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ABSTRACT

Existing methods for reconstruction of objects and humans from a monocular im-
age suffer from severe mesh collisions and performance limitations for interact-
ing occluding objects. In this paper, we introduce a method that deduces spatial
configurations and achieves globally consistent 3D reconstruction for interacting
objects and people captured within a single image. Our contributions encom-
pass: 1) an optimization framework, featuring a novel collision loss, tailored to
handle complex human-object and human-human interactions, ensuring spatially
coherent scene reconstruction; and 2) a novel technique for robustly estimating
6 degrees of freedom (DOF) poses, particularly for heavily occluded objects, ex-
ploiting image inpainting. Notably, our proposed method operates effectively on
images from real-world scenarios, without necessitating scene or object-level 3D
supervision. Through both qualitative and quantitative assessments, we demon-
strate the superior quality of our reconstructions, showcasing a significant reduc-
tion in collisions in scenes with multiple interacting humans and objects.

1 INTRODUCTION

Existing methods for human and object reconstructions are either limited to single objects and hu-
mans or give limited performance for complex images with multiple people and objects Kanazawa
et al. (2018); Kolotouros et al. (2019a); Choy et al. (2016); Girdhar et al. (2016); Hassan et al.
(2019); Savva et al. (2016). These methods either estimate the 3D poses of humans and objects
independently or do not take into account the human-human interactions Zhang et al. (2020) and
even if they do they generally follow a supervised approach Jiang et al. (2020). This leads to large
collisions between the meshes with incoherent reconstructions. In this paper, we consider the full
scene holistically and exploit information from the human-human and human-object interactions for
spatially coherent and more complete 3D reconstruction of in-the-wild images.

Input Image                                   PHOSA
front-view                                            top-view

                                  Ours
front-view                                            top-view

Figure 1: Comparison of the proposed method (right) reconstruction with PHOSA(middle). The
proposed method gives a more coherent reconstruction with correct spatial arrangement by reasoning
about human-human and human-object interaction

PHOSA Zhang et al. (2020) pioneered the field and proposed the first method that reconstructs
humans interacting with objects for complex images. However, PHOSA excludes human-human
interactions and gives erroneous reconstructions when objects are heavily occluded, which leads to
reconstructions with incorrect depth ordering and mesh collisions. Multi-human model-free recon-
struction from a single image was proposed in Mustafa et al. (2021), however, this method does not
deal with interacting humans. Other methods Sun et al. (2021; 2022) for multi-person reconstruc-
tions give spatially incoherent reconstructions with severe mesh collisions because they reconstruct
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each person independently. To address these challenges, in this paper, we have proposed a novel
optimization-based framework for the spatially coherent reconstruction of scenes encompassing both
people and objects and can deal with heavy occlusions of the objects by humans. The method first
reconstructs humans Joo et al. (2021) and objects Kato et al. (2018) in the image independently. The
initial poses of people in the scene are optimized to resolve any ambiguities that arise from this in-
dependent composition using a novel collision loss, depth ordering, and interaction information. To
deal with heavily occluded objects, a novel 6 DOF pose estimation is proposed that uses inpainting
to refine the segmentation mask of the occluded object for significantly improved pose estimation.
Finally, we propose a global objective function that scores distinct 3D object layouts, orientations,
collision, and shape exemplars. Gradient-based solvers are used to obtain globally optimized poses
for humans and objects. Our contributions are:

• The first approach that generates a unified coherent reconstruction of a scene from a sin-
gle image by effectively capturing interactions between humans and between humans and
objects, all without relying on any 3D supervision.

• A novel collision loss in an optimization framework to robustly estimate 6 DOF poses of
multiple people and objects in crowded images.

• An inpainting based method to improve the segmentation mask of heavily occluded objects
that greatly boosts the precision of 6 DOF object position estimations.

• Qualitative and quantitative evaluation of the proposed method on complex images with
multiple interacting humans and objects from the COCO-2017 dataset Lin et al. (2014)
against the state-of-the-art demonstrate the effectiveness of our approach.

