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Abstract

Artificial intelligence (AI) shows immense promise in medical imaging, yet its1

diagnostic performance varies significantly across different modalities. This dis-2

crepancy is highlighted by the "ultrasound paradox," where AI achieves superior3

performance on comparatively lower-quality ultrasound images (AUROC 0.94)4

while struggling with high-resolution, complex modalities like MRI (reported ac-5

curacy as low as 0%). This suggests that performance is not dictated by image6

quality alone but by a complex interplay between the data’s intrinsic properties7

and the structural limitations of current AI architectures. This paper provides a8

deep-dive analysis of this performance gap by systematically reviewing literature9

on static, high-contrast (CT, MRI) and dynamic, low-contrast (X-ray, ultrasound)10

modalities. We investigate the root causes, attributing them to a mismatch between11

the information type provided by a modality (e.g., spatio-temporal data in ultra-12

sound) and the architectural constraints of dominant AI models like Convolutional13

Neural Networks (CNNs), such as their limited receptive fields and difficulty in14

processing temporal features. As a practical solution, we propose a multi-stage15

"hybrid diagnostic workflow" that strategically combines high-sensitivity AI for16

initial screening (using X-ray/ultrasound) with high-specificity AI for confirma-17

tion (using CT/MRI). This approach aims to optimize overall diagnostic accuracy18

and clinical efficiency. We conclude that the future of medical AI lies not in a19

single, universal model but in an integrated, collaborative ecosystem that leverages20

the unique strengths of different modalities and AI architectures to create robust,21

clinically-relevant solutions.22

1 Introduction23

Artificial Intelligence (AI) is driving a revolutionary shift in medical imaging, significantly contribut-24

ing to enhanced diagnostic accuracy and improved clinical workflows. Deep learning algorithms, in25

particular, demonstrate the ability to recognize complex patterns from large-scale datasets, achieving26

expert-level diagnostic performance in several domains. A framework developed at UCLA has even27

shown that deep learning AI can rapidly achieve clinician-level accuracy in complex medical image28

analysis.29

The rapid advancement and practical application of medical imaging AI are evidenced by the fact30

that approximately 76% of the over 1,000 AI-based medical devices approved by the U.S. FDA are31

concentrated in radiology. For instance, large-scale studies have shown that AI assistance in breast32

cancer screening can increase cancer detection rates by 20-30%. In prostate cancer diagnosis, AI has33

demonstrated the ability to reduce the rate of missed clinically significant lesions from 8% by radiolo-34

gists to just 1%. These examples underscore AI’s contribution to improving diagnostic sensitivity35

and reading efficiency in real-world clinical settings. While AI has long demonstrated superhuman36

capabilities in analyzing structured numerical data, such as blood test results, its application to the37
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unstructured and complex domain of medical imaging reveals a far more nuanced and paradoxical38

landscape of performance.39

However, a notable issue has emerged: the performance of medical AI varies significantly depending40

on the imaging modality. A systematic review revealed that while ultrasound-based AI models41

achieved a very high mean Area Under the Receiver Operating Characteristic Curve (AUROC) of42

0.94 (95% CI 0.88–1.00), CT and MRI-based models lagged behind at approximately 0.82 (CT:43

95% CI 0.78–0.86; MRI: 0.71–0.93). More strikingly, a recent evaluation of the latest ChatGPT-444

vision model reported diagnostic accuracies of around 30% for X-ray images and 40% for CT, but45

0% for MRI. This "ultrasound paradox"—where the highest performance is observed in a modality46

with relatively lower image quality—provides compelling evidence that AI performance cannot be47

predicted by physical image quality alone. It raises a fundamental question about what kind of48

information AI models learn most effectively and suggests that the performance gap stems not only49

from the intrinsic properties of the images but also from the structural limitations of current AI50

architectures.51

This study aims to systematically analyze the phenomenon of AI performance discrepancy across52

imaging modalities, identify its underlying causes, and propose practical solutions. Focusing on the53

performance differences between static/high-contrast (CT, MRI) and dynamic/low-contrast (X-ray,54

ultrasound) imaging, we explore the limitations of current AI model architectures and the potential55

of a hybrid approach to overcome them. Through this analysis, we seek to provide insights that go56

beyond technical evaluation to inform the future direction of medical AI development and its clinical57

application strategies.58

2 AI Performance in Static/High-Contrast Imaging (CT, MRI)59

2.1 AI Performance in CT Imaging60

CT imaging provides favorable conditions for AI model training with its high spatial resolution61

and excellent tissue contrast. Deep Learning Reconstruction (DLR) techniques have demonstrated62

superior noise suppression and artifact reduction compared to traditional iterative reconstruction63

methods, enhancing image quality while reducing radiation exposure [1, 2]64

For example, GE Healthcare’s ’TrueFidelity’ DLR system reconstructs high-quality images with over65

