Learning Sense Embeddings from Definitions in Dictionaries

Anonymous ACL submission

Abstract

We introduce a method for learning to embed
word senses as defined in a given set of given
dictionaries. In our approach, sense defini-
tion pairs, <word, definition> are transformed
into low-dimension vectors aimed at maximiz-
ing the probability of reconstructing the defini-
tions in an autoencoding setting. The method
involves automatically training sense autoen-
coder for encoding sense definitions, automat-
ically aligning sense definitions, and automat-
ically generating embeddings of arbitrary de-
scription. At run-time, queries from users are
mapped to the embedding space and re-ranking
is performed on the sense definition retrieved.
We present a prototype sense definition em-
bedding, SenseNet, that applies the method to
two dictionaries. Blind evaluation on a set of
real queries shows that the method significantly
outperforms a baseline based on the Lesk al-
gorithm. Our methodology clearly supports
combining multiple dictionaries resulting in ad-
ditional improvement in representing sense def-
initions in dictionaries.

1 Introduction

In many natural language processing (NLP) sys-
tems, texts are represented by word embeddings,
and an increasing number of methods have been
proposed to embed words and senses to low-
dimensional dense vectors. For example, word2vec
and GloVe learn these vectors from a large corpus,
while the works published by Hill et al. (2016) and
Bosc and Vincent (2018) learn from dictionaries.
Word embeddings such as word2vec and GloVe
typically represent each word form as a single vec-
tor. However, the vector of an ambiguous word
may be dominated by its most frequent senses (Hed-
derich et al., 2019). Additionally, word-based re-
verse dictionary systems such us OneLook ! and
WantWords ? suffer from overwhelming users with

'https://onelook.com/reverse-dictionary
*https://wantwords.thunlp.org/

unrelated words. It would be beneficial if the sys-
tems only provide the most related words and def-
initions. However, the model adopted by Want-
Words map sense queries into the vector space of
word embeddings (Zheng et al., 2020) instead of
sense embeddings. These queries could be an-
swered more precisely if they were mapped to and
searched in the space of sense embeddings.

Consider the query “pale brownish color like
sand” which is submitted to a reverse dictionary
system. The best answer for this query is probably
not only the target words “sandy” and “flaxen”,
which are returned by the systems such as OneLook
and WantWords, but rather the senses “sandy: of
hair color; pale yellowish to yellowish-brown” and
“flaxen: of hair color; pale yellowish to yellowish-
brown”. A good response of such systems should
not contain unrelated senses of the target words
such as “sandy: abounding in sand” but rather the
most related senses. The definition of a sense can
be retrieved by embedding the sense definitions
and the given query. Intuitively, by autoencoding
the sense definitions, we can represent definitionay
word senses (i.e., definitions) as vectors.

We present a prototype system, SenseNet, that
automatically learns to embed definitions from mul-
tiple dictionaries into a vector space expected to
reflect the semantic meaning of the senses and sup-
port sense-based NLP tasks. An example SenseNet
session where the top 3 most relevant senses re-
trieved for the query “pale brownish color like
sand” is shown in Figure 1. SenseNet has embed-
ded the query in the space of the sense embed-
dings and find thesee neighbor senses. SenseNet
learns this effective embeddings automatically dur-
ing training by autoencoding a collection of defi-
nitions in the given dictionaries. We describe the
SenseNet training process in more detail in Sec-
tion 3.

At run-time, SenseNet generates effective em-
beddings for each word sense by training. Due



to the nature of encoding definitions, SenseNet is
inherently more suitable and promising for sense-
related tasks such as reverse dictionary. Alterna-
tively, the sense embeddings can be used to dis-
ambiguate the senses of a set of synonyms and to
integrate information from multiple dictionaries.

The rest of the article is organized as follows. We
review the related work in the next section. Then in
Section 3, we present our method for automatically
learning to embed sense definitions into vectors
and computing sense embeddings using these vec-
tors. As part of our evaluation, we compare the
alignment of sense definitions across two dictionar-
ies, done using SenseNet with what is done using
a LESK-inspired baseline over a set of random se-
lected senses and queries (Section 4) and Section 5.
Finally, we conclude with some future research
directions in Section 6.

pale brownish color like sand Q

sandy AD)

® WordNet: of hair color; pale yellowish to yellowish brown

® Cambridge Dictionary: Sandy hair is a pale brownish-orange colour

tan AD)

® WordNet: of a light yellowish-brown color

® Cambridge Dictionary: pale yellowish-brown in colour

fawn AD)

® WordNet: a color or pigment varying around a light grey-brown color

® Cambridge Dictionary: a pale yellowish - brown colour

Figure 1: A screenshot of the system retrieves the senses
related to the query “pale brownish color like sand”.

