
Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions
in Text Games

Anonymous * 1

Abstract
Large Language Models (LLMs) have demon-
strated superior performance in language under-
standing benchmarks. A recent use case for LLMs
involves training decision-making agents over tex-
tual information. The existing approach lever-
ages LLM’s linguistic priors for action candidate
recommendations in text games, i.e., to operate
without environment-provided actions. However,
adapting LLMs to specific games/tasks requires
a massive amount of annotated human game-
play. Moreover, in the existing approach, the
language model was kept frozen during an agent’s
training process, which limits learning from in-
game knowledge about the world. Hence, we
explore strategies to adapt the language model
for candidate recommendation with in-game tran-
sition in an online learning fashion to mitigate
reliance on human-annotated gameplays, which
are costly to acquire. In this paper, we propose
in-game transition selection methods to adapt the
LLM in the loop, reducing the dependency on
using human-annotated gameplays while improv-
ing performance and convergence. Our method
demonstrates a 53% relative improvement in av-
erage game score over the previous state-of-the-
art model, achieving more than twice the con-
vergence rate in a full-annotated dataset setting.
Furthermore, even with only 10% of human an-
notation, we surpassed the 100% state-of-the-art
performance benchmark.

1. Introduction
Large Language Models (LLMs) (Devlin et al., 2019; Rad-
ford et al., 2018; Ouyang et al., 2022; OpenAI et al., 2024)
trained on large corpora of unstructured text corpora are
the state-of-the-art models in several Natural Language Un-
derstanding (NLU) benchmarks. Bender & Koller (2020)
argue in their position paper that the models mainly trained
from static benchmarks rely on the form rather than under-
standing the meaning. Also, there has been a recent interest
in interactive training of large language models in situated

learning environments. Bisk et al. (2020); McClelland et al.
(2020) point out the necessity for LMs to have enhanced lan-
guage understanding and meaning through interacting with
the physical world. Also, Lake & Murphy (2021) argues
that LMs fall short in their communicative usage, requiring
reasoning over intents despite their success in static datasets.

Training decision-making agents over textual information
for playing text-based games (Hausknecht et al., 2020; Côté
et al., 2018) has been a recent use case for LLM. While
decision-making has been the front of text-game playing,
such games introduce novel challenges for language un-
derstanding and domain adaptation for LLMs. In Jerchio
(Hausknecht et al., 2020), an agent receives a textual ob-
servation about its environment that it has to understand
and reason over the possible actions to pick one and pro-
ceed. The Zork1 game has a vocabulary size of 697 and
has approximately 6974 ∼ 200 billion potential 4-word ac-
tions. Such a setup allows for qualitatively understanding
the LLM’s abilities to understand, reason, and adapt to
novel situations.

To handle combinatorially large action space, CALM (Yao
et al., 2020) introduced a dataset with a corpus of human
gameplay on similar games called ClubFloyd to fine-
tune the GPT-2 to generate candidate actions. Then, these
actions are used by the decision-making agent called the
Deep Reinforcement Relevance Network (DRRN) (He et al.,
2016) on the Jericho benchmark (Hausknecht et al., 2020)–a
suite of text-based games–. After the initial adaptation to
the human-annotated corpus, the language model remains
frozen throughout the learning within the game. Further,
they observed that the performance of the text-based games
in the Jericho benchmark is proportional to the size of the
annotated human gameplay corpus; such reliance adds to
the cost and makes it hard to transfer this approach to other
problem settings.

On the one hand, there is a need to mitigate the reliance on
human-annotated transitions to scale applications of LLMs.
On the other hand, in-game transitions remain unutilized
for training the LLM. Although one can use the transitions
to train the model, the solution requires a comprehensive
analysis of what such an LM-in-the-loop training entails.

Toward that goal, we study different strategies to adapt

1

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

an LM in an online fashion. We use a buffer to store in-
game transitions during training to collect several data points
along the timesteps. The reason for this buffer is to enable
batched updates and reduce the stochasticity of the LM
updates. We employ diverse sampling techniques to sample
data from the buffer to adapt the language model. Further,
we analyze such a setup along three main dimensions: (1)
Performance, (2) Convergence rate, and (3) Reliance on
human-annotated transitions.

The main contributions of this work are summarized as
follows:

• Proposed a framework for adapting language models
for action suggestions through in-game-generated tran-
sitions.

