
MoE Jetpack: From Dense Checkpoints to
Adaptive Mixture of Experts for Vision Tasks

Xingkui Zhu∗ Yiran Guan∗ Dingkang Liang Yuchao Chen
Yuliang Liu† Xiang Bai

Huazhong University of Science and Technology
{adlith, yiranguan, dkliang, ylliu, xbai}@hust.edu.cn

Abstract

The sparsely activated mixture of experts (MoE) model presents an effective al-
ternative to densely activated (dense) models, combining improved accuracy with
computational efficiency. However, training MoE models from scratch requires
extensive data and computational resources, a challenge that limits their widespread
adoption. To address this, we introduce MoE Jetpack, a framework designed to
fine-tune the abundant and easily accessible dense checkpoints into MoE models.
MoE Jetpack incorporates two key techniques: (1) checkpoint recycling, which
initializes MoE models with dense checkpoints to accelerate convergence and
enhance accuracy, minimizing the need for extensive pre-training; (2) the hyper-
spherical adaptive MoE (SpheroMoE) layer, which optimizes the MoE architecture
to enhance fine-tuning performance and efficiency. Experimental results indicate
that MoE Jetpack doubles the convergence speed and enhances accuracy by 2.8%
on ImageNet-1K. On smaller datasets, it achieves up to 8-fold faster convergence
and over 30% accuracy gains, highlighting its efficiency. The code is available at
https://github.com/Adlith/MoE-Jetpack.

1 Introduction

Increasing model scale is a key factor in boosting deep learning performance [1, 2, 3]. However,
as models expand in size, their computational demands surge, resulting in considerable slowdowns
during both training and inference phases. A promising approach that decouples model size from
computational costs is the sparsely activated mixture of experts (MoE) [4, 5, 6]. Unlike densely
activated models (referred to as dense models hereafter) [7, 8] that apply all network parameters
to each input, MoE dynamically activates distinct parts of the model based on the input tokens.
This allows for model scaling without substantially increasing the FLOPs2, thereby maintaining
training and inference speeds during model upscaling. Recent advancements have seen successful
implementations of MoE across various domains [11, 12, 13].

Despite their potential, MoE models face significant adoption challenges primarily due to the
lack of pre-trained models. Unlike dense models, which benefit from a vast collection of pre-
trained resources available through platforms such as Hugging Face [14] and Timm [15], most MoE
models must be trained from scratch with randomly initialized weights. This process demands
substantial computational power and large datasets, limiting MoE research to a select few teams
with the necessary resources. Consequently, our research aims to reduce the training time and data

∗Equal contribution. † Corresponding author.
2FLOPs means the floating point operations per second. The vanilla design of MoE does not inherently

provide runtime advantages and requires additional parallelization strategies [9, 10] for acceleration. In our
implementation, we offer an effective matrix multiplication method for parallelization, detailed in Appendix C.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Adlith/MoE-Jetpack

Norm

Attention

MLP
Exp.

Embedded
Patches

Norm

Norm

Attention

Embedded
Patches

Norm

Exp.Exp.

Pre-trained
Dense Model

Sparsely Activated MoE

(a) Equip Dense Checkpoint with MoE Jetpack

MoE
Jetpack

(b) The Performance Comparison on Different Datasets

ImageNet-1k

Food-101

CIFAR-10CIFAR-100

STL-10

Flowers

Pets

DTD
ViT (21k)

Soft MoE

ViT

MoE Jetpack

Figure 1: (a) MoE Jetpack converts dense checkpoints into initialization weights for MoE models,
facilitating faster convergence and improved performance while maintaining equivalent FLOPs. Here,
Exp. represents individual experts, E denotes the number of experts, and L indicates the total number
of layers. (b) Performance comparison among ViT trained from scratch, pre-trained and fine-tuned
ViT, Soft MoE [6] trained from scratch, and MoE Jetpack across multiple datasets.

requirements for MoE models by leveraging the pre-trained knowledge from dense checkpoints.
We will specifically investigate whether utilizing dense checkpoints can enhance the accuracy and
convergence speed of MoE models during fine-tuning.

In this paper, we propose MoE Jetpack, a new approach for fine-tuning pre-trained dense check-
points into MoE models. As illustrated in Fig. 1(a), MoE Jetpack leverages the sunk cost of dense
pre-training to boost MoE performance and expedite convergence. It comprises two key techniques.
Firstly, checkpoint recycling is used to initialize MoE models from dense checkpoints. Unlike
sparse upcycling [16], which simply duplicates the Multilayer Perceptron (MLP) to create experts,
checkpoint recycling utilizes diverse dense checkpoints and strategic weight selection, providing
flexibility and generating higher-quality initialization weights for MoE models. The second tech-
nique is the hyperspherical adaptive MoE (SpheroMoE) layer, which presents an optimized MoE
architecture that facilitates the seamless integration of dense checkpoints and enhances fine-tuning
performance. Existing MoE architectures, such as Switch Transformers [4] and Soft MoE [6], are not
designed to incorporate pre-trained dense checkpoints, often resulting in optimization inefficiencies
and over-specialization during fine-tuning. The SpheroMoE layer mitigates these challenges by nor-
malized token mixing, expert regularization, and adaptive dual-path mechanism, ensuring smoother
integration and improved performance.

By equipping dense checkpoints with MoE Jetpack, as illustrated in Fig. 1(b), the fine-tuned MoE
models achieve significantly higher accuracy. Comprehensive evaluations across various image
classification datasets of different scales further demonstrate the effectiveness of MoE Jetpack. In
summary, our contributions are as follows:

• We introduce checkpoint recycling, which pioneers the sampling of dense checkpoints to initial-
ize MoE experts, enhancing initialization flexibility, diversifying experts, and eliminating the
computational burden of MoE pre-training.

• We develop the spheroMoE layer, optimized for fine-tuning dense checkpoints into MoE architec-
tures, alleviating optimization challenges, and preventing the over-specialization of experts.

2 Background

In this section, we recap the core concepts needed to understand the MoE Jetpack, specifically focusing
on the sparsely activated mixture of experts (MoE) and the routing mechanisms. Existing MoE models
are typically derived from dense Vision Transformer (ViT) by replacing certain multilayer perceptron
(MLP) layers with MoE layers. Each MoE layer consists of a Router function, Router(x; θgate),
which directs input tokens to a set of "experts", where each expert is parameterized as MLP(·; θi).
Although the experts in MoE models are typically similar, the routing mechanisms vary and are
critical to performance. Several routing algorithms have been developed, including top-k [17], BASE
and Sinkhorn-BASE layers [18, 19], Hash layers [20], Expert Choice routing [21], and soft routing [6].