2 Related Work

Word embedding has been an area of active re-
search. The most influential works in word embed-
ding research are word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014), which involve
capturing semantic and even syntactic information
of a word given its context. Typical word embed-
ding methods attempt to learn the word representa-
tions in an unsupervised manner from a large cor-
pus. Mikolov et al. (2013) proposed an influential
paradigm of unsupervised learning, Skip-gram, to
make the word2vec model consisting of a shallow
neural network represent the word by its contexts.
Training word2vec starts with randomly initialized
vectors for each word in its vocabulary and uses the
vectors to predict which words appear in the con-

text window of a word. In our work we address an
aspect of word embedding that has been addressed
until recently.

More specifically, we focus on representing each
sense of a word as different vectors. Represent-
ing senses as vectors has been become more and
more active topic of word embeddings research.
The body of the sense representation research most
closely related to our work focuses on inducing
senses and unsupervisedly learning the sense rep-
resentations based on raw text corpora. (e.g., (Erk
and Padé, 2008) and (Van de Cruys et al., 2011)).
An interesting approach presented by (Liu et al.,
2015) describes how to obtain context-sensitive
word representations for each of word types by
combining word embeddings and latent topics. In
general, unsupervised learning of sense representa-
tion uses web corpora as training data and assumes
there are underlying senses or word topics in the
corpora. In contrast, we will show how to utilize
dictionary definitions as a sense inventory and de-
rive sense representations on top of word-based
embeddings.

There are various NLP tasks that are context-
sensitive, and hence the works utilized or provided
contextual word representation, or say contextual
embeddings, achieved state-of-the-art performance
(Liu et al., 2020). ELMo (Peters et al., 2018)
trained a language model adopting a Bi-directional
LSTM (BiLSTM) to transform the fixed representa-
tion of a word into contextual embeddings with its
left and right contexts. For example, consider the
sentence “These flowers generally grow on river
banks and near streams.”, the representation of the
word “banks” used here should reflect the meaning
of “sloping land” instead of the dominant mean-
ing “financial institution”. However, a sequence
of words needs to be passed into the model to ac-
quire contextual embeddings. It makes context
embeddings infeasible to derive representations for
chosen senses.

Recently, various pre-trained transformer-based
language models have been proposed for ex-
tracting context embeddings used in downstream
tasks. Devlin et al. (2018) describe a method to
train BERT (Bidirectional Encoder Representations
from Transformers) on two unsupervised learning
tasks, masked language model (MLM) and next
sentence prediction (NSP). These two tasks are
used to enable BERT to understand natural lan-
guage texts. ROBERTa (Liu et al., 2019) improves



BERT by removing NSP and applying dynamic
masking to MLM on a larger and longer training
corpus. Additionally, ALBERT (Lan et al., 2019)
reduces the training cost of BERT by applying two
parameter-reduction techniques however the time
cost of inference remains the same.

In a study more closely related to our work,
Lauly et al. (2014) introduce an autoencoder to
learn multilingual word representations, where the
autoencoder is used to reconstruct the bag-of-words
of a given sentence from the encoded representa-
tions of its translation. For example, the phrase “le
chien a jappe “” is encoded into a vector, then the
vector is passed to the autoencoder to reconstruct
the bag-of-words of the phrase “the dog barked”.
The main difference from our current work is that
in Lauly et al. (2014), the reconstruced output is
the translation of the input sentence, while we re-
construct the bag-of-words of the input.

More recently, Tissier et al. (2017) present a
framework named dict2vec for automatically learn-
ing word embeddings, with the goal of gaining
semantic information from dictionaries that can
produce better word representations. Furthermore,
Bosc and Vincent (2018) proposed a model, CPAE,
with consistency penalty as part of the loss fuction
to constrain the embeddings generated from dic-
tionaries with pre-trained word embeddings. Our
approach, methodology, and evaluation are sub-
stantially different. For example, while training
of CPAE assumes a single word vector can cap-
ture polysemy, we address the problem of learning
effective embeddings for each sense of words.