2 RELATED WORK

3D humans from a single image: Methods like Loper et al. (2015); Pavlakos et al. (2019); Zhou
et al. (2010) use statistical body models and a large number of 3D scans to recover 3D humans from
a single image. Bogo et al. (2016) use 2D poses, Tung et al. (2017) uses 2D body joint heatmaps and
Kolotouros et al. (2019b) uses GraphCNN to estimate SMPL model Loper et al. (2015). However
these methods only estimate 3D of single person in the scene. Methods like Zanfir et al. (2018a;b);
Jiang et al. (2020); Mustafa et al. (2021) recover the 3D poses and shapes of multiple people focus
on resolving ambiguities that arise due to incorrect depth ordering and collisions between people.
However these methods cannot handle large occlusions. In our work, inspired from Jiang et al.
(2020) we propose the collision loss and the depth ordering loss and use the 3D regression network
proposed in Omran et al. (2018) to recover the 3d pose and shape of interacting humans.

3D objects from a single image: The earlier techniques for single-view 3D object reconstruction
Lim et al. (2013); Kholgade et al. (2014); Aubry et al. (2014); Kar et al. (2015) estimate deformable
shape models via optimization. Recent methods train deep networks to estimate the 3D form from
an image Choy et al. (2016); Girdhar et al. (2016); Fan et al. (2017); Groueix et al. (2018), exploiting
multi-view cues with 3D supervision. These methods give incorrect 3D spatial arrangement. Re-
cently, Kulkarni et al. (2019) used GNN trained on a synthetic dataset without any humans to deduce
an object’s layout. In this paper we use a differentiable renderer to determine the object’s initial 6
DOF pose and then fine-tune the poses by taking into account the human-object and human-human
interactions without any 3D supervision.

3D human-to-object interaction: Savva et al. (2016) used information from the RGBD videos
of individuals interacting with interiors to train a model that understands how people interact with
their surroundings. Access to 3D scenes gives scene constraints that enhance the perception of
3D human poses Yamamoto & Yagishita (2000); Rosenhahn et al. (2008); Kjellström et al. (2010).
Hassan et al. (2019) uses an optimization-based method to enhance 3D human posture estimates
conditioned on a particular 3D scene obtained from RGBD sensors. Another recent method, Rosinol
et al. (2020), creates a 3D scene graph of people and objects for indoor data. Chen et al. (2019)
represents the optimal configuration of the 3D scene, in the form of a parse graph that encodes
the object, human pose, and scene layout from a single image. In our work, we overcome the
limitations of existing methods by handling not only on human-object interactions but also capturing
human-human interactions and also propose a method that deals with major occlusions that result in
significantly improved scene reconstruction.
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Figure 2: Overview of the proposed method to generate spatially coherent reconstruction from a
single image. The steps in red box are novel. The reconstruction before human pose optimization
exhibits notable mesh collisions. After human pose optimization, reduced mesh collisions are seen
while maintaining relative coherence between humans.

3 METHODOLOGY

The proposed method takes a single RGB image as input and gives a spatially coherent recon-
struction of interacting humans and objects in the scene, an overview is shown in Figure 2. We
exploit human-human and human-object interactions to spatially arrange all objects in a common
3D coordinate system. First, objects and humans are detected followed by SMPL based per person
reconstruction (Sec. 3.1), which gives incorrect spatial reconstructions and collisions. The human
3D locations/poses are translated into world coordinates and refined through a human-human spatial
arrangement optimization using a novel collision loss (Sec. 3.2). To correctly estimate the 3D object
pose (6-DoF translation and orientation) a differentiable renderer is used that fits 3D mesh object
models to the predicted 2D segmentation masks Kirillov et al. (2020). We correct the occluded ob-
ject mask using image inpainting (in Sec. 3.3) unlike PHOSA Zhang et al. (2020) which uses an
occluded object mask. Lastly, we perform joint optimization that takes into account both human-
human and human-object interactions for a globally consistent output. Our framework produces
plausible reconstructions that capture realistic human-human and human-object interactions.

