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Abstract
Given the interest recent research showed to-001
wards cognitive modeling of ERPs, we ex-002
plored whether traditional word-level features003
such as position, word frequency, and num-004
ber of strokes overlap with probability-based005
metrics such as surprisal, entropy, and entropy006
reduction. Analyzing and comparing different007
generalized linear models we found that the008
mathematical metrics do represent the same009
information as some of the "traditional" fea-010
tures overpowering them. A new cognitive-011
motivated computational feature is proposed.012

1 Introduction013

Advancements in eyetracking and EEG technolo-014

gies have enabled the investigation of the psycho-015

logical and cognitive dynamics of linguistic do-016

mains, such as reading (Just et al., 1982; Bizas017

et al., 1999) and listening (Friederici, 2002), as018

well as tasks like lexical decision and elicitation019

(Kuperman et al., 2013; Ganushchak et al., 2011).020

For example, syntactic anomalies often lead to in-021

creased fixations (and regressions) on the disam-022

biguation area of a sentence (Meseguer et al., 2002).023

Similarly, semantic mismatches can induce a longer024

reading time for unexpected items (Rayner et al.,025

2004). Furthermore, brain activity modulates in026

response to specific words or sounds, reflecting027

as event-related potentials (ERPs) that arise in re-028

sponse to specific events at a time windows, such029

as 400 or 600 ms from the onset of the stimulus.030

N400 is typically associated with cognitive over-031

load during semantic integration, stemming from032

low semantic coherence between a word and its033

preceding context (Berkum et al., 1999) or the low034

frequency of the target term (Rugg, 1990). N400035

modulation is thus dependent on both word-level036

features, such as word frequency, and the sentence-037

word relationship, namely the contextual likelihood038

of a word. This latter aspect has been modeled us-039

ing metrics from the domain of information theory,040

such as surprisal, entropy, and entropy reduction. 041

These metrics can be computed using probability 042

distribution provided by language models (Hale, 043

2016). Recent studies have used these computa- 044

tional techniques to model reading times (Lowder 045

et al., 2018; Salicchi et al., 2023) and ERP ampli- 046

tudes (Michaelov et al., 2024; Hollenstein et al., 047

2023; Frank et al., 2013). However, the individual 048

contributions of these features are still overlooked. 049

Previous works have focused on only a single fea- 050

ture (Frank and Aumeistere, 2023) or, when using 051

multiple metrics together in cognitive modeling, 052

failed to provide psycholinguistic explanations for 053

their results based on the interplay between the 054

features (Van Schijndel and Linzen, 2021). 055

Thus, we aim to i) investigate the separate con- 056

tribution of "traditional" features (i.e., word fre- 057

quency, word complexity, and word position within 058

a sentence), and probability-based metrics (i.e., sur- 059

prisal, entropy, and entropy reduction), ii) examine 060

overlapping functions between these two groups of 061

features, and within the computational metrics, and 062

iii) propose a new feature based on both probability 063

and psycholinguistic observations. Furthermore, 064

while most literature focuses on English or alpha- 065

betic languages, our experiments are focused on 066

Chinese, using data from Jap et al. (2024) 067

2 Related Work 068

Van Schijndel and Linzen (2021) investigated the 069

cognitive basis of reading behavior in garden-path 070

sentences. They proposed a one-stage account of 071

syntactic disambiguation, where the shift in the 072

probability distribution of multiple, parallel parses 073

explains the longer reading times in disambigua- 074

tion regions of the garden-path sentences. They im- 075

plemented and compared linear models to predict 076

reading times using word frequency, word length, 077

word position within the sentence, surprisal, en- 078

tropy, and entropy reduction. Their results showed 079
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that probability-based computational features sta-080