50% less radiation, proving effective in detecting liver lesions as small as 0.5 cm. AI’s role in lung66

cancer screening is also noteworthy [3, 4]. Recent studies show that AI systems can automatically67

track changes in pulmonary nodules across serial CT scans, aiding in the early detection of potentially68

malignant nodules and assisting clinicians in diagnosis and treatment planning [5, 6]. From an69

architectural perspective, the 3D volumetric data from CT is advantageous for CNNs to extract70

hierarchical features layer by layer [7].71

However, CNNs’ limited local receptive fields make it difficult to capture long-range dependencies,72

posing a challenge for understanding complex global anatomical relationships [3, 8, 9]. This suggests73

that Transformer-based models, with their ability to capture global context, could serve as a com-74

plementary solution. Indeed, in brain tumor MRI analysis, Vision Transformer (ViT) models have75

outperformed CNN-based models with over 98% accuracy, highlighting the importance of global76

information in precision diagnostics [10, 11].77

2.2 AI Performance and Limitations in MRI Imaging78

MRI is an essential modality for the precise diagnosis of conditions like tumors and brain diseases,79

thanks to its excellent soft-tissue contrast and diverse imaging sequences [12–14]. In specific, well-80

defined tasks, AI has shown outstanding performance [15, 16]. For instance, a ViT-based model81

achieved 98.5% accuracy in classifying brain tumors from MRI scans when provided with sufficient82

data and optimization [17, 18]. Furthermore, AI technology has been developed to reduce the use of83

gadolinium-based contrast agents by 80-90% while maintaining diagnostic quality, demonstrating the84

potential to synthesize high-quality images from low-dose contrast scans [19, 20]. This approach is85

significant for improving patient safety and cost-effectiveness.86

Nevertheless, the complex, multi-dimensional data structure of MRI remains a challenge for AI87

models [21, 22]. The reported 0% diagnostic accuracy of ChatGPT-4 on MRI images underscores88
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the failure of current general-purpose AI models to comprehend MRI’s complexity [23, 24]. MRI89

data, which includes multiple sequences and 3D spatial information, presents a multi-dimensional90

problem that is difficult for traditional 2D-centric CNNs to fully capture [25]. This limitation is91

tied to the architectural constraints of current AI; while CNNs excel at local pattern recognition,92

they are weak in understanding global correlations and integrating temporal/sequential information93

[26], which limits their utility in multi-sequence MRI interpretation. Consequently, architectures like94

Transformers [27], 3D-CNNs [28], or their hybrid models are being proposed as more suitable for95

MRI analysis [28].96

2.3 AI Performance Factors in Static/High-Contrast Imaging97

The generally stable performance of AI in static/high-contrast imaging like CT and MRI can be98

attributed to several factors:99

Structural Consistency: Human anatomical structures appear in relatively predictable and consistent100

forms in CT and MRI, creating feature maps that are easy for CNNs to learn.101

High Signal-to-Noise Ratio (SNR): Low noise and clear contrast between tissues make it easier for102

AI models to distinguish features, enhancing sensitivity even for small lesions.103

Standardized Acquisition Protocols: The relatively standardized and repeatable examination104

protocols for CT and MRI ensure consistency in training data, which improves the generalizability of105

the learned patterns.106

Utilization of 3D Spatial Information: CT, in particular, provides 3D volumetric data, allowing107

models like 3D-CNNs to leverage spatial context between adjacent slices to improve diagnostic108

accuracy.109

Thanks to these advantages, the average AUROC for CT-based AI models is reported to be around110