3.1 ESTIMATING 3D HUMANS

Using Joo et al. (2021), we estimate the 3D shape and pose parameters of SMPL Loper et al. (2015)
given a bounding box for a human Mask (2017). The 3D human is parameterized by pose θ ∈ R72,
shape β ∈ R10, and a weak-perspective camera γ = [σ, tx, ty] ∈ R3. To position the humans in
the 3D space, γ is converted to the perspective camera projection by assuming a fixed focal length
f for all images, and the distance of the person is determined by the reciprocal of the camera scale
parameter σ. Thus, the 3D vertices of the SMPL model for the ith human are represented as:
Mi = J(θi, βi) + [tx, ty,

f
σi ], where J is the differentiable SMPL mapping from pose and shape to

a human mesh and tih = [tx, ty,
f
σi ] is the translation of ith human. The person’s height and size are

regulated by the SMPL shape parameter β. We define scale parameter(si) for each human similar to
PHOSA and the final vertices are given by M̄i = siMi.

3.2 HUMAN POSE OPTIMISATION

Independently analyzing human 3D poses results in inconsistent 3D scene configurations. Human-
human interactions can offer useful information to determine the relative spatial arrangement and not
considering this leads to ambiguities like mesh penetration and incorrect depth ordering. We present
an optimization framework that incorporates human-human interactions. We first identify interacting
humans in the image and then optimize the pose through an objective function to correctly adjust
their spatial arrangements.

Identifying interacting humans - Our hypothesis posits that human interactions are contingent
upon physical proximity in world coordinates. Hence we find the interacting humans by identifying
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Figure 3: The proposed approach produces spatially coherent reconstructions with a significant
reduction in mesh collisions compared to PHOSA Zhang et al. (2020), ROMPSun et al. (2021), and
BEVSun et al. (2022). Significant collision focal points are visually emphasized through discernible
encirclements within the presented image.

the overlap of 3D bounding boxes(More details regarding bounding box overlap criteria can be found
in the appendix C).

Objective function to optimize 3D spatial arrangement - Our objective includes collision, inter-
action, and depth ordering loss terms to constraint the pose for interacting humans:

LHHI−Loss = λ1LH−collision + λ2LH−depth + λ3LH−interaction (1)

We optimize (1) using a gradient-based optimizer Kingma & Ba (2014) w.r.t. translation ti ∈ R3

and scale parameter si for the ith human instance. The human translations are initialized from Sec
3.1. The terms in the objective function are defined below:

Collision Loss (LH−collision) - To overcome the problem of mesh collisions, as seen in existing
methods in Figure 3.2, we introduce a novel collision loss LH−collision that penalizes interpenetra-
tions in the reconstructed people. Let ϕ be a modified Signed Distance Field (SDF) for the scene that
is defined as follows: ϕ(x, y, z) = −min(SDF (x, y, z), 0) where ϕ is positive for points inside the
human and is proportional to the distance from the surface, and is 0 outside of the human. Typically
ϕ is defined on a voxel grid of dimensions Np ∗Np ∗Np. While it’s definitely possible to generate
a single voxelized representation for the entire scene, we often find ourselves requiring an extensive
fine-grained voxel grid. Depending on the scene’s extent, this can pose processing challenges due
to memory and computational limitations. To overcome this a separate ϕi function is computed
for each person by calculating a tight box around the person and voxelizing it instead of the whole
scene to reduce computational complexity Jiang et al. (2020). The collision penalty of person j for
colliding with person i is defined as follows: Pij =

∑
v∈Mj

ϕ̃i(v), where ϕ̃i(v) samples the ϕi

value for each 3D vertex v in a differentiable way from the 3D grid using trilinear interpolation. If
there is a collision between person i and a person j, Pij will be a positive value and decreases as
the separation between them increases. If there is no overlap between person i and j, Pij will be
zero. Let the translation of person i and person j be Ti and Tj respectively. Then the collision loss
between them is defined as:

Lij =

{
Pij

exp(||Ti−Tj+δ||2) Ti = Tj
Pij

exp(||Ti−Tj ||2) Ti ̸= Tj

(2)

When the translation values are the same (in case of maximum overlap) we use an extra term δ (0 <
δ < 1) to ensure non-zero gradients are not very large to avoid any instabilities during optimization.
The final collision loss for a scene with N people is defined as follows:

LH−collision =

N∑
j=1

( N∑
i=1i̸=j

Lij

)
(3)

Interaction Loss (LH−interaction) - This is an instance-level to pull the interacting people close
together, similar to Zhang et al. (2020): LH−interaction =

∑
hi,hj∈H µ(hi, hj)||C(hi)− C(hj)||2,

where µ(hi, hj) identifies whether human hi and hj are interacting according to the 3D bounding
box overlap criteria. C(hi) and C(hj) give the centroid for human i and human j respectively.