2

The most commonly used mechanism is top-k routing, which reduces computational overhead by
selectively activating only the top-k experts most relevant to the input tokens. The routing decision is
computed as follows:

Router(x; θgate) = top-k (softmax(MLP(x; θgate))) , (1)

and the output is aggregated by combining the contributions of the selected experts:

y = x+
∑
i∈E

Router(x; θgate) · Expert(x; θi), (2)

where θ denotes the weights, E is the set of activated experts, and |E| = K. However, top-k routing
presents challenges such as imbalanced expert utilization, token dropping, and scalability issues.

A more balanced and representative approach, Soft MoE [6], effectively addresses these challenges
through implicit soft assignments and serves as our baseline. Instead of assigning tokens to specific
experts, Soft MoE computes weighted combinations of all input tokens for each expert. Given
the input tokens X ∈ Rm×d, where m is the number of tokens and d is their dimensionality, the
learnable matrix Φ ∈ Rd×(e·s) project the tokens into e× s slots, where e is the number of experts
and s is the number of slots per expert. The projection is calculated as X̃ = softmax(XΦ)⊤X.
Here, X̃ ∈ R(e·s)×d represents the transformed inputs that are weighted combinations of X. Each
MoE layer includes e expert functions {fi : Rd → Rd}ei=1, with each expert handling s slots. The
intermediate outputs Ỹ ∈ R(e·s)×d are obtained by applying the experts to the slots: Ỹi,j = fi(X̃i,j)
for i ∈ {1, . . . , e} and j ∈ {1, . . . , s}. Finally, the output tokens Y ∈ Rm×d are reconstructed by
combining the expert outputs: Y = softmax(XΦ)Ỹ.

3 MoE Jetpack

In this section, we present the overarching concept of the MoE Jetpack. It is divided into two phases:
checkpoint recycling dense checkpoints to initialize MoE models and fine-tuning MoE models using
the hyperspherical adaptive MoE (SpheroMoE) layer.

3.1 Checkpoint Recycling

Checkpoint recycling is a foundational phase in the MoE Jetpack framework, transforming pre-
trained dense checkpoints (predecessors) into high-quality initialization weights (successors) for
MoE models. This approach leverages the rich pre-trained knowledge from predecessors through
weight reuse, boosting the performance and convergence speed of successors. The recycling procedure
involves sampling a portion of the weights from the predecessors’ multilayer perceptrons (MLPs) to
construct experts, ensuring expert diversity and adaptability in expert size to meet varied needs.

To define the process of checkpoint recycling (as illustrated in Fig. 2(a)), consider predecessors with
N layers, where each layer Li has a feature dimension of d and a hidden dimension of 4d. The
object is to transform this predecessor into a successor MoE model S, which also has N layers, each
denoted as L′

i, but with a reduced feature dimension d′ ≤ d. Following the Soft MoE architecture [6],
the successor comprises two segments: a dense part with N1 layers and an MoE part with N2 layers,
where N1 = N2 = N

2 . Formally, the successor model is represented as:

S =
(
{L′

i}
N
2 −1
i=0 , {L′

i}N−1
i=N

2

)
. (3)

Inspired by Weight Selection [22], our recycling process ensures consistency in feature dimensions.
We explore four primary strategies to guide the recycling of checkpoints:

Importance-Based Weight Sampling (default): We select weights across hidden units and feature
dimensions to construct initialization weights for diverse experts. For feature dimension selection,
maintaining consistency across all layers is essential [22]. We achieve this by calculating the mean
output features across the N layers and selecting the top-d′ dimensions based on these averages:

Ō =
1

N

N∑
i=1

Oi, top-d′ = argsort(Ō)[: d′] (4)

3

Layer Norm

Hidden Units
& Dimension

Selection

...

(a) Checkpoints Recycling

...

D
is

pa
tc

h

...

Input
Key

Expert
Query

E Expert

Hypersphere

Input
Tokens

Normlize Similarity

C
om

bi
ne

...... ...

(b) SpheroMoE Layer

Output
Tokens

Layer Norm

E Expert

Drop

softmax for
experts

Similarity
Logits

Attention

softmax for
tokens

Gaussian
Noise

Figure 2: (a) Checkpoint Recycling: Selects hidden units and dimensions from the dense checkpoint
MLP, transforming pre-trained weights into diverse experts to initialize MoE models. (b) SpheroMoE
Layer: Uses cross-attention to dispatch tokens to slots and combine slots back into tokens. Input
tokens are projected as keys, and a random query is initialized to compute token-slot similarity in
hyperspherical space. Experts then process their assigned slots.

where Oi is the output features of layer Li, and Ō ∈ Rn×d is the average output features. For hidden
units, sampling is performed independently for each layer based on the magnitude of activations, as
the arrangement of units does not impact the output. Activation values from batches of images are
used to form a probability distribution, and units are sampled accordingly:

P (h|H) =
Ah∑

h′∈H Ah′
, hsuccessor ∼ P (h|H), |hsuccessor| = 4d′, (5)

where Ah is the activation value of hidden units h, and H is the set of all hidden units. This method
selects the most important weights for the successor model while promoting diversity among experts
through the sampling process.

Co-Activation Graph Partitioning: This strategy groups frequently co-activated hidden units into
one expert. We construct a co-activation graph by counting the co-activations of hidden units in
the testing procedure. Each unit is a vertex in the co-activation graph, and the edges represent their
co-activation frequency. Formally, let G = (V,E) be the co-activation graph, where V represents the
hidden units and E represents edges with weights indicating co-activation counts. Using the Metis
graph partitioning [23], we get several subgraphs:

G =

k⋃
i=1

Gi, Gi = (Vi, Ei), Vi ∩ Vj = ∅ for i ̸= j. (6)

Experts are formed by the combination of sub-graphs. This method leverages the natural grouping of
hidden units, ensuring each expert captures a specific functional subset of the predecessor model.

Uniform Weight Selection: Weights are selected uniformly across dimensions and hidden units. For
a predecessor with feature dimension d and a successor with dimension d′, weights are chosen as:

W (i)
successor = W

(k)
predecessor, k =

⌊
i · d
d′

⌋
, i ∈ {0, . . . , d′ − 1}. (7)

This method ensures an even distribution of the pre-trained weights across the successor MoE.

Random Weight Sampling: Weights are randomly selected from the predecessor model. Let S be a
random subset of feature dimension indices:

S ⊆ 0, . . . , d− 1, |S| = d′. (8)

Then, the weights for the successor are chosen as:

W (i)
successor = W

(j)
predecessor, j ∈ S, i ∈ {0, . . . , d′ − 1}. (9)

4

Through the ablation in Sec. 4.3, Importance-Based Weight Sampling is identified as the default
method for recycling dense checkpoints to initialize MoE models.

Notably, the computational overhead introduced by Checkpoint Recycling is virtually negligible.
Methods such as Random Sampling and Uniform Selection operate with minimal additional pro-
cessing, as they directly select experts from the dense checkpoint without further computations.
While Graph Partitioning and Importance-Based Sampling involve a preliminary inference step to
determine neuron importance or co-activation patterns, the time required is minimal. For instance,
performing inference on a subset of 30, 000 images with an RTX 4090 takes less than 5 minutes.
This efficient process ensures that Checkpoint Recycling significantly enhances model initialization
while introducing almost no additional overhead.

