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Abstract

We introduce a novel setting, wherein an agent needs to learn a task from a demonstration of a related
task with the difference between the tasks communicated in natural language. The proposed setting
allows reusing demonstrations from other tasks, by providing low effort language descriptions, and
can also be used to provide feedback to correct agent errors, which are both important desiderata
for building intelligent agents that assist humans in daily tasks. To enable progress in this proposed
setting, we create two benchmarks—Room Rearrangement and Room Navigation—that cover a
diverse set of task adaptations. Further, we propose a framework that uses a transformer-based model
to reason about the entities in the tasks and their relationships, to learn a policy for the target task.

Introduction

Teaching learning agents how to perform a new task is a central problem in artificial intelligence. One approach is
imitation learning (Argall et al., 2009) which involves showing demonstration(s) of the desired task to the agent, from
which the agent can infer the demonstrator’s intent and learn a policy for the task. However, for each new task, the agent
must be given a new set of demonstrations, which can be burdensome as the number of tasks grow, since providing
demonstrations is often a cumbersome process. On the other hand, techniques in instruction-following (MacMahon
et al., 2006; Vogel & Jurafsky, 2010; Chen & Mooney, 2011) communicate the target task to a learning agent using
language, which is a much more natural modality, particularly for non-experts. But as the complexity of tasks grows,
providing intricate details using natural language can also become challenging.

Figure 1: Example of the setting: The left image shows a
demonstration of the source task, where the red point is the
initial location of the agent, and the green point is the final
location. The image on the right shows the target task, with
the desired goal location marked with the green ‘x’. The ob-
jective is to train an agent to perform the target task without
any demonstrations of the target task, which requires rea-
soning about relative positions of entities.

This motivates a new paradigm that combines the
strengths of both imitation learning and natural lan-
guage. To this end, we propose a novel setting—given
a demonstration of a task (the source task), we want an
agent to complete a somewhat different task (the tar-
get task) in a zero-shot setting, that is, without access
to any demonstrations for the target task. The difference
between the source task and the target task is communi-
cated using natural language. For example, consider an
environment consisting of objects in a room, as shown in
Figure 1. Suppose we have a robot, to which we have al-
ready provided the demonstration shown on the left, and
it learns to perform that task. Now, we want to teach it to
go to the opposite side of the table without providing a
new demonstration. We posit that given a demonstration
for the source task, and a linguistic description of the
difference between the source and the target tasks, such
as “Go to the opposite side of the wide table”, the robot
should be able to infer the goal for the target task. Note that, to infer the target goal, neither the source demonstration,
nor the description, is sufficient by itself, and the agent must therefore combine information from both the modalities.

This setting has several promising use cases. First, it allows reusing demonstrations from related tasks, requiring only
low effort language, instead of additional demonstrations for new tasks. Second, for complex tasks, intricate details
that are harder to communicate using language alone can be demonstrated, while small differences between related
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tasks can be communicated using language. Third, it can be used for correcting the behavior of an agent if it makes
errors, where the agent’s current behavior can be seen as a demonstration, and a natural language correction can be
provided to guide the agent towards the correct behavior.

We introduce two new benchmarks for our problem setting—Room Rearrangement and Room Navigation. These
domains cover different types of environments, including discrete and continuous state and action spaces, and short
and long horizon tasks. Further, they include several different types of natural language adaptations. We construct
datasets with both template-based and natural language descriptions collected from actual humans.

Finally, we develop an approach to learn a policy for the target task in this new setting. Since language often describes
modifications in terms of entities and their relationships, we propose a relational approach—RElational Task Adaption
for Imitation with Language (RETAIL). The approach contains two independent components: (1) inferring a reward
function for the target task, which is then used to learn a policy using reinforcement learning (RL), and (2) learning a
policy for the source task, and adapting the policy for the target task. We show that combining these two components
results in a robust policy learning framework for the proposed setting.

To summarize, this work makes the following contributions. First, we propose a new setting that involves learning a
target task in a zero-shot manner, given the demonstration of a source task and a natural language description of the
difference between the source and target tasks. Second, we create two benchmarks and construct datasets for each,
which would enable exploring this new problem setting. Third, we propose the RETAIL framework, and demonstrate
its success on these benchmarks.

Related Work

Imitation Learning. In imitation learning, the agent is provided with demonstration(s) of a task, and needs to infer
the demonstrator’s intent, thereby learning a policy to complete the task (Argall et al., 2009; Pomerleau, 1989; Ross
et al., 2011; Abbeel & Ng, 2004; Ramachandran & Amir, 2007; Ziebart et al., 2008; Finn et al., 2016; Ho & Ermon,
2016; Fu et al., 2017). Our proposed setting differs from standard imitation learning, since the agent is provided with
demonstration(s) of the source task, but needs to learn a policy for a related but different target task, the difference
being communicated using language.

