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ABSTRACT

Large language model-based agents show promise for software engineering, but
environment configuration remains a bottleneck due to heavy manual effort and
scarce large-scale, high-quality datasets. Existing benchmarks assess only end-to-
end build/test success, obscuring where and why agents succeed or fail. We intro-
duce the Environment Configuration Diagnosis Benchmark, EnConda-Bench,
which provides process-level trajectory assessment of fine-grained agent ca-
pabilities during environment setup-planning, perception-driven error diagno-
sis, feedback-driven repair, and action to execute final environment configura-
tion Our task instances are automatically constructed by injecting realistic
README errors and are validated in Docker for scalable, high-quality evaluation.
EnConda-Bench combines process-level analysis with end-to-end executabil-
ity to enable capability assessments beyond aggregate success rates. Evaluations
across state-of-the-art LLMs and agent frameworks show that while agents can lo-
calize errors, they struggle to translate feedback into effective corrections, limiting
end-to-end performance. To our knowledge, EnConda—Bench is the first frame-
work to provide process-level internal capability assessment for environment con-
figuration, offering actionable insights for improving software engineering agents.

1 INTRODUCTION

Large language models (LLMs) have rapidly advanced, spurring exploration of challenging Soft-
ware Engineering (SWE) tasks with high academic and industrial value (He et al., 2025 Wang
et al.| [2024; |Fan et al., 2023 [Wang et al.; Zhang et al.|[2024b)). SWE offers precise, verifiable evalu-
ation systems, making it a prime domain to study agentic intelligence (Hendrycks et al.;|Austin et al.,
2021)). Numerous code-oriented agents, such as OpenHands (Wang et al.) and Swe—-Agent (Yang
et al.,|2024)), aim to assist with complex project development and maintenance. In SWE benchmarks
like SWE-BENCH (Jimenez et al., |2024)), agents edit and repair code based on a given issue, then
submit a pull request and validate execution. Within this workflow, configuring a runnable execu-
tion environment is the most fundamental and critical first step, yet it remains challenging for both
human engineers and current LLMs (Eliseeva et al.), requiring substantial manual effort. This bur-
den constrains large-scale, high-quality dataset production, making rigorous evaluation of agents’
environment configuration capabilities essential for progress in SWE.

Most existing environment configuration benchmarks rely on end-to-end success (build and test
pass) (Milliken et al.| [2025; Bouzenia & Pradell 2025} [Eliseeva et al.; [Vergopoulos et al., 2025)),
vielding only coarse outcomes and obscuring process-level capabilities along the configuration tra-
Jjectory. For example, it is difficult to locate the specific stages in environment configuration where
errors are likely to occur, or to identify which capabilities the agent lacks to perform more precise
and effective configuration. They cannot pinpoint failure stages or missing capabilities, limiting
deep insights and research directions. In addition, data construction is another bottleneck: high-
quality, correctly buildable repositories are scarce; selecting and annotating them demands expert
effort. As a result, it is challenging for researchers to obtain large quantities of high-quality data for
evaluating agent environment configurations.

'Data and code will be released after peer review.
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Figure 1: The illustration of common problems in environment configuration. When human en-
gineers configure the environment, they often encounter various errors. They should first identify
the step where the error occurred and then fix the problem before proceeding to the next step, until
the configuration is complete. Similarly, intelligent agents performing environment configuration
should possess good planning, perception, feedback, and action capabilities.

To address these challenges, we focus on process-level evaluation along the agent’s configuration
trajectory. Specifically, we investigate: (1) how agents apply planning to devise reasonable config-
uration steps and strategies given the task requirements; (2) how they use perception to accurately
localize the causes of errors when failures occur (e.g., version incompatibilities or missing depen-
dencies); (3) how they utilize feedback to analyze the errors and try to fix them; and (4) how they
translate precise feedbacks into actions that correct these errors, complete environment configu-
ration, and ensure that subsequent code runs and passes evaluation. This process-level trajectory
evaluation provides deeper and more valuable references for improving agent capabilities in envi-
ronment configuration and for subsequent related studies.

However, directly extracting the planning and feedback segments from agent trajectories, or eval-
uating entire long trajectories, is difficult. Inspired by how human engineers configure environ-
ments—typically following README steps first, then analyzing the causes of failures and attempt-
ing fixes—we consider editing an originally correct README by injecting erroneous commands or
confusing steps. As the model configures the environment based on such a README, it must locate
and repair these errors. This design enables process-level evaluation along the agent’s trajectory
and allows us to observe which error types the model more readily repairs and which are harder to
detect, providing valuable insights for future agent development.

Motivated by this task schema, we further design an automated data construction framework that
scales instance generation and produces agent execution trajectories for training. We (1) select
high-quality repositories via strict criteria; (2) employ advanced LLMs to edit key environment
READMESs with common error types and annotate categories and suggested fixes; and (3) validate
and filter for effective errors via an automated framework to obtain high-quality task instances. We
then build an evaluation suite supporting both process-level analysis (error localization, repair) and
end-to-end executability, along with an automatic data engineering pipeline that generates task in-
stances and agent trajectories. To our knowledge, we are the first to enable process-level assessment
for agents and to propose an automated data framework in this setting. Empirical evaluation on
advanced LLMs and agents shows that, while agents exhibit basic error judgment/localization, they
struggle to convert feedback into effective corrective actions, limiting end-to-end performance. We
present our contributions and several noteworthy findings:

* We propose a trajectory-based EnConda-Bench for process-level evaluation of environ-
ment configuration in SWE, enabling detailed assessment of the capabilities agents exhibit
during environment configuration.

* We introduce an automated data construction pipeline, which reduces manual labor and
supplies large-scale training data for agents and LLMs.

