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ABSTRACT

Predicting RNA 3D structure from sequence remains challenging due to the struc-
tural flexibility of RNA molecules and the scarcity of experimentally resolved
structures. We ask how self-supervised RNA language models (LMs), trained
on millions of RNA sequences, can best enhance AlphaFold 3 (AF3) for RNA
structure prediction. Using an open-source AF3 reproduction, we run controlled
experiments that fix data and hyperparameters while varying fusion position and
method. We find large performance variation: the strongest gains come from
additive fusion applied at middle or late stages of the conditional network, refining
AF3’s single representations with RNA LM embeddings. On RecentPDB-RNA (67
newly released structures), our best model achieves a new state of the art with an
average TM-score of 0.472 (+21% over AF3) and a 33% success rate (TM-score ≥
0.6), more than doubling AF3’s 15%. On 11 CASP16-RNA targets, it matches the
best automated system trRosettaRNA. These results show that properly fused RNA
LM features substantially advance RNA 3D structure prediction. We will release
the data, code, and model weights to support open science, reproducibility, and the
development of automated RNA structure prediction models.

1 INTRODUCTION

Accurately predicting 3D structures of RNA molecules from primary sequences is a remaining grand
challenge in biology. It is an important step towards understanding the diverse functions of RNA
molecules. It also holds great promise for developing RNA-related therapeutics, such as mRNA
vaccines, anti-sense oligonucleotide (ASO) and aptamers (1; 2). In recent years, AlphaFold has
transformed computational protein structure modeling, achieving predictions with near-experimental
accuracy (3; 4). By contrast, RNA structure prediction remains far more challenging. RNA molecules,
composed of only four nucleotides, are inherently more dynamic and flexible than proteins, making
experimental determination substantially harder. As of July 8, 2025, the Protein Data Bank (PDB)
contains only a few thousand RNA structures, the number of which is less than 5% of the number of
deposited protein structures (5). Due to the scarcity of experimentally determined RNA structures,
RNA 3D structure prediction becomes a small data high-dimensional machine learning problem. As
measured in the Critical Assessment of protein Structure Prediction (CASP) 16 blind competition, all
the top-performing groups for RNA structure prediction are human expert predictors (6). The reliance
on manual expertise in modeling each RNA structure, however, significantly limits the prediction
speed and application scope, particularly in the scenario of drug candidate screening.

In this work, we seek an automated model for accurate RNA 3D structure prediction. For a given RNA
nucleotide sequence, an automated model can directly output the 3D coordinate prediction for each
atom in the RNA molecule without being further processed by human experts. Computational methods
have been developed for more than two decades. Early approaches to RNA structure prediction
primarily rely on physics-inspired energy functions to simulate molecular folding. Template-based
methods, which resemble retrieval strategies, are later introduced to leverage homologous RNA
structural information. More recently, with the rise of deep learning and particularly following the
success of AlphaFold, deep learning–driven approaches have attracted increasing attention and are
rapidly reshaping the field. Methods such as trRosettaRNA (7), RhoFold+ (8) and NuFold (9) are
very much inspired by AlphaFold 2, while recently AlphaFold 3 extends its predictions to different
molecules including RNA. Systematic benchmarking shows that AF3 is a competitive method that
outperforms most of the existing solutions for RNA 3D structure prediction (10).
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In parallel with advances in RNA structure modeling, progress in RNA sequence modeling has driven
the development of increasingly powerful RNA language models (LMs). Through self-supervised
learning on tens of millions of RNA sequences, RNA LMs capture evolutionary and structural
information, achieving impressive performance across diverse RNA function and structure prediction
tasks (8; 11; 12). A natural question is: can representations learned from massive RNA sequences
by RNA LMs be leveraged to enhance AF3’s performance on RNA 3D structure prediction? The
motivation is that, although AF3 is jointly trained on protein, RNA, and DNA structural data, proteins
dominate the training set. As a result, RNA-specific representations may be underdeveloped and
could benefit from the richer features provided by RNA LMs.

To answer this question, we are facing a multimodal fusion problem, integrating information from
multiple modalities with the goal of predicting an RNA structure. The technical challenges for
multimodal fusion are: 1) representations from RNA LM and AF3 are not in the same feature
space; and 2) it is difficult to build models that exploit supplementary and not only complementary
information (13). The high complexity of AF3’s architecture further complicates the problem. There
are five positions in AF3, lying in upstream and downstream of the network, that can be good
candidates for feature fusion. For each position, there are several fusion methods, such as add
fusion and attention-based fusion, that can be used. It is unclear how to best incorporate RNA LM’s
representation into AF3.