In contrast to the previous research in word em-
beddings and sense embeddings, we present a sys-
tem that automatically learns how to embed senses
in the form of definitions in multiple dictionaries,
with the goal of providing effective and semantic-
rich representation of word senses. We exploit
inherent regularity and power of definitions in dic-
tionaries by encoding sense definitions into low
dimensional dense vectors to support sense-related
NLP tasks.

3 The SenseNet

Representing words (e.g., “apple”) as a single
vector often does not work very well. Pilehvar
(2019) shows that a consistent improvement can be
achieved by incorporating more fine-grained rep-
resentations, sense representations, into a reverse
dictionary application. However, word embedding

methods typically compress the semantic informa-
tion of the senses of a polysemy word into a single
vector. Unfortunately, the word embeddings may
be dominated by the most frequent senses, leaving
rare senses under-represented. Such biased em-
beddings may then hamper the effectiveness of the
word representation as a whole. To represent a
word and all its word sense, a promising approach
is to automatically autoencode sense definitions in
multiple dictionaries.

3.1 Problem Statement

We focus on generating sense embeddings using
multiple dictionaries. These senses can be used to
return relevant words and senses in response to a
user query. The returned embeddings can be used
to determine similar senses of a given sense directly,
or passed on to sophisticated NLP systems utilizing
sense embeddings. (e.g., Kartsaklis et al. (2018)
and Hedderich et al. (2019)). Thus, it is crucial that
each word sense (definition) is represented with a
vector reflecting its meaning. At the same time,
definitions in two dictionaries of the same meaning
(e.g., “apple: fruit with red or yellow or green skin
and sweet to tart crisp whitish flesh” in WordNet
and “apple: a round fruit with firm, white flesh
and a green, red, or yellow skin” in Cambridge
Dictionary) should not be represented with two
different vectors. Therefore, our goal is to return
a set of sense vectors that capture the semantic
meaning of the word sense definitions. We now
formally state the problem that we are addressing.

Problem Statement: We are given a set of sense
definitions in two dictionaries Dy and Dy (e.g.,
WordNet and Cambridge Dictionary). Our goal is
to generate sense embeddings and combine D; and
Ds. For this, we encode the definitions into vectors,
and aligning the sense definitions across D; to D>
based on these vectors.

In the rest of this section, we describe our solu-
tion to this problem. First, we define a strategy for
aligning the sense definitions from two given dictio-
naries with the same meaning (Section 3.2). This
strategy relies on a set of <word, definition> pairs
(which we will describe in detail in Section 4.1)
for training a sense definition autoencoder. In this
section, we also describe our method for training
the sense autoencoder. Finally, we show how we
construct SenseNet works as a reverse dictionary to
convert a (definition-like) user query into a vector
and retrieve relevant words and sense definitions



(Section 3.3).

3.2 Learning to Transform Sense Definitions
into Vectors

We attempt to find transformations from sense defi-
nitions into effective vectors that capture semantic
meaning provided by the dictionaries. Our learning
process is shown in Figure 2.

3.2.1 Gathering Senses from Dictionaries

In the first stage of the learning process (Step (1)
in Figure 2), we gather a set of pairs of <word, def-
inition> that represent senses as natural language
texts defined by the dictionaries. For example, the
pair <apple, fruit with red or yellow or green skin
and sweet to tart crisp whitish flesh> is the word
apple and a sense definition given by WordNet.

The input to this stage is the two lexical dictio-
naries, D1 and Dy. The set of words and sense
definitions provided by these dictionaries consti-
tute the training data. The output of this stage is
a set of pairs of <word, definition>, are shown in
Table 1.

To process the definitions for the learning pro-
cess, we use a tokenizer to split a definition into
words.

3.2.2 Training Sense Autoencoder

In the second stage of the learning algorithm (Step
(2) in Figure 2), we train a sense autoencoder to
encode sense definitions into sense embeddings.

