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ABSTRACT

Generating a temporal sequence of outputs from a single output has broad rele-
vance, including in neuroscience and machine learning. Inspired by ideas in non-
equilibrium physics and modern associative memory models, we demonstrate new
representations of sequence recall. Our findings provide potential strategies to im-
prove the learning of temporal data in state-of-the-art neural networks.

1 INTRODUCTION

Machine learning models have been used productively to infer and model sequential data streams.
Common examples of architectures used include recurrent neural networks (RNNs), such as long-
short-term-memory (LSTM). Such neural networks have applications in speech recognition or motor
control (Machens et al., 2005), where one phrase or action, respectively, leads to another. Asso-
ciative memory-based models can provide an alternative (potentially unsupervised) framework for
sequence generation and inference. The standard paradigmatic associative memory model, the so-
called Hopfield model (Hopfield, 1982), is an energy-based model and can be viewed as a physical
system with symmetric interactions. Starting from a corrupted pattern, the input is recurrently con-
verted to a configuration of lower energy, ultimately reaching the energy minimum of the correct
pattern. To enable dynamics other than energy descent to one pattern, in particular, the retrieval of
multiple patterns in sequence, one can introduce asymmetric interactions (Hopfield, 1982; Yan et al.,
2013). In particular, a simple mechanism for sequence retrieval in the Hopfield model was discussed
in Kanter & Sompolinsky (1986), where asymmetric coupling is supplemented with a memory ker-
nel in the dynamics. Inspired by modern Hopfield networks (Krotov & Hopfield, 2016), Chaudhry
et al. (2024) employed nonlinear interactions to enable sequence retrieval without a memory kernel.

Inspired by nonequilibrium physics, we present two new representations of pattern cycling. First,
using the well-known fact in nonequilibrium statistical mechanics that hidden degrees of freedom
can be introduced to capture memory-like behavior, we show that the memory kernel of Kanter &
Sompolinsky (1986) can be achieved using hidden neurons. Second, we demonstrate enhanced se-
quence retrieval in an asymmetric variant of the modern Hopfield networks by applying so-called
“transverse forces”, which have been used to accelerate the sampling of potential energy surfaces
(Ghimenti et al., 2023) and stabilize self-propelling particles (Du & Vaikuntanathan, 2024). These
forces are easy to implement in general. These physics-motivated insights can potentially be incor-
porated in state-of-the-art neural networks, for example, as part of an energy-based LSTM (Hoover
et al., 2024) to construct associative memory based temporal pattern recognition networks.
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2 INTRODUCING A DEGREE OF FREEDOM TO ACCOUNT FOR DELAYED
INTEGRATION

The model of Kanter & Sompolinsky (1986) extends the Hopfield model to the retrieval of a se-
quence of patterns. The firing activity of neuron i = 1, . . . , N is represented by a discrete spin
σi ∈ {±1} obeying the dynamics

σi(t+ 1) = sgn(hi(t)) (1)

hi(t) =
∂H
∂σi

+
λ

N

∑
j,µ

ξµ+1
i ξµj

∫ t

−∞
dt′w(t− t′)σj(t

′) (2)

∂H
∂σi

=
1

N

∑
j,µ

ξµi ξ
µ
j σj (3)

where {ξµ}pµ=1 is the sequence of p patterns to be retrieved, and the pattern elements are indepen-
dently and identically distributed (i.i.d.) random variables chosen as ±1 with equal probability. The
coupling between each pair of spins i and j consists of a symmetric part (equation 2, first term,
which is defined in equation 3) and an asymmetric part (equation 2, second term). In particular, the
asymmetric coupling is determined by strength λ and an asymmetric matrix whose ijth element is∑

µ ξ
µ+1
i ξµj , which helps the system to evolve from pattern “µ” to pattern “µ+ 1”. The integrating

kernel, w(t − t′), ensures coherent oscillations. Only when the state has aligned with pattern µ for
a characteristic time, τ , it moves to the next pattern. Some forms of w(t) are given by: 1

τ exp(− t
τ );

and 1
τ for t < τ , 0 for t > τ . In general, w(t) needs to be a decreasing function and satisfy∫∞

0
w(t)dt = 1.

