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ABSTRACT

An ideal counterfactual estimation should achieve balance of precise intervention
and identity preservation. Recently, Classifier-Guided Diffusion Model is proven
effective to produce realistic and minimal counterfactuals. However, perfect inter-
vention is often challenging to find and requires tedious fine-tuning. In this work,
we propose Optimal Noise Level Search (ONLS), which leverages statistics from
the guidance to automatically capture the balance without any fine-tuning pro-
cess or extra network design. We demonstrate that our ONLS could accurately
identify the optimal noise level for counterfactual estimation. The optimal per-
sample results further contribute to an overall performance enhancement across
the dataset. Preprocessing, curated dataset, and code are released on our project
page: https://github.com/ImNotPrepared/ONLS.

1 INTRODUCTION

Accurate simulation of aging process holds immense value in clinical and neuroscience research
particularly for identifying age-related pathologies ( ; , ). A key
challenge in this domain is the considerable inter-subject variation, as each individual exhibits a
unique aging trajectory ( , ). Traditional generative models like GANs (
s ; s ) have been limited in addressmg this
variability. In contrast recent advancements in diffusion models (
s ; s s ) have shown promise potential in synthesrs tasks
( s ). lef—SCM ( s ) leverages advances in generative
energy-based models. The core mechanism initially infers latent variables through a deterministic
forward diffusion process. This is followed by an intervention using a reverse diffusion mechanism,
guided by the gradients of an anti-causal predictor with respect to the input. This effectively tran-
sitions from a state of noise towards the original data distribution. The procedure for recovering
manipulable latent spaces from observations implies a connection with autoencoders. This insight
provides a perspective to regard the noised image at each timestep ¢ as a latent vector representation.

Prior research ( , ; s ) shows that coarse features are reconstructed
in early stages (near t = T, wh11e fine-grained features are reconstructed in later stages (near
t= 0) To utilize intermediate representatrons with different levels of feature granularity ( ,

, ), noise level L is introduced, altering the encoding depth from ¢ = 0 to
t= L x T instead of T'. Therefore, the decoding process begins with a latent vectoratt = L x T,
where 0 < L < 1. We find that an appropriate noise level L is crucial to successful counterfactual
estimation. A small L tends to retain original information as the intervention is not sufficient. On
the contrary, identity information will be lost or biased given a large L. We assume a proper L
facilitates the preservation of advantageous information, serving as prior knowledge to stabilize
the manifold and consequently enhance performance L is treated as a hyperparameter in previous
work ( , s ). However, we observed that the
optimal L varies among samples and datasets maklng fine-tuning both tedious and time- consumlng
We propose a simple yet effective method, Optimal Noise Level Search (ONLS), which requires
neither fine-tuning nor additional network design. ONLS contributes to the efficiency and robustness
of the model, making it more adaptable and efficient under varying data conditions.
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Figure 1: Mechanism of ONLS: During inference, the regressor records the variance within the
batch during encoding. When the variance drops below the threshold ¢ at ¢ = ¢, the encoding stops
and starts decoding with the guidance of regressor from ¢ = ¢ instead of gaussian noise att = 7.

2 METHODOLOGY AND EVALUATION

Motivated by two facts: 1) As noise progressively added during encoding, information is ’destroyed’
from fine-grained features to coarse features, eventually resulting in pure noise. 2) classifer/regressor
essentially is a mapping from class information to labels. A natural assumption is that there exists
an optimal balance between precise intervention and identity preservation. At this specific point,
class-related information has been removed, allowing for precise intervention. Concurrently, the
maximum preservation of identity is ensured, maintaining all non-class-related information intact.

We assume the balance can be found by leveraging class statistics. Subsequently, we incorporate
the guidance regressor trained on noisy data into the encoding process. We observe its output trends
within a batch as in Fig 2. Notably, when the class information is insufficient, the regressor tends to
output uniformly, signifying the variance diminishes in the late encoding stage. The variance reaches
minimum at ¢ = 7', where the class information is entirely eliminated. We thus stop further encoding
when the variance drops below the threshold ¢ at ¢ = ¢, where class information is removed while
preserving maximum identity information. Then decoding starts from the optimal representation
determined by ONLS from ¢ = t;. Eventually, the model produces the counterfactual result guided
by the regressor. Threshold ( is contingent upon the data and counterfactual feature. The elegance of
ONLS lies in its simplicity without any extra design modifications. Detailed validation is in Sec. C.

Method \ SSIM(1) ‘ MSE() ‘ PSNR(T)

Diff-SCM (Sanchez & Tsaftaris, 2022) | 0.69£0.09 | 0.0371+0.015 | 20.943.3
Tian et al. (Xia et al., 2021) 0.71+0.06 | 0.02640.023 | 23.3£2.2
Optimal Noise Level Search (Ours) | 0.74+0.06 | 0.024+0.012 | 24.7+2.5

Table 1: Quantitative evaluation on ADNI testset. Experiment details can be found in Sec. B, E

3 CONCLUSION

Our work illustrates the insight of noise level in diffusion autoencoder. Then we introduces ONLS
to adeptly balances precision in intervention with identity preservation, thereby enhancing the ef-
fectiveness of diffusion autoencoder. The key contribution lies in the automation of the fine-tuning
process to identify the perfect amount of intervention, a task marked by its complexity and laborious
nature. We believe ONLS can serve as an efficient and accurate method benefiting the community.
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A THEORY

A.1 COUNTERFACTUAL ESTIMATION WITH DIFF-SCM

Following Pearl’s Causal Hierarchy ( , ), estimation of counterfactuals requires
three steps: (i) abduction of exogenous noise - forward diffusion with DDIM ( s );
(ii) action - graph mutilation by erasing the edges between the intervened variable and its parents;