For this stage of the learning process, we use
the collection of <word, definition> pairs gathered
in the previous step. To update the model by con-
suming a batch of the pairs, each pair is passed to
our model to compute reconstruction error, and the
middle hidden states are kept as sense embeddings.
We compute consistency penalty (Bosc and Vin-
cent, 2018) using sense embeddings and pre-trained
word embeddings. Finally, the loss, a weighted sum
over the reconstruction error and the consistency
penalty, is backpropagated to update the model pa-
rameters. We describe the procedures for updating
the model with a batch of <word, definition> pairs
derived from the previous stage. The procedures
are shown in Figure 2.

In Step (1) of the procedures, we use the pre-
trained word embeddings, which we will discuss
in Section 4., to be the initial representations of the
tokenized definitions. The word embeddings are
passed to an LSTM, and we keep the final hidden
states. The final hidden states are passed to a fully

procedure TrainingStep(batchWords, batchDefs, alpha,
beta)
1) senseEmbeds = EncodeDefinitions(batchDefs)
) re = ReconstructionError(senseEmbeds)
3) cp = ConsistencyPenalty(
batchWords, senseEmbeds)
“) loss = alpha * re + beta * cp
(5) updatedModel = backpropagate(loss)
(6) return updatedModel

Figure 2: Steps for consuming a training batch of senses

connected neural network with a linear activation
function to obtain sense embeddings.

In Step (2) of the procedures, we compute the
reconstruction error by making the autoencoder
generate the definitions passed to the model using
the sense embeddings. Intuitively, this process en-
sures that the sense embeddings are relevant to the
definitions.

In Step (3) of the procedures, the consistency
penalty is computed by calculating the Euclidean
distance between the sense embeddings and the
word embeddings of the given word. Along with
the training process, the sense embeddings are get-
ting closed to the pre-trained word embeddings in
the vector space. This effect is desired since we
need to align the senses of the two different dictio-
naries in the next stage. Though sense embeddings
of a given word will be pulled to the same word
embeddings, each of the sense embeddings still
reflects its respective meaning of sense because of
the optimization of the reconstruction error.

In Step (4) of the procedures, we take a weighted
sum over the reconstruction error and the consis-
tency penalty as the loss function for the optimiza-
tion of our model, which can be written as the
following equation:

L=alL,+BL, (D

where L, and « is the reconstruction error and the
weight to it, and L. and (3 is the consistency penalty
and the weight to it.

3.2.3 Aligning Sense Definitions

In the third stage of the learning algorithm (Step (3)
in Figure 2), we align the sense definitions given
by one of the two dictionaries to those given by the
other one using the sense embeddings derived from
the previous stage and a heuristic algorithm.

For each <word, definition> pair in the training
collection, we look up the dictionaries for the part
of speech (POS) tags of each sense. The raw POS



word definition

apple fruit with red or yellow or green skin and sweet to tart crisp whitish flesh
apple around fruit with firm, white flesh and a green, red, or yellow skin
baton a thick, heavy stick used as a weapon by police officers

Table 1: Example of <word, definition> pairs for training

tags are normalized by being mapped to the univer-
sal POS tagset (Petrov et al., 2011) so that the two
dictionaries share the same POS tags. As a result,
we extend <word, definition> to <word, POS, defi-
nition> pairs. We then attempt to align the sense
definitions provided by one of the dictionaries to
the other one given a word w and a POS tag p by
the heuristic algorithm describe as the following
steps shown in Figure 3.

In Step (1) of the algorithm, there are two sets
of sense definitions from the two dictionaries re-
spectively. We make the larger set target sense
definitions and the other set source sense defini-
tions.

In Step (2) of the algorithm, we derive <source
sense, target sense> pairs from the Cartesian prod-
uct of the source and target sense definitions. We
then compute the cosine similarities of sense em-
beddings of each sense definition pair.

In Step (3) of the algorithm, we sort the pairs by
the similarities in decreasing order (Step (3a)). For
each <sourceSense, baseSense> pair of the sorted
pairs, we include a pair to aligned sense definitions
(Step (3d)) if neither the source sense definition nor
the target sense definition has been included (Step
(3¢)).

Finally, we obtain senses by processing each
< w, p > pair where w is the word defined by D;
or Do, and p is the POS tag defined by the universal
POS tagset.

