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Abstract

Given the interest recent research showed to-
wards cognitive modeling of ERPs, we ex-
plored whether traditional word-level features
such as position, word frequency, and num-
ber of strokes overlap with probability-based
metrics such as surprisal, entropy, and entropy
reduction. Analyzing and comparing different
generalized linear models we found that the
mathematical metrics do represent the same
information as some of the "traditional" fea-
tures overpowering them. A new cognitive-
motivated computational feature is proposed.

1 Introduction

Advancements in eyetracking and EEG technolo-
gies have enabled the investigation of the psycho-
logical and cognitive dynamics of linguistic do-
mains, such as reading (Just et al., 1982; Bizas
et al., 1999) and listening (Friederici, 2002), as
well as tasks like lexical decision and elicitation
(Kuperman et al., 2013; Ganushchak et al., 2011).
For example, syntactic anomalies often lead to in-
creased fixations (and regressions) on the disam-
biguation area of a sentence (Meseguer et al., 2002).
Similarly, semantic mismatches can induce a longer
reading time for unexpected items (Rayner et al.,
2004). Furthermore, brain activity modulates in
response to specific words or sounds, reflecting
as event-related potentials (ERPs) that arise in re-
sponse to specific events at a time windows, such
as 400 or 600 ms from the onset of the stimulus.
N400 is typically associated with cognitive over-
load during semantic integration, stemming from
low semantic coherence between a word and its
preceding context (Berkum et al., 1999) or the low
frequency of the target term (Rugg, 1990). N400
modulation is thus dependent on both word-level
features, such as word frequency, and the sentence-
word relationship, namely the contextual likelihood
of a word. This latter aspect has been modeled us-
ing metrics from the domain of information theory,

such as surprisal, entropy, and entropy reduction.
These metrics can be computed using probability
distribution provided by language models (Hale,
2016). Recent studies have used these computa-
tional techniques to model reading times (Lowder
et al., 2018; Salicchi et al., 2023) and ERP ampli-
tudes (Michaelov et al., 2024; Hollenstein et al.,
2023; Frank et al., 2013). However, the individual
contributions of these features are still overlooked.
Previous works have focused on only a single fea-
ture (Frank and Aumeistere, 2023) or, when using
multiple metrics together in cognitive modeling,
failed to provide psycholinguistic explanations for
their results based on the interplay between the
features (Van Schijndel and Linzen, 2021).

Thus, we aim to i) investigate the separate con-
tribution of "traditional" features (i.e., word fre-
quency, word complexity, and word position within
a sentence), and probability-based metrics (i.e., sur-
prisal, entropy, and entropy reduction), ii) examine
overlapping functions between these two groups of
features, and within the computational metrics, and
iii) propose a new feature based on both probability
and psycholinguistic observations. Furthermore,
while most literature focuses on English or alpha-
betic languages, our experiments are focused on
Chinese, using data from Jap et al. (2024)

2 Related Work

Van Schijndel and Linzen (2021) investigated the
cognitive basis of reading behavior in garden-path
sentences. They proposed a one-stage account of
syntactic disambiguation, where the shift in the
probability distribution of multiple, parallel parses
explains the longer reading times in disambigua-
tion regions of the garden-path sentences. They im-
plemented and compared linear models to predict
reading times using word frequency, word length,
word position within the sentence, surprisal, en-
tropy, and entropy reduction. Their results showed



that probability-based computational features sta-
tistically significantly contribute to predicting the
presence of syntactic ambiguity, but not its magni-
tude. However, they treated surprisal, entropy, and
entropy reduction as equivalent metrics, limiting
the discussion to a mere performance comparison.
Other studies have successfully modeled reading
times and ERP amplitudes, such as N400, us-
ing computational probability metrics, particularly
surprisal. Frank and Aumeistere (2023) success-
fully modeled N400 amplitude recorded alongside
with eyetracking data during naturalistic reading of
Dutch sentences. They created linear mix-effects
regression models using word frequency, word
length, word position, and surprisal of the word
given the previous context, finding a significant role
of surprisal in predicting the amplitude of N400.
This work inspired our study regarding the features,
models, and metrics in computational modeling.
However, we focused on a Sinitic language, Man-
darin Chinese, extended Frank and Aumeistere’s
idea by employing entropy and entropy reduction,
and attempted to provide a deeper explanation of
each regression feature’s contribution to computa-
tional prediction.

