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ABSTRACT

Active Learning (AL) has the potential to reduce labeling cost when training nat-
ural language processing models, but its effectiveness with the large pretrained
transformer language models that power today’s NLP is uncertain. We present ex-
periments showing that when applied to modern pretrained models, active learning
offers inconsistent and often poor performance. As in prior work, we find that AL
sometimes selects harmful “unlearnable” collective outliers, but we discover that
some failures have a different explanation: the examples AL selects are informative
but also increase training instability, reducing average performance. Our findings
suggest that for some datasets this instability can be mitigated by training multiple
models and selecting the best on a validation set, which we show impacts relative
AL performance comparably to the outlier-pruning technique from prior work
while also increasing absolute performance. Our experiments span three pretrained
models, ten datasets, and four active learning approaches.

1 INTRODUCTION

Deep learning models typically need large datasets of hand-labeled examples to perform well, but
acquiring the labels can be expensive, often requiring human annotators to manually provide the
label for every example. Active learning (AL) is a technique that aims to reduce this labeling cost by
selecting only the most useful examples to receive labels (Settles, 2009).

AL has been shown to reduce labeling cost on a variety of NLP tasks in previous work (Shen et al.,
2018; Siddhant & Lipton, 2018). However, these successes predate the rise of large pretrained
Transformer language models (LMs) as a foundation for NLP. Whether AL’s advantages extend to
this setting is far less studied. Previous work has shown that AL consistently improves text classifiers
that use pretrained Transformers (Lu & MacNamee, 2020; Ein-Dor et al., 2020), but those studies
use a narrow range of model sizes and do not consider the most challenging semantic tasks such as
question answering (QA) where pretrained LMs have made great strides in recent years. By contrast,
Karamcheti et al. (2021) recently showed that AL is ineffective for large pretrained transformers in
visual QA, and concluded that harmful collective outliers negatively impact AL and that heuristically
pruning them improves the benefit of AL. However, whether these findings hold outside of visual QA
is unknown.

In this paper, we present an expanded study of AL applied to fine-tuning large pretrained LMs. We
investigate four AL approaches across ten datasets spanning text classification and recent multiple-
choice question answering tasks. We find that AL fails to improve performance consistently, and often
lowers performance significantly below that of a random-selection baseline. Further, our analysis
suggests that in some cases, the failures have a different explanation than that offered by prior work.
Specifically, AL sometimes select examples that are informative, but add instability to the training
process, hurting average performance. As evidence, we show that a simple approach to reduce
instability—training the model multiple times and selecting the best-performing on a held-out set,
without any special treatment for collective outliers—improves the performance of AL by similar
amount on average as the pruning in Karamcheti et al. (2021). Further, we find that the effectiveness
of the pruning technique from Karamcheti et al. (2021) is often dataset-specific, improving the relative
performance of AL over random sampling on some datasets and worsening it on others. In most
cases, pruning also reduces the absolute performance across all methods, suggesting that it prunes
helpful examples in addition to outliers.
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To summarize, our contributions are:

1. We present experiments across four AL methods, ten data sets, and three models show-
ing that AL has inconsistent performance with recent pretrained transformer LMs, often
underperforming random selection especially as larger models are used.

2. We propose a novel explanation for some of AL’s limitations: that it sometimes selects
examples that are helpful but cause instability in training.

3. We conduct several ablation studies to rule out other factors and find that acquisition batch
size and adversarial filtering do not meaningfully affect the performance of AL, while the
amount of model pretraining has inconsistent effects between AL methods.

We hope our findings will provide guidance to other researchers considering applying AL to their
data, and spur further investigation into more effective AL methods for pretrained LMs along with
optimization techniques that are more robust to the challenging examples AL selects.

2 METHODS

2.1 TASK DEFINITION

Our active learning (AL) scenario is formulated as follows. We have a large pool of unlabeled
data U and wish to select a subset L of size Q to label that maximizes model performance on a
held-out set. Given a model M and an AL scoring function S(x,M) (where x is an unlabeled input),
we iteratively select a batch of |∆L| examples from U according to S, add these to L, and retrain
the model before selecting again. When re-training, we re-initialize all parameters to the original
pretrained model state, following previous work (Ein-Dor et al., 2020; Hu et al., 2019). The first
batch is selected randomly.

2.2 AL METHODS AND MODELS

We experiment with the following AL scoring functions:

• Random (the baseline);
• Entropy1 of the model output distribution;
• BALD-MC, which is BALD (Houlsby et al., 2011) using Monte Carlo dropout (Gal &

Ghahramani, 2016) to compute uncertainty;
• BatchBALD-MC (Kirsch et al., 2019), the batch variant of BALD;
• Coreset (Sener & Savarese, 2018), which selects examples that are distant from examples

in L measured by distance between model output embeddings. We use the greedy variant of
the algorithm and use the pre-trained model to pre-compute fixed output embeddings for the
distance calculation.2

While many AL methods exist, we believe our choices form a representative set. Entropy is commonly
used and was found to work well in the previous work on AL for Transformers (Lu & MacNamee,
2020). BALD has been found to outperform other methods in many cases, including NLP (Gal et al.,
2017; Siddhant & Lipton, 2018). Coreset is diversity-based (rather than uncertainty-based like our
other methods) and has outperformed other methods (including BALD) for deep models on image
classification tasks (Sener & Savarese, 2018). We note that BALD and Entropy are originally online
algorithms (selecting one example at a time) but are used in batch mode here. This is not theoretically
sound but is commonplace and often effective (Kasai et al., 2019; Gal et al., 2017), so we include it
for comparison. BatchBALD adds a diversity adjustment to BALD to account for this issue.