• Explored different approaches to adapting the language
model with in-game transitions.

• LM-in-the-Loop reduces the emphasis on human-
annotated transitions and enables accelerated conver-
gence.

2. Related Work
Text Games: Jericho (Hausknecht et al., 2020) is a pop-
ular learning environment that supports 32 human-written
interactive fiction games. These games are designed to be
difficult for human players, serving as a more realistic train-
ing ground to evaluate language understanding agents. Com-
pared with frameworks like TextWorld (Côté et al., 2018),
these games have significantly more linguistic variety and
larger action space. Jericho environment provides a smaller
list of candidate actions that can be used to train reinforce-
ment learning (RL) agents. Approaches like DRRN (He
et al., 2016), TDQN (Hausknecht et al., 2020), and KGA2C
(Ammanabrolu & Hausknecht, 2020) have used handicap
to operate on small action space and learn only through
in-game rewards. Towards using large LMs, environment-
provided actions are replaced with LM-generated actions
like with GPT-2 (Yao et al., 2020), or BERT (Singh et al.,
2021).

Transformers in RL: Transformer architectures are now
being increasingly used in reinforcement learning (RL);
Chen et al. (2021); Janner et al. (2021) use smaller trans-
former architectures on Atari games that earlier used con-
volutional networks as policy networks in offline settings.
Further adaptations to make the architectures lightweight
to enable online training was proposed in Xu et al. (2020);
Parisotto et al. (2019); Ouyang et al. (2022); Reid et al.
(2022); Tarasov et al. (2022); Ahn et al. (2022). Yao et al.
(2020) explore using the semantic prior in GPT-2 for candi-
date action recommendation in text games. Further, Tuyls
et al. (2022); Li et al. (2022) train LMs to remember optimal
trajectories to move to novel game regions swiftly.

3. Methodology
3.1. LM-in-the-Loop to recommend Actions

The game-playing agent takes sequence of actions accord-
ing to the game’s rules in the Jericho environment. The
environment has two scenarios—with and without handi-
cap—which correspond to whether the actions can be gen-
erated from within the possible actions suggested by the
environment or without any limitations by the environment,
respectively. The with handicap setup evaluates the agent
exclusively on planning with the actions provided. In con-
trast, the without handicap requires the agent, in addition
to understanding the observation, to generate acceptable
candidates.

In CALM (Yao et al., 2020), the LLM is kept constant
throughout the gameplay. We use a similar setup for action
recommendation as in CALM, where a trained GPT-2 LM is
adapted with the Clubfloyd dataset to recommend actions to
the DRRN agent (He et al., 2016). We explore the feasibil-
ity, prospects, and challenges that entail training LM-in-the-
loop post-finetuning with human gameplays in ClubFloyd
adaptation as in Table 1. Towards that, in addition to train-
ing the DRRN agent with TD-learning (Russell & Norvig,
2016), we collect the transitions (ot, at, ot+1, rt+1) through-
out the game episode, eTD, and populate them in D+ and
D− based on a heuristic that depends on—reward, return,
and the game states.

First, with LM parameterized by θ and generating action
candidates, we train DRRN for nRL consecutive episodes.
After nRL episodes, we sample dLM sized dataset from D+,
and D− with probabilities p+ and 1− p+ respectively for
2000 gradient steps at finetuned after every k game steps.
To train LM, we use a weighted cross-entropy loss:

LLM (θ) = −E(at,ot)∼(D+,D−) logPθ(at | ot) · h (·) (1)

Then, we plug in back the in-game trained LM to recom-
mend actions for the DRRN agent. The maximum buffer
size of D+, D−, p+, dLM , and nRL are all game-specific
hyperparameters. The h (·) is defined as a function of reward
rt, or action-advantage, A(ot, at), or assumed 1 uniformly
∀(o, a) ∈ O ×A. We evaluate different approaches based
on the sampling of transitions, and the loss function (L),
used for training the language model. Approaches for LM-
in-the-Loop based on the construction of D, and sampling
are:

Uncategorized Transitions (UT): In this setting the tran-
sitions stored in the buffer are not categorized by any special
heuristic function. We simplify this approach by maintain-
ing a single buffer, D and samples are drawn randomly from
the buffer D. This is a weaker baseline than other heuristics
for selecting useful transitions based on their importance.