* Our evaluation across multiple LLMs/agents finds basic error localization/classification
abilities but limited environmental interaction and feedback utilization, often yielding inef-
fective repairs, providing valuable findings and inspiration for future research.
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2 RELATED WORK

Agent Methods Early agent attempts to automate environment setup relied on specific heuristics
that infer dependencies from source code, offering determinism but falling short on system pack-
ages, version pinning, and platform heterogeneity (Gruber & Fraser, 2023} Zhang et al.| | 2024a; Yang
et al.,|2025). Tool-augmented code agents extend LLMs with search, editing, and execution capabil-
ities and show promise (Wang et al., [2024} |Wang et al.; Zhang et al., 2024b; |Yang et al., |2024; [Xia
et al.| [2024), yet setup remains a fragile bottleneck due to sensitivity to external toolchains and long
decision chains. Specialized environment agents try to narrow this gap. INSTALLAMATIC targets
Python with curated installation context and exemplar Dockerfiles, judging success via tests (Mil-
liken et al.| [2025). EXECUTIONAGENT generalizes to five languages with CI-log ground truth,
requiring both Dockerfiles and setup scripts, and evaluating build success and test-result deviations
(Bouzenia & Pradel, |2025)), but still needs manual inspection and is comparatively slow. Repo2Run
employs a dual-environment architecture, performing configurations in an isolated Docker envi-
ronment while leveraging an external environment for monitoring and assistance, with a rollback
mechanism that restores the system to the last known stable state upon command failures (Hu et al.,
2025). Overall, the trajectory moves from heuristics to tool-augmented agents to interaction agents,
and our approach aims to improve process-level, actionable interactions with the environment.

Environment Configuration Benchmarks In early SWE benchmarks, function-level bench-
marks (e.g., HumanEval, MBPP, APPS) catalyzed progress but are misaligned with real-world build
(Chen et al., 2021; Hendrycks et al.; |/Austin et al., 20215 [Jain et al.). Repository-level efforts better
reflect practice (Liu et al.; 2024bj Jain et al.||2024; Jimenez et al., 2024)), but they ignore the environ-
ment configuration task by providing manually configured Docker files. Environment setup specific
benchmarks are attempting to explore this territory. INSTALLAMATICbench curates 40 Python
repositories with exemplar Dockerfiles, assessing success via tests (Milliken et al.| 2025). EXECU-
TIONAGENTDbench spans five languages with CI-log ground truth and evaluates build/test success
and test-result deviations (Bouzenia & Pradel, 2025). For larger-scale data and more languages,
recent benchmark EnvBench expands to 994 repositories across Python, Java, and Kotlin projects,
while still offering limited visibility into data collection and evaluation strategies (Eliseeva et al.).
Thus, automated construction further scales evaluation. SETUPAGENT further automates extrac-
tion of installation and testing procedures, supports historical states, and collects test-level results,
accelerating data generation, though its evaluation remains largely end-to-end (Vergopoulos et al.,
2025). Nonetheless, most benchmarks still reduce evaluation to end-to-end executability, obscuring
where and why setup fails. In contrast, our work provides process-level trajectory evaluation with an
automatic data construction framework, balancing scale, diversity, and diagnostic depth for robust
evaluation of agents.

3 ENCONDA-BENCH

3.1 TASK DEFINITION AND WORKFLOW

As illustrated in Figure 2| EnConda-Bench requires agents to diagnose and repair environment
configuration errors. Specifically, when an error arises, the agent should (i) identify the step at which
the failure occurs, (ii) analyze the precise error type, and (iii) plan an appropriate repair strategy.
Building on this, the agent should refine its feedback and corrective actions to ultimately produce
an accurate shell script that fully configures the environment. For evaluation, we assess both (a)
whether the environment is successfully built and executable, and (b) whether the agent’s trajectory
demonstrates correct error localization, reasoning, and feedback usage. Concretely, the task design
and full pipeline comprise three components: input task instances, agent execution, and evaluation.

Input Task Instances Each task instance includes: (1) Repository. We collect and filter a set of
high-quality GitHub repositories to ensure reproducibility and moderate difficulty. To avoid ver-
sion drift during evaluation, each repository is pinned to a specific revision commit. (2) Dockerfile.
Following EnvBench (Eliseeva et al.), we supply a base Docker image with minimal prerequisites
(e.g., Python, Conda). We run the agent to execute the environment configuration inside a Docker
container. (3) README. Both humans and agents typically begin from the repository’s README
for environment configuration. Accordingly, each task instance includes the README as the pri-
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Figure 2: An example of the overall workflow of our process-level environment configuration task.

mary guide for the agent’s execution. (4) Labeled golden answer JSON. For each task instance,
we provide a JSON file to support evaluation, including the golden answers of error types, detailed
error descriptions, candidate repair command sets, and the final correct command sequence.

Agent Execution For each instance, the agent leverages its planning abilities to devise a sequence
of environment configuration steps, guided by the provided README. Leveraging its perception
capability, the agent carefully examines the README and repository to identify potential errors.
When encountering errors, it employs feedback, and analytically reasons them in detail and formu-
lates appropriate repair strategies. Drawing on its action skills, the agent implements the proposed
fixes and generates a shell script for the environment setup. After execution, we process the trajec-
tory and extract error type judgments, repair commands, and the final shell script.

Process-Level Evaluation Given the judgments extracted from the trajectory and the final shell
script, we conduct two complementary methods for process-level evaluation. For error diagnosis,
we compare the predicted error types, descriptions, and fix suggestions with the gold-standard JSON
and compute the corresponding metrics. For executability, we pull the Docker and repository, run the
agent’s shell script, and check whether it successfully builds the environment and passes the unit test.
This evaluation suite yields a process-level assessment of the agent’s capabilities for environment
configuration, highlighting which capabilities of agents are weaker, which error categories are more
easily detected, and which are more challenging.