We test three pretrained Transformers, which are state-of-the-art models with different pretraining
methods and sizes: BERT-base (110M parameters) (Devlin et al., 2019), RoBERTa-large (340M)
(Liu et al., 2019), and RoBERTa-base (110M).

1A similar method is least-confidence (LC). We tried LC on most of our datasets and found it to be almost
identical to entropy, so we omit it here.

2In preliminary experiments we tried training the model and updating the embeddings during acquisition, but
this did not improve results and was more computationally expensive.
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2.3 TASKS AND DATASETS

For datasets, we focus broadly on two tasks. The first is text classification, where AL has been
effective with a limited class of Transformer models in previous work Lu & MacNamee (2020);
Ein-Dor et al. (2020). This task allows us to verify our implementation against previous work, and to
evaluate whether AL’s effectiveness on it extends to a broader model class. The second is multiple-
choice commonsense reasoning, a challenging NLP task where AL has not been evaluated, to our
knowledge. The text classification datasets are AGN (Zhang et al., 2015), DBpedia (Zhang et al.,
2015), Movie review sentence polarity (MRP) (Pang & Lee, 2005), and Movie review subjectivity
(MRS) (Pang & Lee, 2004). The multiple-choice datasets are aNLI (Bhagavatula et al., 2020),
CODAH (Chen et al., 2019), CommonsenseQA (CSQA) (Talmor et al., 2019), HellaSWAG (Zellers
et al., 2019), PIQA (Bisk et al., 2020), and SWAG (Zellers et al., 2018). In the tables, “AGN-SB” and
“DBpedia-SB” are AGN and DBpedia using only two classes (to create a binary classification task)
and subsampled to have the same number of examples as reported by Lu & MacNamee (2020).

2.4 EXPERIMENTAL SETTINGS

We test on an eval set after each acquisition, which produces a learning curve of accuracy vs. data
size. We report the area under the curve (AUC) as a measure of how effective the data selection
strategy is.

We set Q = 500 and |∆L| = 25 except where otherwise specified. The deep learning models were
all trained by doing 1000 steps with the Adam optimizer and early stopping (hyperparameter details
in Appendix A), and results are averaged over 10 trials.

3 RESULTS

We start by presenting our primary results showing that active learning offers inconsistent and often
poor performance on our tasks. For RoBERTa-base, shown in Table 1, there are a few cases where
AL outperforms the random-sampling baseline, but in many cases it gives no improvement (and in
fact, for 10 of the 44 results it does significantly worse). In the subsequent sections, we investigate
several candidate explanations for the poor performance.

Dataset \ Method BALD-MC BatchBALD-MC Entropy Coreset Random
AGN-c 86.8 (0.3) 87.5 (0.2) 87.3 (0.2) 86.3 (0.2) 86.6 (0.2)
AGN-SB-c 97.7 (0.0) 97.4 (0.0) 97.8 (0.0) 97.2 (0.0) 96.7 (0.1)
aNLI 58.5 (0.2) 58.9 (0.2) 57.8 (0.1) 59.8 (0.1) 58.8 (0.2)
CODAH 57.4 (0.5) 58.5 (0.3) 56.4 (0.3) 57.6 (0.4) 59.0 (0.6)
CSQA 42.8 (0.3) 43.9 (0.4) 43.3 (0.3) 44.0 (0.2) 43.8 (0.2)
DBpedia-SB-c 98.9 (0.0) 98.9 (0.0) 98.9 (0.0) 98.8 (0.0) 98.8 (0.1)
HellaSWAG 38.1 (0.2) 38.5 (0.2) 38.1 (0.5) 38.9 (0.2) 38.7 (0.2)
MRP-c 83.4 (0.2) 83.3 (0.2) 83.5 (0.2) 81.8 (0.2) 83.0 (0.3)
MRS-c 94.9 (0.0) 95.3 (0.1) 95.2 (0.0) 94.0 (0.1) 94.0 (0.2)
PIQA 55.9 (0.3) 55.9 (0.2) 54.5 (0.4) 57.1 (0.2) 56.8 (0.3)
SWAG 62.5 (0.2) 62.7 (0.2) 60.5 (0.3) 62.7 (0.2) 63.5 (0.2)
Average 70.64 (0.08) 70.96 (0.07) 70.29 (0.08) 70.75 (0.06) 70.88 (0.08)

Table 1: RoBERTa-base AUC results. In all tables, bold indicates better-than-random-sampling
performance; gray background indicates significance at p < 0.05 in a two-tailed t-test. Standard
errors are in parentheses. A “-c” suffix indicates text classification datasets.