Transfer Learning. Transfer learning, particularly in the context of reinforcement learning, involves an agent trained
on a source task that needs to be adapted to a related but different target task. Various approaches have been developed
for transfer learning in RL, which can be classified into different categories based on how the source and target tasks
differ, and what information is being transferred (Taylor & Stone, 2009; Zhu et al., 2020). Our setting can be seen as
an instance of transfer learning, where the transfer is guided using language.

Language as Task Description. In a large class of approaches, which can broadly be termed as instruction-
following, language is used to communicate the task to a learning agent, wherein, the agent is given a natural lan-
guage command for a task, and is trained to take a sequence of actions that complete the task (Anderson et al., 2018;
Fried et al., 2018; Wang et al., 2019; Tellex et al., 2011; Hemachandra et al., 2015; Arkin et al., 2017; Shridhar et al.,
2020; Stepputtis et al., 2020; Misra et al., 2016; Sung et al., 2018). Our proposed setting is different from instruction-
following, in that the goal of the target task is not communicated using language alone; instead, a demonstration for
a related task (source task) is available, and language is used to communicate the difference between the two tasks.
Thus, the information in the demonstration and the language complement each other.

Language to Aid Learning. Several approaches have been proposed in the past that use language to aid the learning
process of an agent. In a reinforcement learning setting, this could take the form of a language-based reward, in
addition to the extrinsic reward from the environment (Luketina et al., 2019; Goyal et al., 2019; 2020b; Kaplan et al.,
2017), or using language to communicate information about the environment to the agent (Wang & Narasimhan, 2021;
Branavan et al., 2012; Narasimhan et al., 2018).

Relational Reasoning. Relational reasoning involves representing the inputs of a learning system using a set of
entities, and the model learns a task by reasoning about the relationships between these entities. Various techniques
have been proposed for relational reasoning (Scarselli et al., 2008; Kipf & Welling, 2016; Velickovic et al., 2017; Goyal
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Figure 2: Adaptations used in the Room Rearrangement (left) and Room Navigation (right) domains.

et al., 2020a). These approaches have been shown to be effective for various machine learning problems, including
reinforcement learning (Džeroski et al., 2001; Zambaldi et al., 2018; Zhou et al., 2022; Narasimhan et al., 2018),
language grounding (Santoro et al., 2017; Dong et al., 2020), and modeling passive dynamics (Didolkar et al., 2021).
In our work, we propose a relational model to use a source task demonstration to learn a target task, guided by language.

Problem Definition

Consider a goal-based task, which can be defined as a task where the objective is to reach a designated goal state
in as few steps as possible. It can be expressed using the standard Markov Decision Process (MDP) formalism, as
M = ⟨S,A, P, g⟩, where S is the set of all states, A is the set of all actions, P : S × A× S → [0, 1] is the transition
function, and g ∈ S is the unique goal state. The reward function can take multiple different forms, for example,
R(s, s′) = 1[s′ = g], such that an agent following the optimal policy under the reward function reaches the goal state
g from any state s ∈ S, in as few steps as possible.

Let T = {Mi}N
i=1 be a family of goal-based tasksMi, each with a distinct goal gi Kroemer et al. (2019). For instance,

in the environment shown in Figure 1, a goal-based task consists of navigating to a goal state g, while T is the set of
all such navigation tasks in the environment.

Let Tsrc, Ttgt ∈ T be two tasks, and L be a natural language description of the difference between the tasks. Given
a demonstration for the source task Tsrc, and the natural language description L, our objective is to train an agent to
complete the target task Ttgt in a zero-shot setting, i.e., without access to the reward function or demonstrations for
the target task.

Benchmark Datasets

We created two benchmark environments: Room Rearrangement and Room Navigation. For each environment, we
construct a dataset of (source demonstration, language, target demonstration) triplets, where the demonstrations are
generated using a planner, and the language is generated using templates. Further, we collect natural language descrip-
tions for a subset of these datapoints, using Amazon Mechanical Turk (AMT). The details of the environments, the
datasets, and natural language data collection are described below.

Objects. We use a common set of objects in both the environments, which we describe here. There are 6 distinct
nouns—Chair, Table, Sofa, Light, Shelf, and Wardrobe. Further, each object can have one of 6 attributes—
Large, Wide, Wooden, Metallic, Corner, and Foldable. The resulting 36 (attribute, noun) pairs are split into
24 train pairs, 6 validation, and 6 test pairs. Datapoints for each split use pairs only for that split. This ensures that the
model will encounter unseen (attribute, noun) pairs during test time. The agent is also treated as an entity with both
the attribute and the noun set to a special symbol Agent.
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Table 1: Examples of template-generated and natural language descriptions collected using AMT.