3.2 SpheroMoE Layer

Slot Combiner

Input Tokens

Slow
less slots

Core Combiner

Univ Combiner

Core Dispatcher

Token Dispatcher

Univ Dispatcher

Univ Slots

Light
Experts

SpheroMoE Router

Fast
more slots Core Slots

Heavy
Experts

Output tokens

Figure 3: The Adaptive Dual-path
MoE structure enhances the SpheroMoE
Router by adapting it into a dual-branch
system, designed to optimize computa-
tional efficiency and model performance.
This configuration directs high-impact to-
kens to a core path with fewer but larger
experts while routing less critical tokens
to a universal path equipped with a greater
number of smaller experts.

Following the initialization of MoE weights through
Checkpoint Recycling, the next step is fine-tuning on
downstream datasets. To enhance performance and sta-
bility, we designed the hyperspherical adaptive MoE
(SpheroMoE) layer (Fig. 2(b)), introducing three key
improvements: SpheroMoE Routing to alleviate opti-
mization challenges, Expert Regularization to prevent
over-specialization, and Adaptive Dual-path MoE (Fig. 3)
for better performance and efficiency. Additionally, the
pseudo-code detailing these features’ implementation can
be found in Appendix C.

SpheroMoE Routing: As shown in Fig. 2(b), the pro-
posed hyperspherical MoE (SpheroMoE) routing mech-
anism utilizes cross-attention [24] to distribute inputs
across experts. Each expert receives an input slot, a
weighted average of all input tokens. To maintain con-
sistency between dense checkpoints and MoE layers
M = {L′

i}
N−1
i=N/2, input tokens X ∈ Rb×n×d (where

b represents the batch size, n represents the token length,
and d represents the input dimension) are layer nor-
malized inherited from dense checkpoints, resulting in
Xnorm. Queries Q ∈ Rb×(e×s)×d are randomly initial-
ized and similarly normalized to align with Xnorm, pro-
ducing Qnorm. The layer normalization process ensures
the consistency of distributions between the MoE model,
input queries, and the pre-trained dense model. The nor-
malized Xnorm are projected to form keys K ∈ Rb×n×d

for the cross-attention mechanism.

To reduce numerical instability, Qnorm and K are projected onto a hyperspherical space using L2
normalization, ensuring that the resulting dot products reflect cosine similarities rather than unbounded
magnitudes. This confines values within a stable range, preventing softmax saturation and enabling
more balanced attention distributions, which improves model generalization. The similarity between
Qnorm and K is computed, yielding similarity logits S ∈ Rb×(e×s)×n: S = QnormK

T . Input slots
X̃ ∈ Rb×(e×s)×d for experts are formed by a softmax operation along the n dimension of S:

X̃ =
exp(Sijk)∑n

k′=1 exp(Sijk′)
Xnorm. (10)

Each expert processes its corresponding input slots X̃i independently, generating outputs Ỹi. These
outputs are then weighted by S (after applying a softmax operation along the (e× s) dimension) to
aggregate the experts’ contributions, producing the final output Y ∈ Rb×n×d of the MoE layer:

Y =
exp(Sijk)∑e×s

j′=1 exp(Sij′k)
Ỹ. (11)

5

In summary, SpheroMoE routing leverages layer normalization, hyperspherical projection, and cross-
attention to effectively distribute inputs across experts, ensuring numerical stability and consistency
with pre-trained dense models for improved optimization.

Expert Regularization: To improve generalization, SpheroMoE regularizes routing and expert
behavior, preventing experts from over-specializing on specific inputs or outputs from depending
excessively on certain experts. For the former, we introduce learnable softmax temperatures Tdispatch

and Tcombineto precisely control token dispatch and slot combination, enabling smooth transitions
between broad and focused attention. Since token dispatch distributes tokens across slots, while slot
combination aggregates slot outputs back into tokens, these dual temperatures provide flexible control
to each process. Both temperatures are initialized high to promote a broad distribution of attention,
preventing early specialization. As the training process, these temperatures adaptively decrease,
allowing experts to focus more precisely on relevant features and specialize where advantageous.
Additionally, we added a certain level of normal noise to the similarity logits S, which improves
generalization. For the latter, we utilized stochastic expert dropout, where each expert i is randomly
deactivated with a probability p. It ensures that no single expert becomes a crutch for the entire output,
promoting a more balanced utilization of all experts. These techniques form an expert regularization
strategy that maintains expert versatility and mitigates over-fitting, ensuring the MoE model performs
robustly on downstream datasets.

Adaptive Dual-path MoE: To mitigate computational redundancy for less critical tokens and
concentrate resources on essential ones, SpheroMoE Routing directs input tokens into core and
universal slots based on importance. Building on this, the Adaptive Dual-Path structure is designed
to assign each slot type to a distinct pathway for optimized processing, as illustrated in Fig. 3. The
core pathway consists of a limited number of core experts with larger parameter counts, specifically
configured for processing high-importance tokens. In contrast, the universal pathway comprises a
larger set of small experts, each with one-fourth of the parameters of core experts, optimized for
handling less critical slots. This dual-path configuration improves resource allocation by focusing
computation on key tokens, thereby preserving model accuracy and enhancing processing efficiency.

4 Experiments

4.1 Experimental Setups

Models. We validate our approach using the Vision Transformer (ViT)[7] and ConvNeXt[8] models.
Specifically, we initialize the weight of V-JetMoE-T and C-JetMoE-F by transforming the dense
checkpoints of ViT-S and ConvNeXt-T (pre-trained on ImageNet-21K and sourced from timm)
through checkpoint recycling. As detailed in Sec. 3.1, V-JetMoE-T retains the dense layer structure
of ViT-T in its first half, while the latter half is equipped with SpheroMoE layers. Each SpheroMoE
layer consists of N/2 core experts and N universal experts, where N is the number of input tokens.
Further details are in Appendix A.

Datasets. We evaluate MoE Jetpack on 8 image classification datasets, including ImageNet-1K [25],
CIFAR-10, CIFAR-100 [26], Flowers [27], Pets [28], STL-10 [29], Food-101 [30], and DTD [31].
These datasets encompass a diverse range of classification challenges, including object classification,
fine-grained species recognition, and texture classification.

Baseline Implementation. We follow the implementation details outlined by Xu et al. [22] for
comparisons of the dense models. For the MoE models, we employ Soft MoE [6] as the baseline
and have replicated it across all datasets. Our MoE Jetpack and Soft MoE utilize the same training
strategies as the dense models to ensure comparison fairness. All implementations were executed
using the MMPretrain framework [32] on RTX4090. More information can be found in Appendix B.