3.2 DATA CONSTRUCTION

Repository Selection Although GitHub hosts numerous repositories, many do not meet the re-
quirements for reliable environment configuration. If a repository is not reliable (e.g., due to a faulty
README or missing dependencies), error annotation becomes labor-intensive and unreliable, and
the resulting task may be prohibitively difficult. We therefore retain repositories that satisfy the fol-
lowing criteria that indicate higher quality: at least 10 stars, over 1,000 commits, and more than 10
closed issues. Furthermore, we incorporate repositories from existing benchmarks that have under-
gone strict human filtering and manual verification of environment setup, using them as the basis for
subsequent error synthesis. Details about the repository selection are in Appendix [A.T]

Error Synthesis After collecting high-quality repositories, we edit the README:s to synthesize
realistic, commonly encountered configuration errors. In fact, our initial plan does not involve syn-
thesizing errors. Instead, we consider leveraging existing READMEs by decomposing them into
executable steps (to assess whether each step runs correctly) or by annotating intrinsically error-
prone steps. However, this approach is highly labor-intensive. Without step or error annotations,
just using tools to conduct evaluation of overall agent trajectories would over-rely on the models
themselves, making it difficult to extract key steps from long trajectories and to explore specific ca-
pabilities. In addition, each repository typically contains only a single README, and high-quality
repositories are scarce, which constrains the number of available task instances.
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Figure 3: The illustration of our overall pipeline of benchmark construction.

To address these issues, we treat each executable README as ground truth and inject errors. This
enables scalable, automated task generation and supports process-level evaluation of planning, per-
ception, feedback, and action during environment configuration. We define six canonical error cate-
gories: Dependency Installation Error, Command Usage or Syntax Error, File Path or Missing File
Error, Logical Order Error, Version Compatibility Error, and Other Miscellaneous Errors (see Ap-
pendix [A.2]for detailed definitions and examples). For each README, we prompt claude-4-sonnet
and gemini-2.5-pro to introduce two errors and produce a structured JSON with the error type, de-
scription, candidate fixes, and ground truth, while instructing minimal edits limited to the necessary
lines, avoiding broad rewrites that could compromise README integrity (detailed settings in the
Appendix [A3). Taking strictly filtered original READMES as reference, each case will yield a con-
trolled error label, a concrete description, and a correct fix. From 323 repositories, we produce 1,772
erroneous READMESs, and each README contains exactly two injected errors.

Automatic Validation We then automatically validate the effectiveness of injected errors. An
injected error is considered effective if: (i) following the erroneous README, the environment
setup fails, and (ii) after repairing this error, the setup proceeds through the affected step. For
each erroneous README, we use gpt—-4.1-mini to generate a shell script and execute it inside
the provided Docker environment (details in Appendix [A.4). If the script succeeds in building the
environment and passes the test, the corresponding error is regarded as invalid. We intentionally
avoid stronger models at this stage because they may implicitly “auto-fix”, resulting in scripts that
diverge from the erroneous README and thus undermine verifying the error’s effectiveness.

LLM-Assisted Filtering and Human Validation Auto-
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Figure 4: Data statistics results.
3.3 DATASET STATISTICS AND DATA EVALUATION &

Data statistics. As described in Section[3.2] we complete
the benchmark construction. From 323 repositories, we
construct 4,201 READMESs, averaging 13 per repository, the distribution shown in Figure ffa). We
further stratify difficulty by the number of injected errors per README, defining levels 1-10, shown
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in Figure ff{b). Most README:s fall into level 1 or level 2, which aligns with real-world practice: a
README typically contains 1-2 issues that hinder environment setup, but rarely many more. This
ensures that task difficulty remains moderate for agents. Finally, in the error-type distribution in
Figure E[c), the five standard error categories are comparable in count, each around 1,600 instances,
contributing to a balanced dataset. The “Other” category contains only 312 instances, which both
preserves coverage completeness and discourages agents from overusing a catch-all class. Com-
pared with other benchmarks in Table[I} our benchmark shows great advantages in evaluating the
environment configuration capabilities of intelligent agents.

Table 1: Comparison of environment-configuration benchmarks.

Benchmark Instances Metric Process-level
INSTALLAMATIC(Milliken et al., [2025) 40 Success build X
EXECUTIONAGENT(Bouzenia & Pradel, [2025)) 50 Success build & test X
EnvBench(Eliseeva et al.) 994 Succ.es.s bu.lld & test, X
missing imports
SetupBench(Vergopoulos et al., [2025) 93 Success build & test, X
EnConda-Bench 4,201 Success build & test, v

error detection and fix

Data Evaluation. Since our task instances are constructed using LLM, these generated errors may
not fully reflect the real-world task conditions, so we further verify the data quality. Nevertheless,
we aim to further verify whether our generated data aligns with the difficulty level of real-world
environment configuration tasks and reflects human cognitive patterns. To this end, we select ex-
isting environment configuration benchmarks, whose instances are directly sourced from real-world
code repositories, and establish a criterion to assess the difficulty level of both these benchmarks
and our tasks. Difficulty is rated on a scale from 1 (very easy) to 5 (very hard) by human experts
(see Appendix [B] for details). The results shown in Table [2] indicate that the difficulty distribution
and average scores of our tasks closely match those of the real-world instances, demonstrating that
our dataset possesses realistic applicability and high quality.