(iii) prediction - reverse diffusion controlled by the gradients of an anti causal classifier. Here,

( (k)

we are interested in estimating JJCF) based on the observed (factual) x1,” for the random variable

x/ (k) after assigning a value J:(J) to x), i.e. applying an intervention do (X(J) = acg%), which is

equivalent to sample from counterfactual distribution pg (x(k) | do ( 9 = x(J%) x(F) = :cj(?k))

A.2 CONNECTION WITH DIFFUSION MODEL

With diffusion models, abduction can be done with a derivation following ( , ;
s ), which bridge a connection between diffusion models and neural ODEs ( s
). They show that one can obtain a deterministic inference system while training with a natu-
rally stochastic diffusion process. One important property is that the sampling process only needs
the gradient of an anti-causal predictor w.r.t. the effect when the cause is assigned a specific value.

A.3 CONNECTION WITH AUTOENCODER

Inspired by the fact that the exogenous u'®) could be considered as latent variable from deep per-
spective ( , ; s ), we can build a connection between diffusion
autoencoder( , ) and counterfactual estimation. The process of abduction and
strengthening causal relations equals to encoding and decoding different feature information.

B ALGORITHM

Our theory is substantiated through the task of brain aging synthesis. Given an input brain image =z,
along with its corresponding actual age ars, our counterfactual task entails simulating the appear-
ance of this brain image at a target age y. The expected output is the image xcp, estimated with
counterfactual analysis at age y.

Algorithm 1 Guidance with Regressor

Input: input image x, desired age y, constant gradient scale c, noise level L

Output: counterfactual image xé ()JF = x(()k)

Abduction of Exogenous Noise
fort =0to L x T do

(k>
. p—VI—age rt )t )
l.l(fi)l,F — /a1 < \/ae( F ) + /1 - at+1€(l’§’kg,t)

end for
(k) (k)
LToxT = VLxT,F

Generation under Intervention
fort =L xT to1ldo

v (y = R(@”, ) - /R, 1)
€+ Eg(Tt *) 1) — sie/T —ayV (k)R(l't Mt t)
o e var (SR T ae

epdfor
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C VARIANCE VISUALIZATION
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Figure 2: Variance trend as encode progressing from t(0) to t(7")

We pick 7 random samples and visualize the variance within batch as encoding goes deeper. A
similar trend of uniform value output can be observed in Fig. 2. Previous methods adjust noise
globally for entire datasets, possibly not ideal for each sample. Our ONLS method automatically
finds the optimal noise level for each sample, improving results for most sample pairs and enhancing
overall dataset performance. To validate ONLS, we manually tuned L with 0.1 precision from 0.4
to 1.0 (where shows observable changes) and compare the results on our testset in Table 2.

Table 2: Quantitative comparison of different manually set noise level L and ONLS
Metrics | L=10| L=09 | L=08 | L=0.7| L=06 | L=0.5 | L=0.4 | ONLS

SSIM 0.69 0.72 0.72 0.71 0.70 0.70 0.67 0.74
MSE 0.037 0.031 0.027 0.029 0.032 0.049 0.043 0.024
PSNR 20.9 22.8 23.6 224 21.7 21.5 18.8 24.7

D QUALITATIVE RESULT

Our qualitative result shows a ventricular enlargement and barely no structural differences.

error: x, — Xx; |

Figure 3: Effect illustration for both ageing(left) and rejuvenation(right) process.
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E EXPERIMENTS SETUP

E.1 PRE-PROCESSING

For a fair comparison, we employed the same methodology as in Xia et al. (2019; 2021). Each
image was clipped to the range [0, Vo9 5], Where Vgg 5 represents the 99.5% highest intensity value.
Subsequently, these values were rescaled within the range [—1,+1]. Then we selected the cen-
tral 60 axial slices, cropping each to a resolution of [208, 160], which was adopted for subsequent
evaluations. The pre-processing code can be found on our project website.

We randomly select 112 patience as testset. We first abandon those longitudinal data with severe
misalignment problems (i.e. SSIM < 0.6 ), then choose the age span longer than 2 years to allow
obvious changes. Each patient has 30 slices, we feed all as a batch to our network for inference.

E.2 IMPLEMENTATION

€p 1s implemented as an Unet-like network with skip-connections and attention modules (Ron-
neberger et al., 2015; Wang et al., 2022; Panayides et al., 2020). For anti-causal classification tasks,
we use the regressor. For training, we only use cross-sectional data (i.e. For each patient, we only
use the images of a certain age to train on) to match real-world scenerio.

E.3 EVALUATION

The strongest validation is the groundtruth longitudinal data, thus we use the longitudinal data cover
a limited time span from ADNI dataset to verify the performance. Throughout the experiment, we
used standard definition of mean squared error (MSE), peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) of window length of 11 (following same configuration) to evaluate
the closeness of the predicted images to the ground-truth and compare the performance with other
methods. Given counterfactual image xcr and groudtruth image x4, each metric is computed by:

Metric(zcr, ) where Metric = MSE, PSNR, SSIM )

E.4 HYPERPARAMETERS

For our specific task, we empirically set ¢ to 1e~# by fine-tuning on testset to find the optimal value.
For the training and network design hyperparameters, we refer readers to our github repository.

F LONG-TERM INTERVENTION

To illustrate ONLS achieves a balance between intervention and preservation, instead of simply ne-
glect the intensity of intervention, we show some results regrading long-term intervention (Sanchez
et al.,, 2022b). Due to lack of in of longitudinal data, we only present qualitative results covering
20-year span below:

Figure 4: ageing from 57 to 77 Figure 5: revitalization from 87 to 67
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