Template Natural language paraphrase
1. go further away from the metallic table Increase your distance from the metallic table.

2. go closer to the foldable light Move in the direction of the light that is foldable

3. go to the opposite side of the corner light Move across from the corner light.

4. move the large chair one unit farther from the wide couch Increment the distance of the big chair from the wide
couch by one.

5. move corner table two units further left and metallic shelf
one unit further backward

slide the corner table two units left and move the metal
shelf a single unit back

6. move the large table to where the large sofa was moved,
and vice versa

swap the place of the table with the sofa

Room Rearrangement Environment. The Room Rearrangement Environment consists of a 5 × 5 grid, with 2 dis-
tinct objects. The objective is to move each object to a desired goal position. The agent and the objects are spawned ran-
domly in the grid. The action space for the agent consists of 7 actions—Up, Down, Left, Right, Grasp, Release,
and Stop. More details about the transition dynamics are provided in the Appendix.

Room Navigation Environment. The Room Navigation Environment consists of a 2D arena, (x, y) ∈ [−100, 100]2,
with 4 distinct objects. The agent is spawned at a random location in the arena, and needs to navigate to a desired goal
position. The action space for the agent is (dx, dy) ∈ [−1, 1]2. The episode terminates when the agent takes an action
with an ℓ2-norm less than 0.1.

Adaptations. For each domain, we create three types of adaptations. For Room Rearrangement, these adaptations
involve specifying an absolute change in the goal position of each entity, the relative change in the goal position
of one entity with respect to the other, and swapping the goal positions of the entities. For Room Navigation, these
adaptations involve moving closer to an entity, moving further away from an entity, and going to the opposite side of
an entity. For each adaptation, we create a template to generate linguistic descriptions. See Figure 2 for examples of
these adaptations and corresponding linguistic descriptions.

Together, these environments cover various types of adaptations, such as specifying modifications to one versus several
entities, providing absolute modifications to an entity’s position (e.g., “move the table one unit further left") versus
modifications that are relative to other entities (e.g., “move the table one unit away from the sofa"). Further, these do-
mains cover different types of MDPs, with Room Rearrangement being a discrete state and action space environment,
with a relatively short horizon, while Room Navigation being a continuous state and action space environment, with a
longer horizon. 1 Finally, the Room Navigation domain has a unique optimal path (i.e. a straight line path between the
initial state and the goal state), while the Room Rearrangement domain admits multiple optimal paths (e.g. if reaching
an entity requires taking 2 steps to the right and 1 step upwards, these steps can be performed in any order). Thus,
these two domains make a robust testbed for developing techniques for the proposed problem setting.

Language Data. For each pair of source and target tasks in the dataset, we start by generating linguistic descriptions
using templates, such as, “Move attribute1 obj1 one unit closer to the attribute2 obj2”. For each type of
adaptation described above, we create one template, resulting in 6 adaptation templates across both the benchmarks.
We ensure that for all these templates, the target task cannot be inferred from the description alone, and thus, the model
must use both the demonstration of the source task and the linguistic description to infer the goal for the target task.
Next, we crowdsourced natural language for a subset of these synthetic (i.e. template-generated) descriptions using
AMT. Workers were provided with the synthetic descriptions, and were asked to paraphrase these descriptions. Some
examples of template-generated and natural language descriptions are shown in Table 1.

1On average, an optimal policy completes a task in the Room Rearrangement domain in about 30 steps, while in the Room Navigation domain
in about 150 steps.
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Datasets. For each adaptation template, 5,000 datapoints were generated for training, 100 for validation of the reward
and goal learning, 5 for tuning the RL hyperparameters, and 10 for the RL test set. This gave us (1) a training dataset
with 15,000 datapoints for each benchmark, (2) a validation dataset for supervised learning with 300 datapoints, (3)
a validation set for RL with 15 datapoints, and (4) a test set for RL with 30 datapoints. We collect natural language
paraphrases for 10% of the training datapoints, and all the datapoints in the other splits.

Since people often describe objects/tasks in the real-world in reference to other objects, we designed our adaptations
such that most of them are relational in nature, that is, require reasoning about relative positions of entities. Conse-
quently, we propose a relational approach for our setting, which we describe next.

RElational Task Adaptation for Imitation with Language (RETAIL)

We propose the RElational Task Adaptation for Imitation with Language (RETAIL) framework that takes in a source
demonstration, τsrc, and the difference between the source and target tasks described using natural language, l, to
learn a policy for the target task πtgt. The framework consists of two independent approaches, as shown in Figure 3.
The first approach—Relational Reward Adaptation—involves inferring a reward function for the target taskRtgt using
the source demonstration τsrc and language l, from which a policy for the target task πtgt is learned using RL. The
second approach—Relational Policy Adaptation—involves learning a policy for the source task πsrc from the source
demonstration τsrc, which is then adapted using language l to obtain a policy for the target task πtgt.