To investigate this, we design a series of controlled experiments on fusing RNA LM’s representation
into AF3 1, keeping the training data and hyperparameters fixed while varying only the fusion
positions and methods. We evaluate these models on RecentPDB-RNA, a carefully curated test set
consisting of 67 RNA structures from PDB with release dates after the training data temporal cutoff.
Experiment results reveal notable variation across fusion strategies: the most effective positions lie in
the middle or late stages of the conditional network, and the most effective method is additive fusion.
When comparing to existing RNA structure prediction methods, our model with the best fusion
strategy achieves a new SOTA in RNA 3D structure prediction on RecentPDB-RNA, with an average
TM-score of 0.472, outperforming AF3 by +21%. Moreover, it reaches a success (TM-score ≥ 0.6)
rate of 33%, doubling the success rate of AF3 (15%). On 11 CASP16-RNA targets released in 2025,
our model surpasses most of the baselines, reaching the performance of the best automated method in
the CASP16 competition. These results demonstrate that the representations learned from RNA LMs
are informative for RNA 3D structure prediction when incorporated using the right strategy.

2 RELATED WORK

2.1 RNA 3D STRUCTURE PREDICTION METHODS

Computational modeling of RNA 3D structures, which seeks to predict the atomic positions of
nucleotides, has been studied for over two decades. Existing approaches can be broadly categorized
into three groups: ab initio, template-based, and deep learning–based methods (15).

Ab initio methods simulate the underlying physics of RNA folding by optimizing energy functions
through sampling (16; 17; 18). While physically motivated, these approaches face two key limitations:
(1) the simulations are computationally expensive, particularly for large RNAs, and (2) inaccuracies
in the energy function can bias sampling and yield incorrect predictions.

Template-based methods leverage the principle that evolutionarily related molecules often adopt
similar structures. They construct models using global and local structural information from ex-
perimentally solved homologous RNAs (19; 20; 21). When suitable templates are available, these
methods can be highly accurate. However, they are constrained by template availability, which is
often lacking for designed or novel RNA sequences.

Deep learning–based methods have recently emerged as powerful alternatives. These approaches train
neural networks to predict RNA 3D structures from sequences and/or multiple sequence alignments
(MSAs). Based on scope, they can be divided into RNA-specific and general methods. RNA-specific
models include DeepFoldRNA (22), trRosettaRNA (7), DRfold (23), RhoFold+ (8), NuFold (9), and
DRfold2 (24). Among these, the first three employ hybrid strategies, combining deep learning for
feature learning with energy minimization for final refinement, while the latter three adopt end-to-end

1Due to the license of AF3, we use a fully open-sourced reproduction called Protenix (14) in our experiments.
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architectures inspired by AlphaFold 2 (3). General-purpose approaches include RoseTTAFoldNA
(25), RoseTTAFold All-Atom (26), AF3 (4), and its reproductions such as Protenix (14), Boltz-1
(27), and Chai-1 (28). Among them, AF3 currently delivers SOTA performance across diverse
macromolecular assemblies, but its usage is strictly limited by its license.

2.2 INCORPORATING LANGUAGE MODELS INTO STRUCTURE PREDICTION

The integration of pretrained LMs into structure prediction has gained significant attention in recent
years due to the huge success of large language models. In the protein domain, ESMFold (29) and
HelixFold-single (30) demonstrate that large-scale pretrained protein LMs can substitute for MSAs,
achieving performance close to AlphaFold 2 while providing substantially faster inference.

In RNA, recent studies have begun to explore similar directions, not to eliminate MSAs but to improve
structural accuracy. RhoFold+ (8) and DRfold2 (24) both incorporate pretrained RNA LMs and
report strong improvements in RNA 3D structure prediction. Notably, RhoFold+ retains both the
RNA LM and MSA modules, representing a hybrid approach rather than a full replacement.

In this work, we extend AF3’s RNA structure prediction capability by incorporating RNA LM
representations, emphasizing the enhancement of RNA representation quality in AF3 or AF3-like
architectures through effective multimodal fusion.

3 PRELIMINARY

AF3 is a diffusion-based generative model that, conditioned on primary sequences and optional inputs
such as multiple sequence alignments (MSAs), predicts all-atom 3D coordinates of biomolecules.
For example, for an RNA primary sequence, given noisy coordinates of all the atoms in the RNA
molecule, it iteratively denoises them into physically plausible conformations by conditioning on the
sequence. Most computation resides in the conditioning network, which takes the primary sequence
as input and produces rich single- and pair-wise features that guide the diffusion sampler. As shown
in Figure 1, the overall architecture of AF3 contains:

Input Embedder: A small Transformer embeds the tokens in the primary sequence of length Ntoken

into single representations sinputs ∈ R(Ntoken,cs inputs), and produces an initial single representation
sinit ∈ R(Ntoken,cs) by a linear projection and a pair representation zinit ∈ R(Ntoken,Ntoken,cz) by outer
concatenation of the single representation as inputs for the following Pairformer blocks.

Pairformer: A large trunk jointly updates the single representation s and pair representation z using
attention with geometric interactions. The trunk stacks 48 blocks that exchange information between
s and z and injects structural priors (e.g. triangular inequality), producing conditioning features
strunk ∈ R(Ntoken,cs) and ztrunk ∈ R(Ntoken,Ntoken,cz) tailored for coordinate generation.