tistically significantly contribute to predicting the081

presence of syntactic ambiguity, but not its magni-082

tude. However, they treated surprisal, entropy, and083

entropy reduction as equivalent metrics, limiting084

the discussion to a mere performance comparison.085

Other studies have successfully modeled reading086

times and ERP amplitudes, such as N400, us-087

ing computational probability metrics, particularly088

surprisal. Frank and Aumeistere (2023) success-089

fully modeled N400 amplitude recorded alongside090

with eyetracking data during naturalistic reading of091

Dutch sentences. They created linear mix-effects092

regression models using word frequency, word093

length, word position, and surprisal of the word094

given the previous context, finding a significant role095

of surprisal in predicting the amplitude of N400.096

This work inspired our study regarding the features,097

models, and metrics in computational modeling.098

However, we focused on a Sinitic language, Man-099

darin Chinese, extended Frank and Aumeistere’s100

idea by employing entropy and entropy reduction,101

and attempted to provide a deeper explanation of102

each regression feature’s contribution to computa-103

tional prediction.104

3 Method105

3.1 Data106

We adopted the full set of items used in Jap et al.107

(2024), which contains 38 participants’ ERP record-108

ings of comprehending 280 sentences in Mandarin109

Chinese. Each sentence contains about 12 to 14110

words, as shown in (1).111

(1) 在学校组织的郊游途中，小婷被石头112

砸伤的状况让人着急。‘In a trip organized by113

the school, Xiaoting’s getting hurt by a rock made114

everyone worried.’115

Given the different goals of the original study116

and the current one, customized event lists were117

created to compute ERPs for each word. The EEG118

data was re-referenced to the two mastoid elec-119

trodes, and the bad channels were interpolated. We120

then followed the typical ERP data filtering proce-121

dure by using a high-pass filter with a 0.1Hz cutoff122

frequency for data preprocessing. N400 was com-123

puted using the classical 300-500 ms window and,124

following Frank and Aumeistere (2023), included125

only signals from Cz, C3, C4, CP1, CP2, Pz, P3,126

and P4.127

3.2 Model 128

We implemented and compared 127 generalized 129

linear models, using N400 amplitude as the de- 130

pendent variable and different combinations of 7 131

word-level features and computational metrics as 132

independent variables (details below in 3.2.1). 133

3.2.1 Features 134

The first group of independent variables are 135

word-level psycholinguistically motivated features: 136

Number of strokes (n. strokes): Since all the 137

words in our materials were two syllables, in- 138

stead of using word length, we used the num- 139

ber of strokes of characters of each word to de- 140

fine the word complexity. We retrieved the num- 141

ber of strokes for each character from hanziDB1. 142

Word frequency (word_freq): Computed using 143

the Python library wordfreq.2 144

Position: Computed as the number of words pre- 145

ceding the target one. 146

The second group of variables contains com- 147

putational metrics extracted by using the Chinese 148

version of BERT base (Devlin et al., 2018). Specif- 149

ically, we fed each sentence to the model, substitut- 150

ing the target word with the special token [MASK]. 151

We then passed the word of interest as the only 152

candidate for the targets parameter to obtain its 153

probability given the preceding context. 154

Surprisal represents the extent to which the reader 155

expects a certain word given the previous context. 156

It is computed as the negative logarithm of the 157

probability of the word given the preceding tokens. 158

surprisal(wn) = −log(P (wn|w0, w1, ..., wn−1)) 159

Entropy: represents the general extent to which 160

the reader expects a certain word. It is computed 161

as the negative product of the probability distribu- 162

tion of the target word over the vocabulary and the 163

logarithm of such a probability. In this case, no 164

previous context was provided to BERT. 165

H(w) = −P (w) ∗ logP (w) 166

Entropy reduction (ent. reduct.): represents the 167

influence of context in modulating the expectations 168

in encountering a certain word. It is computed as 169

the difference between the target word’s general 170

entropy and the word’s entropy given the previous 171

context. 172

Ent.Reduct. = H(w)−H(w|w0, ...wn−1) 173

1http://hanzidb.org/
2https://github.com/rspeer/wordfreq/
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Cosine: represents the similarity between the ex-174

pected word, given the context, and the word being175

read. We used the BERT masking mechanism to176

select the word most likely to appear in the target177

word’s position, compute the vector representation178

of both the target word and the candidate3, and then179

computed the cosine similarity between the two em-180

beddings using the cosine_similarity function of181

sklearn4.182

4 Results and Discussion183

Single-feature models. Firstly, we examine the184

main effects of each feature on predicting N400 am-185

plitude. As shown in Table 1, the number of strokes,186

position, cosine, and entropy reduction are signifi-187

cant predictors of N400 amplitude. The model’s in-188

tercept alone shows significance for surprise, word189

frequency, and entropy. At this stage, both tradi-190

tional word-level features (number of strokes, word191

frequency, and position) and computational metrics192

seem good predictors for the target value.193

We then compared the single feature models194

using the corrected Akaike information criterion195

(AICc). The model employing position only was196

the one with the lowest score, followed - with a197

substantial deviation of 103 - by the model relying198

on cosine, and entropy reduction (Table 1). These199

results suggest that position may have a prime200

role in modulating the N400 response, a finding201

consistent with psycholinguistic studies where202

word position within a sentence is a significant203

factor in reading processing.204

205

Model Interc. Feat. AICc ∆

position <2e-16 <0.01 6818.91 0.00
cosine 0.52 0.01 6922.09 103.18
ent.red. <2e-16 0.03 6923.42 104.51
n.strokes <2e-16 0.03 6923.54 104.63
word freq. <2e-16 0.19 6926.51 107.60
surprisal <2e-16 0.59 6927.92 109.01
entropy <2e-16 0.67 6928.03 109.13

Table 1: Performance of the single models. P-values for
the intercept of the models, p-values for the target fea-
tures, AICc and differences in AICc values are reported.