2

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

Figure 1. Training LM-in-the-Loop post-human-annotated dataset adaptation: RL agent (DRRN) picks the action the language model
recommends (at T), GPT-2. The context pairs are stored in the replay buffers and categorized according to some heuristics. Then, the
Language model is updated with in-game transitions after k learning steps in the game. Finally, the updated language model (T + k)
actions are recommended.

Uncategorized Transitions - Linear weighted Advantage
(UTLA) : In this, the transition data is kept in a single
buffer D similar to in the UT setting. To finetune the lan-
guage model using the weighted cross-entropy loss (Equa-
tion 1), we use the weighted advantage function (Equa-
tion 6).

This variant, UTLA, allows for negative weights [−∞,+∞]
with h(·) as follows:

h(ot, at) = 1 + β ·A(ot, at), (2)

where, β ∈ R+ is a hyperparameter.

Uncategorized Transitions - Exponential weighted Ad-
vantage (UTEA) : The procedure is very similar to
UTLA. However, in UTEA we use exponential weighted
advantage function which is strictly non-negative [1,+∞]
using h(·) function:

h(ot, at) = eβ·A(ot,at), (3)

where, β ∈ R+ is a hyperparameter.

Reward Trajectories (RT): The reward from transitions,
rt, is used to categorize positive and negative trajectories.
When rt > 0, all transitions up until the earlier non-zero
reward are considered positive and added to D+. Further, we
explore utilizing the return, reward, and advantage function
of actions to re-weight LLM using the h (·) function over
UT setting as above. We describe them as follows:

State Features (SF): In this, the transitions are labeled
as useful or not based on whether an action at resulted
in reward increase or if the agent’s location changed. i.e.,
moved from one room to another. The location information
received is an artifact of the game framework. Further, we

vary p+ to maximize the transitions that encourage explo-
ration to eventually result in improved performance in the
game. Here, h (·) is fixed as 1 uniformly ∀(o, a) ∈ O ×A.

3.2. Dataset

ClubFloyd dataset (Yao et al., 2020) is a collection of
crawled data from the ClubFloyd website. The dataset com-
prises gameplay from experienced players; however, they
may not be familiar with the particular games, so the ac-
tions are not optimal. This dataset includes 426 transcripts
covering 590 unique games; and contains 223, 527 pairs of
context and in the form of ((ot−1, at−1, ot), at).

3.3. Benchmark and the Metric

Jericho (Hausknecht et al., 2020) is a learning environment
that supports human-written interactive fiction games. We
chose 10 games based on the diversity in the challenges
faced in each game, such as large action space, solution
length, and reward sparsity as mentioned in Hausknecht
et al. (2020). We evaluate the games based on their score
over the last 100 episodes, normalized against the maximum
achievable score, and as a percentage difference between
the baseline and the best approach.

4. Results
4.1. Effect on Performance

To understand the effect on performance with LM-in-the-
Loop, we follow the experimental setup in §B.1 to evaluate
the Jericho benchmark. Table 1 compares the different
methods detailed in §3.1 with reproduced norm score of
CALM as the baseline. We see that categorizing the tran-
sitions using state features (SF) scored the highest in all
tasks, suggesting that LM-in-the-Loop enables improved
performance. The improvement in the average norm score

3

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

Games CALM1 UT2 UTLA
3 UT4EA RT5 SF6 ∆(%)(6−1) Max

Score

Zork1 30.7[4.8] 32.6[4.4] 30.4[8.5] 35.6[5.7] 30.7[3.8] 38.0[1.7] 23% 350
Inhumane 24.8[2.7] 21.9[5.24] 28.9[11] 27.3[3.1] 29.1[12.7] 43.4[3.8] 75% 90
Detective 290.9[2.7] 288.5[1.5] 289.3[0.2] 288.3[1.3] 285.1[5.6] 288.5[1.5] 0% 360
Zork3 0.3[0.09] 0.3[0.14] 0.4[0.1] 0.6[0.1] 0.6[0.1] 0.7[0.2] 133% 7
Omniquest 6.7[0.3] 6.0[0.6] 6.6[0.9] 6.6[1] 6.0[0.79] 7.8[1.7] 16% 50
Library 11.2[1.3] 9.3[1.1] 9.5[1] 10.3[0.2] 10.3[1.8] 12.1[0.7] 8% 30
Balances 9.3[0.2] 9.6[0.1] 9.6[0.2] 9.5[0.2] 9.7[0.2] 9.7[0.1] 4% 51
Ludicorp 10.4[0.7] 11.4[2.6] 12.5[1.1] 11.9[2.6] 11.3[3.1] 15.1[0.8] 45% 150
Dragon 0.1[0.06] 0.1[0.1] 0.3[0.3] 0.3[0.3] 0.1[0.12] 0.3[0.2] 200% 25
Ztuu 3.8[0.18] 4.4[0.0] 4.5[0.2] 4.4[0.1] 4.3[0.1] 4.5[0.1] 18% 100