0.82 [29], with performance comparable to specialists in tasks like tumor detection and organ111

segmentation [30]. While MRI performance varies by task, AI has shown expert-level results in112

fields like neuroimaging [31], though generalizability remains an area for improvement due to the113

aforementioned structural complexity [32].114

3 AI Performance in Dynamic/Low-Contrast Imaging (X-ray, Ultrasound)115

3.1 AI Performance and Limitations in X-ray Imaging116

X-ray is the most fundamental and widely used medical imaging modality, serving as a primary117

examination tool in various fields. Commercial AI-assisted X-ray reading systems are already in use118

[33], with one independent evaluation of the Rayvolve system reporting a sensitivity of 96.4% and a119

specificity of 84.4% [34]. This tendency for high sensitivity coupled with somewhat lower specificity120

is a typical characteristic of X-ray AI [35]. A large multi-center study showed that AI assistance121

improved the AUC for chest X-ray interpretation by approximately 16% (from 0.759 to 0.88) and122

reduced reading times.123

Key technical challenges for AI in X-ray imaging include:124

Overlapping Structures: As a 2D projection of 3D information, X-rays suffer from information loss125

due to overlapping anatomical structures. This can confuse models like CNNs that extract features126

from local patches and lack global context [36].127

Low Soft-Tissue Contrast: The low contrast of soft-tissue lesions makes it difficult for models to128

distinguish the boundaries and shapes of subtle abnormalities [37].129

Variability in Conditions: X-ray acquisition is subject to high variability from patient positioning,130

exposure settings, and equipment differences, which can degrade the generalization performance of131

trained AI models [38].132

Limitations of Local Processing: Traditional CNNs process images with local filters, making133

it difficult to capture widespread abnormalities or relationships between distant regions [39]. To134

address this, research is ongoing into Transformer-based global attention models or adding attention135

mechanisms to CNNs [40].136
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3.2 Superior AI Performance in Ultrasound Imaging137

Surprisingly, AI performance in ultrasound imaging has been reported to surpass that of other138

modalities. The systematic review previously mentioned found that the average AUROC of 0.94139

for ultrasound-based AI was significantly higher than the 0.82 for CT/MRI [41]. This suggests that140

the real-time nature and diverse information in ultrasound images work to AI’s advantage [40]. In141

breast cancer diagnosis, for example, a deep learning model named DeepBreastCancerNet achieved a142

remarkable classification accuracy of 99.35% using ultrasound images [42].143

Success factors for ultrasound AI include:144

Utilization of Real-Time Dynamic Information: Ultrasound videos capture temporal changes in145

organ movement, lesion morphology, and blood flow signals, providing additional information not146

present in static images.147

Compensating for Operator Dependency: AI can reduce inter-operator variability by interpreting148

images based on a consistent, learned standard, thereby raising the overall quality of diagnoses,149

especially for less experienced practitioners.150

Immediate Feedback and Interaction: Real-time AI integration can provide immediate alerts for151

abnormalities during an examination, guiding the operator to perform additional scans or adjust152

angles.153

Common technical challenges across dynamic/low-contrast imaging also exist:154

Difficulty in Learning Spatio-Temporal Features: Traditional 2D CNNs are ill-equipped to handle155

the temporal dimension of dynamic videos [43, 44]. Hybrid models like CNN-LSTM are being156

introduced to address this. For instance, a CNN-LSTM model achieved 97.33% accuracy in predicting157

bone fracture healing from a series of X-rays, significantly outperforming a pure CNN [45, 46].158

Noise and Artifacts: Ultrasound’s speckle noise and X-ray’s scatter and motion blur can degrade AI159

performance. Pre-processing techniques or noise-robust model architectures are essential [47, 48].160

Lack of Standardization: The wide variety of equipment, settings, and protocols for ultrasound and161

X-ray makes it difficult for an AI model optimized in one institution to perform well in another [38].162

Domain adaptation and federated learning are being explored to overcome this [49].163

In summary, AI performance in X-ray and ultrasound is determined by a combination of the physical164

limitations of the input data and the structural constraints of current models. The exceptional165

performance in ultrasound paradoxically highlights these constraints, revealing the potential of AI to166

leverage temporal and multi-dimensional data when properly equipped.167

4 A Deeper Look into the Causes of Performance Discrepancy168

4.1 Hypothesis 1: The Impact of Physical Image Properties on AI Performance169

The hypothesis that the physical and technical characteristics of an imaging modality directly impact170