Depth-Ordering Loss (LH−depth) - To achieve more accurate depth ordering we refer to the depth
loss, as in Jiang et al. (2020). The loss is defined as: Ldepth =

∑
p∈S log(1 + exp(Dy(p)(p) −
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Dȳ(p)(p))), where S = {p ∈ I : y(p) > 0, ȳ(p) > 0, y(p) ̸= ȳ(p)} is the pixels in the image I
with incorrect depth ordering in the ground truth segmentation, the person index at pixel position
p is represented by y(p), and the predicted person index in the rendered 3D meshes is ȳ(p) and
y(p) ̸= ȳ(p). Dy(p)(p) and Dȳ(p)(p) represent the pixel depths.

3.3 3D OBJECT POSE ESTIMATION

After estimating the shape and pose of humans, the next step is to estimate the same for the objects.
To estimate the 3D location t ∈ R3 and 3D orientation R ∈ SO(3) of the objects. For each object
category, exemplar mesh models are pre-selected. The mesh models are sourced from Fre; Kundu
et al. (2018). The vertices of jth object are: V j

o = sj(RjO(cj , kj) + tj), where cj is the object
category from MaskRCNN Mask (2017), and O(cj , kj) determines the kj − th exemplar mesh for
category cj . The optimization framework chooses the exemplar that minimizes re-projection error
to determine kj automatically and sj is the scale parameter for jth object.

   3D object fitting via our proposed method

3D object fitting in PHOSA

 Input Image

Image after removing 
the person

Predicted mask 3D object fitting

 Predicted mask 3D object fitting

                 PHOSA
front-view                       top-view

                 Ours
front-view                        top-view

Figure 4: Comparison of the segmentation masks and reconstruction with PHOSA. The segmenta-
tion mask of the bicycle is occluded resulting in erroneous reconstruction in PHOSA. The proposed
method uses image inpainting to remove the occlusion to generate a better segmentation mask, which
leads to a more complete reconstruction.

Our first objective is to estimate the 6 DOF pose of each object independently. It is difficult to
estimate 3D object pose in the wild as there are: (1) no parametric 3D models for objects; (2) no
images of objects in the wild with 2D/3D pose annotations; and (3) occlusions in cluttered scenes
with humans. We address these challenges by proposing an optimization-based approach that uses
a differentiable renderer Kato et al. (2018) to fit the 3D object to instance masks from Kirillov et al.
(2020) in a manner that is robust to minor/major occlusions.

As defined in Zhang et al. (2020) we calculate a pixel-wise L2 loss over rendered silhouettes S
versus predicted masks M but the quality of the predicted mask M is impacted by occlusions as seen
in Zhang et al. (2020), which results in a poorly estimated 6 DOF pose. To address problems due to
occlusions, we propose a novel method that improves the masks as shown in Figure 3.3.

Given an image I , a total number of objects N , and bounding boxes for rigid Br and non-rigid
Bnr objects, along with their masks - Mr for rigid and Mnr for non-rigid objects. Each ith object
can be occluded by maximum N − 1 objects. To identify occluding objects we calculate the In-
tersection over Union(IOU) between all pairs of bounding boxes. Objects with IOU > 0.3 (Our
selection of this threshold stems from our empirical observations, wherein we found that objects
with IOU > 0.3 led to noticeable improvements in reconstruction quality. Conversely, when IOU
was less than 0.3, the reconstruction results obtained using our method closely resembled those pro-
duced by PHOSA Zhang et al. (2020), more details in appendix D) are occluding objects M for
each object. Occluding objects can be removed in numerous ways, for e.g remove only one object
at a time. The total possible combinations, in this case, are

(
M
1

)
, or you remove a pair of objects

at a time and the total possible combinations, in this case, are
(
M
2

)
and so on. The total number of

all possible combinations can be described as
(
M
0

)
+

(
M
1

)
+

(
M
2

)
+ .....