3.1 COLLECTIVE OUTLIERS

Recently, Karamcheti et al. (2021) found that “collective outliers” can sometimes explain poor AL
performance. Collective outliers are groups of points that together represent an out-of-distribution
set of data that the model performs poorly on, and AL is prone to selecting these examples due to
their difficulty. To investigate the extent to which this effect explains our results, we applied the same
pruning strategy described in that work. This consists of creating a dataset map (Swayamdipta et al.,
2020) which is made by first training the model for several epochs (10 for our experiments) on all
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Dataset \ Method BALD-MC BatchBALD-MC Entropy Coreset Random
AGN-pruned50-c 84.8 (0.3) 85.4 (0.3) 85.7 (0.4) 84.7 (0.3) 84.6 (0.3)
AGN-SB-pruned50-c 97.7 (0.0) 97.5 (0.1) 97.6 (0.0) 97.2 (0.1) 96.9 (0.1)
aNLI-pruned50 57.1 (0.2) 57.4 (0.1) 52.7 (0.6) 58.7 (0.2) 57.5 (0.2)
CODAH-pruned50 60.1 (0.6) 59.2 (0.4) 58.1 (0.5) 58.9 (0.3) 58.4 (0.6)
CSQA-pruned50 46.5 (0.4) 46.0 (0.2) 46.5 (0.3) 45.6 (0.3) 46.1 (0.2)
DBPedia-pruned50-c 99.1 (0.0) 99.1 (0.0) 99.0 (0.1) 99.0 (0.0) 99.0 (0.0)
HellaSWAG-pruned50 35.0 (0.5) 35.7 (0.5) 35.6 (0.6) 36.9 (0.3) 35.7 (0.3)
MRP-pruned50-c 79.9 (0.4) 80.2 (0.3) 79.9 (0.3) 76.1 (0.4) 79.0 (0.6)
MRS-pruned50-c 94.4 (0.1) 94.9 (0.1) 94.8 (0.1) 94.1 (0.1) 94.1 (0.2)
PIQA-pruned50 56.0 (0.3) 55.7 (0.3) 56.0 (0.3) 57.6 (0.1) 56.1 (0.3)
SWAG-pruned50 59.8 (0.3) 59.4 (0.5) 58.3 (0.3) 59.9 (0.1) 59.8 (0.3)
Average 70.04 (0.10) 70.06 (0.09) 69.48 (0.11) 69.87 (0.07) 69.76 (0.10)

Table 2: RoBERTa-base AUC results with 50% of the dataset pruned. Compared to the unpruned
results, AL does better relative to random on average, but the improvement is not consistent across
all datasets. A side-by-side comparison with Table 1 for BatchBALD can be found in Appendix C.

examples in the pool U and calculating the mean (“confidence”) and variance (“variability”) of the
probability the model assigned to the correct label for that example during training. We then sort the
examples by the product of confidence and variability and prune the lowest 50%3. Of course, this
could not be done in a real-world scenario because it requires using the labels for the entire pool, but
it is a useful way to gain insight into the behavior of AL.

Results are in Table 2, and show mixed results on the relative performance of AL vs random selection.
The best AL method in our original experiments (BatchBALD-MC, Table 1) wins over random on the
same number of data sets with pruning as without (7), and pruning only improves AL’s relative gap
with random on 6 of the 11 datasets. Other AL methods show qualitatively similar behavior. We also
note that the change in absolute performance across the different datasets, with many datasets getting
worse and only four (AGN-SB-c, CODAH, CSQA, and DBpedia-c) showing consistent improvements.
This result suggests that collective outliers may not fully explain the poor performance of AL on
some datasets, or at least that pruning based on confidence and variability is not always sufficient to
isolate them.

3.2 MODEL SIZE AND INSTABILITY

Dataset \ Method BatchBALD-MC Entropy Coreset Random
AGN-c 88.7 (0.3) 87.3 (0.5) 87.3 (0.1) 88.0 (0.2)
aNLI 64.0 (0.4) 60.5 (0.4) 64.5 (0.4) 64.8 (0.3)
MRP-c 80.0 (0.9) 78.0 (0.8) 84.3 (0.5) 85.1 (0.6)
MRS-c 93.5 (0.5) 90.8 (0.7) 94.9 (0.1) 94.9 (0.1)
SWAG 68.0 (0.3) 66.6 (0.3) 69.3 (0.2) 69.8 (0.4)
Average 78.83 (0.24) 76.65 (0.24) 80.05 (0.13) 80.53 (0.16)

Table 3: RoBERTa-large AUC results. AL does substantially worse than random for most datasets.
Due to the much greater computational cost of this model, BALD is omitted and only a subset of
datasets are reported.