4.2 Main Results

Tab. 1 compares the performance of the MoE Jetpack with Dense ViT models and Soft MoE models
on various image datasets using ViT-T (a) and ConvNeXt-F (b) architectures. All models maintain
approximately the same number of FLOPs. The columns in Tab. 1 are defined as follows:

• Dense: Refers to dense models trained from scratch on each specific dataset.

6

Table 1: Performance comparison on visual recognition tasks with ViT-T and ConvNeXt-F.

Dataset (↓) Dense Dense (21k) Soft MoE [6] MoE Jetpack

ImgNet-1k 73.9 75.6 77.1 79.9 (+2.8)
Food-101 79.6 86.9 82.0 89.5 (+7.5)
CIFAR-10 92.4 97.0 92.9 97.9 (+5.0)
CIFAR-100 72.3 81.4 75.9 88.4 (+12.5)

STL-10 61.5 83.4 67.7 95.3 (+27.6)
Flowers 62.4 81.9 70.8 95.4 (+24.6)

Pets 25.0 68.6 45.5 84.3 (+38.8)
DTD 49.4 62.5 51.3 69.1 (+17.8)

(a) ViT-T

Dense Dense (21k) Soft MoE [6] MoE Jetpack

76.1 76.4 79.1 80.5 (+1.4)
86.9 89.0 88.7 90.7 (+2.0)
96.6 97.4 97.3 98.2 (+0.9)
81.4 84.4 82.8 88.5 (+5.7)
81.4 92.3 79.4 98.7 (+19.3)
80.3 94.5 83.3 98.6 (+15.3)
72.9 87.3 77.4 94.9 (+17.5)
63.7 68.8 64.7 79.5 (+14.8)

(b) ConvNeXt-F

• Dense (21k): Represents dense models initialized with ImageNet-21K pre-trained weights,
followed by fine-tuning on the target datasets.

• Soft MoE: Reports the results of Soft MoE models trained from scratch on each dataset.
• MoE Jetpack: Shows the performance of SpheroMoE models, initialized using checkpoint

recycling with pre-trained dense checkpoints from ImageNet-21K, followed by fine-tuning
on downstream datasets.

The MoE Jetpack, benefiting from the pre-trained knowledge embedded in dense checkpoints,
consistently surpasses the performance of both Soft MoE models trained from scratch and dense
models with ImageNet-21K initialization. These results underscore the effectiveness of MoE Jetpack.

4.3 Ablations

We perform ablation studies to assess the impact of various components and hyper-parameters within
the MoE Jetpack. By default, we use a ViT-T model with the SpheroMoE layer integrated from
layers 7 to 12, comprising 98 core experts and 196 universal experts (detailed in Appendix A). The
Checkpoint Recycling method transforms dense checkpoints of ViT-S and ViT-T, pre-trained on
ImageNet-21k, into initial weights for our V-JetMoE-T model.

Effect of MoE Jetpack Components. We conducted the ablation of two key components of the
MoE Jetpack on three datasets. As shown in Tab. 2, integrating Checkpoint Recycling with the
Soft MoE baseline significantly improves performance across all datasets, with a mean accuracy
increment of 10.2%. The SpheroMoE layer further enhances performance, achieving a mean accuracy
of 87.9%. These results demonstrate the efficacy of both components, especially when used together,
highlighting their synergistic effect in boosting performance.

Table 3: Checkpoint Recycling vs. Sparse Upcycling

Method Construction ImageNet

Sparse Upcycling [16] Copy 79.1

Checkpoint
Recycling

Random Sampling 79.5
Uniform Selection 79.6
Graph Partitioning 79.8

Importance-based Sampling 79.9

Checkpoint Recycling vs. Sparse
Upcycling. To compare the four
checkpoint recycling strategies men-
tioned in Sec. 3.1 and the method of
using duplicated MLPs to construct
experts in Sparse Upcycling [16], we
conducted experiments on ImageNet.
For fairness, we also employed our
SpheroMoE layer in the Sparse Up-
cycling. The results, summarized in
Tab. 3, show that Importance-Based Sampling achieves the highest performance, demonstrating its

Table 2: Ablation Study on MoE Jetpack Components.

Soft MoE [6] Checkpoints Recycling SpheroMoE ImageNet CIFAR-100 Flowers Mean Acc.

Baseline ViT-T 73.9 72.3 62.4 69.5

✓ 77.1 75.9 70.8 74.6 (+5.1)
✓ ✓ 78.4 84.7 91.2 84.8 (+15.3)

✓ ✓ 79.9 88.4 95.4 87.9 (+18.4)

7

Table 4: Effectiveness of SpheroMoE with the Dual-Path Structure.

Model Experts ImageNet FLOPs (G)

Soft MoE 197 78.4 1.2
SpheroMoE core: 197, univ: 0 79.6 1.2
SpheroMoE core: 98, univ: 196 79.9 1.1

Table 5: Comparison of Model Variants with Different Configurations

model Weight Init. MoE Layers Expert Number Param (M) FLOPs (G) CIFAR-100 ImageNet

ViT-T - - - 6 1.1 72.3 73.9
Soft MoE-T [6] - 7:12 197 354 1.2 75.9 77.1
Soft MoE-S [6] - 7:12 197 1412 4.5 77.5 80.3

ViT-T ✓ - - 6 1.1 81.4 75.5
V-JetMoE-T ✓ 11:12 core: 98, univ: 196 92 1.1 87.4 -
V-JetMoE-T ✓ 9:12 core: 98, univ: 196 179 1.1 87.8 -
V-JetMoE-T ✓ 5:12 core: 98, univ: 196 352 1.2 86.7 -

V-JetMoE-T ✓ 7:12 core: 32, univ: 64 89 0.8 87.8 -
V-JetMoE-T ✓ 7:12 core: 64, univ: 128 175 1.0 88.0 -

V-JetMoE-T ✓ 7:12 core: 98, univ: 196 265 1.1 88.4 79.9
V-JetMoE-S ✓ 7:12 core: 98, univ: 196 1058 4.3 89.9 82.4

effectiveness in leveraging critical weights to enhance model performance and convergence speed.
Additionally, Checkpoint Recycling is highly flexible, allowing the construction of experts of varying
sizes to meet different needs, a feature not provided by sparse upcycling.

Effect of Dual-Path Structure. The Tab. 4 presents an ablation study on the effectiveness of
the dual-path structure in SpheroMoE. When configured with 197 core experts only (no universal
experts), SpheroMoE achieves a higher accuracy on ImageNet-1K compared to Soft MoE with the
same number of experts. Introducing the dual-path structure with 98 core experts and 196 universal
experts (each with one-fourth of the parameters of core experts) further enhances accuracy to 79.9
while reducing the computational cost to 1.1G FLOPs. This result highlights the efficiency of the
dual-path structure, which allows SpheroMoE to allocate resources adaptively and achieve better
performance without increasing the overall FLOPs.

Cifar-100 Accuracy

C
or

e
Ex

pe
rt

R
at

io

85 85.5 86 86.5 87 87.5 88 88.5

1/6

1/3

1/2

2/3

5/6

Figure 4: CIFAR-100 accuracy across different ratios of
core (dark) to universal (light) experts, highlighting optimal
performance at a 1/3 core ratio.