(
M
M

)
= 2M . To remove j
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occluding objects where j ≤ M we need a single mask Mocc−mask that is a combination of the j
masks, so Mocc−mask = M1+M2+....+Mj . Now we use the image-inpainting approach proposed
by Nazeri et al. (2019) to remove the occluding objects. We pass the current image I and the mask
Mocc−mask to get a new image without occlusions and use this image to get the new segmentation
masks and bounding boxes:

Inew = EC(I,Mocc−mask)
Bnew

r , Bnew
nr ,Mnew

r ,Mnew
nr = OD(Inew) (4)

where EC is the image inpainting algorithm and OD is the object detection algorithm. Sometimes,
the ith object in I may not correspond to the same object in Inew. Let’s say the index of the ith

object in Inew be k. We iterate over the list of new bounding boxes and calculate the IOU of these
boxes with Br[i] and, k corresponds to the index of the bounding box for which IOU is closest to
1. We use the mask Mnew

r [k] to determine object pose. Estimating a reliable pose also depends
heavily on the boundary details. To incorporate this we augment the L2 mask loss with a modified
version of the symmetric chamfer loss Gavrila (2000). Given a no-occlusion indicator η (0 if pixel
only corresponds to a mask of a different instance, else 1), the loss is:

Locc−sil =
∑

(η ◦ S −Mnew
r [k])2 +

∑
p∈E(η◦S)

min
p̄∈E(M)

||p− p̄2|| (5)

We generate masks Mocc−mask for different values of j and a 3D pose corresponding to that mask
is chosen that results in a minimum value of Locc−sil. The edge map of mask M is computed by
E(M). To estimate the 3D object pose, we minimize the occlusion-aware silhouette loss:

(Rj , tj)∗ = argmin
R,t

(Locc−sil(Πsil(V
j
o ),M

new
r [k])) (6)

where Πsil is the silhouette rendering of a 3D mesh model via a perspective camera with a fixed focal
length f (Sec 3.1) and Mj is a 2D instance mask for the jth object. Instance masks are computed by
PointRend Kirillov et al. (2020).

3.4 JOINT OPTIMIZATION

The joint optimization refines both the human and object poses estimated above, exploiting both
human-human and human-object interactions through joint loss functions. Estimating 3D poses
of people and objects in isolation from one another leads to inconsistent 3D scene reconstruction.
Interactions between people and objects provide crucial clues for correct 3D spatial arrangement,
which is done by identifying interacting objects and humans and proposing an objective function for
refining human/object poses.

Identifying human-object interaction. Our hypothesis posits that human-object interactions are
contingent upon physical proximity in world coordinates. We use 3D bounding box overlap between
the human and object to determine whether the object is interacting with a person. (More details
regarding bounding box overlap criteria can be found in the appendix C

Objective function to optimize 3D spatial arrangements. We define a joint loss function that
takes into account both human-human and human-object interactions. It is crucial to include both
of them because if you simply optimize with regard to human-object interactions, it may result in
erroneous relative positions between interacting people even if it would enhance the relative spatial
arrangement between the interacting humans and objects.

Ljoint−loss = LHOI−Loss + LHHI−Loss (7)
where LHHI−Loss is same as Eq. 1 and

LHOI−Loss = λ1LHO−collision + λ2LHO−depth + λ3LHO−interaction + λ4Locc−sil (8)
Depth-Ordering Loss (LHO−depth) is same as Section 3.2. We optimize (8) using a gradient-based
optimizer Kingma & Ba (2014) w.r.t. translation ti ∈ R3 and intrinsic scale si ∈ R for the ith

human and, rotation Rj ∈ SO(3), translation tj ∈ R3 and sj ∈ R for the jth object instance jointly.
The object poses are initialized from Sec. 3.3. Locc−sil is the same as (5) except without the chamfer
loss which didn’t help during joint optimization.