Diffusion Module: A conditional, non-equivariant generative model works on the point cloud of
atoms. Conditioned on the trunk outputs strunk and ztrunk and the Input Embedder output sinputs, a
denoising diffusion module iteratively refines noisy atomic coordinates to a final structure (distribu-
tion). It is a two-level architecture, operating first on atom-level, then on token-level, and then on
atom-level to produce atom-level coordinate predictions.

Pairformer
Input

Embedder

Diffusion Cond

Diffusion Noise

Atom Decoder

Diffusion

Transformer

Atom Encoder

Sequence

MSA

Module

𝒔inputs 𝒔init

𝒛init

𝒔trunk

𝒛trunk
MSA

𝒔cond 𝒛cond

recycle

𝒔: single rep
𝒛: pair rep

𝑧

𝑠

① ②

③

④
⑤

Figure 1: Overview of AF3-style model architecture and the information flow from sequence to
single representation and pair representation and to final atomic structure. The grey block denotes the
Diffusion Module. The salmon color indicates candidate positions for feature fusion.
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4 METHODOLOGY

We extend AF3 to investigate whether self-supervised representations learned from millions of
RNA sequences can enhance RNA 3D structure prediction. To this end, we incorporate RNA LM
embeddings into AF3, systematically exploring different fusion positions and methods. The basic
idea is to refine AF3’s single or pair representations using RNA LM embeddings.

4.1 FEATURE EXTRACTION FROM RNA LM

Given an RNA sequence of Ntoken nucleotides, let srnalm ∈ R(Ntoken,crnalm) denote the final-layer
hidden states from the RNA LM, where crnalm is the embedding dimension. We lift these single-token
embeddings to pair space by forming zrnalm ∈ R(Ntoken,Ntoken,cz) by projecting srnalm twice to cz channels
and computing an outer sum between the two projected matrices, where cz is the pair representation
embedding dimension in AF3. In specific,

zrnalm
ij = srnalm

i W1 + srnalm
j W2

where W1,W2 ∈ R(crnalm,cz) are trainable parameters, and i, j denote positions in the sequence. The
outer-sum construction yields a symmetric pair representation, i.e., zrnalm

ij = zrnalm
ji , when the two

projections are tied (W1 = W2).

4.2 MULTIMODAL FUSION STRATEGIES

Fusion positions By diving into the architecture of AF3, we locate five candidate positions for
feature fusion:

1. The input single representation sinputs;
2. The initial single representation sinit;
3. The initial pair representation zinit;
4. The single conditioning representation s in diffusion module;
5. The pair conditioning representation z in diffusion module.

As shown in Figure 1, among the five candidate fusion positions, the first three lie upstream of the
Pairformer; features fused at these locations are subsequently processed by the Pairformer. The
remaining two positions are downstream of the Pairformer; features injected there bypass it and are
used directly to condition the Diffusion Module. To avoid redundancy, we fuse at a single position
per model variant rather than at multiple positions simultaneously.

Fusion methods For fusion methods, we adopt commonly used methods as candidates:

1. Add Fusion: add RNA FM’s embedding (or its outer concatenation) to the targeted represen-
tation;

2. Concat Fusion: concatenate RNA FM’s embedding with the targeted representation along
the feature dimension;

3. Cross-attention Fusion: treat the targeted representation as a query and RNA FM’s embed-
ding as key and value, and use the multi-head cross attention mechanism (31) to extract
information from the RNA FM’s embedding to the targeted representation.

Note that Concat Fusion will change the targeted representation’s dimension, while Add Fusion and
Cross-attention Fusion do not change the targeted representation’s dimension.

Fusion strategies For single representation saf ∈ R(Ntoken,c), the updated single representation after
feature fusion is

saf =


σ
(
srnalmW2

)
⊙ saf + srnalmW1, if Add Fusion,

[saf ; s
rnalm], if Concat Fusion,

CrossAttention(q = saf , kv = srnalm), if Cross-attention Fusion.

(1)
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where W1,W2 ∈ R(crnalm,c), σ(.) is a sigmoid function. When the fusion happens in the Diffusion
Conditioning Module, we do not use the gate function for Add Fusion, so it becomes: saf =
saf + srnalmW1.

For pair representation zaf ∈ R(Ntoken,Ntoken,cz), the updated pair representation after feature fusion is

zaf =


zaf + zrnalm, if Add Fusion,

[zaf ; z
rnalm], if Concat Fusion.

(2)

For the detailed algorithms, please refer to the Appendix Section A.2.