We find that to obtain the same result for continuous spin dynamics would be to add a new variable
(x) that takes care of the integration kernel in the evolution equation:

∂σi

∂t
=− u(t)σi −

∂H
∂σi

+ λξµ+1
i xµ(1 + (xµ)2) + ηi(t) (4)

τ
∂xµ

∂t
=− f(xµ)xµ +

1

N
ξµi σi (5)

∂H
∂σi

=ξµi
1

N

∑
j

ξµj σj + u0ξ
µ
i

 1

N

∑
j

ξµj σj

3

(6)

One can view the expanded system as a 2-layer neural network, where σ represents the visible
neurons and x represents the hidden neurons. Here, u(t) enforces the L2 regularization ∥σ∥2 = N
at all times. For such “spherical models”, the quartic terms are essential to have pattern retrieval
(Crisanti & Sompolinsky, 1987; Bollé et al., 2003). ηi represents the thermal fluctuations in the
system with ⟨ηi⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ = 2Tδijδ(t − t′). If f(xµ) = 1, then one recovers the
cycling equation with w(t) = τ−1 exp(− t

τ ) (with an additional quartic term). Similarly, for other
choices of the function, f , one can obtain various forms for w(t). From the perspective of signal
processing, the ability to realize the integrating kernel w(t) using an auxiliary variable x follows
immediately from the fact that w(t) acts as a first-order low-pass filter (Tan & Jiang, 2018) in
equation 2. Fig. 1 depicts pattern cycling with the additional degree of freedom. We note that
Lu & Wu (2024) introduced hidden neurons for sequence retrieval but the connection to Kanter &
Sompolinsky (1986) was not made apparent. In the absence of hidden neurons, one needs to store
the entire history of the system for performing the convolution operation. Adding a new hidden
variable alleviates this storage cost.

3 ENHANCING THE PATTERN CYCLING WITH A TRANSVERSE FORCE

In this section, we apply a transverse force to a continuous version of a modern Hopfield network
(Krotov & Hopfield, 2016) whose asymmetric interactions induces pattern cycling (Chaudhry et al.,
2024). The system evolves as (Fig. 2a)

dσ

dt
= Fcyc + Fsph + F⊥(σ), (7)
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Figure 1: Pattern cycling with the help of asymmetric interaction with the additional degree of
freedom. The curves denote the traces for the overlaps with the 10 patterns stored in the system. For
the purposes of this simulation, the following parameters were chosen: N = 400, α = 0.025, T =
0.1, λ = 1, τ = 2. The pattern cycling was carried out by integrating Eqs. 4, 5 and 6 for 2 × 105

steps with ∆t = 10−3.

where

Fcyc =

p∑
µ=1

ξµ+1ϕ(mµ) (8)

drives the cycling between patterns,

Fsph = −∇σU(∥σ∥2 −N) (9)

implements the L2 regularization ∥σ∥2 ≈ N , and the transverse force (Ghimenti et al., 2023; Du &
Vaikuntanathan, 2024)

F⊥ = A(Fcyc + Fsph) (10)

is perpendicular to F since A is antisymmetric. Here, the pattern elements ξµi ∼ N (0, 1) are i.i.d.,
ϕ(y) is a monotonically increasing nonlinear function, mµ = 1

N (ξµ)Tσi is the overlap of the spins
with pattern µ, and the specific form of U(∥σ∥2−N)—a convex function minimized when ∥σ∥2 =
N—depends on the choice of ϕ. The elements of A are i.i.d. as Aij = −Aji ∼ N (0, a2/N) (Singh
et al., 1995; Chengxiang et al., 2000), where a is the strength of the transverse force.

Figs. 2b-2c show cycling between p = 10 patterns for ϕ(y) = y3 and U(∥σ∥2 −N) = u
4 (∥σ∥

2 −
N)2, where u = 2 is the strength of the L2 regularization. We see that the transverse force speeds
up the pattern cycling. In addition, the transverse force sharpens the transitions between patterns:
the overlap with one pattern decays more before the overlap with the next pattern peaks.

To theoretically understand this enhancement of pattern cycling, we consider the limit of weak
transverse force, such that we can truncate the dynamics of the pattern overlaps beyond O(A2). We
also assume the thermodynamic limit of spins, N → ∞, and a finite number p of stored patterns.
Starting from pattern 1, at sufficiently short times t, the overlap with pattern 2 evolves as (Appendix
D)

dm2

dt
= −

∂∥σ∥U

∥σ∥

[
m2 − t

N
ϕ(m1)

∥∥Aξ2
∥∥2]+

1

N
ϕ(m1)

∥∥ξ2∥∥2 , (11)

which shows that the transverse force (A) suppresses the decay contribution from the L2 regulariza-
tion (U ). Thus, the overlap with ξ2 rises faster, in agreement with the simulations (Figs. 2d-2e).

