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Abstract

Artificial intelligence (AI) shows immense promise in medical imaging, yet its
diagnostic performance varies significantly across different modalities. This dis-
crepancy is highlighted by the "ultrasound paradox," where Al achieves superior
performance on comparatively lower-quality ultrasound images (AUROC 0.94)
while struggling with high-resolution, complex modalities like MRI (reported ac-
curacy as low as 0%). This suggests that performance is not dictated by image
quality alone but by a complex interplay between the data’s intrinsic properties
and the structural limitations of current Al architectures. This paper provides a
deep-dive analysis of this performance gap by systematically reviewing literature
on static, high-contrast (CT, MRI) and dynamic, low-contrast (X-ray, ultrasound)
modalities. We investigate the root causes, attributing them to a mismatch between
the information type provided by a modality (e.g., spatio-temporal data in ultra-
sound) and the architectural constraints of dominant AI models like Convolutional
Neural Networks (CNNs), such as their limited receptive fields and difficulty in
processing temporal features. As a practical solution, we propose a multi-stage
"hybrid diagnostic workflow" that strategically combines high-sensitivity Al for
initial screening (using X-ray/ultrasound) with high-specificity Al for confirma-
tion (using CT/MRI). This approach aims to optimize overall diagnostic accuracy
and clinical efficiency. We conclude that the future of medical Al lies not in a
single, universal model but in an integrated, collaborative ecosystem that leverages
the unique strengths of different modalities and Al architectures to create robust,
clinically-relevant solutions.

1 Introduction

Artificial Intelligence (Al) is driving a revolutionary shift in medical imaging, significantly contribut-
ing to enhanced diagnostic accuracy and improved clinical workflows. Deep learning algorithms, in
particular, demonstrate the ability to recognize complex patterns from large-scale datasets, achieving
expert-level diagnostic performance in several domains. A framework developed at UCLA has even
shown that deep learning Al can rapidly achieve clinician-level accuracy in complex medical image
analysis.

The rapid advancement and practical application of medical imaging Al are evidenced by the fact
that approximately 76% of the over 1,000 Al-based medical devices approved by the U.S. FDA are
concentrated in radiology. For instance, large-scale studies have shown that Al assistance in breast
cancer screening can increase cancer detection rates by 20-30%. In prostate cancer diagnosis, Al has
demonstrated the ability to reduce the rate of missed clinically significant lesions from 8% by radiolo-
gists to just 1%. These examples underscore AI’s contribution to improving diagnostic sensitivity
and reading efficiency in real-world clinical settings. While Al has long demonstrated superhuman
capabilities in analyzing structured numerical data, such as blood test results, its application to the

Submitted to 1st Open Conference on Al Agents for Science (agents4science 2025). Do not distribute.



38
39

40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58

59

60

61
62
63
64

65
66
67
68
69
70
71

72
73
74
75
76
77

78

79
80
81
82
83
84
85
86

87
88

unstructured and complex domain of medical imaging reveals a far more nuanced and paradoxical
landscape of performance.

However, a notable issue has emerged: the performance of medical Al varies significantly depending
on the imaging modality. A systematic review revealed that while ultrasound-based Al models
achieved a very high mean Area Under the Receiver Operating Characteristic Curve (AUROC) of
0.94 (95% CI 0.88-1.00), CT and MRI-based models lagged behind at approximately 0.82 (CT:
95% CI10.78-0.86; MRI: 0.71-0.93). More strikingly, a recent evaluation of the latest ChatGPT-4
vision model reported diagnostic accuracies of around 30% for X-ray images and 40% for CT, but
0% for MRI. This "ultrasound paradox''—where the highest performance is observed in a modality
with relatively lower image quality—provides compelling evidence that Al performance cannot be
predicted by physical image quality alone. It raises a fundamental question about what kind of
information Al models learn most effectively and suggests that the performance gap stems not only
from the intrinsic properties of the images but also from the structural limitations of current Al
architectures.

This study aims to systematically analyze the phenomenon of Al performance discrepancy across
imaging modalities, identify its underlying causes, and propose practical solutions. Focusing on the
performance differences between static/high-contrast (CT, MRI) and dynamic/low-contrast (X-ray,
ultrasound) imaging, we explore the limitations of current AI model architectures and the potential
of a hybrid approach to overcome them. Through this analysis, we seek to provide insights that go
beyond technical evaluation to inform the future direction of medical Al development and its clinical
application strategies.