Interaction loss (LHO−interaction): This loss handles both coarse and fine interaction between
humans and objects as in Zhang et al. (2020), defined as: LHO−interaction = Lcoarse−inter +
Lfine−inter.
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The coarse interaction loss is: Lcoarse−inter =
∑

h∈H,o∈O µ(h, o)||C(h)− C(o)||2, where µ(h, o)
identifies whether human h and object o are interacting according to the 3D bounding box overlap
criteria. C(h) and C(o) give the centroid for human and the object respectively. To handle human
interactions, the fine interaction loss is defined as:
Lfine−inter =

∑
h∈H,o∈O(

∑
Ph,Po∈P (h,o) µ(Ph, Po)||C(Ph) − C(Po)||2), where Ph and Po are

the regions of interaction between the humans and the object, respectively. µ(Ph, Po) is the overlap
of the 3D bounding box between the interacting objects, recomputed at each iteration.

Collision Loss (LHO−collision) - The formulation of this loss is similar to the collision loss de-
fined in Section 3.2. The difference is that here we take into account the mesh collision be-
tween interacting humans and objects in contrast to interacting humans. Let Nh represent the
total number of humans and No total number of objects, then the Loss function is defined as:
LHO−collision =

∑No

j=1

(∑Nh

i=1 Lhioj + Lojhi

)
, where hi represents the ith human and oj rep-

resents the jth object.

4 RESULTS AND EVALUATION

We perform both quantitative and qualitative assessments of the performance of our technique on
the COCO-2017 Lin et al. (2014) dataset on images that include interactions of humans and objects
against state-of-the-art methods PHOSA Zhang et al. (2020), ROMPSun et al. (2021), and BEVSun
et al. (2022).

4.1 QUALITATIVE AND QUANTITATIVE ANALYSIS

Figure 5: Qualitative comparison on test images from COCO 2017 against PHOSA Zhang et al.
(2020) with human-object interactions. Our method gives better spatial reconstruction while sub-
stantially reducing collisions(the golden circles delineate regions characterized by noteworthy mesh
collisions, while the red circles delineate areas showcasing enhancements in reconstructions). More
qualitative results are shown in appendix E
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Figure 6: Qualitative results of proposed method on test images from COCO 2017 compared to
PHOSA, ROMP, and BEV for human-human interactions. Our method gives more realistic and
coherent reconstructions for images with multiple humans.

Figures 5 and 6 shows a qualitative comparison with state-of-the-art methods. PHOSA performs
human-object reconstructions; and ROMP and BEV only reconstruct humans. As seen our approach
yields markedly improved reconstruction quality by effectively mitigating ambiguities arising from
mesh collisions and occlusions.

For quantitative evaluation, we employ a forced-choice assessment approach similar to
PHOSAZhang et al. (2020) on COCO-2017 Lin et al. (2014) images since there are no 3D ground
truth annotations for people and objects in images in the wild. From the COCO-2017 test set, we
randomly selected a sample of images and performed reconstruction on each image. We compare
our method with PHOSA, ROMP, and BEV by reconstructing the scenes and comparing the degree
of mesh collisions for human-human EH−col and human-object EHO−col and incorrect depth order-
ing for human-human EH−depth and human-object EHO−depth interactions that results from each
method. This is averaged across all images to estimate values in Table 1. Our approach outperforms
the state-of-the-art techniques for both multi-human and multi-human-object reconstruction, as well
as results in a more coherent and realistic reconstruction with significantly fewer ambiguities.

8



Under review as a conference paper at ICLR 2024

Methods EH−col EH−depth EHO−col EHO−depth

PHOSA 196.42 241.68 257.21 140.84
ROMP 180.51 210.92 - -
BEV 106.25 153.17 - -
Ours 16.46 54.37 26.65 73.77

Table 1: Quantitative evaluation with PHOSA Zhang et al. (2020), ROMPSun et al. (2021), and
BEVSun et al. (2022). BEV and ROMP only reconstruct humans. Equations of each evaluation
parameter are given in the appendix.

Ours vs. PHOSA ROMP BEV

88% 80% 74%

Table 2: User study that gives the average percentage of images for which our method performs
better on COCO-2017. 50% implies equal performance.

We also perform a subjective study similar to Zhang et al. (2020), where we show the reconstructions
for each image from PHOSA, ROMP, BEV, and our proposed method in a random order to the users
and the users mark whether our result looks better than, equal to, or worse than the other methods.
We compute the average percentage of images for which our method performs better in Table 2.
Overall, our method outperforms all the other methods.