AI performance is supported by numerous observations [50]. The superiority of static/high-contrast171

imaging, such as CT and MRI, lies in their high information richness, providing clear anatomical172

boundaries and relatively low noise [51, 52], which is advantageous for the local pattern learning of173

CNNs[53].174

Conversely, the challenges in dynamic/low-contrast imaging stem from physical limitations [54]. The175

information loss and low soft-tissue contrast in 2D projected X-rays weaken the signal AI needs to176

learn from, increasing uncertainty [55]. The 30% accuracy of ChatGPT-4 on X-rays starkly illustrates177

the negative impact of ambiguous image features [56].178

The exceptional performance of ultrasound, however, cannot be explained by traditional image quality179

metrics alone. Despite its noise and operator dependency, the vast number of frames and diverse180

acoustic information from real-time scanning appear to benefit AI [57]. This implies that even if181

physical image quality is lower, AI performance can be high if the quantity and type of information182

are rich and useful for the model.183
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4.2 Hypothesis 2: The Role of AI Architectural Limitations184

The second hypothesis posits that performance discrepancies arise from the inherent limitations of185

the model architectures themselves. CNNs, the mainstream models in medical imaging AI [58, 59],186

have structural constraints that negatively affect their performance on certain modalities.187

First is the issue of CNN’s local receptive field. The area of an image a CNN can "see" at once is188

limited by its filter size and depth [4, 60], making it difficult to understand long-range relationships189

between distant image regions. This is a disadvantage in images covering large anatomical areas,190

where global context is crucial. Transformer-based models, with their self-attention mechanisms,191

have the potential to overcome this limitation by integrating global information [61].192

Second is the inability to learn temporal or dynamic patterns. CNNs are designed for static 2D193

images and cannot capture time-varying patterns in videos like ultrasound or longitudinal image194

series [62]. As mentioned, the significant performance boost from using a CNN-LSTM hybrid for195

tracking bone healing highlights this deficit [45].196

Third is the complexity of handling multi-dimensional data. For 3D multi-channel data like MRI,197

2D CNNs struggle to extract all necessary volumetric features [63]. While 3D-CNNs exist, they198

are often limited by high computational costs and data scarcity [64, 65]. Recently, 3D-specific199

Vision Transformers and the development of large-scale "foundation models" for medical imaging200

are showing promise in this area.201

Recent trends show a move towards hybrid architectures like UTNet, Swin-Unet, and ConvFormer,202

which combine the strengths of CNNs (local detail detection) and Transformers (global context203

learning) to achieve high performance more efficiently, even in low-data environments [66]204

4.3 An Integrated Understanding of Performance Discrepancies205

Synthesizing these two hypotheses, the performance gap across imaging modalities is best understood206

as an interaction between the image’s characteristics and the AI model’s structural properties.207

Information Richness vs. Information Comprehension: CT/MRI provide physically rich in-208

formation, but current models may not fully utilize it [67]. Conversely, ultrasound may have less209

information in terms of resolution but provides it in a form (real-time change) that models can210

effectively leverage [68].211

Lack of Modality-Specific Architectures: Most medical AI has been developed using CNNs212

optimized for static 2D images. This creates a performance deficit for modalities where 3D or213

temporal information is key (MRI, ultrasound) [69, 70].214

Data and Generalization: The availability and variability of training data differ by modality [71].215

This directly impacts how well a given architecture can realize its potential performance [72, 73].216

Ultimately, the physical limitations of an image can be amplified by the constraints of an AI model, or217

in some cases, complemented by them, as seen with ultrasound. This integrated perspective suggests218

that the problem should be reframed from "which modality is best?" to "which model is best suited219

for the unique characteristics of each modality?"220

5 Discussion221

5.1 Limitations of Current Research222

A review of existing literature reveals several limitations:223

Methodological Bias: The vast majority (approx. 98%) of medical imaging AI studies are retrospec-224

tive [74], with a scarcity of prospective studies or randomized controlled trials [75]. This introduces225

potential bias and may not reflect real-world clinical effectiveness.226

Reporting and Publication Bias: Many studies claim AI performance is equivalent or superior to227

clinicians [76, 77], yet less than half (38%) conduct direct comparative evaluations. This suggests a228

tendency to publish positive results and potentially overstate claims.229
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Lack of Standardization and Reproducibility: Many AI studies fail to adhere to reporting guide-230

lines like TRIPOD [78], omitting crucial details about data pre-processing and model specifics. This231

raises concerns about the reproducibility and reliability of the findings.232

5.2 Clinical Significance and Practical Implications233

Despite these limitations, the tangible benefits of AI in the clinical setting are undeniable:234