Core Experts Ratio. To evaluate the
effectiveness of the Adaptive Dual-
path MoE structure introduced in
Sec.3.2 and to identify the optimal
ratio between core and universal ex-
perts, we conducted ablation on the
CIFAR-100 dataset. With a fixed to-
tal number of experts, we varied the
ratio of core experts to find the ideal
balance between performance and re-
source allocation. As shown in Fig. 4,
the highest accuracy is achieved when
core experts constitute approximately
1/3 of the total experts.

MoE Jetpack Configurations. This
part evaluates the impact of various
MoE Jetpack configurations on model performance, as summarized in Tab. 5. The experiments focus
on the placement of SpheroMoE layers, the number of experts per layer, and the base size of converted
dense checkpoints. Results indicate that more SpheroMoE layers generally enhance performance,
though placing it before layer 7 slightly hurt the performance. Consequently, SpheroMoE layers
were incorporated into layers 7−12. Additionally, models with more experts exhibit improved
accuracy, highlighting the benefits of increased expert specialization and diversity. Models converted
from larger dense checkpoints demonstrate superior performance. These findings suggest that MoE
network performance can be improved by increasing the number of MoE layers, incorporating more
experts, and utilizing larger base models.

8

C
IF

A
R

-1
00

 A
cc

ur
ac

y

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

Epoch Epoch

Figure 5: Comparison of convergence speeds using MoE Jetpack versus training from scratch on
ImageNet (left) and CIFAR-100 (right). MoE Jetpack achieves target accuracies significantly faster,
demonstrating a 2x speed increase on ImageNet and an 8x increase on CIFAR-100.

(a) Attention Maps from Different Experts (b) Contribution of different experts to the output tokens

Expert 3 Expert 4 Expert 5

Expert 1 Expert 2Input image Core Expert Universal Expert
MoE Layer 07 core
MoE Layer 08 core
MoE Layer 09 core
MoE Layer 10 core
MoE Layer 11 core
MoE Layer 12 core

MoE Layer 07 univ
MoE Layer 08 univ
MoE Layer 09 univ
MoE Layer 10 univ
MoE Layer 11 univ
MoE Layer 12 univ

Figure 6: (a) The attention maps generated by five experts in response to the input image, highlighting
the experts’ specialization. (b) These line charts show varying contributions of core and universal
experts, with core experts’ influence peaking in later layers, emphasizing their detailed feature
refinement, contrasted with the consistent input of universal experts.

4.4 Analysis

We analyze the impact of MoE Jetpack on convergence speed for MoE models fine-tuned on ImageNet-
1K and CIFAR-100 dataset. Additionally, we offer insights into expert attention patterns and the
contribution of each expert to the output tokens.

Accelerating MoE Convergence with MoE Jetpack. The effect of MoE Jetpack on convergence
speed is illustrated in Fig. 5 for ImageNet (left) and CIFAR-100 (right). In both cases, models with
MoE Jetpack achieve target accuracy significantly faster. For ImageNet, MoE Jetpack enables the
model to reach approximately 77% top-1 accuracy within 150 epochs—twice as fast as training from
scratch. This acceleration is even more pronounced on smaller datasets like CIFAR-100, where
MoE Jetpack achieves 76% top-1 accuracy by around 40 epochs, an eightfold improvement over the
baseline. These results underscore MoE Jetpack’s efficiency in accelerating convergence, reducing
fine-tuning time and computational demands.

Intuition of Expert Attention Patterns. We visualize the attention maps of experts in Fig. 6(a),
which illustrates that different experts focus on different parts of the input image. This diversity in
attention suggests that each expert specializes in capturing unique aspects of the input, enhancing the
model’s ability to represent features comprehensively. The specialization allows the MoE model to
combine multiple perspectives, resulting in a more robust and detailed understanding of the input.

Contribution of Each Expert to Final Results. Fig. 6(b) demonstrates the varying contributions of
core and universal experts across different layers of the MoE model. Core experts show an increasing
influence in the later layers, emphasizing their role in refining specific and highly relevant features.
Additionally, the contributions among core experts are markedly uneven, some experts can impact
output tokens 17× more than others, reflecting greater specialization and diversity in their focus areas.

9

In contrast, universal experts maintain a relatively consistent contribution level, indicating a more
uniform integration of broader contextual information throughout the network. This hierarchical
structure, balancing the specialized refinement by core experts with the generalized understanding
provided by universal experts, enhances the model’s overall performance and robustness.

5 Related Work
Sparsely activated Mixture of Experts (MoE). Scaling Laws [33] indicate that increasing model
parameters can enhance performance. However, traditional densely activated models (dense mod-
els) [7, 8] activate all parameters for every input, resulting in high computational costs as models
scale. In contrast, MoE models [12, 34, 35, 36] activate only a subset of parameters for specific input
tokens, enabling efficient scaling to trillions of parameters with sublinear increases in computational
costs [37, 5, 4]. To optimize input token allocation among experts, various routing mechanisms
have been developed. BASELayer [18] formulates token-to-expert allocation as a linear assignment
problem, while EC-CF2 [21] propose expert choice routing, soft routing methods like SMEAR [38],
and Soft MoE [6] implicit soft assignments involving all tokens. However, few studies explore
leveraging dense model checkpoints to accelerate MoE training [16].

Knowledge transfer with pre-trained models. Knowledge transfer occurs between identical or
distinct models. Pre-training followed by fine-tuning is well-established for identical models,
utilizing large datasets through supervised learning (e.g., ImageNet21k [25], JFT-300M [39]) or
self-supervised methods (e.g., BERT [40], CLIP [41], MAE [42], DINO [43], EVA [44, 45]). These
approaches produce foundation models with broad applicability, and subsequent fine-tuning con-
sistently improves performance. For distinct models, knowledge distillation [46] trains a smaller
student model to mimic the larger teacher model, enhancing efficiency. Additional strategies include
weight pruning [47, 48, 48, 49, 50], which removes redundant parameters, and weight selection [22]
initializes a smaller model with a subset of weights from a pre-trained larger model.

Research on transferring knowledge from dense checkpoints to MoE models is limited. MoEfica-
tion [51] partitions a dense model into MoE components, while Sparse Upcycling [16] replicates a
dense model multiple times to form a MoE model. Our MoE Jetpack recycles important weights from
larger dense checkpoints to initialize experts of various sizes, combining the flexibility of knowledge
transfer across distinct model types with the efficiency of transfer between identical model types.

6 Conclusion

In this paper, we introduced MoE Jetpack, a novel framework for fine-tuning pre-trained dense
checkpoints into Mixture of Experts model. Our approach leverages checkpoint recycling, which
inherits the knowledge of open-source dense checkpoints and the hyperspherical adaptive MoE
(SpheroMoE) layer to enhance fine-tuning performance. These innovations contribute to improved
convergence speed and model accuracy. The MoE Jetpack significantly improved various visual tasks
while maintaining computational efficiency.