Norm Score 20.1% 19.1% 20.6% 20.9% 20.7 % 24.0% 52.37% 100%

Table 1. LM-in-the-Loop provides a performance improvement over CALM. Especially, categorizing the transitions with state features
(SF) scored the highest with ∼ 53% improvement over the scores obtained by the baseline model.

was approximately 4% over the baseline, which translates
to about ≈ 53% more average improvement over the scores
obtained by the baseline model. We refer to subsection B.5
for the learning graph for individual games for 5 seeds.

On the other hand, the avg. norm score with Uncategorized
Transitions (UT) dropped to 19.2% which is ∼ 1% below
the baseline performance. The difference in performance
between UT, and SF with the baseline suggests that LM-in-
the-loop for action recommendation is helpful but requires
careful selection of transitions for training the language
model.

In Figure 2, we compare the % of steps in-game learn-
ing methods took on average to achieve k% of the CALM
model’s best performance across the games. We see that
LM-in-the-Loop techniques enabled at least 2× on aver-
age acceleration in convergence. Although alternatives like
reward-based categorization and reweighted techniques only
provided meager improvements over the baseline (Table 1),
they still show accelerated coverage with 40% to reach the
baseline score.

Figure 2. We see that LM-in-the-Loop techniques only need half
of the steps to achieve the best of CALM. Using state feature-based
categorization (SF) achieves better acceleration and performance.

4.2. Emphasis on Human Annotations

CALM model—the baseline— uses all of the ∼ 223K tran-
sitions in the ClubFloyd dataset to adapt the GPT-2 model
for action recommendation. However, using in-game tran-
sitions for LM-in-the-loop training provides the LM with
game-specific information. The requirement for adapting
GPT-2 with human-annotated transitions should be minimal.
The existing approach shows that performance decreased
significantly when adaptation was done with 10% of the
ClubFloyd dataset. The reproduced results of CALM with
10% of adaptation data show the average norm score as
18.5% across the games in Table 3. Using State features
(SF) with 10% of the adaptation date achieved an average
norm score of 21.8%, more than even using 100% of the
adaptation data with CALM. Although there was a small
decline in the performance of the detective game, it was
insignificant because it was still within the standard error.
These results suggest empirically that we can reduce the bur-
den of collecting human-played or human-annotated data
by doing in-game learning.

5. Conclusion
In this work, we proposed frameworks for selecting in-game
transitions to adjust the LLM to reduce the reliance on
human-annotated gameplays while enhancing performance
and convergence. We used various sampling strategies to
adapt an LM in an online setting by utilizing a buffer to store
in-game transitions. The results indicate that categorizing
the transitions using state features yielded the best perfor-
mance across all tasks, demonstrating the effectiveness of
LM-in-the-Loop. Furthermore, in-game training accelerates
the convergence in most games. In conclusion, adapting
a language model using in-game trajectories showed im-
proved performance, faster convergence, and more sample
efficiency.

4

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

References
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes,

O., David, B., Finn, C., Fu, C., Gopalakrishnan, K.,
Hausman, K., Herzog, A., Ho, D., Hsu, J., Ibarz, J.,
Ichter, B., Irpan, A., Jang, E., Ruano, R. J., Jeffrey,
K., Jesmonth, S., Joshi, N. J., Julian, R., Kalashnikov,
D., Kuang, Y., Lee, K.-H., Levine, S., Lu, Y., Luu, L.,
Parada, C., Pastor, P., Quiambao, J., Rao, K., Retting-
house, J., Reyes, D., Sermanet, P., Sievers, N., Tan, C.,
Toshev, A., Vanhoucke, V., Xia, F., Xiao, T., Xu, P., Xu,
S., Yan, M., and Zeng, A. Do as i can, not as i say:
Grounding language in robotic affordances, 2022. URL
https://arxiv.org/abs/2204.01691.