Improved Workflow Efficiency: AI integration has been shown to reduce image interpretation time235

by an average of 27.20% and workload by 58.48% [79], alleviating the burden on radiologists.236

Enhanced Diagnostic Accuracy and Consistency: AI assistance can significantly improve the237

performance of less experienced physicians, with one study showing a 24% increase in sensitivity238

[80], helping to standardize the quality of care.239

Patient Safety and Cost Reduction: AI-driven techniques enable significant reductions in radiation240

dose (by over 50%) and contrast agent use (by 80-90%), enhancing patient safety while also reducing241

healthcare costs [81, 82].242

5.3 A Practical Solution: The Hybrid Workflow (Hypothesis 3)243

Based on our analysis, we propose a hybrid diagnostic workflow that strategically combines AI244

systems with complementary strengths. This multi-stage decision-making process is designed to245

maximize the advantages of each imaging modality.246

Stage 1 – Broad Screening: In the initial phase, low-cost, high-sensitivity AI modalities like X-ray247

or ultrasound are used. The focus is on capturing any potential abnormalities and filtering out the248

majority of normal cases.249

Stage 2 – Precision Diagnosis: Cases flagged in Stage 1 proceed to high-resolution, high-specificity250

modalities like CT or MRI. Here, a second AI system focuses on reducing false positives and251

accurately characterizing lesions for definitive diagnosis and treatment planning.252

Stage 3 – Integrated Decision: A clinician makes the final judgment by integrating the results from253

both stages. This multi-modal ensemble approach has been reported to improve accuracy by over254

17% compared to single-modality models [83, 84].255

Figure 1: a proposed hybrid diagnostic workflow.
Stage 1 uses high-sensitivity AI (X-ray/ultrasound) for broad screening, and cases flagged as

suspicious proceed to Stage 2 for precision diagnosis with high-specificity AI (CT/MRI). A clinician
integrates both stages to make the final diagnosis, optimizing resource utilization and reducing

diagnostic delays.
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5.4 Future Research Directions256

Future research should focus on enhancing the reliability, efficiency, and applicability of medical257

imaging AI:258

Explainable AI (XAI): Developing more intuitive and robust XAI techniques (e.g., SHAP, LIME,259

Grad-CAM) is crucial to overcome the "black box" nature of deep learning and build clinical trust.260

Foundation Models and Multi-modal AI: The development of large-scale foundation models261

pre-trained on millions of medical images could mitigate data scarcity issues. Furthermore, multi-262

modal AI that integrates imaging with clinical text (e.g., radiology reports) holds great promise for263

comprehensive clinical decision support.264

Real-time Adaptive Systems: AI systems that can adapt in real-time to patient-specific characteristics265

or intra-procedural events are needed. This requires advancements in edge AI and on-device learning.266

Sustainable and Accessible Technology: Pairing AI with sustainable hardware, such as helium-free267

MRI and portable ultrasound/X-ray devices, can help bridge global healthcare disparities.268

Data Sharing and Governance: Privacy-preserving techniques like Federated Learning are essential269

for collaborative research. Establishing standardized data formats and performance benchmarks is270

also a key task for the research community and regulatory bodies.271

6 Conclusion272

This study has systematically analyzed the performance discrepancies of AI across different medical273

imaging modalities, diagnosing their causes and proposing strategic solutions.274

a. Empirical Confirmation of Performance Gaps: We confirmed that AI performance varies275

significantly by modality, with ultrasound-based AI showing the highest performance (AUROC 0.94),276

followed by CT/MRI (0̃.82), while X-ray exhibits greater variability.277

b. A Complex Interplay of Causes: The performance gap results from a complex interaction278

between the physical properties of the images and the structural limitations of current AI architectures,279

particularly the constraints of CNNs in handling global and spatio-temporal information.280

c. The Promise of a Hybrid Workflow: A hybrid approach that strategically combines the different281

strengths of modality-specific AIs (high-sensitivity for screening, high-specificity for confirmation)282

was proposed as a practical and effective solution.283

d. Demonstrated Clinical Value: AI integration has proven its value by improving workflow284