5 EXPERIMENTS

5.1 TRAINING DATA

For training data, we use RNA3DB, a curated collection of structured RNAs derived from Protein
Data Bank (32). The following chains were excluded: 1) shorter than 32 residues; 2) with structural
resolution higher than 9Å; 3) a single nucleotide makes up more than 80% of residues; and 4) more
than 30% of the residues are “unknown”. The remaining RNA chains were clustered at 99% sequence
identity. RNA3DB preserves all the chains in the cluster since they are associated with different
experimentally determined structures. While the chain is the same, it is possible that the presence
of different interacting partners in the actual crystal structures may result in different structural
conformations. RNA3DB preserves the full extent of the structural diversity present in PDB. We use
the 2024-12-04 release of RNA3DB, comprising 12,892 samples spanning 2,687 unique RNA chains
with approximately 5 structures per chain. The average sequence length for the unique sequences is
742. 30% of the data have a sequence length over 384. For multiple sequence alignments (MSAs),
we retrieve them from MSA v2 data from Stanford RNA 3D Folding (33), which covers 39% of the
training sequences.

5.2 EVALUATION DATA

RecentPDB-RNA evaluation set We collected RNA structures from PDB released between Decem-
ber 4, 2024 and April 28, 2025, with resolution better than 4Å and RNA sequence lengths between
30 and 1000 nucleotides. Each complex contains no more than 20 chains. Duplicate sequences were
removed within the dataset, as well as any sequences overlapping with the RNA3DB train and test
sets. The final dataset comprises 67 unique samples. The average sequence length is 213, with a
minimum length of 36 and a maximum length of 814 (Appendix Table 1). 14 sequences have a length
over 400 nucleotides. The distribution of sequence similarity between the test set and the training
set is shown in Appendix Table 2. We search MSAs for these targets using rMSA (34), which is an
automated pipeline to search and align homologs from RNAcentral, Rfam, and nt databases for a
target RNA (See Appendix Table 3 for detailed versions and temporal cutoffs).

CASP16-RNA evaluation set We collected the CASP 16 RNA targets with experimental structures
released in PDB in 2025, containing 11 targets in total. The target ids are: R1205, R1209, R1211,
R1242, R1263v1, R1264v1, R1286, R1251, R1283v1, R1296, R1285. The MSA retrieval is the same
as described in the above section. For detailed statistics about the sequence length, MSA depth, and
sequence identity with the training set, please refer to Appendix Table 1 and 2.

5.3 EXPERIMENTAL SETTING

Training setting Due to the license of AlphaFold 3, we cannot use it and instead, we use a successful
and fully open-sourced reproduction called Protenix 2 as the backbone for our experiment (14). In
specific, we use the Protenix released checkpoint model v0.2.0.pt for all of our experiments. For
the RNA foundation model, we use AIDO.RNA, a strong transformer-based encoder-only language
model pretrained on 42 million non-coding RNA sequences from RNAcentral (12). In specific, we
use AIDO.RNA-650M through AIDO.ModelGenerator (35). We train all the models on the

2https://github.com/bytedance/Protenix
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RNA3DB dataset with AIDO.RNA frozen whenever it is used. For models with different fusion
strategies, we use the same training setting for fair comparisons. We use a two-stage training, with
Stage 1 to warm up the newly initialized weights (adapters) while keeping Protenix frozen and
Stage 2 to jointly train Protenix and the adapters. We apply an exponential moving average (EMA)
to the model weights with a decay rate of 0.999. We freeze the confidence head and increase the
diffusion trunk size to accelerate the training process. We also train two baseline models (with and
without MSAs) without any feature fusion using the same setting to understand how the training data
contributes to the performance. The detailed training hyperparameters are listed in Appendix Table 4.
The global batch size is set to 16, with a micro batch size of 1 and gradient accumulation steps of 4.
For each experiment, training was performed on 4 NVIDIA A100-80GB GPUs with distributed data
parallel. The training time for each experiment is about 2.5 days.

Inference setting We use the default inference setting in Protenix, with the last EMA checkpoint
for each experiment. Note that the Protenix checkpoint was not trained with RNA MSAs. For models
that trained without RNA MSAs, we do not use MSAs in inference. For models that trained with
RNA MSAs, MSAs are utilized during inference. The detailed inference hyperparameters are listed
in Appendix Table 5.

Evaluation metrics Following common practice, we use TM-score (Template Modeling Score) as
our major evaluation metric, which is used to assess the structural similarity between the predicted
structure and the ground truth structure. It ranges from 0.0 to 1.0, with a higher value indicating a
better prediction. A prediction is considered successful if its TM-score is ≥ 0.6. For each target
in the test set, we generate 5 predictions. The final score is the average of best-of-5 TM-scores of
all targets. The TM-score is computed on the C1’ atom using the following USalign (36) script:
USalign {pred pdb} {true pdb} -atom " C1’" -m - -mol RNA -TMscore 1.

6 RESULTS AND ANALYSIS

6.1 EFFECT OF RNA LM FEATURE FUSION STRATEGIES WITHIN AF3-LIKE ARCHITECTURE

We conducted controlled experiments to evaluate different fusion strategies for incorporating RNA
LM representations into Protenix, varying only the position and method of feature fusion. Since
the original Protenix model was not trained with RNA MSAs, we adopted the same setting and first

Table 1: RNA 3D structure prediction performance of RNA LM fusion strategies in an AF3-like
architecture (Protenix) on RecentPDB-RNA. Bold indicates the best result and underline indicates
the second best results.