3 Method

3.1 Data

We adopted the full set of items used in Jap et al.
(2024), which contains 38 participants’ ERP record-
ings of comprehending 280 sentences in Mandarin
Chinese. Each sentence contains about 12 to 14
words, as shown in (1).

() A RHAARRRI R A, DEGA K
Hll A% R IR L1k A& 2 - “In a trip organized by
the school, Xiaoting’s getting hurt by a rock made
everyone worried.’

Given the different goals of the original study
and the current one, customized event lists were
created to compute ERPs for each word. The EEG
data was re-referenced to the two mastoid elec-
trodes, and the bad channels were interpolated. We
then followed the typical ERP data filtering proce-
dure by using a high-pass filter with a 0.1Hz cutoff
frequency for data preprocessing. N400 was com-
puted using the classical 300-500 ms window and,
following Frank and Aumeistere (2023), included
only signals from Cz, C3, C4, CP1, CP2, Pz, P3,
and P4.

3.2 Model

We implemented and compared 127 generalized
linear models, using N400 amplitude as the de-
pendent variable and different combinations of 7
word-level features and computational metrics as
independent variables (details below in 3.2.1).

3.2.1 Features

The first group of independent variables are
word-level psycholinguistically motivated features:
Number of strokes (n. strokes): Since all the
words in our materials were two syllables, in-
stead of using word length, we used the num-
ber of strokes of characters of each word to de-
fine the word complexity. We retrieved the num-
ber of strokes for each character from hanziDB'.
Word frequency (word_freq): Computed using
the Python library wordfreq.”

Position: Computed as the number of words pre-
ceding the target one.

The second group of variables contains com-
putational metrics extracted by using the Chinese
version of BERT base (Devlin et al., 2018). Specif-
ically, we fed each sentence to the model, substitut-
ing the target word with the special token [MASK].
We then passed the word of interest as the only
candidate for the targets parameter to obtain its
probability given the preceding context.

Surprisal represents the extent to which the reader
expects a certain word given the previous context.
It is computed as the negative logarithm of the
probability of the word given the preceding tokens.

surprisal(wy) = —log(P(wy|wo, w1, ..., Wp—1))

Entropy: represents the general extent to which
the reader expects a certain word. It is computed
as the negative product of the probability distribu-
tion of the target word over the vocabulary and the
logarithm of such a probability. In this case, no
previous context was provided to BERT.

H(w) = —P(w) * logP(w)

Entropy reduction (ent. reduct.): represents the
influence of context in modulating the expectations
in encountering a certain word. It is computed as
the difference between the target word’s general
entropy and the word’s entropy given the previous
context.

Ent.Reduct. = H(w) — H(w|wo, ...wp—1)

"http://hanzidb.org/
*https://github.com/rspeer/wordfreq/



Cosine: represents the similarity between the ex-
pected word, given the context, and the word being
read. We used the BERT masking mechanism to
select the word most likely to appear in the target
word’s position, compute the vector representation
of both the target word and the candidate?, and then
computed the cosine similarity between the two em-
beddings using the cosine_similarity function of

sklearn®.

4 Results and Discussion

Single-feature models. Firstly, we examine the
main effects of each feature on predicting N400 am-
plitude. As shown in Table 1, the number of strokes,
position, cosine, and entropy reduction are signifi-
cant predictors of N400 amplitude. The model’s in-
tercept alone shows significance for surprise, word
frequency, and entropy. At this stage, both tradi-
tional word-level features (number of strokes, word
frequency, and position) and computational metrics
seem good predictors for the target value.

We then compared the single feature models
using the corrected Akaike information criterion
(AICc). The model employing position only was
the one with the lowest score, followed - with a
substantial deviation of 103 - by the model relying
on cosine, and entropy reduction (Table 1). These
results suggest that position may have a prime
role in modulating the N400 response, a finding
consistent with psycholinguistic studies where
word position within a sentence is a significant
factor in reading processing.

Model Interc. | Feat. | AICc A
position <2e-16 | <0.01 | 6818.91 0.00
cosine 0.52 0.01 6922.09 103.18
ent.red. <2e-16 | 0.03 | 6923.42 104.51
n.strokes | <2e-16 | 0.03 6923.54 104.63
word freq. | <2e-16 | 0.19 | 6926.51 107.60
surprisal <2e-16 | 0.59 | 6927.92 109.01
entropy <2e-16 | 0.67 | 6928.03 109.13

Table 1: Performance of the single models. P-values for
the intercept of the models, p-values for the target fea-
tures, AICc and differences in AICc values are reported.