Dataset \ Method BatchBALD-MC Entropy Coreset Random
AGN-c 89.4 (0.1) 89.2 (0.1) 87.9 (0.1) 88.6 (0.1)
aNLI 68.2 (0.3) 65.8 (0.2) 68.1 (0.2) 68.1 (0.3)
MRP-c 87.2 (0.4) 87.0 (0.3) 86.9 (0.3) 87.1 (0.3)
MRS-c 96.4 (0.1) 95.9 (0.2) 95.7 (0.1) 95.6 (0.1)
SWAG 71.0 (0.3) 69.1 (0.2) 70.6 (0.1) 71.8 (0.2)
Average 82.44 (0.12) 81.41 (0.11) 81.84 (0.08) 82.23 (0.10)

Table 4: RoBERTa-large AUC results using the convex hull of each learning curve. AL does much
better here compared to Table 3, suggesting that training instability was a large factor in its previous
failures.

3An ablation with 25% pruning can be found in Appendix C
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Compared to most previous studies where AL has been effective for language tasks, the models we use
have many more trainable parameters. To test whether model size may be a contributor to AL’s poor
performance, we evaluate the much larger RoBERTa-large (3x more parameters than RoBERTa-base)
in Table 3, but limit this experiment to a subset of datasets due to the high computational cost of the
model.
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Figure 1: Averaged learning curves for SWAG and MRS with RoBERTa-large. Bars represent
standard error. Best viewed in color.

The results show that AL is substantially less effective for the larger model. In fact, for BatchBALD
and Entropy, RoBERTa-large shows more negative impact from AL than RoBERTa-base across
all five datasets we evaluate in this experiment. The average difference between BatchBALD and
Random is -1.7 for RoBERTa-large but +0.4 for RoBERTa-base (for the same datasets). One reason
for this is an increased frequency of degenerate training runs for RoBERTa-large when using AL,
which have unusually low accuracy (often no better than guessing) and manifest in Figure 1 as points
that dip sharply below the global trend of the learning curve and have high variance. For example,
most results in the second half of the learning curve for SWAG are above 68% accuracy, but with AL
several runs randomly drop to anywhere from 25-67%.

Such degenerate cases with large transformers are well-known (Devlin et al., 2019). But the substantial
increase in failed training runs when using AL leads us to believe that AL methods select sets of
examples that amplify the instability of the optimization process, which we define here as the variance
in test set accuracy observed when training multiple models (with different random seeds) on the
same set of data. The increased instability means that the selected examples are not necessarily
harmful as the collective outlier theory suggests (because not all training runs fail), but instead are
potentially useful examples that are hard to learn from effectively.

Correcting for these failed training runs is hard for two reasons: (1) they are frequent enough that it
would be computationally prohibitive for us to re-run all of them with different random seeds until
getting a success, as in previous work (Devlin et al., 2019; Porada et al., 2019), and (2) the model
does not always degrade to random-label performance, meaning a threshold would need to be chosen
for what consitutes a “failure”, and this choice may affect the conclusions.

To roughly approximate how well the model could do if it did not have these optimization failures,
we consider the area under the convex hull of the learning curves instead of including all points, and
display the results in Table 4. This substantially improves AL relative to random and suggests that the
increased frequency of failed training runs is the main culprit for the poor performance of AL. Because
the learning curve of accuracy vs dataset size is generally convex, our convex hull approximation
is an underestimate of what we would expect if we actually achieved the best optimization that the
model could reasonably achieve with the selected data.

To a lesser extent, we find evidence of AL-induced instability on RoBERTa-base as well. Figure 2
shows some of the learning curves from the Table 1 results, and while they are much less noisy than
the RoBERTa-large table, it still qualitatively appears that AL has more noise than random on the
datasets where AL loses. Quantitatively, we compute the average difference between the convex hull
AUC and the normal AUC, which serves to estimate the level of instability in the absence of repeated
trials on the same data. On the datasets where AL loses, BatchBALD’s average difference (2.04) is
larger than Random’s (1.80), whereas on datasets where AL wins the average differences are equal
(0.77). That is, AL shows greater instability on the losses than on the wins, suggesting that instability
may play a role in the failures.
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Figure 2: Averaged learning curves for SWAG, MRS-c and CODAH with RoBERTa-base. Bars
represent standard error. Best viewed in color.

3.3 MULTI-TRAINING ROBERTA-BASE

Multi-training Original (from Table 1)
Dataset \ Method BatchBALD-MC Random BatchBALD-MC Random
AGN-c 87.5 (0.3) 87.0 (0.1) 87.5 (0.2) 86.6 (0.2)
aNLI 59.5 (0.2) 59.7 (0.1) 58.9 (0.2) 58.8 (0.2)
CODAH 59.0 (0.8) 58.7 (0.4) 58.5 (0.3) 59.0 (0.6)
CSQA 44.6 (0.3) 45.2 (0.2) 43.9 (0.4) 43.8 (0.2)
DBpedia-SB-c 98.9 (0.0) 98.8 (0.0) 98.9 (0.0) 98.8 (0.1)
HellaSWAG 40.1 (0.1) 39.7 (0.2) 38.5 (0.2) 38.7 (0.2)
MRP-c 84.5 (0.1) 83.7 (0.2) 83.3 (0.2) 83.0 (0.3)
MRS-c 95.3 (0.1) 94.2 (0.1) 95.3 (0.1) 94.0 (0.2)
PIQA 56.7 (0.2) 57.1 (0.3) 55.9 (0.2) 56.8 (0.3)
SWAG 63.8 (0.3) 64.1 (0.2) 62.7 (0.2) 63.5 (0.2)
Average 68.99 (0.10) 68.84 (0.07) 68.32 (0.07) 68.30 (0.09)

Table 5: Multi-trained RoBERTa-base AUC results with 5 trainings per point on the learning curve.
Original results from Table 1 are reprinted for comparison. Absolute numbers are significantly better
with multi-training but relative results are mixed.