The limitation of our approach lies in its reliance on the quality of pre-trained dense checkpoints;
inadequately trained or poorly generalized dense models may hinder performance improvements.
Additionally, while our experiments focused on visual tasks, further research is needed to validate
the generalizability of MoE Jetpack across other domains, such as natural language processing and
reinforcement learning. Future work may address these limitations, further enhancing the scalability
and robustness of the framework, and broadening MoE applicability across diverse tasks.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. U2341227
and 62226104).

10

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” Proc. of Advances in Neural Information Processing Systems, vol. 25, 2012. 1

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc.
of IEEE Intl. Conf. on Computer Vision and Pattern Recognition, 2016, pp. 770–778. 1

[3] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling vision transformers,” in Proc. of
IEEE Intl. Conf. on Computer Vision and Pattern Recognition, 2022, pp. 12 104–12 113. 1

[4] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity,” Journal of Machine Learning Research, vol. 23, no. 120, pp.
1–39, 2022. 1, 2, 10

[5] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton, A. Susano Pinto, D. Keysers,
and N. Houlsby, “Scaling vision with sparse mixture of experts,” Proc. of Advances in Neural
Information Processing Systems, vol. 34, pp. 8583–8595, 2021. 1, 10

[6] J. Puigcerver, C. R. Ruiz, B. Mustafa, and N. Houlsby, “From sparse to soft mixtures of experts,”
in Proc. of Intl. Conf. on Learning Representations, 2023. 1, 2, 3, 6, 7, 8, 10

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. of Intl. Conf. on Learning Representations, 2020. 1, 6, 10

[8] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for the 2020s,” in
Proc. of IEEE Intl. Conf. on Computer Vision and Pattern Recognition, 2022, pp. 11 976–11 986.
1, 6, 10

[9] Z. Fan, R. Sarkar, Z. Jiang, T. Chen, K. Zou, Y. Cheng, C. Hao, Z. Wang et al., “M3vit: Mixture-
of-experts vision transformer for efficient multi-task learning with model-accelerator co-design,”
Proc. of Advances in Neural Information Processing Systems, vol. 35, pp. 28 441–28 457, 2022.
1

[10] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A. Awan, J. Rasley, and Y. He,
“Deepspeed-moe: Advancing mixture-of-experts inference and training to power next-generation
ai scale,” in Proc. of Intl. Conf. on Machine Learning. PMLR, 2022, pp. 18 332–18 346. 1

[11] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. l.
Casas, E. B. Hanna, F. Bressand et al., “Mixtral of experts,” arXiv preprint arXiv:2401.04088,
2024. 1

[12] D. Dai, C. Deng, C. Zhao, R. Xu, H. Gao, D. Chen, J. Li, W. Zeng, X. Yu, Y. Wu et al.,
“Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models,”
arXiv preprint arXiv:2401.06066, 2024. 1, 10

[13] B. Lin, Z. Tang, Y. Ye, J. Cui, B. Zhu, P. Jin, J. Zhang, M. Ning, and L. Yuan, “Moe-llava:
Mixture of experts for large vision-language models,” arXiv preprint arXiv:2401.15947, 2024.
1

[14] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz et al., “Huggingface’s transformers: State-of-the-art natural language processing,”
arXiv preprint arXiv:1910.03771, 2019. 1

[15] R. Wightman, “Pytorch image models,” https://github.com/rwightman/pytorch-image-models,
2019. 1

[16] A. Komatsuzaki, J. Puigcerver, J. Lee-Thorp, C. R. Ruiz, B. Mustafa, J. Ainslie, Y. Tay,
M. Dehghani, and N. Houlsby, “Sparse upcycling: Training mixture-of-experts from dense
checkpoints,” in Proc. of Intl. Conf. on Learning Representations, 2022. 2, 7, 10

[17] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Outrageously
large neural networks: The sparsely-gated mixture-of-experts layer,” in Proc. of Intl. Conf. on
Learning Representations, 2016. 2

11

https://github.com/rwightman/pytorch-image-models

[18] M. Lewis, S. Bhosale, T. Dettmers, N. Goyal, and L. Zettlemoyer, “Base layers: Simplifying
training of large, sparse models,” in Proc. of Intl. Conf. on Machine Learning. PMLR, 2021,
pp. 6265–6274. 2, 10

[19] A. Clark, D. de Las Casas, A. Guy, A. Mensch, M. Paganini, J. Hoffmann, B. Damoc, B. Hecht-
man, T. Cai, S. Borgeaud et al., “Unified scaling laws for routed language models,” in Proc. of
Intl. Conf. on Machine Learning. PMLR, 2022, pp. 4057–4086. 2

[20] S. Roller, S. Sukhbaatar, J. Weston et al., “Hash layers for large sparse models,” Proc. of
Advances in Neural Information Processing Systems, vol. 34, pp. 17 555–17 566, 2021. 2

[21] Y. Zhou, T. Lei, H. Liu, N. Du, Y. Huang, V. Zhao, A. M. Dai, Q. V. Le, J. Laudon et al.,
“Mixture-of-experts with expert choice routing,” Proc. of Advances in Neural Information
Processing Systems, vol. 35, pp. 7103–7114, 2022. 2, 10

[22] Z. Xu, Y. Chen, K. Vishniakov, Y. Yin, Z. Shen, T. Darrell, L. Liu, and Z. Liu, “Initializing
models with larger ones,” in Proc. of Intl. Conf. on Learning Representations, 2024. 3, 6, 10

[23] G. Karypis, “Metis: Unstructured graph partitioning and sparse matrix ordering system,” Tech-
nical report, 1997. 4

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Proc. of Advances in Neural Information Processing
Systems, vol. 30, 2017. 5

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in Proc. of IEEE Intl. Conf. on Computer Vision and Pattern
Recognition. Ieee, 2009, pp. 248–255. 6, 10

[26] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
6

[27] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large number of
classes,” in Indian conference on computer vision, graphics & image processing. IEEE, 2008,
pp. 722–729. 6

[28] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats and dogs,” in Proc. of IEEE Intl.
Conf. on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3498–3505. 6

[29] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature
learning,” in Proceedings of the international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings, 2011, pp. 215–223. 6

[30] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discriminative components
with random forests,” in Proc. of European Conference on Computer Vision. Springer, 2014,
pp. 446–461. 6

[31] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,”
in Proc. of IEEE Intl. Conf. on Computer Vision and Pattern Recognition, 2014, pp. 3606–3613.
6

[32] M. Contributors, “Openmmlab’s pre-training toolbox and benchmark,” https://github.com/
open-mmlab/mmpretrain, 2023. 6

[33] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” arXiv preprint
arXiv:2001.08361, 2020. 10