3.2.4 Generating Sense Embeddings

In the fourth and final stage of the learning algo-
rithm (Step (4) in Figure 2), we generate sense
embeddings to represent the senses derived from
the previous stage.

We use sense embeddings to represent the sense
definitions not align with other ones. However, for
a sense definition aligning with the other one, there
are two sense embeddings to represent the same
word meaning. We address this problem by taking
the average over the two sense embeddings.

3.3 Run-Time Sense Embeddings

Once the set of the senses and the sense em-
beddings are automatically induced and trained,
in addition to providing static sense embeddings,
SenseNet can also compute embeddings for any
definition-like sentences or phrases at run time. In-
tuitively, we can perform reverse dictionary at a
sense level using the system.

Given a definition-like query from a user,
SenseNet then evaluates a given query using the
procedure in Figure 4.

In Step (1), the system encodes the query into
a vector using the sense autoencoder described in
Section 3.2.2.

In Steps (2a), (2b), and (2c), for each sense in-
duced in Section 3.2.3, we compute the cosine simi-
larity between the query vector and the sense vector
derived from Section 3.2.4.

In Step (3), we sort the senses by the similarities
computed in the previous step in a decreasing order.
Finally, the system can return the senses which are
similar to the query.

4 Experiments

SenseNet was designed to learn sense embeddings
from multiple dictionaries. As such, SenseNet will
be trained and evaluated with the dictionaries. Fur-
thermore, since one of the goals of SenseNet is
to align sense definitions across the dictionaries,
we evaluate SenseNet on the sense level. Finally,
the reverse dictionary is an inherent application of
SenseNet, we use the task as an extrinsic evaluation
of the system.

In this section, we first present the details of
training SenseNet for the evaluation (Section 4.1).
Then, Section 4.2 lists the systems that we use in
our comparison. Finally, Section 4.3 introduces
the evaluation metrics for the performance of the
systems.

4.1 Training SenseNet

We used a collection of approximately 203,000
<word, definition> pairs for training, obtained from



isAligned[sourceSense] = True
isAligned|baseSense] = True

“4) return alignedSenses

procedure AlignSensesGivenWordAndPos(d1Senses, d2Senses)

(D sourceSenses, baseSenses = DetermineBaseAndSource(dISenses, d2Senses)
2) sensePairs = CalculateSimilarities(CartesianProduct(sourceSenses, baseSenses)
(3a) sortedSensePairs = SortPairsBySimilarity(sensePairs)

alignedSenses = &
(3b) For each <sourceSense, baseSense> in sortedSensePairs
(3c) If not (isAligned[sourceSense] or isAligned[baseSense])

(3d) alignedSenses += (sourceSense, baseSense)

Figure 3: Aligning sense definitions given a word and a POS tag

procedure reverseDictionary(userQuery)

(D) queryEmbeds = Sense AutoEncoder(userQuery)
results = &
(2a) For each alignedSense in alignedSenses
(2b) alignedSenseEmbeds = senseEmbeds|alignedSense]
(2¢) similarity = cosineSimilarity(queryEmbeds, alignedSenseEmbeds)
results += (alignedSense, similarity)
3) sortedResults = sortResultsBySimilarity(results)
“4) return sortedResults

Figure 4: Reverse dictionary at run time

POS tag # of pairs
NOUN 83,600
VERB 37,900
ADJ 26,900
ADV 45,00
Total 153,000 (approx.)

Table 2: The Number of Training Pairs from WordNet

two dictionaries, WordNet and Cambridge Dictio-
nary. Table 1 shows a sample of the word-definition
pairs. We obtained WordNet from an open-source
library, NLTK (Bird et al., 2009), and obtained
Cambridge Dictionary from a public website 3. For
the purpose of Section 3.2.3, we manually build a
table to map the POS tags of the two dictionaries
to the universal POS tagset. The number of word-
definition training pairs in the collection for each
of the dictionaries and universal POS tags is shown
in Table 2 and Table 3. We used an open-source
library, spaCy (Honnibal and Montani, 2017), to
tokenize the definitions.