Ammanabrolu, P. and Hausknecht, M. Graph constrained
reinforcement learning for natural language action spaces.
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=B1x6w0EtwH.

Bender, E. M. and Koller, A. Climbing towards NLU: On
meaning, form, and understanding in the age of data. In
Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 5185–5198, On-
line, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.463. URL https:
//aclanthology.org/2020.acl-main.463.

Biewald, L. Experiment tracking with weights and biases,
2020. URL https://www.wandb.com/. Software
available from wandb.com.

Bisk, Y., Holtzman, A., Thomason, J., Andreas, J., Ben-
gio, Y., Chai, J., Lapata, M., Lazaridou, A., May, J.,
Nisnevich, A., Pinto, N., and Turian, J. Experience
grounds language. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 8718–8735, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.703. URL https://
aclanthology.org/2020.emnlp-main.703.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I.
Decision transformer: Reinforcement learning via se-
quence modeling. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=a7APmM4B9d.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. In NIPS 2014 Workshop on Deep Learning,
December 2014, 2014.

Côté, M., Kádár, Á., Yuan, X., Kybartas, B., Barnes, T.,
Fine, E., Moore, J., Hausknecht, M. J., Asri, L. E., Adada,
M., Tay, W., and Trischler, A. Textworld: A learning
environment for text-based games, 2018. URL http:
//arxiv.org/abs/1806.11532.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019. doi:
10.18653/v1/n19-1423. URL https://doi.org/
10.18653/v1/n19-1423.

Hausknecht, M., Ammanabrolu, P., Côté, M.-A., and Yuan,
X. Interactive fiction games: A colossal adventure. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 34(05):7903–7910, Apr. 2020. doi: 10.1609/
aaai.v34i05.6297. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6297.

He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L., and
Ostendorf, M. Deep reinforcement learning with a nat-
ural language action space. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1621–1630,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1153. URL
https://aclanthology.org/P16-1153.

Janner, M., Li, Q., and Levine, S. Offline rein-
forcement learning as one big sequence model-
ing problem. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 1273–1286. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
099fe6b0b444c23836c4a5d07346082b-Paper.
pdf.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. Bag
of tricks for efficient text classification. In Proceedings
of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2,
Short Papers, pp. 427–431, Valencia, Spain, April 2017.
Association for Computational Linguistics. URL https:
//aclanthology.org/E17-2068.

Lake, B. M. and Murphy, G. L. Word meaning in minds and
machines. Psychological review, 2021.

5

https://arxiv.org/abs/2204.01691
https://openreview.net/forum?id=B1x6w0EtwH
https://openreview.net/forum?id=B1x6w0EtwH
https://aclanthology.org/2020.acl-main.463
https://aclanthology.org/2020.acl-main.463
https://www.wandb.com/
https://aclanthology.org/2020.emnlp-main.703
https://aclanthology.org/2020.emnlp-main.703
https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=a7APmM4B9d
http://arxiv.org/abs/1806.11532
http://arxiv.org/abs/1806.11532
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://aclanthology.org/P16-1153
https://proceedings.neurips.cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

Li, S., Puig, X., Paxton, C., Du, Y., Wang, C., Fan, L., Chen,
T., Huang, D., Akyürek, E., Anandkumar, A., Andreas,
J., Mordatch, I., Torralba, A., and Zhu, Y. Pre-trained
language models for interactive decision-making. arXiv,
2022.

McClelland, J. L., Hill, F., Rudolph, M., Baldridge, J., and
Schütze, H. Placing language in an integrated understand-
ing system: Next steps toward human-level performance
in neural language models. Proceedings of the National
Academy of Sciences, 117(42):25966–25974, 2020.

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,

Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez,
H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S.,
Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Sel-
sam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker,
S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin,
J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Stau-
dacher, N., Such, F. P., Summers, N., Sutskever, I., Tang,
J., Tezak, N., Thompson, M. B., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.
F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright,
C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J.,
Weinmann, C., Welihinda, A., Welinder, P., Weng, J.,
Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich,
S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M.,
Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba,
W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,
T., Zhuang, J., Zhuk, W., and Zoph, B. Gpt-4 technical
report, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Gray, A.,
Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens,
M., Askell, A., Welinder, P., Christiano, P., Leike, J., and
Lowe, R. Training language models to follow instruc-
tions with human feedback. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=TG8KACxEON.