2 Al Performance in Static/High-Contrast Imaging (CT, MRI)

2.1 Al Performance in CT Imaging

CT imaging provides favorable conditions for Al model training with its high spatial resolution
and excellent tissue contrast. Deep Learning Reconstruction (DLR) techniques have demonstrated
superior noise suppression and artifact reduction compared to traditional iterative reconstruction
methods, enhancing image quality while reducing radiation exposure [[1} 2]

For example, GE Healthcare’s *TrueFidelity’ DLR system reconstructs high-quality images with over
50% less radiation, proving effective in detecting liver lesions as small as 0.5 cm. AI’s role in lung
cancer screening is also noteworthy [3, 4]. Recent studies show that Al systems can automatically
track changes in pulmonary nodules across serial CT scans, aiding in the early detection of potentially
malignant nodules and assisting clinicians in diagnosis and treatment planning [5, 6. From an
architectural perspective, the 3D volumetric data from CT is advantageous for CNNs to extract
hierarchical features layer by layer [7].

However, CNNs’ limited local receptive fields make it difficult to capture long-range dependencies,
posing a challenge for understanding complex global anatomical relationships [3} 8, 19]. This suggests
that Transformer-based models, with their ability to capture global context, could serve as a com-
plementary solution. Indeed, in brain tumor MRI analysis, Vision Transformer (ViT) models have
outperformed CNN-based models with over 98% accuracy, highlighting the importance of global
information in precision diagnostics [[10} [11]].

2.2 Al Performance and Limitations in MRI Imaging

MRI is an essential modality for the precise diagnosis of conditions like tumors and brain diseases,
thanks to its excellent soft-tissue contrast and diverse imaging sequences [[12H14]. In specific, well-
defined tasks, Al has shown outstanding performance [15} [16]]. For instance, a ViT-based model
achieved 98.5% accuracy in classifying brain tumors from MRI scans when provided with sufficient
data and optimization [[17, [18]]. Furthermore, Al technology has been developed to reduce the use of
gadolinium-based contrast agents by 80-90% while maintaining diagnostic quality, demonstrating the
potential to synthesize high-quality images from low-dose contrast scans [19,20]. This approach is
significant for improving patient safety and cost-effectiveness.

Nevertheless, the complex, multi-dimensional data structure of MRI remains a challenge for Al
models [21} 22]. The reported 0% diagnostic accuracy of ChatGPT-4 on MRI images underscores
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the failure of current general-purpose Al models to comprehend MRI’s complexity [23}24]. MRI
data, which includes multiple sequences and 3D spatial information, presents a multi-dimensional
problem that is difficult for traditional 2D-centric CNNs to fully capture [25]. This limitation is
tied to the architectural constraints of current Al; while CNNs excel at local pattern recognition,
they are weak in understanding global correlations and integrating temporal/sequential information
[26], which limits their utility in multi-sequence MRI interpretation. Consequently, architectures like
Transformers [27]], 3D-CNNs [28], or their hybrid models are being proposed as more suitable for
MRI analysis [28]].

2.3 Al Performance Factors in Static/High-Contrast Imaging

The generally stable performance of Al in static/high-contrast imaging like CT and MRI can be
attributed to several factors:

Structural Consistency: Human anatomical structures appear in relatively predictable and consistent
forms in CT and MRI, creating feature maps that are easy for CNNs to learn.

High Signal-to-Noise Ratio (SNR): Low noise and clear contrast between tissues make it easier for
Al models to distinguish features, enhancing sensitivity even for small lesions.

Standardized Acquisition Protocols: The relatively standardized and repeatable examination
protocols for CT and MRI ensure consistency in training data, which improves the generalizability of
the learned patterns.

Utilization of 3D Spatial Information: CT, in particular, provides 3D volumetric data, allowing
models like 3D-CNNSs to leverage spatial context between adjacent slices to improve diagnostic
accuracy.

Thanks to these advantages, the average AUROC for CT-based Al models is reported to be around
0.82 [29], with performance comparable to specialists in tasks like tumor detection and organ
segmentation [30]. While MRI performance varies by task, Al has shown expert-level results in
fields like neuroimaging [31]], though generalizability remains an area for improvement due to the
aforementioned structural complexity [32].