In developing SenseNet, we downloaded the
word2vec word embeddings from Google * as the
starting embeddings. As to training parameters, we

3https://dictionary.cambridge.org/dictionary/english-
chinese-traditional/
“https://code.google.com/archive/p/word2vec/

POS tag # of pairs
NOUN 28,000
ADJ 11,000
VERB 9,100
ADV 1,400
X 500
NUM 80
PRON 80
DET 60
CCONJ 40
SYM 1
Total 50,000 (approx.)

Table 3: The Number of Training Pairs from CECD

set the hidden size of the LSTM to 300, the learn-
ing rate to 0.0003, the batch size to 32, the number
of epochs to 50, the weight to the reconstruction
error, a, to 1, and the weight to the consistency
penalty, 3, to 50. Most of the hyperparameters
are referred to the settings presented by Bosc and
Vincent (2018). We did not test hyperparameters
exhaustively and further fine-tuning may improve
the performance of the system. The system is based
on an open-source NLP platform of deep learning,
AllenNLP (Gardner et al., 2017). We perform the
training with a single GPU, GeForce GTX 1080,



for 50 minutes.

4.2 Systems Compared

Recall that SenseNet starts with a collection of
word-definition pairs, and aligns senses from dif-
ferent dictionaries. The output of SenseNet is a set
of senses and sense embeddings. In this study, we
compared two systems with different methods to
align sense definitions and perform reverse dictio-
nary.

Aligning Sense Definitions

e LESK adopts Lesk algorithm (Lesk, 1986)
to compute the similarity between two sense
definitions when aligning sense definitions.
More specifically, we transform the sense def-
initions into vectors by one-hot encoding and
regard the inner product of these vectors as
the similarities.

* SenseNet aligns sense definitions as we de-
scribed in Section 3.2.3.

Reverse Dictionary

* LESK computes the similarity between a
given query and a sense consisting of aligned
sense definitions by taking the inner product
of the one-hot encoding vector of the query
and the vectors derived from performing an
“OR” operation on the one-hot encoding vec-
tors of the sense definitions.

* SenseNet performs reverse dictionary as we
described in Section 3.3.

4.3 Evaluation Metrics

Methods for aligning senses need to be compared
based on the quality of the induced senses. This
quality can be quantified using two metrics, recall,
and precision. For the evaluation of reverse dic-
tionary, we compute two metrics, top-K precision
and Mean Reciprocal Rank (MRR), to measure the
relevance by inspecting the K senses returned by
the various systems that we compare (Section 4.2)
for each query that we consider. We will describe
these four metrics in detail below.

Aligning Sense Definitions

* recall: The percentage of the senses from a
ground truth have been induced by a system

that aligns sense definitions. The recall can be
defined as the following equation:

n
I1=— 2
reca i 2)

where n is the number of induced senses are
in the ground truth, and M is the number of
the senses in the ground truth.

* precision: The percentage of the senses in-
duced by the system are in the ground truth.
The precision can be defined as the following
equation:

n
SRS ) 3
precision N 3)

where NN is the number of the senses induced
by the system.

Reverse Dictionary

* top-K precision: The percentage of senses
relevant to a query among the top K senses
returned by a reverse dictionary system for the
query. The top-K precision can be defined as
the following equation:

n
top-K ision = — 4
op-K precision % @

where n is the number of the returned senses
which are relevant to the query.

* MRR: The average of the reciprocal rank val-
ues over all evaluated queries. The MRR can
be defined as the following equation:

MRR = — % — )

where N is the number of the evaluated
queries, and 7, is the highest rank of a sense
returned by a system that is judged relevant
for the i-th query.

5 Evaluation Results

In this section, we report the results of the experi-
mental evaluation using the methodology described
in the previous section. First, in Section 5.1 we re-
port the results of our evaluation of aligning sense
definitions of the polysemous 12 words evaluated
by Yarowsky (1992). In Section 5.2 we present
the results of an extrinsic evaluation, reverse dic-
tionary, which totaled 96 queries evaluated by a
human judge.



System Recall Precision
SenseNet 0.81 0.88
Lesk 0.61 0.68

Table 4: Alignment recall and precision of SenseNet
and Lesk

5.1 Results from the Alignment Evaluation

During the first evaluation, the 12 polysemous
words were evaluated. We manually induced 115
senses as the ground truth, and automatically in-
duced senses using the two systems for compari-
son.