Parisotto, E., Song, H. F., Rae, J. W., Pascanu, R., Gülçehre,
Ç., Jayakumar, S. M., Jaderberg, M., Kaufman, R. L.,
Clark, A., Noury, S., Botvinick, M. M., Heess, N., and
Hadsell, R. Stabilizing transformers for reinforcement
learning. CoRR, abs/1910.06764, 2019. URL http:
//arxiv.org/abs/1910.06764.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language models are
unsupervised multitask learners, 2018. URL
https://d4mucfpksywv.cloudfront.
net/better-language-models/
language-models.pdf.

Reid, M., Yamada, Y., and Gu, S. S. Can wikipedia help of-
fline reinforcement learning? CoRR, abs/2201.12122,
2022. URL https://arxiv.org/abs/2201.
12122.

Russell, S. J. and Norvig, P. Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited,, 2016.

Singh, I., Singh, G., and Modi, A. Pre-trained language
models as prior knowledge for playing text-based games.
CoRR, abs/2107.08408, 2021. URL https://arxiv.
org/abs/2107.08408.

6

https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
http://arxiv.org/abs/1910.06764
http://arxiv.org/abs/1910.06764
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2201.12122
https://arxiv.org/abs/2201.12122
https://arxiv.org/abs/2107.08408
https://arxiv.org/abs/2107.08408

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

Tarasov, D., Kurenkov, V., and Kolesnikov, S. Prompts and
pre-trained language models for offline reinforcement
learning. In ICLR 2022 Workshop on Generalizable Pol-
icy Learning in Physical World, 2022. URL https:
//openreview.net/forum?id=Spf4TE6NkWq.

Tuyls, J., Yao, S., Kakade, S. M., and Narasimhan, K. R.
Multi-stage episodic control for strategic exploration in
text games. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=Ek7PSN7Y77z.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Xu, Y., Chen, L., Fang, M., Wang, Y., and Zhang, C. Deep
reinforcement learning with transformers for text adven-
ture games. In 2020 IEEE Conference on Games (CoG),
pp. 65–72, 2020. doi: 10.1109/CoG47356.2020.9231622.

Yao, S., Rao, R., Hausknecht, M., and Narasimhan, K. Keep
CALM and explore: Language models for action gener-
ation in text-based games. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 8736–8754, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.704. URL https://
aclanthology.org/2020.emnlp-main.704.

7

https://openreview.net/forum?id=Spf4TE6NkWq
https://openreview.net/forum?id=Spf4TE6NkWq
https://openreview.net/forum?id=Ek7PSN7Y77z
https://openreview.net/forum?id=Ek7PSN7Y77z
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-main.704
https://aclanthology.org/2020.emnlp-main.704

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

A. Background
A.1. Text Games

In text-based games, at each step, t, a learning agent interacts with the game environment by generating a textual action
at ∈ At that is relevant to the textual observation ot. The agent receives a scalar reward rt = Rt (ot, at). The agent
maximizes the expected cumulative rewards (r0, r1, r2, . . . rN), until the end of an N -step-long episode.

A.2. DRRN and Advantage Function

A popular deep RL method used in text-based games is the Deep Reinforcement Relevance Network (DRRN) (He et al.,
2016). The observation (o) and actions (a) are first encoded using separate recurrent neural network encoders (such as a
GRU (Chung et al., 2014)) fo and fa, respectively. A decoder g then combines the representations to obtain the Q-value
using a network parameterized by Φ:

QΦ(o, a) = g(fo(o), fa(a)). (4)

The DRRN learns to estimate the Q-value through iteratively updating Φ with experience sampled from a prioritized
experience replay buffer with the temporal difference (TD) loss:

LTD(Φ) =
(
r + γmax

a′∈A
QΦ(o′, a′)−QΦ(o, a)

)2

, (5)

where r and o′ are the reward and the observation received after taking action a upon observing o, and γ represents the
discount factor.

Advantage function: An estimate how good an action, a, is when chosen in a state, o, is obtained by subtracting the value
of the state (V (o))—a weighted average of the Q-values— from the Q(o, a) of that particular action in that state.