3 Al Performance in Dynamic/Low-Contrast Imaging (X-ray, Ultrasound)

3.1 Al Performance and Limitations in X-ray Imaging

X-ray is the most fundamental and widely used medical imaging modality, serving as a primary
examination tool in various fields. Commercial Al-assisted X-ray reading systems are already in use
[33]], with one independent evaluation of the Rayvolve system reporting a sensitivity of 96.4% and a
specificity of 84.4% [34]). This tendency for high sensitivity coupled with somewhat lower specificity
is a typical characteristic of X-ray Al [35]. A large multi-center study showed that Al assistance
improved the AUC for chest X-ray interpretation by approximately 16% (from 0.759 to 0.88) and
reduced reading times.

Key technical challenges for Al in X-ray imaging include:

Overlapping Structures: As a 2D projection of 3D information, X-rays suffer from information loss
due to overlapping anatomical structures. This can confuse models like CNNs that extract features
from local patches and lack global context [36].

Low Soft-Tissue Contrast: The low contrast of soft-tissue lesions makes it difficult for models to
distinguish the boundaries and shapes of subtle abnormalities [I37]].

Variability in Conditions: X-ray acquisition is subject to high variability from patient positioning,
exposure settings, and equipment differences, which can degrade the generalization performance of
trained Al models [38]].

Limitations of Local Processing: Traditional CNNs process images with local filters, making
it difficult to capture widespread abnormalities or relationships between distant regions [39]. To
address this, research is ongoing into Transformer-based global attention models or adding attention
mechanisms to CNNs [40].
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3.2 Superior Al Performance in Ultrasound Imaging

Surprisingly, Al performance in ultrasound imaging has been reported to surpass that of other
modalities. The systematic review previously mentioned found that the average AUROC of 0.94
for ultrasound-based Al was significantly higher than the 0.82 for CT/MRI [41]]. This suggests that
the real-time nature and diverse information in ultrasound images work to AI’s advantage [40]. In
breast cancer diagnosis, for example, a deep learning model named DeepBreastCancerNet achieved a
remarkable classification accuracy of 99.35% using ultrasound images [42].

Success factors for ultrasound Al include:

Utilization of Real-Time Dynamic Information: Ultrasound videos capture temporal changes in
organ movement, lesion morphology, and blood flow signals, providing additional information not
present in static images.

Compensating for Operator Dependency: Al can reduce inter-operator variability by interpreting
images based on a consistent, learned standard, thereby raising the overall quality of diagnoses,
especially for less experienced practitioners.

Immediate Feedback and Interaction: Real-time Al integration can provide immediate alerts for
abnormalities during an examination, guiding the operator to perform additional scans or adjust
angles.

Common technical challenges across dynamic/low-contrast imaging also exist:

Difficulty in Learning Spatio-Temporal Features: Traditional 2D CNNs are ill-equipped to handle
the temporal dimension of dynamic videos [43| |44]]. Hybrid models like CNN-LSTM are being
introduced to address this. For instance, a CNN-LSTM model achieved 97.33% accuracy in predicting
bone fracture healing from a series of X-rays, significantly outperforming a pure CNN [45] 146].

Noise and Artifacts: Ultrasound’s speckle noise and X-ray’s scatter and motion blur can degrade Al
performance. Pre-processing techniques or noise-robust model architectures are essential [47, 48]

Lack of Standardization: The wide variety of equipment, settings, and protocols for ultrasound and
X-ray makes it difficult for an Al model optimized in one institution to perform well in another [38]].
Domain adaptation and federated learning are being explored to overcome this [49].

In summary, Al performance in X-ray and ultrasound is determined by a combination of the physical
limitations of the input data and the structural constraints of current models. The exceptional
performance in ultrasound paradoxically highlights these constraints, revealing the potential of Al to
leverage temporal and multi-dimensional data when properly equipped.

4 A Deeper Look into the Causes of Performance Discrepancy

4.1 Hypothesis 1: The Impact of Physical Image Properties on AI Performance

The hypothesis that the physical and technical characteristics of an imaging modality directly impact
Al performance is supported by numerous observations [S0]. The superiority of static/high-contrast
imaging, such as CT and MRYI, lies in their high information richness, providing clear anatomical
boundaries and relatively low noise [S1}152]], which is advantageous for the local pattern learning of
CNNs[53].

Conversely, the challenges in dynamic/low-contrast imaging stem from physical limitations [54]. The
information loss and low soft-tissue contrast in 2D projected X-rays weaken the signal Al needs to
learn from, increasing uncertainty [S5]. The 30% accuracy of ChatGPT-4 on X-rays starkly illustrates
the negative impact of ambiguous image features [56].