Full model. Our second analysis included all 7206

features in a full model. As shown in Table 2, only207

position, surprisal, and entropy were significant208

3The last layer of BERT was used to obtain the vectors.
4https://scikit-learn.org/

Feature p-value Estimate Std. Err.
(Intercept) <0.01 -20.430 0.615
word_freq 0.539 -0.009 0.015
n. strokes 0.454 0.006 0.008
position <2e-16 0.282 0.025
Surprisal 0.002 -0.042 0.014
cosine 0.571 -0.321 0.567
entropy 0.024 -22.960 10.214
ent_reduct 0.148 -0.749 0.518

Table 2: P-value, estimate, and standard error of the
features within the full model.

in predicting the ERP amplitude. If the signifi- 209

cance of position is not surprising, given the single- 210

model performance, the relevance of surprisal and 211

entropy was not as obvious. These findings led us 212

to speculate that surprisal and entropy not only do 213

not (completely) overlap in the information they 214

represent but also provide unique information be- 215

yond what is captured by the number of strokes and 216

word frequency. Moreover, the close relationship 217

between number of strokes and word frequency, 218

and therefore their tendency to be both overridden 219

by surprisal in the full model, is explainable by 220

Zipf’s law, stating that simpler words (in our case, 221

characters composed of a lower number of strokes) 222

are used more frequently. 223

Interaction between traditional & computa- 224

tional metrics. To test the relationship between 225

word frequency, number of strokes, and compu- 226

tational metrics, we created two sets of models 227

with interacting features (number of strokes & each 228

computational metric or word frequency & com- 229

putational metrics). The number of strokes (Table 230

5 in Appendix) showed a significant interaction 231

only with cosine and entropy reduction. The sig- 232

nificance of number of strokes in the single-feature 233

model and its lack of significance in the full model 234

and interacting models suggests that the traditional 235

feature is overpowered by surprisal and entropy. 236

Similarly, word frequency interacts significantly 237

with entropy and entropy reduction, indicating in- 238

formation sharing with surprisal and cosine simi- 239

larity (Table 6 in Appendix). This suggests that the 240

number of strokes is partially overridden by sur- 241

prise and entropy, while word frequency is mostly 242

influenced by surprise. 243

Interactions between computational metrics. 244

We examined whether the computational metrics 245

overlap with each other. Surprisal (Table 7 in Ap- 246
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pendix) successfully interacts with cosine similar-247

ity only, thus having no fruitful interaction with the248

other two probability-based metrics, entropy and249

entropy reduction. These findings, together with250

the analysis of the full model (Table 2), where both251

surprisal and entropy were found to be significant252

predictors, suggest that both metrics are valuable253

in their main effect, but their similar calculation254

methods might limit their joint contribution in pre-255

diction models. Similarly, entropy reduction did256

not show significant interaction with other compu-257

tational metrics. Theoretically, entropy reduction258

expresses how the context influences the expecta-259

tions about a word’s occurrence, and it thus should260

bring different information than surprisal or en-261

tropy. However, for the way it is mathematically262

expressed it may be seen as a hybrid, as a bridge be-263

tween surprisal and entropy, since it includes both264

the probability of the word over the vocabulary (as265

entropy) and the probability of the item given the266

context (surprisal).267

Best model(s). In the fifth step of our investiga-268

tion, we considered all the possible models without269

feature interaction, from simple one-feature ones270

to the full one employing all 7 features. Relying271

on AICc, we explored which models best predicted272

N400 amplitude. Focusing on the top 5 models273

with the lowest AICc (Table 3), it is clear that sur-274

prisal, entropy, and position are constantly present275

in all the best models, followed by entropy reduc-276

tion (3/5), cosine (2/5), and number of strokes (1/5).277

Overall, although with a very limited difference in

AICc Delta_AICc
S+P+E+ER 6775.82 0.00
S+P+E 6775.89 0.06
S+P+C+E+ER 6777.52 1.70
S+NS+P+E+ER 6777.53 1.71
S+P+C+E 6777.55 1.72

Table 3: AICc of all models. Top 5 reported. S = sur-
prisal, P = position, E = entropy, ER = entropy reduction,
C = cosine, NS = number of strokes.