Figure 3: We present two independent approaches to learn
a target task policy – relational reward adaptation and rela-
tional policy adaptation. Finally, we show how to combine
these two approaches.

For both these approaches, we assume access to a train-
ing set D = {(τ i

src, τ
i
tgt, l

i)}N
i=1, where for the ith data-

point, τ i
src is a demonstration for the source task, τ i

tgt is
a demonstration for the target task, and li is the linguistic
description of the difference between the source task and
the target task.

We propose a relational model since many adaptations
require reasoning about the relation between entities
(e.g. “Move the big table two units away from the
wooden chair"). Since entity extraction is not the fo-
cus of this work, we assume access to a set of entities
for each task, where each entity is represented using
two one-hot vectors, corresponding to an attribute and
a noun. The details of attributes and nouns used in our
experiments have been described in the previous section.
Further, each state is represented as a list, where element
i corresponds to the (x, y) coordinates of the ith entity.
Finally, we assume that the number of entities, denoted
as Nentities, is fixed for a given domain.

We start by describing some common components used in both the approaches.

Entity Encoder. We assume each entity is represented using two one-hot vectors, corresponding to an attribute and
a noun. These two encodings are passed through embedding layers for attributes and nouns respectively, to obtain
dense vector representations. Further, each entity’s position in a state is represented using (x, y) coordinates. These
coordinates are passed through a linear layer to obtain a dense vector representation. The attribute, noun, and position
dense vectors are concatenated to get the final vector representation of the entity, ei.

Language Encoders. We experiment with 4 different ways of encoding language. First, we use a pretrained CLIP
model (Radford et al., 2021), which has been shown to be effective at language grounding tasks, to obtain an embed-
ding for each token in the description. The parameters of the pretrained model are kept frozen during the training of the
downstream network. Second, instead of a pretrained CLIP model, we use a pretrained BERT model (base, uncased;
(Devlin et al., 2018)). As before, the pretrained model is kept frozen. Third, instead of using a pretrained BERT model,
we experiment with a randomly initialized BERT model that is learned along with the downstream network. Finally,
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we use GloVe word embeddings (Pennington et al., 2014) followed by a two-layer bidirectional LSTM (Hochreiter
& Schmidhuber, 1997). The GloVe+LSTM and randomly initialized BERT models are more flexible, allowing them
to learn representations for words and sentences that are specialized for the task at hand, while the pretrained CLIP
and BERT models can potentially leverage the external knowledge seen during the pretraining phase. While pretrained
BERT encodes language independent of its grounding, the CLIP model is pretrained on multimodal data, which is
likely more useful for our setting which requires language grounding.

Next, we describe the details of Relational Reward Adaptation and Relational Policy Adaptation.

Relational Reward Adaptation

We define the rewardR(s, s′) using a potential function as,R(s, s′) = ϕ(s′)−ϕ(s). Thus, the problem of reward learn-
ing is reduced to the problem of learning the potential function ϕ(s). We decompose the potential function learning
problem into two subproblems: (1) predicting the goal state for the target task given the source goal and the language,
gtgt = Adapt(gsrc, l), and (2) learning a distance function between two states, d(s, s′). The potential function for the
target task is then defined as follows:

ϕtgt(s|gsrc, l) = −d(s,Adapt(gsrc, l))

Goal Prediction

Figure 4: Neural Network architecture for relational goal
prediction.

Given a set of entities E, a goal state for the source task
represented as a list of positions of each entity (gsrc),
and a natural language description of the difference be-
tween the tasks (l), the goal predictor network is trained
to predict the goal position for each entity in the target
task (gtgt).

First, the entities in the goal state for the source task,
and the language description are encoded using the En-
tity Encoder and Language Encoder module described
above. The encoded goal states for the source task, and
the token embeddings generated by the language en-
coder are concatenated to create a single sequence of to-
kens, which is passed through a transformer layer. The
first Nentities tokens of the output sequence are pro-
jected back to the R2 space using a multi-layer percep-
tron with three linear layers and ReLU non-linearities
between them to get the predicted goal state of each of
the Nentities entities under the target task.

A diagram of the goal predictor neural network is shown
in Figure 4.

Distance Function Learning

The distance function takes in two states s and s′, and predicts the distance between them. While an ℓ2-distance
between the states can be directly computed, this may not be ideal in many domains. Therefore, we learn a neural
network ψ with two linear layers and a ReLU non-linearity between them to project the raw states into an embedding
space. The distance between the states s and s′ is then computed as d(s, s′) = ∥ψ(s) − ψ(s′)∥2.