efficiency (27% faster interpretation), enhancing diagnostic accuracy (12% sensitivity increase), and285

improving patient safety (over 50% radiation dose reduction).286

The core contribution of this work is the systematic framing of the AI performance gap through287

a logical progression from phenomenon → cause → solution, culminating in the proposal of a288

practical hybrid workflow. The future of medical AI lies not in perfecting a single model for one289

modality, but in developing an integrated and collaborative ecosystem where AI, clinicians, and290

diverse data sources work in concert. Achieving this vision will require continued technological291

innovation alongside concerted efforts in clinician education, regulatory adaptation, and ethical292

governance.293
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Agents4Science AI Involvement Checklist294

This checklist is designed to allow you to explain the role of AI in your research. This is important for295

understanding broadly how researchers use AI and how this impacts the quality and characteristics296

of the research. Do not remove the checklist! Papers not including the checklist will be desk297

rejected. You will give a score for each of the categories that define the role of AI in each part of the298

scientific process. The scores are as follows:299

• [A] Human-generated: Humans generated 95% or more of the research, with AI being of300

minimal involvement.301

• [B] Mostly human, assisted by AI: The research was a collaboration between humans and302

AI models, but humans produced the majority (>50%) of the research.303

• [C] Mostly AI, assisted by human: The research task was a collaboration between humans304

and AI models, but AI produced the majority (>50%) of the research.305

• [D] AI-generated: AI performed over 95% of the research. This may involve minimal306

human involvement, such as prompting or high-level guidance during the research process,307

but the majority of the ideas and work came from the AI.308

These categories leave room for interpretation, so we ask that the authors also include a brief309

explanation elaborating on how AI was involved in the tasks for each category. Please keep your310

explanation to less than 150 words.311

1. Hypothesis development: Hypothesis development includes the process by which you312

came to explore this research topic and research question. This can involve the background313

research performed by either researchers or by AI. This can also involve whether the idea314

was proposed by researchers or by AI.315

Answer: [B]316

Explanation:The initial ideas for the hypotheses were proposed by human researchers, while317

the AI evaluated their validity through in-depth research, providing assessments of feasibility318

along with supporting scholarly papers.319

2. Experimental design and implementation: This category includes design of experiments320

that are used to test the hypotheses, coding and implementation of computational methods,321

and the execution of these experiments.322

Answer: [B]323

Explanation: Human authors lack any knowledge in computer science or engineering, render-324

ing them unable to comprehend the experimental designs proposed by the AI. Consequently,325

the human authors suggested the experimental designs and research methods, which the AI326

subsequently verified.327

3. Analysis of data and interpretation of results: This category encompasses any process to328

organize and process data for the experiments in the paper. It also includes interpretations of329

the results of the study.330

Answer: [A]331

Explanation: As the AI did not directly perform coding or data analysis in this paper,332

interpretations generated by the AI are not included.333

4. Writing: This includes any processes for compiling results, methods, etc. into the final334

paper form. This can involve not only writing of the main text but also figure-making,335

improving layout of the manuscript, and formulation of narrative.336

Answer: [C]337

Explanation: Since some human authors are not native English speakers, AI translation338

features were extensively utilized. The human authors continually imposed various require-339

ments on the text generated by the AI. For instance, "In our view, our expressions more340

accurately reflect our intentions than yours. Therefore, we have revised your expressions341

and sentences."342

5. Observed AI Limitations: What limitations have you found when using AI as a partner or343

lead author?344
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Description: In conducting this research in collaboration with AI, we conclude that the345

ability to create something from nothing remains a distant goal. Nevertheless, when humans346

devoid of specialized expertise propose an idea, the AI employs all available means to347

evaluate it by presenting appropriate rationales. We are confident that this represents a348

significant advancement in the scientific community, enabling unprecedented innovations349

through a single idea, without the need for advanced intelligence or knowledge.350
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Agents4Science Paper Checklist351

The checklist is designed to encourage best practices for responsible machine learning research,352

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove353

the checklist: Papers not including the checklist will be desk rejected. The checklist should354

follow the references and follow the (optional) supplemental material. The checklist does NOT count355

towards the page limit.356

Please read the checklist guidelines carefully for information on how to answer these questions. For357

each question in the checklist:358

• You should answer [Yes] , [No] , or [NA] .359

• [NA] means either that the question is Not Applicable for that particular paper or the360

relevant information is Not Available.361

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).362

The checklist answers are an integral part of your paper submission. They are visible to the363

reviewers and area chairs. You will be asked to also include it (after eventual revisions) with the final364

version of your paper, and its final version will be published with the paper.365

