.60% 12.64% 16.42% 13.45%

G QUANTITATIVE EVALUATION OF GENERATED DATA

In addition to evaluating recommendation performance using metrics such as Hit Rate (HR) and
Normalized Discounted Cumulative Gain (NDCG), we further assess the intrinsic properties of the
generated data using Approximate Entropy (ApEn) (Pincus, 1991), a statistical measure that quanti-
fies the regularity and unpredictability of sequences. In the context of recommender systems, ApEn
can capture the complexity and diversity of individual users’ interaction sequences, providing com-
plementary insights beyond conventional accuracy-based metrics.

In our implementation, the ApEn is computed as follows: Given a user interaction sequence su
of length N , the embedding dimension is m, and a similarity tolerance r. We first construct an
m-dimensional subsequence vector: vmk = [ik, ik+1, ..., ik+m−1] for k = 1, ..., N − m + 1. The
distance between two subsequences is measured using the Chebyshev distance:

d[vmk , vmj] = max
0≤q<m

|xk+q − xj+q|

The similarity between subsequences under the tolerance r is then calculated as:

Cm
k (r) =

|{j|d[vmk , vmj] ≤ r}|
N −m+ 1

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Next, the average logarithmic similarity of all length-m subsequences is computed:

Φm(r) =
1

N −m+ 1

N−m+1∑
k=1

lnCm
k (r)

Finally, the Approximate Entropy of the user sequence is defined as:

ApEn(m, r; su) = Φm(r)− Φm+1(r)

In our implementation, we set r = 0 due to the unique nature of recommended items, where similar
item IDs may represent entirely different products. To align the measure with the conventional
notion of diversity, we use the reciprocal: ApEn′ = 1/ApEn, following Shen et al. (2024). For
each user’s interaction sequence, a higher ApEn value reflects greater complexity and information
density in a sequence, making it a richer source of information for training the model.

H SEQUENTIAL RECOMMENDATION PARADIGM

Sequential recommendation aims to model the evolving preferences of users by predicting their next
interactions based on historical behaviors.

Given an input sequence su = (i1, i2, ..., i|su|) at step t, sequential recommendation models learn
the conditional probability distribution p(it|i<t), where i<t = (i1, i2, ..., it−1) represents the sub-
sequence before the t-th item.

To model the conditional distribution p(it|i<t), the prefix sequence i<t is first mapped into a se-
quence of embeddings E<t = (e1, e2, ..., et−1) through an embedding layer. Then the sequential
encoder(Transformer, RNN, CNN, or other architectures) fθ(·) generates a context representation
ht for position t:

ht = fθ(E<t)

The probability of each candidate item v ∈ V will be computed via an inner product operation
or other scoring function between ht and the item embedding ev , and the final probability will be
normalized with a softmax:

p(it = v|i<t) =
exp (hT

t ev)∑
v∈V exp (hT

t ev)

At inference time, the recommender outputs the item with the highest predicted probability:

it = argmax
v∈V

p(it = v|i<t)

For training, the model is optimized using a sampled softmax cross-entropy loss. Given the true
target item v+ at position t and a sampled subset of candidate items C ⊆ V , the loss at step t is
calculated as:

Lt(θ) = − log
exp (hT

t ev+)∑
v∈C exp (h

T
t ev)

The overall training objective sums (or averages) the per-position losses across the entire sequence:

L(θ) = 1

|su|

|su|∑
t=1

Lt(θ).

Other loss functions, such as full softmax cross-entropy, Bayesian Personalized Ranking (BPR), or
pairwise hinge loss, can also be used for sequential recommendation, but in our experiments, we
adopt the sampled softmax loss to match our method design.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A widely used instantiation of this general framework is SASRec(Kang & McAuley, 2018), which
adopts a stack of self-attention layers as fθ(·) to model long-range dependencies within i<t. Other
models may replace the self-attention block with GRUs, CNNs, or graph neural networks, but the
above conditional modeling and factorization remain the same.

I THE USE OF LARGE LANGUAGE MODELS

All technical aspects of this work, including the conception of the method, the design of experiments,
and the implementation of algorithms, were conceived and executed independently by the authors
without the involvement of large language models. During the writing process, all sections of the
manuscript were written by the authors themselves, and large language models were used only to
improve the wording of text that had already been completed.

26

	Introduction
	Related Works
	Self-Improving
	Sequential recommendation

	Methodology
	The Iterative Self-Improvement Loop
	Principled Synthetic Sequence Generation
	Bounded Exploration via a Hybrid Candidate Pool
	Fidelity-Based Quality Control

	Computational Complexity Analysis

	Discussion and Theoretical Analysis
	Implicit Regularization and Landscape Smoothing
	Error Analysis and Stability Guarantee

	Experiments
	Experimental Settings
	Datasets
	Backbones and Baseline Models
	Implementation Details

	Main Results: Efficacy of RSIR
	Single-Iteration Performance
	Recursive Multi-Iteration Performance

	Ablation and Analysis
	The Critical Role of Fidelity-Based Quality Control.
	Analysis of the Bounded Exploration Strategy

	Can Weaker Models Teach Stronger Models?
	Analysis of Generated Data

	Conclusion
	pseudo code for RSIR framework
	baselines and benchmark datasets statistics
	Backbones
	Baselines
	Dataset Statistic

	Detailed experiment results
	Generated dataset statistics
	Performance Comparison with Data-Centric Methods
	Evaluation on Comprehensive Metrics
	Recursive self-improving performance
	Hyperparameter analysis
	Compatibility with External Knowledge-enhanced Models

	Detailed Computational Complexity Analysis
	Notations and Preliminaries
	Complexity Derivation
	Optimization and Scalability
	Empirical Runtime Analysis
	Scalability Optimization via Clustering-based Retrieval

	Theoretical Analysis and Proofs
	Proof of Manifold Tangential Gradient Penalty
	Recursive Error Bound and Convergence Analysis

	Robustness Analysis under Data Noise
	Quantitative Evaluation of Generated Data
	Sequential recommendation paradigm
	The Use of Large Language Models