Training

To train the model, we assume access to a dataset D = {(τ i
src, τ

i
tgt, l

i)}N
i=1.

The goal prediction module is trained by using the final states in the source and target demonstrations, as the source
and target goals respectively. We minimize the mean absolute error between the gold target goal state, gtgt and the
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predicted target goal state, ĝtgt:

Lgoal = 1
N

N∑
i=1

∥gtgt − ĝtgt∥1

To train the distance function, two states si and sj are sampled from a demonstration τ , which can be the source or
the target demonstration for the task, such that i < j. The model is trained to predict distances such that d(g, si) >
d(g, sj), where g is the goal state for the demonstration. This is achieved using the following loss function:

Ldist = −
∑

si,sj ,g

log
(

exp(d(g, si))
exp(d(g, si)) + exp(d(g, sj))

)
This loss function has been shown to be effective at learning functions that satisfy pairwise inequality constraints
(Christiano et al., 2017; Brown et al., 2019).

The goal prediction and distance function modules are independently trained using the dataset D. We used an Adam
optimizer (Kingma & Ba, 2015) to train the networks for 100 epochs each. A validation set was used to tune hyperpa-
rameters via random search.

The learned goal prediction and distance function modules are combined to obtain a reward function for the target
task, which is then used to train a policy using reinforcement learning. More details about this step are provided in the
Experiments section.

Relational Policy Adaptation

Figure 5: Relational Policy Adaptation approach

Instead of learning a model to infer the reward function
for the target task from the source demonstration and lan-
guage, in this section, we describe an alternate approach
wherein we learn a model to infer the target task policy
from the source task policy.

First, a goal-conditioned policy π(a|s, g) is learned us-
ing all the source and target demonstrations—given the
goal state for a task, g, (which is assumed to be the last
state in the demonstration), and another state, s, we use
behavior cloning to learn a policy that predicts the ac-
tion to be taken at state s. We use a neural network to
parameterize this policy, wherein the states g and s are
concatenated and then passed through a multi-layer per-
ceptron to predict the action at state s.

The learned model is then used to generate data of the
form (state, language, source action, target action). For
each datapoint of the form (τ i

src, τ
i
tgt, l

i) in the original
dataset, the states in the source and target demonstrations are passed through the learned goal-conditioned policy,
passing in the source task goal and the target task goal to obtain the actions in the source and target tasks respectively:

asrc ∼ π(a|s, gsrc) ; atgt ∼ π(a|s, gtgt)

This data is used to train a transformer-based adaptation model, that takes in the source action, the entities in the state
s, and the language to predict the target action. The entities and language are encoded using the Entity Encoder and
Language Encoder described above. See Figure 5 for a diagram of the approach.

During evaluation, we are given the source demonstration and language, as before. We use the goal-conditioned policy
π(a|s, g) to first predict the action for the current state under the source task, and then pass this predicted action, along
with the encoded entities and language to the adaptation model, to obtain the action under the target task. This action is
then executed in the environment. The process is repeated until the STOP action is executed or the maximum episode
length is reached.
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Note that this approach does not involve reinforcement learning to learn the policy.

Combining Reward and Policy Adaptation

So far, we’ve described the relational reward adaptation approach that infers a reward function for the target task, and
the relational policy adaptation approach that infers an initial policy for the target task. In this section, we describe
how these approaches can be combined.

Recall that the actor-critic model in the PPO algorithm consists of a policy network and a value network. We use the
output of the policy adaptation and the reward adaptation approaches to initialize these networks respectively.

Note that the architectures for the policy and value networks in PPO are different from the architectures of the networks
in policy and reward adaptations. Specifically, the networks in PPO are trained for a single target task, and therefore
only take the state as input, whereas the policy and reward adaptation approaches are shared across different tasks and
are therefore conditioned on language as well. As such, we cannot directly initialize network weights in PPO, and
therefore use knowledge distillation (Hinton et al., 2015) to initialize the networks.

Figure 6: The combined approach

Thus, our full approach can be described as follows (see
Figure 6):

1. Train the reward adaptation and policy adapta-
tion models using supervised learning indepen-
dently, as detailed in the previous sections.

2. Use knowledge distillation to initialize the
value network for PPO, updating the PPO value
network towards the potential predicted by the
reward adaptation approach.

3. Use knowledge distillation to initialize the pol-
icy network for PPO, updating the PPO policy
network towards the action probabilities pre-
dicted by the policy adaptation approach for the
target task.

4. Finetune the action and value networks using
PPO with the rewards predicted by the reward
adaptation approach.

For knowledge distillation, states from the demonstra-
tion data are sampled uniformly at random.