Table 2: Difficulty scores of the benchmarks, where easy/med/hard corresponds to 1-2/3/4-5. For
EnvBench and EnConda-Bench , we sample 100 task instances.

Benchmark Instances Mean Score Easy Med Hard
INSTALLAMATIC(Milliken et al.|[2025) 40 3.92 12 21 7
EXECUTIONAGENT(Bouzenia & Pradel}2025) 50 3.85 16 26 8
EnvBench(Eliseeva et al.) 100 4.08 27 46 27
SetupBench(Vergopoulos et al.|[2025) 93 3.78 34 47 12
EnConda-Bench 100 3.95 30 47 23

3.4 EVALUATION SUITE DESIGN

After validating benchmark instances, we build an evaluation suite for environment configuration
agents. Given the README and repository info, the agent plans and executes, producing a trajectory
from which we extract perception (error diagnoses), feedback (repairs), and a final shell script for
planning and action. Because a README may contain multiple errors, we compare the agent’s
predicted error types/descriptions to the gold set and report precision, recall, and F1. We then match
each predicted error description and fix to the gold answer, and use GPT-4.1-mini as a judge to
assess consistency and evaluate accuracy. For executability, each script runs in a Docker container
on a fixed commit. A run is counted as a pass only if the environment is successfully built, the test
files execute correctly, and the process exits normally. Additionally, we propose an overall data-
synthesis framework that automatically generates and verifies task instances from repositories, runs
agents to collect trajectories, and produces evaluations for obtaining final post- and even pre-training
trajectory data (more information in Appendix |C).
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Table 3: Evaluation results across agents and LLMs. Bold: Optimal performance for every setting.

Agent Capability Perception Feedback Feedback and Action Planning and Action
Framework LLM Error type Error description Fix suggestion Execution
Pre.  Rec. Fl1 ACC. ACC. Pass@1
Base Model
GPT-4.1 334 90.6 48.8 39.6 18.2 .
Zero-Shot Claude-4 371 806 508 45.1 28.5 3.1
Gemini2.5-pro 352 77.8 485 45.2 25.2 1.8
DeepSeek-V3 332 658 442 39.7 223 33
Code Agent
GPT-4.1 437 832 553 49.8 30.7 7.2
SWE-Agent Claude-4 464 856 582 52.4 345 9.4
& Gemini2.5-pro 451 925 56.8 50.2 322 7.8
DeepSeek-V3 412 703 519 44.5 27.8 7.4
GPT-4.1 425 72 532 46.0 29.1 8.5
OpenHands Claude-4 480 875 60.1 54.2 36.1 10.6
P ; Gemini2.5-pro 452 852 575 51.8 323 8.5
DeepSeek-V3  46.7 93.6 58.7 51.9 33.8 9.1
Environment Configuration Agent
GPT-4.1 375 704 489 45.3 29.1 5.6
Claude-4 419 753 538 50.7 34.1 79
INSTALLAMATIC Ea ini25pro. 390 721 50.6 475 3038 6.4
DeepSeek-V3  40.7 76.8 532 49.3 325 7.1
GPT-4.1 442 723 548 48.5 38.6 14.1
Repo2Run Claude-4 495 715 60.6 522 47.3 229
posRu Gemini2.5-pro  48.6 79.3 60.1 54.2 45.6 17.8
DeepSeek-V3 463 742 56.8 44.6 412 16.2

4 EXPERIMENTS

4.1 BASELINES

We evaluate advanced LLMs and agent frameworks (detailed setting in Appendix [D)). For founda-
tion models, we include representative open- and closed-source LLMs: GPT-4.1P] Claude-4-sonnet-
2025051 GeminiZ.S-Pr and DeepSeek-V3-0324 (Liu et al.,[2024a). For agent frameworks, we
consider three settings: (1) Zero-Shot: no additional agent scaffolding. The model receives the task
instance, targeted prompting for environment setup, and pointers to the repository’s README and
directory structure, along with evaluation configuration details (e.g., Ubuntu version), and directly
produces the setup. (2) Code Agents: specialized software-engineering agents that benefit from
tool use and planning, often trained or optimized on large SWE workloads. We evaluate OpenHands
(Wang et al.) and SWE-Agent (Yang et all 2024), both strong performers on SWE-bench-style
tasks. (3) Environment-setup Agents: frameworks tailored to environment configuration, includ-
ing INSTALLAMATIC (Milliken et al.l 2025) and Repo2Run (Hu et al., [2025).

4.2 MAIN RESULTS

We evaluate agents on the environment setup as shown in Table [3] Zero-shot LLMs exhibit high
recall but low precision in error typing (e.g., GPT-4.1: Rec. score of 90.6 vs Pre. score of 33.4,
F1 score of 48.8), with weak fix suggestions and poor end-to-end success performance. This in-
dicates broad but noisy error perception and limited agentic intelligence. In contrast, code agents
significantly improve error perception and corresponding repair feedback, for instance, OpenHands
+ DeepSeek-V3 achieves F1 score of 58.7 with a description accuracy of 51.9. However, the action
and feedback abilities are still under exploration, with fix ACC. score of 33.8 and Pass@1 score of
9.1. Environment configuration agents deliver the largest end-to-end gains, showing better capabil-
ity to utilize perception and feedback with execution action. We observe that Repo2Run + Claude-4
reaches F1 score of 60.6, description accuracy of 52.2, fix accuracy of 47.3, and Pass@1 score
of 22.9, underscoring the value of environment probing perception and failure handling feedback.