Because RoBERTa-base is several times smaller than RoBERTa-large, it is feasible to do a more
thorough investigation of the impact of instability by training multiple times on each collected dataset
along each learning curve to ensure that we get a well-optimized model (”multi-training”). We repeat
our experiments with BatchBALD and random sampling, training the model 5 times after each batch
acquisition and picking the best on the dev set to use both for evaluation and for selecting the next
batch from the pool. Results are reported in Table 5.

We find that multi-training improves BatchBALD relative to random on all of the datasets where
BatchBALD underperformed random in Table 1. However, the improvements are small enough to
attribute to noise in some cases, and in some of the cases where BatchBALD previously outperformed
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random, it became relatively worse after multi-training. We conclude from this that the effect of
instability on smaller models is less pronounced than on larger models.

Finally, we note that the effects of multi-training are similar to those of pruning in Table 2; for
example, both substantially improve AL on CODAH and slightly worsen it on CSQA. However,
multi-training improves the absolute performance across almost all results (p < 10−4 for a related-
sample t-test), whereas pruning mostly reduces it (p < 0.02). Multi-training should improve accuracy
if instability is an issue, but there is no reason to believe it helps the model to ignore collective
outliers in the training set. Thus, the fact that a similar improvement to pruning can be achieved by
multi-training without pruning suggests that instability is a distinct (but complementary) phenomenon
from collective outliers.

3.4 OTHER ABLATIONS

Although instability appears to largely explain poor AL performance on large models and collective
outliers explain it on some datasets, there are several datasets for which AL still fails to outperform
random on RoBERTa-base even after attempting to correct for these effects. In this section, we
investigate a variety of alternative hypotheses for the results we observed.

3.4.1 QUESTION FORMAT

Dataset \ Method Entropy Coreset Random
RoBERTa (base)
aNLI-c 50.9 (0.2) 51.8 (0.1) 53.1 (0.1)
CODAH-c 59.9 (0.5) 60.0 (0.2) 60.3 (0.5)
HellaSWAG-c 51.2 (0.2) 54.0 (0.1) 51.8 (0.2)
PIQA-c 50.3 (0.1) 50.6 (0.1) 50.5 (0.1)
SWAG-c 63.9 (0.4) 65.0 (0.1) 64.3 (0.6)
Average 55.22 (0.13) 56.29 (0.06) 55.98 (0.15)
BERT (base)
aNLI-c 50.3 (0.1) 50.3 (0.1) 50.8 (0.1)
SWAG-c 59.3 (0.4) 60.4 (0.2) 59.5 (0.3)
Average 54.81 (0.20) 55.38 (0.12) 55.15 (0.17)

Table 6: AUC results for classification versions of multiple-choice datasets. Compared to Table 1,
AL relatively improves on some datasets and worsens on others vs random, with no clear pattern.
BALD and BatchBALD are omitted here due to their high cost.

In Table 1, we see that AL typically performs better on the text classification datasets than the
commonsense reasoning ones. One difference between these tasks is the kind of language competency
they attempt to evaluate, but another is simply their format: the text classification datasets require
choosing one of a fixed set of (typically two) labels, whereas the multiple-choice tasks require
selecting which of multiple (question-specific) passages is correct. We investigate this confound by
creating text classification versions of the multiple-choice datasets, where each text classification
example is the multiple-choice prompt concatenated with one answer choice and the classification
task is to determine if the given answer is correct. For multiple-choice tasks with more than two
answer choices, we subsample the resulting dataset to balance the number of positive and negative
examples.

The results, displayed in Table 6, do not show a consistent effect of question format on AL. SWAG
and CODAH in the text classification format appear to get a bigger boost from AL than in the
multiple-choice format, but aNLI does slightly worse and HellaSWAG and PIQA stay roughly the
same. We conclude that the trend observed in Table 1 may have more to do with the typical types of
reasoning used by classification vs. multiple-choice datasets than with the format used to present
them to the model.

3.4.2 ADVERSARIAL FILTERING

A possible explanation for the failure of AL on commonsense reasoning tasks compared to text
classification is that many of the multiple-choice datasets are adversarially filtered Bras et al. (2020).
This means questions that a baseline model gets right in cross-validation are removed during dataset
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construction, which may have a similar effect to AL and cancel out the benefit. The adversarially-
filtered datasets are aNLI, SWAG, CODAH, PIQA, and HellaSWAG, which together make up the
majority of cases where AL fails in our experiments.

To probe the effect of filtering, we obtained the unfiltered version of aNLI from its authors. The
Entropy, Coreset, and Random methods resulted in AUC values of 78.3 (0.2), 79.8 (0.3), and 80.8
(0.2) respectively (due to the large size, running BALD was not feasible). Perhaps surprisingly, this is
no better than the result with the filtered dataset, suggesting that adversarial filtering does not explain
the poor performance of AL.