Importantly, we found that the action network initialized using knowledge distillation usually has a low entropy, and
therefore finetuning it directly does not result in good performance. To ameliorate this issue, the entropy of the action
network must be kept sufficiently high for it to still allow some exploration. In the continuous control case, we achieve
this by increasing the standard deviation of the action network, tuned using the validation set. In the discrete domain,
since there is no explicit parameter to control the entropy in the action network, the knowledge distillation step has an
additional loss term to penalize low-entropy solutions.

Experiments

Relational Reward Adaptation

Policy Training. The goal prediction and distance function learned on the training set are used to train a policy for
each task in the test set with the hyperparameters found to be optimal for the 5 validation RL tasks. We report the total
number of successful episodes at the end of 500,000 and 100,000 timesteps respectively for these domains, averaged
over three RL training runs per target task. We use PPO as the RL algorithm for all our experiments (Schulman et al.,
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Table 2: Success rates for different models on Room Rearrangement and Room Navigation domains. We report both
the raw success rates (unnormalized), and success rates normalized by the oracle setting performance.

No. of successes
Setting Rearrangement Navigation

Unnormalized Normalized Unnormalized Normalized
Reward Adaptation 2996.02 ± 136.21 68.05 ± 3.09 247.98 ± 20.51 73.54 ± 6.08
Oracle 4402.78 ± 410.67 100.00 ± 9.33 337.22 ± 7.34 100.00 ± 2.18
Zero reward 121.02 ± 4.25 2.75 ± 0.10 0.29 ± 0.04 0.09 ± 0.01
True goal, predicted distance 4164.80 ± 337.83 94.59 ± 7.67 362.13 ± 12.18 107.39 ± 3.61
Predicted goal, true distance 3706.80 ± 200.46 84.19 ± 4.55 196.49 ± 12.97 58.27 ± 3.85
Synthetic language 3827.64 ± 141.79 86.94 ± 3.22 317.11 ± 49.26 94.04 ± 14.61
Non-relational goal prediction 869.89 ± 115.12 19.76 ± 2.61 0.38 ± 0.17 0.11 ± 0.05
Combined approach 8516.78 ± 894.35 193.44 ± 20.31 430.80 ± 5.08 127.75 ± 1.51

2017; Raffin et al., 2021). For the Room Rearrangement domain, the agent and the entities are initialized uniformly
at random anywhere on the grid at the beginning of each episode. For the Room Navigation domain, the entities are
initialized in the same positions as in the source task, while the agent is initialized uniformly at random in the arena.

Evaluation Metrics. In the Room Rearrangement domain, an episode is deemed successful if both the entities are
in the desired goal locations when the agent executes Stop, while for the Room Navigation domain, an episode is
deemed successful if the ℓ2-distance between the agent’s final position and the desired goal position is less than 5
units. (Recall that the total arena size is 200 × 200 units, and the episode ends when the agent executes an action with
an ℓ2-norm less than 0.1 unit.)

Results

In this section, we describe the performance of our full model, along with various ablations. Our results are summarized
in Table 2. For each experiment, we run policy training with 5 random seeds, and report the mean and standard
deviation of the number of successful episodes. Unless stated otherwise, we use the full set of synthetic and natural
language descriptions for supervised training, and only natural language descriptions during testing for RL.

The first row corresponds to our full reward adaptation model, that learns a relational goal prediction model, and
a distance function, which are then combined to form a reward function for RL. The target tasks are trained with
natural language descriptions collected using AMT. The next two rows serve as approximate upper and lower bounds
respectively. The second row corresponds to an oracle setting, wherein, a policy is trained with the true goal state for
the target task, and the potential of a state is defined as the distance between the current state and the goal state. We
use the ℓ1-distance for Rearrangement, and the ℓ2-distance for Navigation. For the third row, we define the reward
function to be uniformly zero, and this result tells us how well a random policy would do on our target tasks.

We can observe that the proposed model is substantially better than the lower bound, but is about 70% as good as the
oracle. As such, there is quite a bit of room for improvement to achieve performance close to the oracle.

Of the language encoders we used, we did not find any substantial difference between different encoders. This is likely
because the language descriptions used in our experiments were relatively simple. However, as the proposed setting is
extended to richer tasks, we expect these language encoders to perform differently.

To understand the effect of various design choices, we ran several ablation experiments, which we describe next. Since
our full model consists of two learned components, the goal prediction module, and the distance function, we first
study the impact of each of these components independently. We experiment with the following two settings: (1) the
true target goal state, with the learned distance function (Row 4), and (2) the learned target goal prediction, with the
true distance function, where the true distance function is as used in the oracle setting for each domain (Row 5). As
expected, the distance function is easy to learn in these domains, and using the learned distance function instead of
the true distance function leads to a small or no drop in performance. Most the performance drop comes from the goal
prediction module, and therefore future modeling innovations should focus on improving the goal prediction module.