Based on this perturbative analysis, we arrive at the following intuitive picture of the accelerated
pattern cycling (Figs. 2d-2e). Without the transverse force, as the spins transition from ξ1 to ξ2,
the L2 regularization restrains the magnitude of the spin vector by exerting a force in the opposite
direction, which has some component along −ξ2. With the transverse force, the spins acquire a
component along Aξ2 as they move towards ξ2. As a result, the L2 regularization counters with
a force having a component along −Aξ2, and the corresponding transverse component is in the
direction of A(−Aξ2) = −A2ξ2. Since A is antisymmetric, then A2 is negative semidefinite,
and so −A2ξ2 ∥ −(−ξ2). Thus, the transverse component along −A2ξ2 goes against the L2
regularization, allowing the spins to move faster towards ξ2.
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Figure 2: Pattern cycling enhanced by a transverse force. (a) Schematic illustration of the model.
(b-c) Dynamics of the overlaps with pattern µ (b) without and (c) with (a = 2) the transverse force.
We numerically integrate equation 7 with time step ∆t = 10−3. The black dotted line is a simply a
guide to the eye. (d-e) Schematic illustration of the forces after the system evolves for a short time
(d) without and (e) with a weak transverse force.

4 DISCUSSION

Drawing inspiration from nonequilibrium physics, we have presented new representations of tem-
poral sequence retrieval in the Hopfield model. We showed how the memory kernel employed by
(Kanter & Sompolinsky, 1986) to facilitate cycling between patterns can be alternatively realized
using hidden neurons. We also demonstrated that transverse forces can speed up and sharpen the
transitions between patterns.

Although we considered a particular model of sequence retrieval, we expect our results to be fairly
general. For simplicity, we considered here a transverse force determined by an antisymmetric
matrix A, whose element are i.i.d. Gaussian (equation 10); nevertheless, since A was generated
independently of the sequence to be retrieved, other choices of antisymmetric A should be suitable
as well. While we focused on models with L2 regularization, our results do not crucially depend on a
certain type of regularization and thus are expected to hold across a broad range of neural networks.
Our results on transverse forces might also be relevant to studies [see Farrell & Pehlevan (2024)
and references therein] on how biological neural networks learn to generate sequential activity at a
particular speed. Given the focus here on an RNN (i.e., a Hopfield model) that evolves continuously
in time, we anticipate that our proposed strategies for sequence retrieval could be inapplicable in
cases where the RNN evolves discretely in time. Experiments on standard sequence modeling tasks
should be done to start evaluating the generality of our work.

Our physics-inspired findings can be implemented in state-of-the-art neural networks through the
use of Hopfield submodules (Hoover et al., 2024). For instance, we envision supplementing an
LSTM with a Hopfield network, which can feature memory kernel-like hidden neurons and trans-
verse forces. The trainable parameters of the hybrid neural network could include, for example, the
strength of the coupling to hidden neurons and the form of the transverse forces.
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A EXACT DYNAMICS OF PATTERN OVERLAPS: NO TRANSVERSE FORCE

Without the transverse force (equation 7-equation 9, F⊥ = 0), the dynamics of the pattern overlaps
is exactly given by

dmµ

dt
= −

∂∥σ∥U

∥σ∥
mµ +

1

N

p∑
ν=1

(ξµ)
T
ξν+1ϕ(mν), (12)

d∥σ∥
dt

= −∂∥σ∥U +
N

∥σ∥

p∑
ν=1

mν+1ϕ(mν). (13)
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B EXACT DYNAMICS OF PATTERN OVERLAPS: TRANSVERSE FORCE

With the transverse force (equation 7-equation 10, F⊥ ̸= 0), the dynamics of the pattern overlaps is
exactly described by a hierarchy of equations of motion,

dmµ

dt
= −

∂∥σ∥U

∥σ∥

(
mµ − m̃µ

(1)

)
+

1

N

p∑
ν=1

(ξµ)
T
(I+A)ξν+1ϕ(mν), (14)

d∥σ∥
dt

= −∂∥σ∥U +
N

∥σ∥

p∑
ν=1

(
mν+1 + m̃ν+1

(1)

)
ϕ(mν), (15)

dm̃µ
(n)

dt
= −

∂∥σ∥U

∥σ∥

(
m̃µ

(n) − m̃µ
(n+1)

)
+

1

N

p∑
ν=1

(Anξµ)
T
(I+A)ξν+1ϕ(mν), n = 1, 2, . . .