[34] B. Lin, Z. Tang, Y. Ye, J. Cui, B. Zhu, P. Jin, J. Zhang, M. Ning, and L. Yuan, “Moe-llava:
Mixture of experts for large vision-language models,” arXiv preprint arXiv:2401.15947, 2024.
10

[35] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. l.
Casas, E. B. Hanna, F. Bressand et al., “Mixtral of experts,” arXiv preprint arXiv:2401.04088,
2024. 10

12

https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain

[36] X. Wu, S. Huang, and F. Wei, “Mole: Mixture of lora experts,” in Proc. of Intl. Conf. on
Learning Representations, 2023. 10

[37] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen,
“Gshard: Scaling giant models with conditional computation and automatic sharding,” in Proc.
of Intl. Conf. on Learning Representations, 2020. 10

[38] M. Muqeeth, H. Liu, and C. Raffel, “Soft merging of experts with adaptive routing,” arXiv
preprint arXiv:2306.03745, 2023. 10

[39] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of data
in deep learning era,” in Porc. of IEEE Intl. Conf. on Computer Vision, 2017, pp. 843–852. 10

[40] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep bidirectional trans-
formers for language understanding,” in Proceedings of NAACL-HLT, 2019, pp. 4171–4186.
10

[41] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervi-
sion,” in Proc. of Intl. Conf. on Machine Learning. PMLR, 2021, pp. 8748–8763. 10

[42] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable
vision learners,” in Proc. of IEEE Intl. Conf. on Computer Vision and Pattern Recognition, 2022,
pp. 16 000–16 009. 10

[43] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. HAZIZA, F. Massa, A. El-Nouby et al., “Dinov2: Learning robust visual features without
supervision,” Transactions on Machine Learning Research, 2023. 10

[44] Y. Fang, Q. Sun, X. Wang, T. Huang, X. Wang, and Y. Cao, “Eva-02: A visual representation
for neon genesis,” arXiv preprint arXiv:2303.11331, 2023. 10

[45] Q. Sun, Y. Fang, L. Wu, X. Wang, and Y. Cao, “Eva-clip: Improved training techniques for clip
at scale,” arXiv preprint arXiv:2303.15389, 2023. 10

[46] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” 2014. 10

[47] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient
neural network,” Proc. of Advances in Neural Information Processing Systems, vol. 28, 2015.
10

[48] S. Ashkboos, M. L. Croci, M. G. do Nascimento, T. Hoefler, and J. Hensman, “Slicegpt:
Compress large language models by deleting rows and columns,” in Proc. of Intl. Conf. on
Learning Representations, 2023. 10

[49] M. Xia, T. Gao, Z. Zeng, and D. Chen, “Sheared llama: Accelerating language model pre-
training via structured pruning,” in Proc. of Intl. Conf. on Learning Representations, 2023.
10

[50] F. Yu, K. Huang, M. Wang, Y. Cheng, W. Chu, and L. Cui, “Width & depth pruning for vision
transformers,” in Proc. of the AAAI Conf. on Artificial Intelligence, vol. 36, no. 3, 2022, pp.
3143–3151. 10

[51] Z. Zhang, Y. Lin, Z. Liu, P. Li, M. Sun, and J. Zhou, “Moefication: Transformer feed-forward
layers are mixtures of experts,” in Findings of the Association for Computational Linguistics:
ACL 2022, 2022, pp. 877–890. 10

[52] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in Proc. of Intl. Conf. on
Learning Representations, 2018. 15

[53] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated data
augmentation with a reduced search space,” in Proc. of IEEE Intl. Conf. on Computer Vision
and Pattern Recognition workshops, 2020, pp. 702–703. 15

13

[54] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk
minimization,” in Proc. of Intl. Conf. on Learning Representations, 2018. 15

[55] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization strategy to
train strong classifiers with localizable features,” in Porc. of IEEE Intl. Conf. on Computer
Vision, 2019, pp. 6023–6032. 15

[56] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmentation,” in Proc.
of the AAAI Conf. on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 13 001–13 008. 15

[57] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception archi-
tecture for computer vision,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 2818–2826. 15

[58] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou, “Going deeper with image
transformers,” in Proceedings of the IEEE/CVF international conference on computer vision,
2021, pp. 32–42. 15

14

A Detailed Model Configurations

In this section, we present the detailed model configurations for the main experiments in Sec. 4 in
Tab. 6. We refer to pre-trained dense checkpoints as predecessors and the derived MoE models as
successors. We use ImageNet-21k pre-trained predecessor from timm with our Checkpoint Recycling
algorithm to generate initialized weights for the successor.

Table 6: Configurations for Models.

Configuration Successors Predecessors

Model V-JetMoE-T C-JetMoE-F ViT-S/16 ConvNext-T
FLOPs (G) 1.1 1.1 1.1 1.1

Initialization Checkpoint Recycling Checkpoint Recycling ImageNet-21k ImageNet-21k
MoE Layers 7:12 10:18 - -

Core Expert Number 98 [98, 24] - -
Universal Expert Number 196 [196, 48] - -

B Experiment Settings and Time Costs

In this section of the appendix, we provide a comprehensive description of the training settings used
in our experiments. Tab. 7 outlines the standard training configuration utilized across our experiments.
Tab. 8 details the dataset-specific training configurations, capturing variations in batch size, warmup
epochs, total training epochs, and drop path rates for each dataset employed in our experiments.

Our experiments were conducted on RTX 4090 GPU. Training V-JetMoE-T on the CIFAR-100 dataset
(60,000 images) required 2.5 GPU hours while training on the ImageNet-1K dataset (1,281,167
images) required 120 GPU hours. Training C-JetMoE-F on CIFAR-100 also required 2.5 GPU
hours and 156 GPU hours on ImageNet-1K. For V-JetMoE-S, training on CIFAR-100 required 8
GPU hours and 200 GPU hours on ImageNet-1K. Compared to the original dense models (ViT-Tiny,
ConvNeXt-Femto, ViT-Small), our method achieves nearly equivalent training times.

For all the experiments presented in our paper, we required 3, 300 GPU hours for training. In total,
we spent approximately 8, 000 GPU hours for exploration and validation of our work.

Table 7: Our basic recipe for model training.

Training Setting Configuration

image resolution 224× 224
optimizer AdamW[52]
base learning rate 4× 10−3

weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
batch size 4096
training epochs 300
learning rate schedule cosine decay
warmup epochs 50
warmup schedule linear
randaugment [53] (9, 0.5)
mixup [54] 0.8
cutmix [55] 1.0
random erasing [56] 0.25
label smoothing [57] 0.1
layer scale [58] 1× 10−6

Table 8: Hyper-parameter setting on ViT-T.

Setting Batch
Size

Warmup
Epochs

Training
Epochs

Drop
Path Rate

C-10 512 50 300 0.1
C-100 512 50 300 0.1
Pets 512 100 600 0.1
Flowers 512 100 600 0.1
STL-10 512 50 300 0
Food101 512 50 300 0.1
DTD 512 100 600 0.2
IN1k 4096 50 300 0

15

C Implementation of SpheroMoE Layer

Algorithm 1: Simple implementation of SpheroMoE.
def parallel_expert_forward(x, experts)

"""
Traditional MoE models use a for loop to process each token through the experts.