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.366

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided367

a proper justification is given. In general, answering "[No] " or "[NA] " is not grounds for rejection.368

While the questions are phrased in a binary way, we acknowledge that the true answer is often more369

nuanced, so please just use your best judgment and write a justification to elaborate. All supporting370

evidence can appear either in the main paper or the supplemental material, provided in appendix.371

If you answer [Yes] to a question, in the justification please point to the section(s) where related372

material for the question can be found.373

1. Claims374

Question: Do the main claims made in the abstract and introduction accurately reflect the375

paper’s contributions and scope?376

Answer: [Yes]377

Justification: The abstract and introduction clearly state the paper’s main contributions: the378

analysis of AI performance discrepancy across modalities, the investigation of its causes,379

and the proposal of a hybrid workflow as a solution. These claims are consistently supported380

by the literature review and discussion in the main body.381

Guidelines:382

• The answer NA means that the abstract and introduction do not include the claims383

made in the paper.384

• The abstract and/or introduction should clearly state the claims made, including the385

contributions made in the paper and important assumptions and limitations. A No or386

NA answer to this question will not be perceived well by the reviewers.387

• The claims made should match theoretical and experimental results, and reflect how388

much the results can be expected to generalize to other settings.389

• It is fine to include aspirational goals as motivation as long as it is clear that these goals390

are not attained by the paper.391

2. Limitations392

Question: Does the paper discuss the limitations of the work performed by the authors?393

Answer: [Yes]394

Justification: The "5.1 Limitations of Current Research" subsection within the Discussion395

section explicitly addresses the limitations of the existing literature on which this review is396

based, such as the predominance of retrospective studies and potential publication bias.397

Guidelines:398

• The answer NA means that the paper has no limitation while the answer No means that399

the paper has limitations, but those are not discussed in the paper.400
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• The authors are encouraged to create a separate "Limitations" section in their paper.401

• The paper should point out any strong assumptions and how robust the results are to402

violations of these assumptions (e.g., independence assumptions, noiseless settings,403

model well-specification, asymptotic approximations only holding locally). The authors404

should reflect on how these assumptions might be violated in practice and what the405

implications would be.406

• The authors should reflect on the scope of the claims made, e.g., if the approach was407

only tested on a few datasets or with a few runs. In general, empirical results often408

depend on implicit assumptions, which should be articulated.409

• The authors should reflect on the factors that influence the performance of the approach.410

For example, a facial recognition algorithm may perform poorly when image resolution411

is low or images are taken in low lighting.412

• The authors should discuss the computational efficiency of the proposed algorithms413

and how they scale with dataset size.414

• If applicable, the authors should discuss possible limitations of their approach to415

address problems of privacy and fairness.416

• While the authors might fear that complete honesty about limitations might be used by417

reviewers as grounds for rejection, a worse outcome might be that reviewers discover418

limitations that aren’t acknowledged in the paper. Reviewers will be specifically419

instructed to not penalize honesty concerning limitations.420

3. Theory assumptions and proofs421

Question: For each theoretical result, does the paper provide the full set of assumptions and422

a complete (and correct) proof?423

Answer: [NA]424

Justification: This paper is a review and perspective article; it does not present new theoretical425

results or mathematical proofs.426

Guidelines:427

• The answer NA means that the paper does not include theoretical results.428

• All the theorems, formulas, and proofs in the paper should be numbered and cross-429

referenced.430

• All assumptions should be clearly stated or referenced in the statement of any theorems.431

• The proofs can either appear in the main paper or the supplemental material, but if432

they appear in the supplemental material, the authors are encouraged to provide a short433

proof sketch to provide intuition.434

4. Experimental result reproducibility435

Question: Does the paper fully disclose all the information needed to reproduce the main ex-436

perimental results of the paper to the extent that it affects the main claims and/or conclusions437

of the paper (regardless of whether the code and data are provided or not)?438

Answer: [NA]439

Justification: his paper does not contain original experimental results. All claims are based440

on publicly available, cited literature.441

Guidelines:442

• The answer NA means that the paper does not include experiments.443

• If the paper includes experiments, a No answer to this question will not be perceived444

well by the reviewers: Making the paper reproducible is important.445

• If the contribution is a dataset and/or model, the authors should describe the steps taken446

to make their results reproducible or verifiable.447

• We recognize that reproducibility may be tricky in some cases, in which case authors448

are welcome to describe the particular way they provide for reproducibility. In the case449

of closed-source models, it may be that access to the model is limited in some way450