The exceptional performance of ultrasound, however, cannot be explained by traditional image quality
metrics alone. Despite its noise and operator dependency, the vast number of frames and diverse
acoustic information from real-time scanning appear to benefit Al [S7]. This implies that even if
physical image quality is lower, Al performance can be high if the quantity and type of information
are rich and useful for the model.
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4.2 Hypothesis 2: The Role of AI Architectural Limitations

The second hypothesis posits that performance discrepancies arise from the inherent limitations of
the model architectures themselves. CNNs, the mainstream models in medical imaging Al [58 59],
have structural constraints that negatively affect their performance on certain modalities.

First is the issue of CNN’s local receptive field. The area of an image a CNN can "see" at once is
limited by its filter size and depth [4} 60], making it difficult to understand long-range relationships
between distant image regions. This is a disadvantage in images covering large anatomical areas,
where global context is crucial. Transformer-based models, with their self-attention mechanisms,
have the potential to overcome this limitation by integrating global information [61].

Second is the inability to learn temporal or dynamic patterns. CNNs are designed for static 2D
images and cannot capture time-varying patterns in videos like ultrasound or longitudinal image
series [62]. As mentioned, the significant performance boost from using a CNN-LSTM hybrid for
tracking bone healing highlights this deficit [45]].

Third is the complexity of handling multi-dimensional data. For 3D multi-channel data like MRI,
2D CNN s struggle to extract all necessary volumetric features [63]. While 3D-CNNs exist, they
are often limited by high computational costs and data scarcity [64} [65)]. Recently, 3D-specific
Vision Transformers and the development of large-scale "foundation models" for medical imaging
are showing promise in this area.

Recent trends show a move towards hybrid architectures like UTNet, Swin-Unet, and ConvFormer,
which combine the strengths of CNNs (local detail detection) and Transformers (global context
learning) to achieve high performance more efficiently, even in low-data environments [66]]

4.3 An Integrated Understanding of Performance Discrepancies

Synthesizing these two hypotheses, the performance gap across imaging modalities is best understood
as an interaction between the image’s characteristics and the Al model’s structural properties.

Information Richness vs. Information Comprehension: CT/MRI provide physically rich in-
formation, but current models may not fully utilize it [67]]. Conversely, ultrasound may have less
information in terms of resolution but provides it in a form (real-time change) that models can
effectively leverage [68]].

Lack of Modality-Specific Architectures: Most medical Al has been developed using CNNs
optimized for static 2D images. This creates a performance deficit for modalities where 3D or
temporal information is key (MRI, ultrasound) 69, [70].

Data and Generalization: The availability and variability of training data differ by modality [71]].
This directly impacts how well a given architecture can realize its potential performance [72} [73].

Ultimately, the physical limitations of an image can be amplified by the constraints of an Al model, or
in some cases, complemented by them, as seen with ultrasound. This integrated perspective suggests
that the problem should be reframed from "which modality is best?" to "which model is best suited
for the unique characteristics of each modality?"

5 Discussion

5.1 Limitations of Current Research

A review of existing literature reveals several limitations:

Methodological Bias: The vast majority (approx. 98%) of medical imaging Al studies are retrospec-
tive [[74], with a scarcity of prospective studies or randomized controlled trials [75]. This introduces
potential bias and may not reflect real-world clinical effectiveness.

Reporting and Publication Bias: Many studies claim Al performance is equivalent or superior to
clinicians [76,[77], yet less than half (38%) conduct direct comparative evaluations. This suggests a
tendency to publish positive results and potentially overstate claims.
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Lack of Standardization and Reproducibility: Many Al studies fail to adhere to reporting guide-
lines like TRIPOD [[78]], omitting crucial details about data pre-processing and model specifics. This
raises concerns about the reproducibility and reliability of the findings.

5.2 Clinical Significance and Practical Implications

Despite these limitations, the tangible benefits of Al in the clinical setting are undeniable:

Improved Workflow Efficiency: Al integration has been shown to reduce image interpretation time
by an average of 27.20% and workload by 58.48% [79], alleviating the burden on radiologists.

Enhanced Diagnostic Accuracy and Consistency: Al assistance can significantly improve the
performance of less experienced physicians, with one study showing a 24% increase in sensitivity
[80], helping to standardize the quality of care.

Patient Safety and Cost Reduction: Al-driven techniques enable significant reductions in radiation
dose (by over 50%) and contrast agent use (by 80-90%), enhancing patient safety while also reducing
healthcare costs [81} [82]].