Fusion position Fusion method Use MSA TM-score ↑ #Success ↑
Original Protenix (14) 0.365 8

Finetuned Protenix none none 0.450 18
none 0.441 19

RLM-aug Protenix

inputs sinputs add 0.423 19
cross attention 0.416 17

init single rep sinit

add 0.453 21
add 0.449 21

concat 0.446 17
cross attention 0.453 21
cross attention 0.451 19

init pair rep zinit add 0.417 19

single conditioning s
add 0.431 20
add 0.472 22

concat 0.407 18

pair conditioning z
add 0.445 18

concat 0.434 16

6
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trained 11 models without MSA input, including a baseline without any feature fusion for reference.
As shown in Table 1, the original Protenix achieves a TM-score of 0.365 with 8 successful predictions
out of 67 targets on RecentPDB-RNA. Finetuning Protenix on RNA3DB substantially improves
performance, increasing the TM-score to 0.450 and the number of successful predictions to 18. In
comparison, RLM-aug Protenix models with feature fusion show diverse performances, highlighting
that different fusion strategies have different effects on RNA 3D structure prediction.

Regarding the fusion position, incorporating RNA LM features at the initial single representation sinit

or single conditioning s is effective when combined with appropriate fusion methods. By contrast,
fusing RNA LM representations at the input single representation sinputs or pair representations
generally degrades the performance. For sinputs, a plausible explanation is the difficulty of aligning
sinputs — which is derived from the concatenation of atom-level aggregations, one-hot token embed-
dings, and additional information — with RNA LM embeddings, which are distributed “semantic”
features. The degradation observed when fusing at pair representations may stem from the limited
structural information captured in the RNA LM-derived pair representations zrnalm. Regarding the
fusion method, Add Fusion is generally effective, followed by Cross-attention Fusion, while Concat
Fusion tends to impair performance, likely due to disruptions in Protenix’s information flow caused
by altering some of the original weight dimensions.

Given the established effectiveness of MSAs in protein structure prediction and the fact that AF3
was trained with RNA MSAs, we further trained four models using RNA MSAs: three using the top-
performing fusion strategies identified above without MSAs — namely (initial single representation,
add), (initial single representation, cross-attention), and (single conditioning, add) — and one
baseline model without feature fusion as a reference. As shown in Table 1, RLM-aug Protenix (single
conditioning, add) trained with RNA MSAs achieves a TM-score of 0.472, surpassing Protenix
finetuned with RNA MSAs by 7%. It also improves the success rate by 16% compared to the Protenix
finetuned baseline. Although it is hard to disentangle the individual contribution of RNA MSAs and
the RNA LM, the results clearly demonstrate that incorporating RNA language models into AF3-like
architectures benefits RNA 3D structure prediction.

6.2 BENCHMARKING AGAINST EXISTING RNA STRUCTURE PREDICTION MODELS

In this section, we benchmark our best fusion model RLM-aug Protenix (single conditioning, add
fusion) trained with RNA MSAs against existing automated methods, including AlphaFold 3 3.

3In the following section, unless otherwise specified, RLM-aug Protenix denotes our model trained with
(single conditioning, add) fusion strategy and RNA MSAs.

Table 2: RNA 3D structure prediction results on RecentPDB-RNA and CASP16-RNA test sets.
For the Vfold Pipeline, only 46/67 targets on RecentPBD-RNA and 6/11 targets on CASP16-RNA
have predicted 3D structures. We take the averages on those with predicted structures for TM-score.
AlphaFold 3 and trRosettaRNA results are obtained from their servers. Vfold (human expert) results
are taken from the CASP16 website.

RecentPDB-RNA (67) CASP16-RNA (11)
TM-score ↑ Success rate ↑ TM-score ↑ Success rate ↑

Vfold (human expert) 0.486 36%

Vfold Pipeline* (21) 0.272∗ 1% 0.289∗ 0%
trRosettaRNA (7) 0.386 19% 0.422 27%
NuFold (9) 0.330 3% 0.282 0%
RhoFold+ (8) 0.352 13% 0.306 0%
DRfold2 (24) 0.382 12% 0.342 18%

AlphaFold 3 (4) 0.389 15% 0.402 9%
Protenix (14) 0.365 12% 0.341 18%
RLM-aug Protenix (ours) 0.472 33% 0.421 27%
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AlphaFold 3
TM-score: 0.503

trRosettaRNA
TM-score: 0.557

Protenix
TM-score: 0.210

RLM-aug Protenix
TM-score: 0.752

Figure 2: Visualization of PDB structure: 8SYK A from RecentPDB-RNA. It is a synthetic RNA
with 107 nucleotides, where the maximum sequence identity to the training set is 0.50. Green denotes
ground truth structure, blue denotes predicted structure of the corresponding model.