Ours vs. No Lcollision No Ldepth No Linteraction No Locc−sil

83% 62% 73% 77%

Table 3: In the ablation study we drop loss terms from our proposed method. The higher the percent-
age, the more the effect of the loss term. No Lcollision implies the exclusion of both LH−collision

and LHO−collision. No Ldepth involves omitting LH−depth and LHO−depth. No Linteraction means
we omitted the LH−interaction and LHO−interaction, and lastly No Locc−sil corresponds to drop-
ping the loss term defined in eq. 5

4.2 ABLATION STUDY

An ablative study was conducted to assess the significance of the loss terms in Table 3. The identical
forced-choice test similar to PHOSAZhang et al. (2020) is conducted for the complete proposed
methodology (Equation 7), by omitting loss terms from the proposed method and measuring the
performance. Our findings indicate that the exclusion of the collision and occlusion-aware silhouette
loss has the most notable effect, with the interaction loss following closely behind. The collision loss
prevents mesh intersection and the silhouette loss guarantees that the object poses remain consistent
with their respective masks.

5 DISCUSSION

Existing methods to reconstruct humans/objects from a single image, give incoherent reconstruc-
tions with mesh penetrations and fail for complex human-human and human-object interactions.
In this paper, we perform holistic 3D scene perception by exploiting the information from both
human-human and human-object interactions in an optimization framework for the first time. The
optimization makes use of several novel constraints to provide a full scene that is globally con-
sistent, and reduces collisions by ≈ 80%, and improves spatial arrangement by ≈ 70% (Table 1)
over state-of-the-art methods. The proposed human optimization framework resolves ambiguities
between reconstructed people, and the proposed human-object optimization framework addresses
ambiguities between humans and objects. We further introduce a method that significantly improves
the pose estimation of heavily occluded objects. We demonstrate via our qualitative and quanti-
tative evaluations that the proposed method outperforms the state-of-the-art methods and produces
spatially coherent reconstructions with noticeably less ambiguity.
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A IMPLEMENTATION DETAILS

The Human-Human Interaction loss - LHHI−Loss is optimized using ADAM Kingma & Ba (2014)
with learning rate 2e − 3 for 100 iterations. The trainable parameters are translation ti ∈ R3 and
intrinsic scale si ∈ R for the ith human. We initialized the optimization with the human poses
estimated using Sec 3.1(in the paper).

Using the 6-DoF rotation representation described in Zhou et al. (2019), we encode rotations for
object poses. ADAM optimizerKingma & Ba (2014) is used to optimize occlusion-aware silhouette
loss with a learning rate of 2e − 3 for 200 iterations and edge maps E(M) are computed using
MaxPool(M) - M with a filter size of 7.

We optimize the joint loss - Ljoint−loss using ADAM Kingma & Ba (2014) with a learning rate
3e − 4 for 500 iterations. The trainable parameters are translation ti ∈ R3 and intrinsic scale
si ∈ R for the ith human and, rotation Rj ∈ SO(3), translation tj ∈ R3 and sj ∈ R for the jth

object instance jointly. The loss weights λi are tuned qualitatively on the COCO-2017 val set.We
initialized the optimization with the human poses estimated in Sec 3.2 (in the paper) and the best
object pose estimated in Sec.3.3 (in the paper) per object instance.
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B EVALUATION EQUATIONS

We compare our method with PHOSA, ROMP, and BEV by reconstructing the scenes and comparing
the degree of mesh collisions for human-human EH−col and human-object EHO−col and incorrect
depth ordering for human-human EH−depth and human-object EHO−depth interactions that results
from each method. We randomly sample the total T number of images from the COCO2017 test
set and for each image, reconstruction is performed via all methods to calculate EH−col, EHO−col,
EH−depth and EHO−depth. Finally, we determine the average value for all these for the different
methods. A lower score implies better reconstruction. The equations used to calculate these are as
follows, which indicate the average value of mesh collision loss among human-human reconstruc-
tions and humans-object reconstructions:

EHO−col =
1

T
∗

T∑
k=1

(Nk
o∑

j=1

(Nk
h∑

i=1

Lk
hioj + Lk

ojhi

))
(9)

where, Lk
hioj

and Lk
ojhi

are defined in the manuscript under Human-Object collision loss Sec 3.4 (in
the paper).

where, Lk
ij is defined in the manuscript under human-human collision loss Sec 3.2(in the paper)

EH−col =
1

T
∗

T∑
k=1

(Nk∑
j=1

( Nk∑
i=1i̸=j

Lk
ij

))
(10)

The other evaluation parameters indicate the average value of depth disparity for human-human and
human-object reconstruction across all photos.