Full model. Our second analysis included all 7
features in a full model. As shown in Table 2, only
position, surprisal, and entropy were significant

3The last layer of BERT was used to obtain the vectors.
*https://scikit-learn.org/

Feature | p-value | Estimate | Std. Err.
(Intercept) | <0.01 -20.430 0.615
word_freq | 0.539 -0.009 0.015
n. strokes | 0.454 0.006 0.008
position <2e-16 | 0.282 0.025
Surprisal | 0.002 -0.042 0.014
cosine 0.571 -0.321 0.567
entropy 0.024 -22.960 10.214
ent_reduct | 0.148 -0.749 0.518

Table 2: P-value, estimate, and standard error of the
features within the full model.

in predicting the ERP amplitude. If the signifi-
cance of position is not surprising, given the single-
model performance, the relevance of surprisal and
entropy was not as obvious. These findings led us
to speculate that surprisal and entropy not only do
not (completely) overlap in the information they
represent but also provide unique information be-
yond what is captured by the number of strokes and
word frequency. Moreover, the close relationship
between number of strokes and word frequency,
and therefore their tendency to be both overridden
by surprisal in the full model, is explainable by
Zipf’s law, stating that simpler words (in our case,
characters composed of a lower number of strokes)
are used more frequently.

Interaction between traditional & computa-
tional metrics. To test the relationship between
word frequency, number of strokes, and compu-
tational metrics, we created two sets of models
with interacting features (number of strokes & each
computational metric or word frequency & com-
putational metrics). The number of strokes (Table
5 in Appendix) showed a significant interaction
only with cosine and entropy reduction. The sig-
nificance of number of strokes in the single-feature
model and its lack of significance in the full model
and interacting models suggests that the traditional
feature is overpowered by surprisal and entropy.
Similarly, word frequency interacts significantly
with entropy and entropy reduction, indicating in-
formation sharing with surprisal and cosine simi-
larity (Table 6 in Appendix). This suggests that the
number of strokes is partially overridden by sur-
prise and entropy, while word frequency is mostly
influenced by surprise.

Interactions between computational metrics.

We examined whether the computational metrics
overlap with each other. Surprisal (Table 7 in Ap-



pendix) successfully interacts with cosine similar-
ity only, thus having no fruitful interaction with the
other two probability-based metrics, entropy and
entropy reduction. These findings, together with
the analysis of the full model (Table 2), where both
surprisal and entropy were found to be significant
predictors, suggest that both metrics are valuable
in their main effect, but their similar calculation
methods might limit their joint contribution in pre-
diction models. Similarly, entropy reduction did
not show significant interaction with other compu-
tational metrics. Theoretically, entropy reduction
expresses how the context influences the expecta-
tions about a word’s occurrence, and it thus should
bring different information than surprisal or en-
tropy. However, for the way it is mathematically
expressed it may be seen as a hybrid, as a bridge be-
tween surprisal and entropy, since it includes both
the probability of the word over the vocabulary (as
entropy) and the probability of the item given the
context (surprisal).

Best model(s). In the fifth step of our investiga-
tion, we considered all the possible models without
feature interaction, from simple one-feature ones
to the full one employing all 7 features. Relying
on AICc, we explored which models best predicted
N400 amplitude. Focusing on the top 5 models
with the lowest AICc (Table 3), it is clear that sur-
prisal, entropy, and position are constantly present
in all the best models, followed by entropy reduc-
tion (3/5), cosine (2/5), and number of strokes (1/5).
Overall, although with a very limited difference in

AICc Delta_AICc
S+P+E+ER 6775.82 0.00
S+P+E 6775.89 0.06
S+P+C+E+ER 6777.52 1.70
S+NS+P+E+ER | 6777.53 1.71
S+P+C+E 6777.55 1.72

Table 3: AICc of all models. Top 5 reported. S = sur-
prisal, P = position, E = entropy, ER = entropy reduction,
C = cosine, NS = number of strokes.

terms of AICc, the best model was the one em-
ploying surprisal, position, entropy, and entropy
reduction. These findings confirm some elements
we noticed with the previous analyses: i) position
is the only traditional feature that is not overridden
by mathematical metrics, ii) therefore, probability-
based metrics seem not only to overlap but to give
more information than word-level features, iii) sur-
prisal and entropy are independent in the informa-

tion they bring.