Zhttps://openai.com/index/gpt-4-1/
3https://www.anthropic.com/news/claude-4
*https://deepmind.google/models/gemini/pro/
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Nonetheless, the persistent gap between description and fix accuracy, and between fix accuracy and
Pass@1, reveals bottlenecks of the agent in translating correct feedback into robust and valid exe-
cution actions. Our process-level evaluation of agent trajectories is therefore crucial, which guides
targeted improvements rather than conflating all failures into a pass rate, which highlights that the
agent planning process needs to be optimized, and we need to make better use of feedback informa-
tion obtained from interactions with the environment, to truly enhance the execution capability.

(a) Zero-Shot (b) Swe-Agent (c) OpenHands (d) INSTALLAMATIC (e) Repo2Run

Figure 5: The statistics of the error numbers of the golden label and the model’s prediction.

- GPT-4.1 & Claude-4 & Gemini2.5-pro @ DeepseekV3

(a) Zero-Shot (b) Swe-Agent (c) OpenHands (d) INSTALLAMATIC (e) Repo2Run

Figure 6: The illustrations of the error type judgment performance on the F1 score.

4.3 ERROR TYPE JUDGMENT ANALYSIS

For each error type, we observe that the total number of predicted errors exceeds the ground truth
shown in Figure[3] indicating a conservative strategy with stricter checks. Sensitivity to specific error
types is uneven: most models tend to overpredict the El category. There are also model-specific
differences. For example, DeepSeek-V3 predicts very few E6 cases, fewer even than the ground-
truth labels, suggesting under-detection for that error type. Finally, many cases are grouped into the
catch-all “other” category, making E8 the highest or second-highest category. This is undesirable
as users expect precise, actionable diagnoses rather than vague classifications. Consistent with the
above, the overuse of “other” leads to a markedly low F1 score on E8 as shown in Figure[6] Many
instances that should belong to concrete types are incorrectly assigned to E8, inflating false positives
for E8 and depressing recall for the true types. This hedging behavior hampers the practical value
of error perception and feedback, degrading downstream planning and action. Beyond this, models
show small but systematic performance differences across specific types. For example, the results
show stronger detection for command usage and syntax error E2 but weaker for categories like file
path error E4 that often depend on the agent’s system-level understanding of the entire repository
and the interaction with the environment.

4.4 EFFICIENCY ANALYSIS

We investigate the relationship between output tokens and performance to provide a comprehensive
assessment of model efficiency. As shown in the Figure[7] for the accuracy of error descriptions,
most models exhibit a clear upward trend as the number of output tokens increases. In contrast, for
the Pass@ 1 metric, allocating more tokens does not consistently yield improvements. For example,
zero-shot Claude-4 uses three times as many tokens as zero-shot DeepSeek-V3 yet improves per-
formance by only about 0.2. Notably, in certain agent frameworks (e.g., Repo2Run), performance
scales more favorably with larger token budgets, indicating comparatively higher efficiency.
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@ swe-agent-Gemini2.5-pro @ swe-agent-DeepseekV3 @ openhands-GPT-4.1 @ openhands-Claude-4 @ openhands-Gemini2.5-pro

@ openhands-DeepseekV3 @ installmatic-GPT-4.1 @ installmatic-Claude-4 @ installmatic-Gemini2.5-pro @ installmatic-DeepseekV3 @ repo2run-GPT-4.1
@ repo2run-Claude-4 @ repo2run-Gemini2.5-pro @ repo2run-DeepseekV3

Figure 7: The illustration of the statistics of output token and model performance.

Consistency of Error Type and Description Fix Suggestion Evaluation

Model output:

Fix suggestion: E2

Error_description: Install from PyPI, the command should be "pip3 install
androidviewclient --upgrade’. To install from a locally cloned repository, use
‘pipinstall ." in the projectroot directory. @&

Golden answer:

Fix suggestion: Change the package name in the command from
“culebra’ to androidviewclient’.

LLM Judgement:

Text 1 provides detailed installation commands, while Text 2 focuses on
changing the package name from 'culebra' to 'androidviewclient', but
the core solution—using the correct package name—is the same."

Model output:

Error_type: E2 &

Error_description: The command ‘pip3 install androidviewclient' installs
the package fromthe PyPI. For users who want to develop should install
from alocally cloned repository.

Golden answer:

Error_type: E2

Error_description: The installation command "pip3 install
androidviewclient --update’ is incorrect. The *--update’ flagis not a valid
pip command for upgrading a package; the correct flagis --upgrade’.

Judge the Error Correctly but Fail to Fix
Model output:
Error_type:E6 @
Error_description: The order of operations for virtual environment setup and package installation is incorrect. (V]
Fix_suggestion: First, run 'virtualenv env' and 'source env/bin/activate’, then run 'pip install -r requirements_debug.txt. &
Set_up.sh: .....# 5. Create and activate virtual environment. / source env/bin/activate/ # 6. Upgrade pip /. pip install --upgrade pip /. # 7. Install
Python dependencies / pip install -r requirements.txt

Figure 8: We select some typical cases and provide an analysis of observed phenomena.

4.5 CASE STUDY

Beyond the above analyses, we further explore concrete cases to validate the effectiveness of our
framework and support the claims. As shown in Figure[8] we observe that models sometimes cor-
rectly judge the error type without actually locating the error commands, which undermines sub-
sequent feedback. We also find that some proposed fixes differ from the golden solution, but our
evaluation protocol can accommodate such variability, focusing on whether the issue is resolved
rather than on exact match, thereby supporting the soundness of our methodology. Finally, we ob-
serve a relatively low pass rate. One key reason is that a single README may contain multiple
errors, and models often fail to fix all of them. Moreover, during execution, a model may correctly
diagnose an error and suggest an appropriate fix command, but fail to apply the feedback in the shell
scripts used for environment setup, or it may introduce new faults. Notably, such errors are likely to
arise during multi-round agentic iteration, as extensive edits can introduce additional mistakes.