Next, we look at the performance difference between synthetic and natural language. Row 6 in Table 2 shows the
number of successful episodes when using synthetic language only, both during training the goal prediction model,
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Figure 7: Learning curves comparing the policy training on target tasks when using uninitialized PPO networks and
PPO networks initialized using policy adaptation, on the Rearrangement (left) and Navigation (right) domains.

and for learning the target task policy using RL during testing. In both the domains, using synthetic language is
significantly better than using natural language, and is comparable to the oracle.

In order to analyze the benefit of using the relational model, we compare our approach against a non-relational model.
Row 7 shows the results when using a non-relational model, where we use a multilayered perceptron with three linear
layers, that takes in the entity vectors, goal positions of all entities in the source task, and the CLIP embedding of the
final token in the description, all concatenated together as a single input vector, and outputs the goal positions of all
entities in the target task as a single vector. This model is significantly worse than the relational model on both the
domains, highlighting the benefit of using a relational approach for these tasks.

Relational Policy Adaptation

To evaluate this approach, we generate 100 rollouts using the trained models for each test task, and compute the
number of successful episodes. For each rollout, we randomize the initial state as in the policy training experiments
for Relational Reward Adaptation.

On the Rearrangement domain, the approach completes 15.33% tasks when using natural language, and 29.13% tasks
when using synthetic language. On the Navigation domain, the approach results in 3.87% and 21.71% success when
using natural and synthetic language respectively.

Combining Reward and Policy Adaptation

For the experiments here, we use synthetic and natural language for supervised learning, and only natural language for
RL during evaluation. We report the number of successes when PPO is initialized randomly, as in Relational Reward
Adaptation experiments, and when it is initialized using the adapted policy in the final row of Table 2. Further, Figure 7
shows the learning curves for these experiments.

We observe that on both the domains, initializing the policy network using the Relational Policy Adaptation approach
and the value network using the Relational Reward Adaptation approach leads to a substantially faster policy learning
on the target tasks, compared to randomly initialized PPO networks.

Some qualitative results using the reward and policy adaptation approaches are included in the appendix.

Key Takeaways

To summarize, our experiments demonstrate that: (1) Relational Reward Adaptation leads to successfully learning
the target task from the source demonstration and language in many test tasks, but there is room for improvement;
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(2) Relational Policy Adaptation can be used to complete some target tasks without RL, but there is a significant
room for improvement; and (3) combining the two approaches followed by finetuning with RL leads to a much better
performance than using either approach independently.

Conclusions

We introduced a new problem setting, wherein an agent needs to learn a policy for a target task, given the demonstration
of a source task and a linguistic description of the difference between the source and the target tasks, and created two
relational benchmarks – Room Rearrangement and Room Navigation – for this setting. We presented two relational
approaches for the problem setting. The first approach – relational reward adaptation – learns a transformer-based
model that predicts the goal state for the target task, and learns a distance function between two states. These trained
modules are then combined to obtain a reward function for the target task, which is used to learn a policy using RL.
The second approach – relational policy adaptation – learns a transformer-based model that takes in a state, and the
action at this state under the source task, to output the action at this state under the target task, conditioned on the
source task goal and language. We show that combining these approaches results in effective policy learning.

We believe that the problem setting, benchmarks, and approaches presented here would enable further research along
this line of work, including short-term directions such as combining the proposed approaches with entity extraction
methods and handling variable number of entities, and long-term directions such as more realistic domains and tasks.

The problem setting would enable teaching multiple related tasks to an agent by providing a few demonstrations
with multiple low-effort linguistic descriptions, thus reducing the burden of providing demonstrations on the end user.
Further, as mentioned in the introduction, the problem setting is closely related to that of learning from feedback. As
such, it may be informative to explore how the proposed approaches can be used for feedback, or vice versa.
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Figure 8: Visualization of predicted goal for two test datapoints using the reward adaptation approach. The yellow X
denotes the goal position under the source task, and the red and blue X’s denote the predicted and true goal positions
under the target task.

Appendix

Dataset details

Transition Dynamics for the Room Rearrangement Domain. If the agent is on a cell that contains another object,
the Grasp action picks up the object, otherwise it leads to no change. A grasped object moves with the agent, until
the Release action is executed. The Up, Down, Left, and Right actions move the agent (and the grasped object,
if any) by one unit in the corresponding direction, except when the action would result in the agent going outside the
grid, or the two objects on the same grid cell. In these cases, the action doesn’t result in any change. The Stop action
terminates the episode.

Qualitative Results

In this section, we report some qualitative results on the Navigation domain with reward and policy adaptation ap-
proaches.