278
terms of AICc, the best model was the one em-279

ploying surprisal, position, entropy, and entropy280

reduction. These findings confirm some elements281

we noticed with the previous analyses: i) position282

is the only traditional feature that is not overridden283

by mathematical metrics, ii) therefore, probability-284

based metrics seem not only to overlap but to give285

more information than word-level features, iii) sur-286

prisal and entropy are independent in the informa-287

tion they bring. 288

Checking the significance of the features within 289

the best model we notice that entropy reduction 290

is not statistically significant (Table 4). The best 291

model outperforms the one having surprisal, posi- 292

tion, and entropy by only 0.06 AICc points, con- 293

firming our speculation that the contribution of en- 294

tropy reduction partially overlaps with the informa- 295

tion brought by entropy and surprisal. 296

Cosine similarity. We finally focused on the per-

Feature p-value Estimate Std. Err.
(Intercept) <2e-16 -2.366 0.121
Surprisal <0.01 0.290 0.023
position <2e-16 -0.042 0.012
entropy 0.002 -26.647 8.382
ent. reduct. 0.151 -0.745 0.517

Table 4: P-value, estimate, and standard error of the
features within the best model.

297
formance and contribution of the proposed feature. 298

From what we already noticed, cosine appears in 299

two of the top 5 best performing models, revealing 300

its potential. We then analyzed its interaction pat- 301

terns (Table 10 in Appendix): cosine successfully 302

interacts with number of strokes, position, surprisal, 303

and entropy, while its joint contribution with word 304

frequency and entropy reduction does not seem 305

beneficial. These observations revealed how the 306

new approach is both theoretically and technically 307

valid: it takes into account the previous context, 308

the semantics of both the expected word and the 309

input one, and the difference between the two. This 310

is achieved without mathematically explicitly rely- 311

ing on likelihood, making "cosine" suitable to be 312

used in bigger models together with other metrics. 313

Moreover, as shown in Table 1, the cosine simi- 314

larity model outperforms the other computational 315

metrics, proving how the proposed approach suc- 316

cessfully models the cognitive dynamics beneath 317

the elicitation of an N400 response. 318

5 Conclusion 319

The results of our analyses showed how traditional 320

features such as number of strokes and word fre- 321

quency overlap with - and are overpowered by - 322

surprisal and entropy, and surprisal and cosine re- 323

spectively in predicting N400 amplitude in Chinese 324

sentences. 325
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6 Limitations326

To ensure a proper multilingual comparison be-327

tween our findings and the ones presented in our328

study of reference, i.e., Frank and Aumeistere329

(2023), our next step will be i) the employment330

of a linear mix-effects regression model, instead331

of a generalized linear model, ii) repeat our analy-332

sis using English, Dutch, Mandarin Chinese, and333

Indonesian. Also, it would be interesting to in-334

vestigate how the features we focused on in this335

paper interact in the prediction of a different ERP,336

namely P600, which is typically related to syntac-337

tic processing, instead of semantic one as N400, or338

with other neurocognitive data, like eye-tracking or339

fMRI.340
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A Appendix423

Features p-value
n_strokes:word_freq 0.19102
n_strokes:position 8.57e-13 ***
n_strokes:surprisal 0.856
n_strokes:cosine 0.0249 *
n_strokes:entropy 0.630
n_strokes:ent_reduct 0.0898 .

Table 5: Number of strokes interacting with other fea-
tures in n_strokes*feat models.

Features p-value
word_freq:n_stokes 0.19102
word_freq:surprisal 0.820
word_freq:position 4.96e-16 ***
word_freq:cosine 0.469
word_freq:entropy 3.39e-05 ***
word_freq:ent_reduct 0.00601 **

Table 6: Word frequency interacting with other features
in word_freq*feat models.

Features p-value
surprisal:n_strokes 0.856
surprisal:word_freq 0.820
surprisal:position 1.48e-05 ***
surprisal:cosine 1.46e-07 ***
surprisal:entropy 0.298
surprisal:ent_reduct 0.16512

Table 7: Surprisal interacting with other features in
surprisal*feat models.

Features p-value
entropy:n_strokes 0.630
entropy:word_freq 3.39e-05 ***
entropy:position 1.65e-08 ***
entropy:surprisal 0.298
entropy:cosine 0.004107 **
entropy:ent_reduct 0.5377

Table 8: Entropy interacting with other features in en-
tropy*feat models.

Features p-value
ent_reduct:n_strokes 0.0898 .
ent_reduct:word_freq 0.00601 **
ent_reduct:position 0.927
ent_reduct:surprisal 0.16512
ent_reduct:cosine 0.101320
ent_reduct:entropy 0.5377

Table 9: Entropy reduction interacting with other fea-
tures in ent_red*feat models.

Feature p-value
cosine:n_stokes 0.0249 *
cosine:word_freq 0.469
cosine:position 1.46e-06 ***
cosine:surprisal 1.46e-07 ***
cosine:entropy 0.004107 **
cosine:ent_reduct 0.101320

Table 10: Cosine similarity interacting with other fea-
tures in cosine*feat models.
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