5 CONCLUSION

Environment configuration remains a decisive bottleneck for SWE agents. Beyond end-to-end
benchmarks, we introduce a benchmark that focuses on process-level evaluation, including plan-
ning, perception-driven diagnosis, feedback-driven repair, and final actions. By injecting realistic
errors into READMEs and validating their effects in Docker, the automatic data framework we
propose generates scalable, high-quality task instances for evaluation and rich trajectories that en-
able training. We conduct experiments on advanced agents, and observe that in error perception,
the agent demonstrates a certain level of capability, but tends to classify uncertain error types as
“others”. However, when it comes to specific repair actions, the agent shows limited performance.
We attribute this limitation to the lack of effective interaction and feedback mechanisms within the
agent. Although it can identify errors, it struggles to plan the feedback information and interact
with the real-world environment to provide better repair actions. In the future, enhancing the agent’s
ability to strengthen its interaction with the environment will be an important research direction.
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ETHICS STATEMENT

We introduce a novel benchmark, EnConda-Bench , incorporating a thorough description of
repository collection, error synthesis, data validation, and filtering. We emphasize that the dataset’s
creation adheres strictly to ethical guidelines. We make sure that all repositories we use comply
with their respective licenses. Great care has been taken to uphold ethical standards in the dataset,
employing anonymization, desensitization, and data cleaning. The samples pose no risk to public
welfare. For all data sourced from these websites, we obtain permission for data usage. Hence, the
innovative research directions and tasks proposed are ethically harmless to society.
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A DATA CONSTRUCTION

A.1 REPOSITORY SELECTION

Beyond the filtering criteria outlined in Section we selected repositories primarily from ex-
isting, human-validated, and pre-filtered benchmarks to ensure the originals are reliably buildable.
This choice is crucial because our error synthesis procedure treats the unmodified README as
the ground truth; consequently, the README must be correct and actionable. To that end, we en-
gaged professional annotators to perform manual environment setup, removing repositories whose
READMEs were themselves erroneous or whose dependencies were incomplete, thereby preserv-
ing high-quality baselines. We further verified that all selected repositories carry licenses permitting
non-restrictive research use: most adopt permissive licenses (e.g., BSD, MIT, Apache), while the
remainder fall under copyleft licenses (e.g., GPL), which are compatible with our intended research
scenarios. We also reviewed repositories under custom licenses and confirmed their suitability for
the uses contemplated in this study. A promising direction for future work is to broaden repository
coverage to include codebases written in a wider range of programming languages, extending the
evaluation to environment configuration tasks across more language ecosystems.
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A.2 ERROR TYPE DEFINITION

Taxonomy of Common Environment-Configuration Errors Guided by failure modes fre-
quently encountered when configuring execution environments from software repositories, we define
a six-type taxonomy intended to cover the vast majority of practical issues while maintaining clear,
operational boundaries between categories. The scheme is designed to support consequent error
generation, and the set is comprehensive for routine evaluation and error synthesis.

Table 4: Error taxonomy for repository environment configuration. Identifiers are retained from our
internal schema and are non-contiguous by design.

ID Name Definition
E1 Dependency Installation Errors related to system or Python dependency
Error installation steps, including missing dependencies,
unnecessary dependencies, or version errors.

E2 Command Usage or Errors caused by incorrect commands, invalid

Syntax Error parameters, or improper syntax causing execution
failure.

E4 File Path or Missing File Errors where dependency file paths are incorrect or

Error referenced files do not exist.

E6 Logical Order Error Errors caused by incorrect execution order of
installation steps, such as installing pip
dependencies before creating a virtual environment.

E7 Version Compatibility Errors caused by unspecified Python or dependency

Error versions, version conflicts, or incompatibilities.
ES8 Other Miscellaneous Other uncategorized errors, such as messy
Errors formatting, missing critical explanations, or unclear
descriptions.
Examples

» E1 Typical symptoms include package-not-found errors (e.g., 404 on indexes or channels),
missing system libraries (e.g., OpenSSL, GCC toolchains), or failing installers (apt/conda/pip).

» E2 Often manifests as immediate termination with usage messages or exit code 2, invalid or
deprecated flags, shell quoting/escaping errors, or invoking commands from the wrong work-
ing directory.

* E4 Common signals are “No such file or directory,” misspelled filenames, incorrect relative
paths, or reliance on artifacts not checked into version control.

* E6 Symptoms include installing into an inactive environment, failing to source activation
scripts before use, or attempting builds before installing toolchains.

o E7 Presents as solver conflicts, runtime ImportErrors due to ABI/GLIBC/CUDA mis-
matches, or subtle behavior differences across Python or library minor versions.

» EB8 Catch-all for issues outside the above scopes, such as incomplete or ambiguous instruc-
tions, inconsistent naming, or extraneous formatting that obscures required steps; curators
should use this sparingly and prefer specific categories when feasible.

A.3 ERROR GENERATION

We use Claude-4-sonnet and Gemini 2.5-pro together to generate errors. We input the original
README file, the desired types of errors to insert, the number of errors per README, the desired
number of output README files, and a list of error type definitions, and then have them output the
following:

12
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¢ Erroneous README (Markdown or RST file)
e List (JSON format):

— Readme id

— Error type

— Error description (natural language)

— Candidate fix suggestions (operational tips)

— ground truth of fix answer (golden answer)

Here is the instruction for error generation:

Prompt for Error Synthesis

You are a professional environment setup engineer and the README text
modifier.
You receive the following inputs:

— A correct README markdown file located at path: {readme_path}.
- A list of error types to inject, chosen from the following:

{error_types_str}

— Number of errors to insert per README: {errors_per_readme}.