3.4.3 PRETRAINING

Dataset \ Method BatchBALD-MC Entropy Coreset Random
AGN-c 87.8 (0.2) 87.3 (0.2) 87.1 (0.2) 87.3 (0.2)
AGN-SB-c 97.8 (0.1) 98.0 (0.0) 97.5 (0.0) 97.1 (0.1)
aNLI 52.9 (0.1) 52.3 (0.1) 52.3 (0.1) 52.8 (0.1)
CODAH 48.3 (0.4) 44.8 (0.6) 47.7 (0.6) 48.1 (0.7)
CSQA 29.1 (0.4) 28.4 (0.3) 27.6 (0.2) 28.5 (0.2)
DBpedia-SB-c 99.1 (0.0) 99.1 (0.0) 99.1 (0.0) 99.0 (0.0)
HellaSWAG 29.9 (0.3) 29.0 (0.3) 30.4 (0.3) 29.8 (0.3)
MRP-c 80.5 (0.2) 79.7 (0.3) 77.5 (0.4) 80.3 (0.4)
MRS-c 94.5 (0.1) 94.3 (0.1) 92.5 (0.1) 93.2 (0.1)
PIQA 52.6 (0.3) 52.6 (0.2) 52.6 (0.2) 52.3 (0.2)
SWAG 60.6 (0.4) 56.0 (0.4) 58.2 (0.4) 60.4 (0.2)
Average 66.63 (0.08) 65.58 (0.09) 65.70 (0.08) 66.26 (0.09)

Table 7: BERT-base AUC results.

Previous studies have found that model regularization (Munjal et al., 2020) and semi-supervised
training (Chan et al., 2021) can reduce the effectiveness of AL, so we investigate whether unsupervised
pre-training may have a similar effect. Using a randomly-initialized model unfortunately produces
random-baseline performance in all cases, so we instead use BERT-base for comparison. Because
BERT and RoBERTa have the same architecture but RoBERTa uses much more pretraining data
(roughly 10x), we expect that if pretraining reduces AL effectiveness then RoBERTa should benefit
less from AL than BERT. The results for BERT are reported in Table 7, and by comparing them to
the RoBERTa results in Table 1 we see that BERT generally gets better relative performance with
BatchBALD, worse with Coreset, and about the same with Entropy. This suggests that the effect of
pretraining varies between methods. We suspect that the reason Coreset does better with RoBERTa
may be related to better pretraining producing better embeddings with which to construct the core-set.
We also note that the benefit from BatchBALD on any individual dataset is generally small and not
significant, but due to its consistency across datasets we find a significant (p < 0.008) difference in
the average performance vs Random in a related-sample t-test.

3.4.4 ANNOTATION BATCH SIZE

As an additional ablation, we consider the possibility that the annotation batch size |∆L| is critical to
the success of AL, and the necessary batch size is simply too small to be feasible for large models,
because computation cost is inversely proportional to the batch size. To test this, we run experiments
with batch size 12 instead of 25 for the AGN and SWAG datasets in Table 8, and find that using a
batch size of 12 produces a similar result to a batch size of 25.

Dataset \ Method Entropy Random
AGN-c 87.3 (0.3) 86.1 (0.2)
SWAG 59.7 (0.2) 62.6 (0.2)

Table 8: RoBERTa-base AUC results with |∆L| = 12. Overall results are slightly lower than in
Table 1, likely due to the extra point on the learning curve where dataset size is 12, but the differences
between AL and random are roughly unchanged.
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4 RELATED WORK

Many AL methods have been proposed. Many use some estimate of model uncertainty as a heuristic
for useful examples; this includes model ensemble agreement (Prabhu et al., 2019), Monte Carlo
dropout (Gal & Ghahramani, 2016), and a variety of simpler methods such as entropy of the model
output (Settles, 2009). Others have found that encouraging diversity can be more robust, particularly
in the context of deep learning (Sener & Savarese, 2018; Sinha et al., 2019). AL has been found to
be effective in multiple domains, including computer vision (Gal et al., 2017) and natural language
processing (Siddhant & Lipton, 2018).

Despite its successes, recent work has found several cases where the benefit of AL seems to disappear.
Munjal et al. (2020) finds that model regularization overlaps with the gain from AL, with better-
regularized models having higher task performance but receiving no benefit from AL. Several studies
(Mittal et al., 2019; Chan et al., 2021; Siméoni et al., 2019) have found that self-supervised and
semi-supervised learning can have a similar effect, improving model performance but failing to stack
with boosts from AL. Lowell et al. (2019) finds that the benefits of AL on text classification tasks
often do not transfer between models.

Unlike the work mentioned above, our focus is on evaluating AL with large pretrained Transformer
language models. Previous results have shown that AL can be effective for certain pretrained
transformers on text classification tasks Lu & MacNamee (2020); Ein-Dor et al. (2020). Our results
qualitatively agree with the prior work when we evaluate on the same datasets and models, but we
show how AL becomes far less effective when moving to larger and better-performing pretrained
models or richer commonsense reasoning tasks.