5.3 A Practical Solution: The Hybrid Workflow (Hypothesis 3)

Based on our analysis, we propose a hybrid diagnostic workflow that strategically combines Al
systems with complementary strengths. This multi-stage decision-making process is designed to
maximize the advantages of each imaging modality.

Stage 1 — Broad Screening: In the initial phase, low-cost, high-sensitivity AI modalities like X-ray
or ultrasound are used. The focus is on capturing any potential abnormalities and filtering out the
majority of normal cases.

Stage 2 — Precision Diagnosis: Cases flagged in Stage 1 proceed to high-resolution, high-specificity
modalities like CT or MRI. Here, a second Al system focuses on reducing false positives and
accurately characterizing lesions for definitive diagnosis and treatment planning.

Stage 3 — Integrated Decision: A clinician makes the final judgment by integrating the results from
both stages. This multi-modal ensemble approach has been reported to improve accuracy by over
17% compared to single-modality models [83] 84].

Hybrid Diagnostic Workflow

Two-stage Al pipeline combining high-sensitivity screening with high-speci ion; clinician integrates both to finalize the diagnosis

Stage 1 - High itivity AT (X-ray/U Stage 2 — High-specificity AI (CT/MRI) Clinician integration & Final Diagnosis
Goal : Rule-out (Minimize false negatives) Goal : Rule-in (Reduce false positives) Integrates Stage 1+ Stage 2 ouputs
Typical Metrics: Sensitivity t, NPV 1 Typical Metrics: Specificity 1, PPV 1 Considers clinical context
Output : Suspicious? (Yes/No) Output : Lesion characterization & Confidence Makes final diagnosis
Low-cost & fast; Broad coverage Guide treatment; Next steps Prioritizes care; Closes loop

X-ray Al Ultrasound Al CTAI MRI Al
(Screen) (Screen) (Screen) (Screen)

Clinician
(Diagnosis)

IfNOT suspicious:
Report Normal / Routine follow-up

Resources optimization
Fewer unnecessary advanced scans, reduced delays, scalable screening coverage

Figure 1: a proposed hybrid diagnostic workflow.

Stage 1 uses high-sensitivity Al (X-ray/ultrasound) for broad screening, and cases flagged as
suspicious proceed to Stage 2 for precision diagnosis with high-specificity AI (CT/MRI). A clinician
integrates both stages to make the final diagnosis, optimizing resource utilization and reducing
diagnostic delays.
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5.4 Future Research Directions

Future research should focus on enhancing the reliability, efficiency, and applicability of medical
imaging Al:

Explainable AI (XAI): Developing more intuitive and robust XAl techniques (e.g., SHAP, LIME,
Grad-CAM) is crucial to overcome the "black box" nature of deep learning and build clinical trust.

Foundation Models and Multi-modal AI: The development of large-scale foundation models
pre-trained on millions of medical images could mitigate data scarcity issues. Furthermore, multi-
modal Al that integrates imaging with clinical text (e.g., radiology reports) holds great promise for
comprehensive clinical decision support.

Real-time Adaptive Systems: Al systems that can adapt in real-time to patient-specific characteristics
or intra-procedural events are needed. This requires advancements in edge Al and on-device learning.

Sustainable and Accessible Technology: Pairing Al with sustainable hardware, such as helium-free
MRI and portable ultrasound/X-ray devices, can help bridge global healthcare disparities.

Data Sharing and Governance: Privacy-preserving techniques like Federated Learning are essential
for collaborative research. Establishing standardized data formats and performance benchmarks is
also a key task for the research community and regulatory bodies.

6 Conclusion

This study has systematically analyzed the performance discrepancies of Al across different medical
imaging modalities, diagnosing their causes and proposing strategic solutions.

a. Empirical Confirmation of Performance Gaps: We confirmed that Al performance varies
significantly by modality, with ultrasound-based AI showing the highest performance (AUROC 0.94),
followed by CT/MRI (0.82), while X-ray exhibits greater variability.

b. A Complex Interplay of Causes: The performance gap results from a complex interaction
between the physical properties of the images and the structural limitations of current Al architectures,
particularly the constraints of CNNs in handling global and spatio-temporal information.

c. The Promise of a Hybrid Workflow: A hybrid approach that strategically combines the different
strengths of modality-specific Als (high-sensitivity for screening, high-specificity for confirmation)
was proposed as a practical and effective solution.

d. Demonstrated Clinical Value: AI integration has proven its value by improving workflow
efficiency (27% faster interpretation), enhancing diagnostic accuracy (12% sensitivity increase), and
improving patient safety (over 50% radiation dose reduction).