— Number of distinct erroneous README markdown files to output:
{num_readmes}.

Task:

Please generate {num_readmes} distinct erroneous README markdown files
by minimally modifying the original README. Keep as much of the
original README the same as possible, and only inject errors

by changing or adding a very small number of sentences (usually 1 or 2
to introduce the requested error types.

For each generated erroneous README file, output the following parts:
1. The full erroneous README markdown text, preserving all original

formatting and content except the minimal injected errors.
2. A JSON metadata block describing all inserted errors, with the

structure:
*YYjson
{{
"readme": "readme_{{index}}",
"errors": [
{{
"error_type": "<error type code e.g., E1>",
"error_description": "<brief description of the introduced error

in this README>",

"correction_candidates": [
"<candidate fix #1>",
"<candidate fix #2>"

1,

"golden_answer": "<precise correction to fix the error>"

P
P

Please output results for all {num_readmes} files in this format,
separated by a line of exactly three dashes (———):

13
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Prompt for Error Synthesis

# Erroneous README {{index}}
<full markdown text>

{{

"readme": "readme_{{index}}",
"errors": [

json

Additional notes:

— Ensure JSON blocks are enclosed exactly by triple backticks

and labeled as json.

- Maintain overall readability and realistic style.

— Output the markdown and JSON blocks exactly as specified, with no
extra text or

commentary.

— The original README content, not injected errors, must remain
unchanged.

End of instructions.

A.4 AUTOMATIC VALIDATION

After generating the erroneous README file, as in the formal evaluation process, we used GPT-
4.1-mini to generate a shell script based on the given README and the directory structure of the
repository. This script was then run within Docker to verify whether the environment could be
successfully built. We instructed the model to strictly follow the instructions in the README when
generating the script, without making any modifications or corrections, to ensure accurate evaluation
results. The specific prompt used is as follows:

Prompt for Generating Shell for Validation

You are given the README of a Python project and the directory
structure of this repository. Please output ONLY one complete
bash shell script that automates environment setup for this
project on Ubuntu 22.04. Do not include any explanations or
markdown, just the script content.

Requirements for the script:

- Create and activate a new Python virtual environment using Miniconda
inside the project directory (e.g., ./env or ./venv name) .

— Install any required system packages and Python packages inferred
from the README.

— Install Python dependencies (infer from README; if requirements.txt/
pyproject.toml is expected, handle both).

- Install the project in editable mode (pip install -e .)

if applicable.

- You must run the test suite to verify setup (pytest, or whatever

is indicated/inferred) .

- Start with a shebang (#!/usr/bin/env bash) and use

"set —euo pipefail’.

14
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Prompt for Generating Shell for Validation

Attention: You don’t have to ensure that the generated Shell script
will definitely configure successfully, but x*make sure that the
Shell script is totally consistent with the contents of the
README#**. Do not make any changes!

Assume you execute all commands from the project root directory.

A.5 LLM AS JUDGE TO VALIDATE

We further annotate each error using GPT-4.1-mini to ensure that the final generated errors are valid.
We input the error’s README, a JSON file containing the error annotation, the error definition, and
the basic Dockerfile design for our environment configuration. We ask GPT-4.1-mini to check the
following: (1) Is the error type classification accurate? If not, suggest a corrected type. (2) Is this
error described in the README? (3) Is this error valid? We consider an error valid only if it truly
prevents a step in the environment configuration from succeeding, and its fix allows the configuration
to execute correctly. (4) Is the standard solution for this error correct? After this screening, we
discard all README:s corresponding to invalid errors. The specific prompt is as follows:

Prompt for LLM as Judge to Filter the Valid Error README

SYSTEM_PROMPT

You are a strict checker for environment-setup. Output only N lines of
minified JSON objects, one per error, exactly matching the schema
below. No explanations, no prose, no code fences, no blank lines,

no trailing commas.

DEVELOPER_PROMPT

Task:

For each error in errors_json.errors (in order), decide:

- error_type_judgment: does error_type match error_description per
definitions? If false, set error_type_modify to the single best-
matching type; else "".

- error_readme_cr: does the README text actually contain the erroneous
content (wrong command/flag/version/path/module, wrong venv order)

or a required omission that would be needed to succeed?

- answer_judgment: would golden_answer remove the root cause of this

error?

- error_valid: will this error break setup until fixed under the given
environment

assumptions and success criteria (install command errors, dependency
resolution

conflict, ImportError of a required library, unusable environment due
to venv misuse)? False for cosmetic/optional issues or if uncertain.

Use only:

- readme_text

- error_definitions

- errors_json

- environment assumptions/success criteria

Be conservative if context is missing. Preserve input order.

Output schema (one line per error)
{"id":"<readme_id>#<zero_based_index>",
"error_type_judgment":true|false,"error_type_modify":"E? or empty
string",

"error_readme_cr":true|false, "answer_judgment":true|false,"error_valid
":true|false}
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Prompt for LLM as Judge to Filter the Valid Error README

Rules

- error_type_judgment: compare strictly with provided definitions;
if multiple types fit, choose the most specific root-cause category.
— error_readme_cr: true only if the README substantiates the error;
for omissions,

true only if the missing step/dependency is clearly required to
succeed.

- answer_judgment: golden_answer must directly fix the error; being in
correction_candidates is not sufficient.

- error_valid: true for invalid flags/options, incompatible/blocked
pins, missing essential deps, wrong commands/paths/modules,

critical venv misuse/order; false for stylistic advice or
speculative failures.