Similar to our results, Karamcheti et al. (2021) recently found a negative result for AL in the domain
of visual question-answering, and discovered that the effect was largely explained by “unlearnable”
collective outliers that the model often fails on even during training. However, we find that applying
their pruning technique to our ten datasets and using recent batch-aware AL methods (Kirsch et al.,
2019) yields mixed results, suggesting that the impact of collective outliers may vary by dataset.

Finally, with regard to the instability of large transformers, Liu et al. (2020) find that the position of
layernorm relative to residual connections in transformer layers can cause instability by amplifying
the effects of small parameter perturbations. This may be related to the effects we observe, as in
some sense AL selects examples that maximally change the model, making it more susceptible to
this effect. Further investigating this and applying the proposed Admin initialization technique to
resolve the instability is an interesting avenue for future work.

5 CONCLUSION

We have investigated active learning (AL) with large pretrained Transformers on a variety of tasks
not covered by previous experiments, finding that AL offers poor and inconsistent performance in
many cases. We identify a novel explanation for some of these failures in the case of large models: an
increase in instability, as evidenced by e.g. a much higher frequency of cases where RoBERTa-large
fails to converge. Attempting to resolve the instability by selecting the best of multiple trainings on
each selected dataset behaves similarly to an outlier-pruning technique from prior work in terms of
relative performance between AL and random, but with higher absolute performance. This suggests
that multiple trainings may be a preferable approach for studying AL compared to pruning, as it
allows measurements in a more practically relevant (higher-performing) setting. Finally, a variety
of other ablations suggest that factors such as acquisition batch size, adversarial filtering, and input
format are not responsible for the suboptimal behavior of AL, and the effects of greater model
pretraining are inconsistent between AL methods.

Several issues remain to be addressed in future work. Some experiments are limited due to high
computational cost, so a more exhaustive investigation of whether further improvements in model
optimization would enable AL to outperform random in all cases remains a task for future work. In
addition, tests with a wider range of models and model sizes would be valuable for confirming the
generality of these findings. Lastly, we hope our findings will enable the development of improved
active learning and optimization algorithms that do not suffer from the drawbacks we discovered.
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A HYPERPARAMETERS

Parameter Value
Learning rate 2e-5
Adam warmup steps 150
Batch size 16
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.98
Weight decay 0.01

Table 9: Transformer hyperparameters

Transformer models were fine-tuned for a fixed 1,000 steps, evaluating on the dev set every 100 steps
and using the checkpoint with best dev accuracy to obtain the final test set accuracy. We found from
preliminary experiments that the hyperparameters in Table 9 generally worked well on all models and
datasets. The learning rate followed a sloped triangular schedule, warming up over the first several
steps and then linearly decreasing until the end of training. The maximum sequence length for models
was set per-dataset based on the length of input texts. In general it was set so that at least 99% of
examples fit completely within the sequence length, and those that did not fit were pruned.

For BALD, the number of Monte Carlo dropout samples was set to 5, and we found in preliminary
experiments on CSQA and MRP that increasing the number of samples to 20 did not substantially
improve results. We performed the Monte Carlo dropout using the normal dropout probabilities in the
dropout layers of the models (generally 0.1); increasing the dropout probabilities to 0.5 (just for the
BALD step, not model training) added noise due to the large number of dropout layers and actually
caused performance to slightly decrease in our preliminary tests.

The experiments were run on servers with Nvidia RTX 2080 Ti and GTX 1080 gpus. We estimate
that all reported experiments together represent about 3,000 gpu-hours for an RTX 2080 Ti.

Our experiments are implemented using Pytorch (Paszke et al., 2019) and code is available in the
supplementary material. We used version 2.4.1 of the HuggingFace Transformers library (Wolf et al.,
2020), which has a small bug in the RoBERTa implementation. Testing two of our datasets with a
newer version suggests that this doesn’t change our conclusions.

B DATASET SIZES

See Table 10.

C PRUNING LEVEL

For our main experiments we pruned the 50% of examples most likely to be collective outliers, as
that threshold is what appeared to work best in the work of Karamcheti et al. (2021). However, as we
did not find pruning to be as effective as in that work, we also tried a 25% threshold with just one AL
method (BatchBALD) to see if the pruning threshold made a difference. The results are displayed in
Table 11. We observe that both the relative gain from AL and the absolute performance fall between
the corresponding numbers for 0% and 50% on average, and therefore conclude that while the pruning
threshold could be adjusted to trade relative and absolute gains, it would not produce a boost in both
at once across our datasets.

D LABEL BUDGET

We primarily focus on a low-budget setting in this work, but it is interesting to consider how
performance might improve with more labels. In Table 12 we show the results of experiments with
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Dataset Train Dev Test
AGN-SB-c 2000 2500 5000
DBpedia-SB-c 2000 2000 2000
CODAH 2376 100 200
CODAH-c 4752 200 400
CSQA 9141 300 1221
MRP-c 8614 512 1024
MRS-c 9000 500 500
PIQA 14113 1000 1838
PIQA-c 28226 2000 3676
HellaSWAG 39905 1000 8042
HellaSWAG-c 65198 1988 15508
SWAG 65354 4096 20006
AGN-c 100000 5000 10000
SWAG-c 130708 8192 40012
aNLI 150000 1036 1532
aNLI-c 300000 2072 3064

Table 10: Dataset sizes. “Train” is the set we used as the unlabeled pool for active learning. Note
also that the numbers add up to slightly less than the official sizes of these datasets, as we held out
some additional data that ultimately went unused in this work.