(16)

where m̃µ
(n) =

1
N (Anξµ)

T
σ is the overlap with the n-fold antisymmetrically transformed patterns

Anξµ. In this exact evolution for the pattern overlaps, the degrees of freedom include not only the
pattern overlaps themselves and the norm of the spin vector, as in the case without a transverse force
(equation 12-equation 13), but also the overlaps m̃µ

(n) = 1
N (Anξµ)

T
σ with the n-fold antisym-

metrically transformed patterns Anξµ.

C TRUNCATING DYNAMICS OF PATTERN OVERLAPS TO ORDER n IN
TRANSVERSE FORCE

In principle, one can obtain the numerically exact dynamics from equation 14-equation 16 by keep-
ing terms up to O(An) for sufficiently large n. Specifically, we would retain all equations up to
those for {mµ

(n)}, where the equations of motion for these highest-order quantities are themselves
truncated according to

dm̃µ
(n)

dt
= −

∂∥σ∥U

∥σ∥
m̃µ

(n) +
1

N

p∑
ν=1

(Anξµ)
T
ξν+1ϕ(mν) +O(An+1). (17)

D APPROXIMATE DYNAMICS OF PATTERN OVERLAPS: WEAK TRANSVERSE
FORCE AND FINITE NUMBER OF STORED PATTERNS IN THE
THERMODYNAMIC LIMIT

Here, we consider the dynamics of the pattern overlaps (equation 14-equation 16) assuming the ther-
modynamic limit of spins, a finite number of stored patterns, and a weak transverse force. Specif-
ically, we assume N → ∞, finite p, and Aij values small enough to approximate equation 14-
equation 16 to O(A)2, respectively. By examining the short-time dynamics initialized at a stored
pattern configuration, we gain intuition for why the transverse force speeds up pattern cycling.

Up to O(A2), the dynamics of equation 14-equation 16 is given by (equation 17)

dmµ

dt
= −

∂∥σ∥U

∥σ∥

(
mµ − m̃µ

(1)

)
+

1

N

p∑
ν=1

(ξµ)
T
(I+A)ξν+1ϕ(mν), (18)

d∥σ∥
dt

= −∂∥σ∥U +
N

∥σ∥

p∑
ν=1

(
mν+1 + m̃ν+1

(1)

)
ϕ(mν), (19)

dm̃µ
(1)

dt
= −

∂∥σ∥U

∥σ∥

(
m̃µ

(1) − m̃µ
(2)

)
+

1

N

p∑
ν=1

(Aξµ)
T
(I+A)ξν+1ϕ(mν), (20)

dm̃µ
(2)

dt
= −

∂∥σ∥U

∥σ∥
m̃µ

(2) +
1

N

p∑
ν=1

(
A2ξµ

)T
ξν+1ϕ(mν). (21)
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To further reduce the equations of motion, we hereafter assume N → ∞. Using the facts that the
pattern elements are i.i.d. random variables ξµi ∼ N (0, 1) and the elements of the antisymmetric
matrix A are i.i.d. random variables Aij = −Aji ∼ N (0, a2/N), it is straightforward (but tedious)
to compute the following averages over {ξµ} and A:〈[

1

N
(ξµ)

T
ξν

]2〉
=

{
1 +O(N−1) if µ = ν,

O(N−1) if µ ̸= ν,
(22)〈[

1

N
(ξµ)

T
Aξν

]2〉
=

{
0 if µ = ν,

O(N−1) if µ ̸= ν,
(23)〈[

1

N
(ξµ)

T
A2ξν

]2〉
=

{
a4 +O(N−1) if µ = ν,

O(N−1) if µ ̸= ν.
(24)

Thus,

1

N
(ξµ)

T
ξν =

{
O(N0) if µ = ν,

O(N−1/2) if µ ̸= ν,
(25)

1

N
(ξµ)