Expected model output (one line per error, in order):
{"id":"<readme_id>#0", "error_type_Jjudgment":true,
"error_type_modify":"","error_readme_cr":true, "answer_judgment":
true, "error_valid":true}

B DIFFICULTY RATE

Because our task instances incorporate error injection into existing README files using LLM, we
wanted to verify whether these generated task instances reflect the challenges encountered in real-
world environment configuration, thus possessing characteristics similar to real-world environment
setup tasks. Therefore, we selected several benchmarks that collect task instances directly from real-
world code repositories, including INSTALLAMATIC Bench, ExecutionAgent Bench, EnvBench,
and SetupBench, and compared their difficulty scores with our benchmark. For EnvBench and our
benchmark, we sampled 100 task instances each; for the other benchmarks, we scored all available
instances. By analyzing the distribution of difficulty scores, we can assess whether the methods
used in our benchmark align with those used in real-world task instances. Specifically, we used
a 1-5 scale, where 1 is very easy, 2 is easy, 3 is moderate, 4 is difficult, and 5 is very difficult.
We invited professional annotators to score the selected task instances, considering factors such as
the clarity and completeness of the instructions in the README, whether the commands execute
directly, whether additional files or pages need to be consulted, and the number of dependencies that
need to be considered.

C TRAJECTORY TRAINING DATA GENRATION FRAMEWORK

We have automated the process of generating environment configuration task instances and de-
signed a comprehensive evaluation suite that allows agents to execute these task instances, capture
their execution trajectories, and perform evaluations. Therefore, we can build a complete synthetic
data framework based on this to generate synthetic trajectory data representing both successful and
failed agent executions of these environment configuration tasks. This can efficiently produce large
amounts of trajectory data for model fine-tuning or large-scale pre-training, provided that a sufficient
quantity of high-quality original repository data is available. The specific data generation process is
illustrated in the Figure[9]

D EXPERIMENT SETTINGS

When the agent is tasked with configuring the environment, we provide instructions including the
repository directory information, README information, and the basic environment requirements.
We also outline a feasible workflow for the agent to follow, ensuring that the entire environment
configuration adheres to the specified standards. We require the agent to explicitly identify any
errors during execution, and to perform unit tests after completing the environment configuration to
verify its success. The specific prompt is as follows:
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1. Repository Selection
. Selection Criteria .
Github PR Execution High-quality
Repository v 10+issue Check Repository
v' 1000+ commit

2. Error Readme Generation

Error Type Definition

% Dependency Installation Error

— README in @Command Usage or Syntax Error Ilmll LLMsSynthesize Error README
ey Repository—’ FilePath or Missing File Error [ | Errors > Instances

¢ Logical Order Error
Version Compatibility Error
Other Miscellaneous Errors

3. Data Validation

Error README Generate , Valid Task LLM Filter Valid Task
Instances Setup shell Instances Instances

@ Execution
Dockerfile

4. Trajectory Generation

Valid Task Instances

O Repository
||m|| Agent : .
E —> ] Attempts to configure = Exe.cutlon > @ Evaluate —» TraleCtory
= README environment Trajectory Traing data

5.6 Dockerfile

Figure 9: The overall data synthesis framework of trajectory training data generation.

Prompt for Agent to Execute the Environment Configuration

You are an expert Python environment setup assistant. Your task is to
analyze README files, detect potential errors in environment setup
instructions, and provide comprehensive solutions.

Given a README file, you should:

1. xxError Detection and Analysisxx: Carefully analyze the README
for potential errors in environment setup instructions, including:
— El: Dependency Installation Error (missing dependencies,
unnecessary dependencies, or version errors)
- E2: Command Usage or Syntax Error (incorrect commands, i
nvalid parameters, or improper syntax)
- E4: File Path or Missing File Error (incorrect dependency
file paths or referenced files that do not exist)
- E6: Logical Order Error (incorrect execution order of
installation steps)
— E7: Version Compatibility Error (unspecified Python or
dependency versions, version conflicts, or incompatibilities)
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Prompt for Agent to Execute the Environment Configuration

— E8: Other Miscellaneous Errors (messy formatting, missing
critical explanationsand or unclear descriptions)

2. xxError Analysis Outputxx: First, output a JSON object containing
your error analysis with the following structure:
*YYjson
{{
"detected_errors": |

{{

"error_type": "E1l|E2|E4|E6|E7|E8",
"error_description": "Detailed description of the error found",
"fix_suggestion": "Specific suggestion on how to fix this error"

H}
]

PR

}
3. xxEnvironment Setup Scriptxx: After the error analysis, create a
comprehensive shell script that:

- Fixes all detected errors

- Sets up the environment correctly

- Handles common Python environment setup patterns (pip, conda,
poetry, etc.)

— Includes error handling and verification steps

Your response should contain:
1. The JSON error analysis (wrapped in json code blocks)
2. The corrected shell script (wrapped in '‘‘bash code blocks)

AURURY

Technical requirements:
- Always start by examining the repository structure to locate the

dependency

— Check for Python version requirements and use pyenv for version
management

— Identify the dependency manager (pip, Poetry, etc.) and use it
appropriately

- Handle system-level dependencies with apt-get

- Ensure proper virtual environment setup

— Include verification steps to confirm successful installation
— Use non-interactive commands (e.g., ‘apt-get install -y‘')

- Install from local repository, not PyPI packages

## Repository Structure:
{file_structure}

## README Content:
{readme_content}

Please analyze the above README file and provide your response
in the specific format.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the official policy on the use of large language models, we used LLMs solely
as general-purpose assistive tools for grammar checking and minor wording refinement during
manuscript preparation. All LLM-suggested edits were manually reviewed and selectively accepted
by the authors. Our usage complies with the official requirements, and we disclose it here.
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