0% pruned (from Table 1) 25% pruned 50% pruned (from Table 2)
Dataset \ Method BatchBALD-MC Random BatchBALD-MC Random BatchBALD-MC Random
AGN-c 87.5 (0.2) 86.6 (0.2) 87.0 (0.2) 86.6 (0.2) 85.4 (0.3) 84.6 (0.3)
AGN-SB-c 97.4 (0.0) 96.7 (0.1) 97.4 (0.1) 96.8 (0.1) 97.5 (0.1) 96.9 (0.1)
aNLI 58.9 (0.2) 58.8 (0.2) 58.1 (0.1) 58.4 (0.1) 57.4 (0.1) 57.5 (0.2)
CODAH 58.5 (0.3) 59.0 (0.6) 58.9 (0.5) 60.2 (0.5) 59.2 (0.4) 58.4 (0.6)
CSQA 43.9 (0.4) 43.8 (0.2) 45.8 (0.3) 45.2 (0.3) 46.0 (0.2) 46.1 (0.2)
DBPedia-c 98.9 (0.0) 98.8 (0.1) 99.1 (0.0) 99.0 (0.1) 99.1 (0.0) 99.0 (0.0)
HellaSWAG 38.5 (0.2) 38.7 (0.2) 37.4 (0.4) 37.2 (0.4) 35.7 (0.5) 35.7 (0.3)
MRP-c 83.3 (0.2) 83.0 (0.3) 82.6 (0.2) 81.8 (0.2) 80.2 (0.3) 79.0 (0.6)
MRS-c 95.3 (0.1) 94.0 (0.2) 95.0 (0.1) 94.0 (0.1) 94.9 (0.1) 94.1 (0.2)
PIQA 55.9 (0.2) 56.8 (0.3) 55.8 (0.3) 56.2 (0.2) 55.7 (0.3) 56.1 (0.3)
SWAG 62.7 (0.2) 63.5 (0.2) 61.1 (0.2) 60.7 (0.3) 59.4 (0.5) 59.8 (0.3)
Average 70.96 (0.07) 70.88 (0.08) 70.75 (0.08) 70.54 (0.08) 70.06 (0.09) 69.76 (0.10)

Table 11: Roberta-base with different levels of pruning.
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Q=1000, |∆L|=50 Q=500, |∆L|=25 (from Table 1)
Dataset \ Method BatchBALD-MC Random BatchBALD-MC Random
AGN-c 88.6 (0.1) 88.2 (0.1) 87.5 (0.2) 86.6 (0.2)
AGN-SB-c 97.7 (0.1) 97.3 (0.1) 97.4 (0.0) 96.7 (0.1)
aNLI 60.4 (0.2) 60.5 (0.2) 58.9 (0.2) 58.8 (0.2)
CODAH 62.6 (0.4) 62.1 (0.4) 58.5 (0.3) 59.0 (0.6)
CSQA 47.8 (0.4) 47.7 (0.2) 43.9 (0.4) 43.8 (0.2)
DBpedia-SB-c 99.1 (0.0) 99.1 (0.0) 98.9 (0.0) 98.8 (0.1)
HellaSWAG 41.2 (0.1) 41.2 (0.1) 38.5 (0.2) 38.7 (0.2)
MRP-c 85.6 (0.1) 84.5 (0.3) 83.3 (0.2) 83.0 (0.3)
MRS-c 95.8 (0.1) 95.2 (0.0) 95.3 (0.1) 94.0 (0.2)
PIQA 57.7 (0.1) 57.4 (0.3) 55.9 (0.2) 56.8 (0.3)
SWAG 65.7 (0.3) 65.8 (0.2) 62.7 (0.2) 63.5 (0.2)
Average 72.92 (0.06) 72.63 (0.07) 70.96 (0.07) 70.88 (0.08)

Table 12: RoBERTa-base AUC results with Q = 1000 and |∆L| = 50. Original results from Table 1
are reprinted for comparison. AL has higher relative performance on the results with greater label
budget and batch size.

budget Q=1000 and batch size4 |∆L|=50. The results show that a higher budget generally results in
better relative AL performance. This result is encouraging, as it suggests the instability of AL-selected
datasets is mitigated simply by collecting more labels. Of course, it does not help in cases where the
labels are costly and the budget cannot easily be increased, so an interesting question for future work
is how to determine the minimum viable label budget needed for AL to become effective.

4Unfortunately we cannot avoid changing multiple variables here, as either the batch size or the number of
batches must increase when we use a larger budget. Due to our earlier batch size ablation we consider it unlikely
that the batch size plays a large role, and generally attribute the results here to the budget increase.
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