By merging all expert weights into a large matrix, our implementation allows
for a single matrix multiplication operation for each layer across all tokens
and experts, replacing multiple individual operations.
"""
x = einsum(x, experts.weight_1, "b e s d1, e d2 d1 -> b e s d2")
x = x + rearrange(experts.bias_1, "e d2 -> () e () d2")
x = experts.act(x)
x = einsum(x, experts.weight_2, "b e s d2, e d1 d2 -> b e s d1")
x = x + rearrange(experts.bias_2, "e d1 -> () e () d1")
return x

def spheromoe_layer(X, Q, T, core_experts, univ_experts):
"""
Performs the Spheromoe layer operation.

Parameters:
X (tensor): tensor with shape (batch, token_num, channel).
Q (tensor): tensor with shape (expert_num, slots_per_expert, channel).
T (tensor): the learnable temperature list for the softmax function.
core_experts, univ_experts (expert): expert weight for MoE layer.

Returns:
tensor: Output tensor after applying the Spheromoe layer operations.
"""
X_norm = layer_norm(X, dim=-1)
Q_norm = l2_norm(Q)
K = l2_norm(K_project(X_norm))

Compute similarity logits.
logits = einsum(K, Q_norm, "b n d, e s d -> b n e s")

create normal noise
noise = normal_noise(logits) * self.noise_mult

Apply softmax to similarity logits.
Dispatch = softmax(logits/T[0], dim=1) + noise
Combine = softmax(logits/T[1], dim=[-1,-2]) + noise

Token dispatch.
X_hat = einsum(Dispatch, X_norm, "b n d, b n e s -> b e s d")
X_core = X_hat[:, :core_num, :, :]
X_univ = X_hat[:, core_num:, :, :]

Using core experts and universal experts processes each slot.
Y_hat = stack([

parallel_expert_forward(X_core, core_experts),
parallel_expert_forward(X_univ, univ_experts)

], dim=1)

Expert dropout.
Y_hat = expert_drop(Y_hat)

Token combine.
Y = einsum(Combine, Y_hat, "b n e s, b e s d -> b n d")

return Y

16

D Dynamic Allocation and Focus Regions of Experts in MoE Jetpack

In this section, we discuss the dynamic allocation and focus regions of core and universal experts
across different layers of MoE Jetpack. We used the same test images as in the main text, visualizing
the focus regions of the most important (i.e., those with the highest output contribution) core and
universal experts for each MoE layer in Fig. 7. The corresponding contribution values for these
experts are listed in Tab. 9.

Our findings are as follows: Initially, in the shallower network layers (MoE Layer 7 and 8), the core
experts contribute less than the universal experts, and their focus regions are relatively dispersed.
As the network deepens, in MoE Layer 9, the most important core and universal experts show
similar contribution values and focus regions. With further depth (MoE Layers 10, 11, and 12), the
dominance of the core experts becomes increasingly evident, with significantly higher contribution
values than the universal experts. Core experts focus on prominent objects in the images and are
inclined to capture global information.

These experts’ dynamic allocation and different focus region tendencies are crucial to our method.
Different experts have varying capabilities in extracting information at various granularities, and the
network facilitates collaboration among these experts to produce the final output. This illustrates the
effective utilization of expert diversity in the MoE model.

 M
oE

 L
ay

er
 0

7
 M

oE
 L

ay
er

 0
8

 M
oE

 L
ay

er
 0

9

 M
oE

 L
ay

er
 1

0
 M

oE
 L

ay
er

 1
1

 M
oE

 L
ay

er
 1

2

Most Important
Core Expert

Most Important
Universal Expert

Most Important
Core Expert

Most Important
Universal Expert

Figure 7: Visualization of the attention map identified by the most important core experts and
universal experts across different layers (MoE Layer 07 to MoE Layer 12). The images show the
regions deemed most relevant by each type of expert at each layer.

Table 9: Contribution values of core and universal experts across network layers.

MoE Layer Core Expert Contribution Universal Expert Contribution

7 1.71 3.91
8 2.52 4.16
9 3.78 3.77

10 8.17 6.71
11 17.66 2.12
12 7.36 0.77

17

E Broader Impacts

The proposed MoE Jetpack framework significantly enhances the accessibility and efficiency of
MoE models by utilizing pre-existing dense checkpoints to substantially reduce the computational
costs associated with training these models from scratch. This method not only minimizes the
environmental footprint by decreasing the reliance on extensive GPU resources but also bridges
the resource gap, facilitating wider adoption and fostering innovation across the AI community.
Additionally, our commitment to open-sourcing all experimental code promotes greater transparency
and collaboration in research. We have carefully considered the potential societal impacts of our
method and believe it does not pose any significant ethical or fairness concerns, thereby ensuring its
responsible application.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the scope and
contributions of the paper, as they are directly supported by the detailed theoretical analysis
and empirical results in Sec. 3 and Sec. 4. The paper also clearly differentiates between its
current contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of out proposed MoE Jetpack in Sec. 6. We discuss
the computational efficiency in Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

19

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all necessary information to reproduce the main results in Sec. 4.1.
For more detailed experiment configurations, please refer to Appendix A and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Since the code has not been fully organized yet, we will make the code and
model weights available as open source once the organization is complete.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: the paper provides all necessary details for understanding the training and
test processes. We conducted training and testing using publicly available datasets (like
ImageNet and CIFAR), the specifics of which are listed in Sec. 4.1. For more detailed
experimental configurations, such as hyperparameters, type of optimizer used, etc., please
refer to Appendix A and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not provide error bars because our experiments used a fixed training
and testing dataset and a constant random seed (3407), which resulted in minimal variability
(below 0.1%) in network training outcomes across runs. Given this stability, we concluded
that error bars were unnecessary.
Guidelines:

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed specifications of the computing resources used for our experiments
are listed in Sec. 4.1. For comprehensive information regarding the compute consumption
and execution time for each experimental run, please refer to Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this paper adheres to all aspects of the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

22

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: We discuss the Broader Impacts in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets used in our paper, including code, datasets, and models, are
properly credited to their original creators.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

23

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The new assets introduced in the paper, including models and code, have not
yet been released. Documentation for these assets is currently in preparation and will be
provided upon their official release.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]

24

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Background
	MoE Jetpack
	Checkpoint Recycling
	SpheroMoE Layer

	Experiments
	Experimental Setups
	Main Results
	Ablations
	Analysis

	Related Work
	Conclusion
	Detailed Model Configurations
	Experiment Settings and Time Costs
	Implementation of SpheroMoE Layer
	Dynamic Allocation and Focus Regions of Experts in MoE Jetpack
	Broader Impacts