T
Aξν =

{
0 if µ = ν,

O(N−1/2) if µ ̸= ν,
(26)

1

N
(ξµ)

T
A2ξν =

{
O(N0) if µ = ν,

O(N−1/2) if µ ̸= ν.
(27)

Using these scalings and also assuming a finite number of patterns, we can neglect the contributions
to equation 18-equation 21 that vanish as N → ∞ at all times t, resulting in

dmµ

dt
= −

∂∥σ∥U

∥σ∥

(
mµ − m̃µ

(1)

)
+

1

N
∥ξµ∥2 ϕ(mµ−1), (28)

d∥σ∥
dt

= −∂∥σ∥U +
N

∥σ∥

p∑
ν=1

(
mν+1 + m̃ν+1

(1)

)
ϕ(mµ−1), (29)

dm̃µ
(1)

dt
= −

∂∥σ∥U

∥σ∥

(
m̃µ

(1) − m̃µ
(2)

)
+

1

N
∥Aξµ∥2 ϕ(mµ−1), (30)

dm̃µ
(2)

dt
= −

∂∥σ∥U

∥σ∥
m̃µ

(2) −
1

N
∥Aξµ∥2 ϕ(mµ−1). (31)

We now consider the dynamics starting from pattern 1, σ(0) =
√
N

∥ξ1∥ξ
1, at short times t,

dm1

dt
= −

∂∥σ∥U

∥σ∥

(
m1 − m̃

(1)
1

)
, (32)

dm2

dt
= −

∂∥σ∥U

∥σ∥

(
m2 − m̃2

(1)

)
+

1

N
ϕ(m1)

∥∥ξ2∥∥2 , (33)

d∥σ∥
dt

= −∂∥σ∥U +
N

∥σ∥
ϕ(m1)

(
m2 + m̃2

(1)

)
, (34)

dm̃1
(1)

dt
= −

∂∥σ∥U

∥σ∥

(
m̃1

(1) − m̃1
(2)

)
, (35)

dm̃1
(2)

dt
= −

∂∥σ∥U

∥σ∥
m̃1

(2), (36)

dm̃2
(1)

dt
= −

∂∥σ∥U

∥σ∥

(
m̃2

(1) − m̃2
(2)

)
+

1

N
ϕ(m1)

∥∥Aξ2
∥∥2 , (37)

dm̃2
(2)

dt
= −

∂∥σ∥U

∥σ∥
m̃2

(2) −
1

N
ϕ(m1)

∥∥Aξ2
∥∥2 . (38)
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The corresponding quantities for the other patterns, µ > 2, remain 0 at short times in the thermo-
dynamic limit. Next, we apply the approximation dy

dt ≈ y(t)−y(0)
t for general y(t) to equation 35,

equation 36, equation 37, and equation 38 and subsequently solve for m̃1
(1)(t), m̃

1
(2)(t), m̃

2
(1)(t), and

m̃2
(1)(t), respectively. Plugging these solutions into equation 32-equation 34 yields

dm1

dt
= −

∂∥σ∥U

∥σ∥

[
m1 − ktm̃1

(2)(0)
]
, (39)

dm2

dt
= −

∂∥σ∥U

∥σ∥

[
m2 − t

N
ϕ(m1)

∥∥Aξ2
∥∥2]+

1

N
ϕ(m1)

∥∥ξ2∥∥2 , (40)

d∥σ∥
dt

= −∂∥σ∥U +
N

∥σ∥
ϕ(m1)

[
m2 +

t

N
ϕ(m1)

∥∥Aξ2
∥∥2] , (41)

where we have kept terms up to O(t) on the right-hand side of each equation. In the equation for
quantity y = m1,m2, ∥σ∥, the terms containing −∂∥σ∥U contribute to the decay of y, while the
remaining terms contribute to the growth of y. With this interpretation, we can understand how
the transverse force (A ̸= 0) affects the dynamics of m1, m2, and ∥σ∥. From equation 39, we
see that the transverse force speeds up the decay of m1, since m̃1

(2)(0) = (ξ1)TA2ξ1/∥ξ1∥2 < 0

and A2 is a negative semidefinite matrix for antisymmetric A. In contrast, equation 40 shows that
the transverse force speeds up the (overall) growth of m2 by suppressing the decay contribution.
Similarly, equation 41 shows that the transverse force speeds up the growth of the norm of the spin
vector.
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