Results on RecentPDB-RNA As shown in Table 2, Protenix attains a TM-score of 0.365 on 67
RecentPDB-RNA targets, with a success rate of 12%. The LM-based models RhoFold+ and DRfold2
achieve comparable success rates. By contrast, AlphaFold 3 achieves a slightly higher TM-score of
0.389 and a success rate of 15%, while trRosettaRNA delivers competitive performance, matching
AlphaFold 3 in TM-score but surpassing it with a 19% success rate. Our RLM-aug Protenix model
sets a new state of the art, achieving a TM-score of 0.472 and a 33% success rate. This represents an
improvement of 120% over AlphaFold 3 and 69% over trRosettaRNA in success rate, demonstrating
substantial performance gains in RNA 3D structure prediction. For illustration, we visualize the
predicted structures of our model alongside other methods on the test target 8SYK A in Figure 2,
where the ground truth structure from the PDB is shown in green.

Results on CASP16-RNA We further evaluate our model on 11 CASP16-RNA targets. On
this benchmark, RLM-aug Protenix achieves a TM-score of 0.421 and a success rate of 27%,
outperforming most baselines including AlphaFold 3, RhoFold+, and DRfold2, as shown in Table
2. Its performance is also competitive with trRosettaRNA 4, which ranked first in the Server groups
in the CASP16 RNA prediction experiment (team name: “Yang-Server”) . These results highlight
the generalization ability of our RNA LM–augmented Protenix. To gauge the current state of the
field, we reference the top-performing group (Vfold with human expert input) from the CASP16
website and observe that a significant gap still separates automated methods, indicating that RNA 3D
structure prediction remains a considerable challenge.

6.3 ANALYSIS

Effect of sequence length To assess the impact of sequence length, we divided the RecentPDB-
RNA test set into short (≤ 400 nucleotides, 53 samples) and long (> 400 nucleotides, 14 samples)
targets. As shown in Figure 3, for short sequences, most models perform reasonably well, with
RLM-aug Protenix achieving the highest TM-score (0.522). For long sequences, performance drops
substantially across all models, underscoring the challenge of modeling larger RNAs. Among
baseline models, AlphaFold 3 achieves the best performance (0.286), while RhoFold+ (0.133)
performs poorly. RLM-aug Protenix remains the top performer (0.283), matching AlphaFold 3.
Furthermore, RLM-aug Protenix improves upon finetuned Protenix by +5% on short sequences and
+25% on long sequences, suggesting that RNA LM representations provide substantial benefits for
structure prediction, particularly in the long-sequence regime.

Effect of sequence identity To evaluate how sequence identity between training and test data
affects model performance, we grouped the RecentPDB-RNA targets into four categories based
on their maximum sequence identity to the training sequences: High identity (> 0.8, 13 samples),
Moderate-high identity ((0.6,0.8], 16 samples), Moderate identity ((0.5,0.6], 23 samples), and Low
identity (≤ 0.5, 15 samples). As shown in Table 3, the gap between Finetuned Protenix and the
original Protenix reflects the contribution of training data, while the gap between RLM-aug Protenix
and Finetuned Protenix reflects the added benefit of RNA LM representations. Finetuning directly
on RNA3DB substantially improves prediction accuracy for targets with high and moderate-high
sequence identity, but yields only marginal gains for low-identity cases. In contrast, integrating RNA

4The result for trRosettaRNA is obtained from their server, which is updated on 11/01/2024 after the original
publication.
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Figure 3: Performance comparison on RecentPDB-RNA by RNA sequence length. The test set is
divided into two groups: sequences of length ≤ 400 (53 samples) and those of length > 400 (14
samples).

Table 3: Effect of sequence identity on RecentPDB-RNA. TM-score is reported.

High identity
(13)

Moderate-high identity
(16)

Moderate identity
(23)

Low identity
(15)

[1] Protenix (14) 0.566 0.392 0.326 0.221
[2] Finetuned Protenix 0.677 0.570 0.355 0.230
[3] RLM-aug Protenix (ours) 0.678 0.605 0.377 0.296

∆ ([2] - [1]) +0.111 +0.178 +0.029 +0.009
∆ ([3] - [2]) +0.001 +0.035 +0.022 +0.065

LM representations enhances performance across all similarity levels, with a large gain observed for
low-identity targets. These findings indicate that RNA LM features improve generalization beyond
training-like examples.

7 CONCLUSIONS AND FUTURE WORK

In this work, we systematically explore strategies for integrating RNA LM representations into an
AF3-like architecture to improve RNA 3D structure prediction. Our results show that injecting the
LM representation into the single representation of the Diffusion Conditioning Module yields the
most effective performance, achieving SOTA or near-SOTA performance on two test sets. Additional
analyses further suggest that RNA LMs are particularly beneficial for predicting large RNA structures.