A(o, a) = QΦ(o, a)− V ψ(o) (6)

Q-Value estimates the expected reward after a specific action was played, whereas Vψ(o) is the parameterized estimate of
the expected reward from being in o before an action was selected.

A.3. LLM for Action Recommendation

Consider a dataset D of N transitions of human gameplay across different games organized in context-action pairs as
((ot−1, at−1, ot), at). For example, a sample could be like, “[CLS]. . . to the north is a restaurant where
the mayor ate often. to the east is the mayor’s home. [SEP] northeast[SEP] . . .
you are carrying nothing. you are still on the streets. . . . [SEP] northeast’’.
[SEP] and [CLS] are special tokens specific to LM-training. Yao et al. (2020) uses the ClubFloyd dataset to adapt a
pre-trained GPT-2 model with a causal language modeling task. The motivation is to enable the linguistic prior of GPT-2 to
adapt to the games and provide better action recommendations to the DRRN.

B. Experiment Details
B.1. Model Details

Language model (GPT-2) is first finetuned on the ClubFloyd dataset. Given the context, (ot−1, at−1, ot), the finetuned
GPT-2 proposes action candidates for DRRN to choose. Following that, every action candidate and context is encoded
with a GRU. Then, a decoder combines the representations to estimate the Q-value using a multilayer Perceptron (MLP)
and updates the DRRN agent parameter Φ. During the training process of the DRRN agents, the context-action pairs are
stored in the replay buffers. After k steps, we sample dLM sized dataset from D+, and D− with probabilities p+ and 1− p+

respectively and update the language model with in-game transitions. Then, the updated language model is used to propose
the action candidates.

8

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

The buffer size is 100K for replay buffers that use the First-In-First-Out (FIFO) strategy to replace samples. To train, dLM

samples are sampled uniformly randomly from the two buffers D+ and D−. However, the probability of choosing the
buffers is defined by p+ and p− (1− p+), respectively. The number of gradient steps for LM training is fixed at 2000 across
the setups. And, across games we experiment with the hyperparameter p+ ∈ [0, 1] in 0.1 increment, and the value for LM
finetuning frequency k ∈ [2k, 5k, 10k, 20k]. The results tabled are estimated from 5 runs.

B.2. Language Model and Reinforcement Learning Setup

We use a GPT-2-Base (Radford et al., 2018) model with 12-layers, 768-hidden units, and 12- attention heads with 117M
parameters pre-trained on the WebText corpus. This model’s implementation and pre-trained weights are obtained from
(Wolf et al., 2020, Huggingface).

We train for 3 epochs on the ClubFloyd dataset following (Yao et al., 2020) to minimize the cross-entropy loss, as shown in
Table 2. We use AdamW to optimize the model’s weights to minimize the loss, with the learning rate as 2× 10−6 and Adam
epsilon as 1× 10−9. We use a linear schedule with a warmup of 0.1 for the learning rate. Finally, we clip gradients with a
maximum gradient norm of 1. Following (Yao et al., 2020)’s finetuning process, we exclude using Jericho-related transcripts
by setting the flag as 1. We used random seeds to select the dataset to avoid bias when selecting data for the LM training.

Model Metric Final Score
100% Train Loss 1.49

Val Loss 2.65
Train Acc 0.30
Val Acc 0.14

10% Train Loss 1.42
Val Loss 3.04
Train Acc 0.30
Val Acc 0.09

Table 2. Pre-trained GPT-2 Language Model training
details on different data percentage variants trained for
3 epochs.

We train on 10 interactive fiction games from the Jericho benchmark
(Hausknecht et al., 2020). The states are observations concatenated
with items in the player’s possession and their current location de-
scription provided by the game engine using commands inventory and
look. A single game episode runs for 100 environment steps at max or
gets terminated before the game is over or won. We use the look and
inventory commands to add location and inventory descriptions
to observations, following Hausknecht et al. (2020).

We train DRRN asynchronously on 8 parallel instances of the game en-
vironment for 100, 000 steps for each game. At each step, the Q-value
is estimated using the DRRN agent, and the action is selected based on
the soft-exploration policy. Action’s admissibility is predicted based
on the textual response of the game. Then, inadmissible are filtered
out using a FastText model (Joulin et al., 2017). The agent is optimized using Adam optimizer with a 10−5 learning rate.
We sample transitions of batch size 64 from priority buffer with a priority fraction of 0.5. The discount factor in determining
the importance of the future reward is 0.9. The size of the embedding dimension is 128, and the hidden dimension is 128.
Finally, the gradient is clipped with a maximum gradient norm of 5. We train 5 separate runs for each game and report the
average score. We use the average of the last 100 episode scores to calculate the final score.