The core contribution of this work is the systematic framing of the Al performance gap through
a logical progression from phenomenon — cause — solution, culminating in the proposal of a
practical hybrid workflow. The future of medical Al lies not in perfecting a single model for one
modality, but in developing an integrated and collaborative ecosystem where Al, clinicians, and
diverse data sources work in concert. Achieving this vision will require continued technological
innovation alongside concerted efforts in clinician education, regulatory adaptation, and ethical
governance.
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Agents4Science Al Involvement Checklist

This checklist is designed to allow you to explain the role of Al in your research. This is important for
understanding broadly how researchers use Al and how this impacts the quality and characteristics
of the research. Do not remove the checklist! Papers not including the checklist will be desk
rejected. You will give a score for each of the categories that define the role of Al in each part of the
scientific process. The scores are as follows:

* [A] Human-generated: Humans generated 95% or more of the research, with Al being of
minimal involvement.

* [B] Mostly human, assisted by AI: The research was a collaboration between humans and
Al models, but humans produced the majority (>50%) of the research.

* [C] Mostly AL assisted by human: The research task was a collaboration between humans
and Al models, but Al produced the majority (>50%) of the research.

* [D] Al-generated: Al performed over 95% of the research. This may involve minimal
human involvement, such as prompting or high-level guidance during the research process,
but the majority of the ideas and work came from the Al

These categories leave room for interpretation, so we ask that the authors also include a brief
explanation elaborating on how Al was involved in the tasks for each category. Please keep your
explanation to less than 150 words.

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al This can also involve whether the idea
was proposed by researchers or by Al

Answer: [B]

Explanation:The initial ideas for the hypotheses were proposed by human researchers, while
the Al evaluated their validity through in-depth research, providing assessments of feasibility
along with supporting scholarly papers.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [B]

Explanation: Human authors lack any knowledge in computer science or engineering, render-
ing them unable to comprehend the experimental designs proposed by the Al. Consequently,
the human authors suggested the experimental designs and research methods, which the Al
subsequently verified.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [A]

Explanation: As the AI did not directly perform coding or data analysis in this paper,
interpretations generated by the Al are not included.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [C]

Explanation: Since some human authors are not native English speakers, Al translation
features were extensively utilized. The human authors continually imposed various require-
ments on the text generated by the Al. For instance, "In our view, our expressions more
accurately reflect our intentions than yours. Therefore, we have revised your expressions
and sentences."

5. Observed AI Limitations: What limitations have you found when using Al as a partner or
lead author?
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Description: In conducting this research in collaboration with Al, we conclude that the
ability to create something from nothing remains a distant goal. Nevertheless, when humans
devoid of specialized expertise propose an idea, the Al employs all available means to
evaluate it by presenting appropriate rationales. We are confident that this represents a
significant advancement in the scientific community, enabling unprecedented innovations
through a single idea, without the need for advanced intelligence or knowledge.
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Agents4Science Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: Papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers and area chairs. You will be asked to also include it (after eventual revisions) with the final
version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided
a proper justification is given. In general, answering " "or "[NA] " is not grounds for rejection.
While the questions are phrased in a binary way, we acknowledge that the true answer is often more
nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix.
If you answer [Yes] to a question, in the justification please point to the section(s) where related
material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s main contributions: the
analysis of Al performance discrepancy across modalities, the investigation of its causes,
and the proposal of a hybrid workflow as a solution. These claims are consistently supported
by the literature review and discussion in the main body.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The "5.1 Limitations of Current Research" subsection within the Discussion
section explicitly addresses the limitations of the existing literature on which this review is
based, such as the predominance of retrospective studies and potential publication bias.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

10
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 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is a review and perspective article; it does not present new theoretical
results or mathematical proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: his paper does not contain original experimental results. All claims are based
on publicly available, cited literature.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This paper does not involve original code or data, as it is a literature review.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper reviews existing studies and does not present its own experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: When citing results from other studies that support our main claims, we have
included statistical information such as 95% confidence intervals (CI) and AUROC values
where available in the source literature.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not report on new experiments, so compute resources are not
applicable.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: This research is based on a review of existing, publicly available literature and
adheres to standard principles of academic integrity and responsible conduct.

Guidelines:
* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses positive societal impacts in the "5.2 Clinical Significance"
section (e.g., improved efficiency, patient safety) and touches upon negative aspects and
ethical considerations in the "Regulatory and Ethical Considerations" subsection (e.g., issues
of bias, privacy, and legal responsibility).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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