EHO−depth =
1

T
∗

T∑
k=1

( ∑
p∈ShUSo

log(1 + exp(Dk
y(p)(p)−Dk

ȳ(p)(p)))
)

(11)

EH−depth =
1

T
∗

T∑
k=1

(∑
p∈Sh

log(1 + exp(Dk
y(p)(p)−Dk

ȳ(p)(p)))
)

(12)

C BOUNDING BOX OVERLAP CRITERIA

Given two objects i and j, we first determine a tight bounding box around these objects. Let us call
them boxi and boxj respectively. One important thing to note here is that boxes are axis-aligned.
Let’s say that the corners of boxi are li = (x1, y1, z1) and ri = (X1, Y1, Z1) where X1 > x1,
Y1 > y1 and Z1 > z1. Similarly, we can represent corners of boxj as lj = (x2, y2, z2) and
rj = (X2, Y2, Z2) where X2 > x2, Y2 > y2 and Z2 > z2. The way to check for an overlap is to
compare the intervals [x1, X1] and [x2, X2], and if they don’t overlap, there’s no intersection. Do
the same for the y intervals, and the z intervals.

def CheckOver lap ( l i , r i , l j , r j ) :
x 1 , y 1 , z 1 = l i
X 1 , Y 1 , Z 1 = r i
x 2 , y 2 , z 2 = l j
X 2 , Y 2 , Z 2 = r j
i f x 1 > X 2 or x 2 > X 1 :

re turn f a l s e
i f y 1 > Y 2 or y 2 > Y 1 :

re turn f a l s e
i f z 1 > Z 2 or z 2 > Z 1 :

re turn f a l s e
re turn t r u e
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D IOU THRESHOLDING
In this paper, one of our contributions is a novel approach aimed at enhancing the segmentation
mask of occluded objects. Our methodology leverages image in-painting for object removal, in-
corporating an Intersection over Union (IOU) threshold set at > 0.3. It is worth noting that this
threshold is flexible, allowing for experimentation with various values. Our choice of this threshold
is rooted in empirical observations, where we noted that objects with an IOU exceeding 0.3 resulted
in noticeable enhancements in reconstruction quality. Conversely, when the IOU was below 0.3, the
reconstruction results obtained by PHOSA closely resembled those produced by using our method.
To illustrate this distinction, we provide several examples showcasing reconstruction cases where
the IOU falls below and exceeds the 0.3 threshold.

IOU = 0.55

Input Image

3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours

IOU = 0.32

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours
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IOU = 0.21

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours

IOU = 0.16

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours
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IOU = 0.45

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours

IOU = 0.37

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours
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IOU = 0.27

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours

IOU = 0.18

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours

17



Under review as a conference paper at ICLR 2024

IOU = 0.71

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours

IOU = 0.28

Input Image
3D Object fitting in PHOSA

Predicted mask 3D Object Fitting PHOSA

   3D object fitting via our proposed method

Predicted mask 3D Object Fitting

Ours

E MORE QUALITATIVE RESULTS

Like existing papers we have shown results on the COCO 2017 dataset. Here we show more results
on challenging Youtube and Google images.
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Figure 7: Our method, recovers plausible human-object and human-human spatial arrangements by
explicitly reasoning about them. Here we demonstrate reconstruction on images with both humans
and objects and compare PHOSA’s reconstructions to those produced by our method.
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Figure 8: we illustrate the differences in human reconstructions generated by PHOSA, ROMP, BEV,
and Our approach when provided with an input image. Our approach produces more plausible recon-
structions with a substantial decrease in mesh collisions, all while maintaining relative coherence.
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