Despite these advances, our approach has several limitations: (1) it is specialized for RNA structure
prediction, leaving its applicability to proteins and DNA uncertain; (2) the confidence prediction
head was not fine-tuned, making it an unreliable reference beyond the Protenix version; (3) as a
data-driven method, performance strongly depends on the quantity and diversity of training data and
the generalization ability to out-of-distribution targets is limited; and (4) the absolute accuracy for
large RNA structures remains suboptimal. A natural direction to address the first limitation is to
extend our framework by replacing the RNA LM with multimodal biological language models, such
as LucaOne (37), thereby enabling all-atom structure prediction across proteins, RNA, and DNA. We
leave this exploration for future work.
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A APPENDIX

A.1 EVALUATION DATA

Table 1: Data distribution of sequence length and MSA depth for RecentPDB-RNA and CASP16-
RNA.

Seq length MSA depth

min max mean #(≤ 400) #(> 400) min max mean

RecentPDB-RNA 36 814 213 53 14 3 22312 2368
CASP16-RNA 59 833 288 7 4 17 2893 1391

Table 2: Distribution of sequence identity between test and training sets. For each test sequence, we
compute its maximum sequence similarity between the training sequences as its sequence identity to
the training data.

Seq ID RecentPDB-RNA CASP16-RNA

Count Ratio Count Ratio

≤0.5 15 22% 4 36%
(0.5,0.6] 23 34% 3 27%
(0.6,0.8] 16 24% 1 9%
>0.8 13 19% 3 27%

Total 67 100% 11 100%

Table 3: rMSA databases used in RNA MSA search.

Database Temporal cutoffs

RNAcentral v20.0 2022/3/28
Rfam v14.7 2021/12/9
NCBI NT 2022/10/3

A.2 ALGORITHMS

In this section, we present the major algorithms we modified (highlighted in yellow) in AlphaFold 3
(4). For the meaning of notations, please refer to the AlphaFold 3 paper.
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Algorithm 1 Main Inference Loop (Algorithm 1 in AlphaFold 3)

def MainInferenceLoop({f∗}, rnalm , fusion position , fusion , Ncycle = 4, cs = 384, cz = 128):

1: {sinputs
i } ← InputFeatureEmbedder({f∗})

2: srnalm
i = GetRNAEmbeddings(rnalm, f∗)

# Fusion position 1
3: if fusion position == s inputs then
4: sinputs

i ← fusion(sinputs
i , srnalm

i )

5: end if
6: sinit

i ← LinearNoBias(sinputs
i )

# Fusion position 2
7: if fusion position == s init then
8: sinit

i ← fusion(sinit
i , srnalm

i )

9: end if
10: zinit

ij ← LinearNoBias(sinputs
i ) + LinearNoBias(sinputs

j )
# Fusion position 3

11: if fusion position == z init then
12: zrnalm

ij = LinearNoBias(srnalm
i ) + LinearNoBias(srnalm

j )

13: zinit
ij ← fusion(zinit

ij , zrnalm
ij )

14: end if
15: zinit

ij += RelativePositionEncoding({f∗})
16: zinit

ij += LinearNoBias(f token bonds
ij )

17: {ẑij}, {ŝi} ← 0,0
18: for c ∈ [1, . . . , Ncycle] do
19: zij = zinit

ij + LinearNoBias(LayerNorm(ẑij))

20: {zij} = MsaModule({smsa
i }, {zij}, {s

inputs
i })

21: si = sinit
i + LinearNoBias(LayerNorm(ŝi))

22: {si}, {zij} ← PairformerStack({si}, {zij})
23: {ŝi}, {ẑij} ← {si}, {zij}
24: end for
25: {x⃗pred

i } ← SampleDiffusion({f∗}, {sinputs
i }, {si}, {zij})

26: pdistogram
ij ← DistogramHead(zij)

27: return {x⃗pred
i , pdistogram

ij }

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Diffusion Conditioning (Algorithm 21 in AlphaFold 3)

def DiffusionConditioning( t̂, {f∗}, {sinputs
i }, {strunk

i }, {ztrunk
ij }, {srnalm

i }, {zrnalm
ij }, fusion position,

fusion method, σdata, cz = 128, cs = 384) :
# Pair conditioning, fusion position 5

1: if fusion position == z then
2: if fusion method == add then
3: zij = concat

(
[ztrunk

ij + zrnalm
ij ,RelativePositionEncoding({f∗})]

)
4: else
5: zij = concat

(
[ztrunk

ij ,RelativePositionEncoding({f∗}), zrnalm
ij ]

)
6: end if
7: else
8: zij = concat

(
[ztrunk

ij ,RelativePositionEncoding({f∗})]
)

9: end if ▷ zij ∈ Rcz

10: zij ← LinearNoBias(LayerNorm(zij))
11: for b ∈ [1, 2] do
12: zij += Transition(zij , n = 2)
13: end for

# Single conditioning, fusion position 4
14: if fusion position == s then
15: if fusion method == add then
16: si = concat

(
[strunk

i + srnalm
i , sinputs

i ]
)

17: else
18: si = concat

(
[strunk

i , sinputs
i , srnalm

i ]
)