(e.g., to registered users), but it should be possible for other researchers to have some451

path to reproducing or verifying the results.452

5. Open access to data and code453
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Question: Does the paper provide open access to the data and code, with sufficient instruc-454

tions to faithfully reproduce the main experimental results, as described in supplemental455

material?456

Answer: [NA]457

Justification: This paper does not involve original code or data, as it is a literature review.458

Guidelines:459

• The answer NA means that paper does not include experiments requiring code.460

• Please see the Agents4Science code and data submission guidelines on the conference461

website for more details.462

• While we encourage the release of code and data, we understand that this might not be463

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not464

including code, unless this is central to the contribution (e.g., for a new open-source465

benchmark).466

• The instructions should contain the exact command and environment needed to run to467

reproduce the results.468

• At submission time, to preserve anonymity, the authors should release anonymized469

versions (if applicable).470

6. Experimental setting/details471

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-472

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the473

results?474

Answer: [NA]475

Justification: This paper reviews existing studies and does not present its own experiments.476

Guidelines:477

• The answer NA means that the paper does not include experiments.478

• The experimental setting should be presented in the core of the paper to a level of detail479

that is necessary to appreciate the results and make sense of them.480

• The full details can be provided either with the code, in appendix, or as supplemental481

material.482

7. Experiment statistical significance483

Question: Does the paper report error bars suitably and correctly defined or other appropriate484

information about the statistical significance of the experiments?485

Answer: [Yes]486

Justification: When citing results from other studies that support our main claims, we have487

included statistical information such as 95% confidence intervals (CI) and AUROC values488

where available in the source literature.489

Guidelines:490

• The answer NA means that the paper does not include experiments.491

• The authors should answer "Yes" if the results are accompanied by error bars, confi-492

dence intervals, or statistical significance tests, at least for the experiments that support493

the main claims of the paper.494

• The factors of variability that the error bars are capturing should be clearly stated495

(for example, train/test split, initialization, or overall run with given experimental496

conditions).497

8. Experiments compute resources498

Question: For each experiment, does the paper provide sufficient information on the com-499

puter resources (type of compute workers, memory, time of execution) needed to reproduce500

the experiments?501

Answer: [NA]502

Justification: This paper does not report on new experiments, so compute resources are not503

applicable.504
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Guidelines:505

• The answer NA means that the paper does not include experiments.506

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,507

or cloud provider, including relevant memory and storage.508

• The paper should provide the amount of compute required for each of the individual509

experimental runs as well as estimate the total compute.510

9. Code of ethics511

Question: Does the research conducted in the paper conform, in every respect, with the512

Agents4Science Code of Ethics (see conference website)?513

Answer: [Yes]514

Justification: This research is based on a review of existing, publicly available literature and515

adheres to standard principles of academic integrity and responsible conduct.516

Guidelines:517

• The answer NA means that the authors have not reviewed the Agents4Science Code of518

Ethics.519

• If the authors answer No, they should explain the special circumstances that require a520

deviation from the Code of Ethics.521

10. Broader impacts522

Question: Does the paper discuss both potential positive societal impacts and negative523

societal impacts of the work performed?524

Answer: [Yes]525

Justification: The paper discusses positive societal impacts in the "5.2 Clinical Significance"526

section (e.g., improved efficiency, patient safety) and touches upon negative aspects and527

ethical considerations in the "Regulatory and Ethical Considerations" subsection (e.g., issues528

of bias, privacy, and legal responsibility).529

Guidelines:530

• The answer NA means that there is no societal impact of the work performed.531

• If the authors answer NA or No, they should explain why their work has no societal532

impact or why the paper does not address societal impact.533

• Examples of negative societal impacts include potential malicious or unintended uses534

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,535

privacy considerations, and security considerations.536

• If there are negative societal impacts, the authors could also discuss possible mitigation537

strategies.538
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