In Figure 8, we show two examples of goal prediction using the Relational Reward Adaptation approach. In the first
example, the predicted goal state is quite close to the true goal state under the target task, suggesting that the model is
able to successfully recover the target task. In the second example, the predicted goal is somewhat farther from the true
goal. A plausible explanation is that the model was not able to disambiguate the entity being referred to by language,
and therefore computes the target goal position as a linear combination of distances to multiple entities.

In Figure 9, we show three examples of paths followed by the agent when following the actions predicted by the
Relational Policy Adaptation approach (without any finetuning). In the first example, we see that the agent successfully
reaches and stops at the true goal position under the target task. In the other two examples, we see that the agent gets
somewhat close to the goal position under the target task, but doesn’t actually reach it (and is also going towards the
goal position under the source task). The errors seem to get larger as agent gets closer to the target goal, motivating a
modified training algorithm wherein datapoints could be weighted differently based on how close the agent is to the
goal position. We leave this investigation for future work.

Compute Infrastructure

All experiments were run on a machine with 4 Quadro RTX 6000 GPUs, 64 CPUs, and 512 GB of RAM. We used the
PyTorch deep learning framework (version 1.10.1) (Paszke et al., 2019), along with Stable Baselines 3 for RL (Raffin
et al., 2021).
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Figure 9: Visualization of predicted goal for three test datapoints using the policy adaptation approach. The red X
denotes the initial position of the agent, the yellow X denotes the true goal position under the source task, and the blue
X denotes the true goal position under the target task.

Table 3: Hyperparameters for target goal prediction in relational reward adaptation

Hyperparameter Values tried Best value
Rearrangement Navigation

Batch size 8, 16, 32, 64 16 16
Learning rate 1e-3, 1e-4, 1e-5 1e-4 1e-4
Dimension of the space in which the noun
and the attribute of an entity are projected 8, 16, 32 32 32

Hidden layer size for the MLP used after
the transformer module 32. 64. 128. 256. 512 128 128

No. of heads in the transformer module 1, 2, 3, 4, 5, 6, 7, 8 8 8
No. of encoder layers in the transformer
module 1, 2, 3, 4 4 4

Dimension of the feedforward layer in the
transformer module 32, 64, 128. 256 256 256

Dropout probability in the transformer module 0.1, 0.2, 0.3, 0.4 0.4 0.4

Hyperparameters

Here, we describe the hyperparameters used in our approaches, along with the values tried. For each module, we used
8 random seeds to choose the value of each hyperparameter, and selected the best set of values using a validation set.

Table 4: Hyperparameters for distance learning in relational reward adaptation

Hyperparameter Values tried Best value
Rearrangement Navigation

Batch size 8, 16, 32, 64, 128, 256, 512 512 32
Learning rate 1e-3, 3e-4, 1e-3, 3e-3 3e-3 1e-3
Hidden layer size for the MLP 8, 16, 32, 64, 128, 256, 512 512 128
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Table 5: Hyperparameters for RL using PPO

Hyperparameter Values tried Best value
Rearrangement Navigation

Batch size 4, 8, 16, 32, 64, 128, 256, 512, 1024 32 16

Learning rate
1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3,
3e-3, 1e-2, 3e-2, 1e-1 3e-5 3e-4

No. of steps per update
8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
256, 384, 512, 768, 1024, 1536, 2048 512 256

No. of epochs 1, 2, 5, 10, 20, 30, 50 50 10
gae_lambda 0.99, 0.98, 0.95, 0.9, 0.8 0.99 0.99
clip_range 0.1, 0.2, 0.3 0.3 0.2

Entropy coefficient
1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2,
3e-2, 1e-1, 3e-1, 1 0.1 3e-4

Max gradient norm 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 2.0 1.0

Table 6: Hyperparameters for goal-conditioned policy learning in relational policy adaptation

Hyperparameter Values tried Best value
Rearrangement Navigation

Batch size 8, 16, 32, 64 64 32
Learning rate 1e-4, 3e-4, 1e-3 1e-4 1e-4
Hidden layer size for the MLP 32, 64, 128, 256, 512 256 256

Table 7: Hyperparameters for adaptation module in relational policy adaptation

Hyperparameter Values tried Best value
Rearrangement Navigation

Batch size 8, 16, 32, 64 32 32
Learning rate 1e-3, 1e-4, 1e-5 1e-3 1e-3
Dimension of the space in which the noun
and the attribute of an entity are projected 8, 16, 32 4 4

Hidden layer size for the MLP used after
the transformer module 32. 64. 128. 256. 512 256 256

No. of heads in the transformer module 1, 2, 3, 4, 5, 6, 7, 8 4 4
No. of encoder layers in the transformer
module 1, 2, 3, 4 2 2

Dimension of the feedforward layer in the
transformer module 32, 64, 128. 256 128 128

Dropout probability in the transformer module 0.1, 0.2, 0.3, 0.4 0.1 0.1

17