19: end if
20: else
21: si = concat

(
[strunk

i , sinputs
i ]

)
22: end if ▷ si ∈ Rcs

23: si ← LinearNoBias(LayerNorm(si))
24: n = FourierEmbedding

(
1
4 log(t̂/σdata), 256

)
25: si += LinearNoBias(LayerNorm(n))
26: for b ∈ [1, 2] do
27: si += Transition(si, n=2)
28: end for
29: return {si}, {zij}
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Algorithm 3 Diffusion Module (Algorithm 20 in AlphaFold 3)

def DiffusionModule({x⃗noisy
l }, t̂, {f∗}, {sinputs

i }, {strunk
i }, {ztrunk

ij }, {srnalm
i }, {zrnalm

ij }, fusion position,
fusion method, σdata = 16, catom = 128, catompair = 16, ctoken = 768) :

# Conditioning

1:
{si}, {zij} = DiffusionConditioning

(
t̂, {f∗}, {sinputs

i }, {strunk
i }, {ztrunk

ij }, {srnalm
i }, {zrnalm

ij },
fusion position, fusion method, σdata

)
# Scale positions to dimensionless vectors with approximately unit variance.

2: rnoisy
l = x⃗noisy

l /
√

t̂2 + σ2
data ▷ rnoisy

l ∈ R3

# Sequence-local Atom Attention and aggregation to coarse-grained tokens

3:
{ai}, {qskip

l }, {c
skip
l }, {p

skip
lm } = AtomAttentionEncoder

(
{f∗}, {rnoisy

l }, {strunk
i }, {zij}, catom,

catompair, ctoken
)

▷ ai ∈ Rctoken

# Full self-attention on token level.
4: ai += LinearNoBias(LayerNorm(si))
5: {ai} ← DiffusionTransformer

(
{ai}, {si}, {zij}, βij = 0, Nblock = 24, Nhead = 16

)
6: ai ← LayerNorm(ai)

# Broadcast token activations to atoms and run Sequence-local Atom Attention
7: {rupdate

l } = AtomAttentionDecoder
(
{ai}, {qskip

l }, {c
skip
l }, {p

skip
lm }

)
# Rescale updates to positions and combine with input positions

8: x⃗out
l = σ2

data/(σ
2
data + t̂2) · x⃗noisy

l + σdata · t̂/
√
σ2

data + t̂2 · rupdate
l

9: return {x⃗out
l }

A.3 MODELS

A.3.1 TRAINING HYPERPARAMETERS

We adopt a two-stage training approach, with the first stage warming up the adapters while keeping
Protenix’s weights frozen.For the cross-attention fusion adapter, we use a learning rate of 0.01;
otherwise, we use a learning rate of 0.1.

Table 4: Training hyperparameters. ${rnalm fusion position}, ${rnalm fusion method}, ${use msa}
are variables subject to the experiments.

Training stage 1 Training stage 2

seed 42 42
data.train sets rna3db all rna3db all
data.msa.enable rna msa ${use msa} ${use msa}
dtype bf16 bf16
diffusion batch size 48 48
diffusion chunk size 12 12
iters to accumulate 4 4
train crop size 384 384
max steps 400 4000
warmup steps 1 100
learning rate 0.1/0.01 1e-3
ema decay / 0.999
augment.fast training True True
augment.freeze backbone True False
augment.use rnalm True True
augment.rnalm name aido rna 650m aido rna 650m
augment.rnalm fusion position ${rnalm fusion position} ${rnalm fusion position}
augment.rnalm fusion method ${rnalm fusion method} ${rnalm fusion method}
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A.3.2 INFERENCE HYPERPARAMETERS

Table 5: Inference hyperparameters. ${rnalm fusion position}, ${rnalm fusion method},
${use msa} are variables subject to the experiments.

Description Value

seeds random seeds 101
model.N cycle number of recycles in Pairformer 10
use msa whether to use MSA or not $use msa
sample diffusion.N sample number of structures for each target 5
sample diffusion.N step number of diffusion steps 200
augment.use rnalm whether to use RNA LM or not True
augment.rnalm name the RNA LM used aido rna 650m
augment.rnalm fusion position RNA LM fusion position ${rnalm fusion position}
augment.rnalm fusion method RNA LM fusion method ${rnalm fusion method}

A.4 DATA AVAILABILITY

For the training data, it is publicly available in https://github.com/marcellszi/
rna3db/releases/tag/2024-12-04-full-release. The MSAs for the training
sequences are publicly available at folder /MSA v2 in https://www.kaggle.com/
competitions/stanford-rna-3d-folding/data.

For the detailed target list and the MSAs of RecentPDB-RNA and CASP16-RNA test sets, we will
share them through our Github repository.

A.5 CODE AVAILABILITY

Our code is largely based on Protenix https://github.com/bytedance/Protenix and
AIDO.ModelGenerator https://github.com/genbio-ai/ModelGenerator. We will
share our code and trained models on our GitHub repository.
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