Checking the significance of the features within
the best model we notice that entropy reduction
is not statistically significant (Table 4). The best
model outperforms the one having surprisal, posi-
tion, and entropy by only 0.06 AICc points, con-
firming our speculation that the contribution of en-
tropy reduction partially overlaps with the informa-
tion brought by entropy and surprisal.

Cosine similarity. We finally focused on the per-

Feature p-value | Estimate | Std. Err.
(Intercept) <2e-16 | -2.366 0.121
Surprisal <0.01 0.290 0.023
position <2e-16 | -0.042 0.012
entropy 0.002 -26.647 8.382
ent. reduct. | 0.151 -0.745 0.517

Table 4: P-value, estimate, and standard error of the
features within the best model.

formance and contribution of the proposed feature.
From what we already noticed, cosine appears in
two of the top 5 best performing models, revealing
its potential. We then analyzed its interaction pat-
terns (Table 10 in Appendix): cosine successfully
interacts with number of strokes, position, surprisal,
and entropy, while its joint contribution with word
frequency and entropy reduction does not seem
beneficial. These observations revealed how the
new approach is both theoretically and technically
valid: it takes into account the previous context,
the semantics of both the expected word and the
input one, and the difference between the two. This
is achieved without mathematically explicitly rely-
ing on likelihood, making "cosine" suitable to be
used in bigger models together with other metrics.
Moreover, as shown in Table 1, the cosine simi-
larity model outperforms the other computational
metrics, proving how the proposed approach suc-
cessfully models the cognitive dynamics beneath
the elicitation of an N400 response.

5 Conclusion

The results of our analyses showed how traditional
features such as number of strokes and word fre-
quency overlap with - and are overpowered by -
surprisal and entropy, and surprisal and cosine re-
spectively in predicting N400 amplitude in Chinese
sentences.



6 Limitations

To ensure a proper multilingual comparison be-
tween our findings and the ones presented in our
study of reference, i.e., Frank and Aumeistere
(2023), our next step will be i) the employment
of a linear mix-effects regression model, instead
of a generalized linear model, ii) repeat our analy-
sis using English, Dutch, Mandarin Chinese, and
Indonesian. Also, it would be interesting to in-
vestigate how the features we focused on in this
paper interact in the prediction of a different ERP,
namely P600, which is typically related to syntac-
tic processing, instead of semantic one as N400, or
with other neurocognitive data, like eye-tracking or
fMRI.
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A Appendix

Table 6: Word frequency interacting with other features
in word_freq*feat models.

Features p-value
surprisal:n_strokes | 0.856
surprisal:word_freq | 0.820
surprisal:position 1.48e-05 ***
surprisal:cosine 1.46e-07 ***
surprisal:entropy 0.298
surprisal:ent_reduct | 0.16512

Table 7: Surprisal interacting with other features in
surprisal*feat models.

Features p-value
n_strokes:word_freq | 0.19102
n_strokes:position 8.57e-13  ***
n_strokes:surprisal 0.856
n_strokes:cosine 0.0249 *
n_strokes:entropy 0.630
n_strokes:ent_reduct | 0.0898 Features p-value
ent_reduct:n_strokes | 0.0898
Table 5: Number of strokes interacting with other fea- ent_reduct:word_freq | 0.00601  **
tures in n_strokes*feat models. ent_reduct:position 0.927
ent_reduct:surprisal 0.16512
ent_reduct:cosine 0.101320
Features p-value ent_reduct:entropy 0.5377
word_freq:n_stokes 0.19102
word_freq:surprisal 0.820 Table 9: Entropy reduction interacting with other fea-
word_freq:position 4.96e-16 *** tures in ent_red*feat models.
word_freq:cosine 0.469
word_{freq:entropy 3.39e-05  Fx*
word_freq:ent_reduct | 0.00601  **

Feature p-value
cosine:n_stokes 0.0249 *

Features p-value cosine:word_freq | 0.469
entropy:n_strokes | 0.630 cosine:position 1.46e-06
entropy:word_freq | 3.39e-05  #** cosine:surprisal 1.46e-07  ***
entropy:position 1.65e-08  #* cosine:entropy 0.004107 **
entropy:surprisal 0.298 cosine:ent_reduct | 0.101320
CNTOPY:COSInG 0.004107 =+ Table 10: Cosine similarity interacting with other fea-
entropy:ent_reduct | 0.5377 tures in cosine*feat models.

Table 8: Entropy interacting with other features in en-
tropy*feat models.
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