B.3. Language Model and Reinforcement Learning Setup

Games CALM1 CALM 2 SF3 ∆(%)
100% 10% 10% (3−2)

Zork1 30.7[4.8] 29[3.4] 35.1[2.3] 21%
Inhumane 24.8[2.7] 15.7[14.7] 27.5[6.8] 75%
Detective 290.9[2.7] 289.5[0.2] 289.6[0.2] 0%
Zork3 0.3[0.09] 0.6[0] 0.7[0.3] 16%
Omniquest 6.7[0.3] 5.9[0.8] 6.0[1] 1%
Library 11.2[1.3] 10.5[1.5] 10.2[1.8] (2)%
Balances 9.3[0.2] 6.6[3.5] 8.6[1.6] 30%
Ludicorp 10.4[0.7] 10.2[0.4] 13.7[0.4] 34%
Dragon 0.1[0.06] 0.1[0.06] 0.3[0.2] 200%
Ztuu 3.8[0.18] 3.6[0.1] 4.1[0.1] 13%

Norm 20.1% 18.5% 21.8 % 39.0%

Table 3. Using State Features (SF) achieved an average norm score of 21.8%
with 10%, which was more than even with CALM using 100% baseline.

We use a GPT-2-Base (Radford et al., 2018) model
with 12-layers, 768-hidden units, and 12- attention
heads with 117M parameters pre-trained on the
WebText corpus. This model’s implementation and
pre-trained weights are obtained from (Wolf et al.,
2020, Huggingface).

We train for 3 epochs on the ClubFloyd dataset
following (Yao et al., 2020) to minimize the cross-
entropy loss, as shown in Table 2. We use AdamW
to optimize the model’s weights to minimize the
loss, with the learning rate as 2× 10−6 and Adam
epsilon as 1× 10−9. We use a linear schedule with
a warmup of 0.1 for the learning rate. Finally, we
clip gradients with a maximum gradient norm of
1. Following (Yao et al., 2020)’s finetuning pro-
cess, we exclude using Jericho-related transcripts

9

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

by setting the flag as 1. We used random seeds to select the dataset to avoid bias when selecting data for the LM training.

We train on 10 interactive fiction games from the Jericho benchmark (Hausknecht et al., 2020). The states are observations
concatenated with items in the player’s possession and their current location description provided by the game engine using
commands inventory and look. A single game episode runs for 100 environment steps at max or gets terminated before
the game is over or won. We use the look and inventory commands to add location and inventory descriptions to
observations, following Hausknecht et al. (2020).

We train DRRN asynchronously on 8 parallel instances of the game environment for 100, 000 steps for each game. At each
step, the Q-value is estimated using the DRRN agent, and the action is selected based on the soft-exploration policy. Action’s
admissibility is predicted based on the textual response of the game. Then, inadmissible are filtered out using a FastText
model (Joulin et al., 2017). The agent is optimized using Adam optimizer with a 10−5 learning rate. We sample transitions
of batch size 64 from priority buffer with a priority fraction of 0.5. The discount factor in determining the importance of the
future reward is 0.9. The size of the embedding dimension is 128, and the hidden dimension is 128. Finally, the gradient is
clipped with a maximum gradient norm of 5. We train 5 separate runs for each game and report the average score. We use
the average of the last 100 episode scores to calculate the final score.

B.4. Software Details

We used PyTorch for the code implementation and Huggingface to load pre-trained language models. We used Weights &
Biases (Biewald, 2020) for experiment tracking and visualizations to develop insights for this paper. Finally, the seaborn
package is used to generate plots.

B.5. Learning Plots

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(a) Dragon

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(b) Ztuu

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(c) Zork 1

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(d) Inhumane

10

Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(e) Detective

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(f) Zork3

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(g) Omniquest

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(h) Library

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(i) Balances

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(j) Ludicorp

Figure 3. Comparison of learning dynamics of the different LM-in-the-Loop techniques with the baseline CALM agent across the selected
10 games in Jericho for 5 seeds.

11