Table 4 shows the evaluation results. As we can
see, SenseNet outperforms the baseline, Lesk, by
33% on the recall and 29% on the precision. This
indicates that our system can capture the semantic
meaning of sense definitions so it performs better
than Lesk which computes sense similarities on a
discrete word level.

5.2 Results from the Reverse Dictionary
Evaluation

We now report results from the evaluation of re-
verse dictionary with 96 queries randomly selected
from the book, Flip Dictionary (Kipfer, 2001). We
present an expert on computational linguistics with
these queries along with the senses returned by the
compared systems. The expert was asked to select
the senses which are relevant to the queries.

Table 5 shows the evaluation results. We can
see that SenseNet substantially outperforms Lesk.
As we described in Section 4.2, Lesk finds the rel-
evant senses to a query by comparing the words
used in the query and the sense definitions. The
significant improvements shown in Table 5 indi-
cate that SenseNet is a robust sense embedding
system. More specifically, SenseNet has success-
fully mapped the queries not from dictionaries to
the space of sense embeddings which are trained
on dictionaries.

Although embeddings generally reflect meaning
better that one-hot representation based on word,
word level information is still very useful in reverse
dictionary application, since definitions typically
were written with a core vocabulary and tends to
have a high degree of consistency across dictio-
naries. Our methods is limited by not taking into
account the actural words in a given query and def-
initions. A combination of vector space similarity
and Lesk-like similarity might work better that our

System MTP-10 MRR
SenseNet 0.21 0.57
Lesk 0.07 0.29

Table 5: Mean top-10 precision (MTP-10) and MRR of
SenseNet and Lesk

current method.

6 Conclusion and Future Work

There are many directions for future research and
improvement of our system. For example, con-
sistency penalty could be down-weight as we are
computing on sense level rather than word level.
Definitions in more dictionaries could be autoen-
coded and aligned to improve the coverage and
quality of SenseNet. Additionally, an interesting di-
rection to explore is creating a multilingual vector
space of sense embeddings so definitions written in
one language can be mapped to senses in another
language. For example, the Chinese translation of
“hats worn by bishops”, “FZE HIMET ", can be
mapped to the word “bishop” with a sense defini-
tion “a liturgical headdress worn by bishops on
formal occasions”.

In summary, we have introduced a method for
learning sense embeddings that improves the abil-
ity to represent words at a more fine-grained level
using a deep learning model and an aligning algo-
rithm. The method involves training a sense defini-
tion autoencoder, aligning sense definitions across
dictionaries, generating integrated sense embed-
dings for more than one dictionaries, and run-time
embedding any definition-like queries into vectors.
We have implemented and thoroughly evaluated
the method as applied to embedding and aligning
sense definitions, as well as a reverse dictionary ap-
plication. In extensive blind evaluations, we have
shown that the method substantially outperforms
the baseline of representing with one-hot vectors
or on the word level.

References

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Tom Bosc and Pascal Vincent. 2018. Auto-encoding
dictionary definitions into consistent word embed-
dings. In Proceedings of the 2018 Conference on



Empirical Methods in Natural Language Processing,
pages 1522-1532.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Katrin Erk and Sebastian Padé. 2008. A structured
vector space model for word meaning in context. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 897—
906.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Michael A Hedderich, Andrew Yates, Dietrich Klakow,
and Gerard De Melo. 2019. Using multi-sense vector
embeddings for reverse dictionaries. arXiv preprint
arXiv:1904.01451.

Felix Hill, KyungHyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions of
the Association for Computational Linguistics, 4:17—
30.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Dimitri Kartsaklis, Mohammad Taher Pilehvar, and
Nigel Collier. 2018. Mapping text to knowledge
graph entities using multi-sense Istms. arXiv preprint
arXiv:1808.07724.

Barbara Ann Kipfer. 2001. Flip Dictionary. Writer’s
Digest.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Stanislas Lauly, Alex Boulanger, and Hugo Larochelle.
2014. Learning multilingual word representations
using a bag-of-words autoencoder. arXiv preprint
arXiv:1401.1803.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In Proceedings of
the 5th annual international conference on Systems
documentation, pages 24-26.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2015.
Learning context-sensitive word embeddings with
neural tensor skip-gram model. In Twenty-fourth in-
ternational joint conference on artificial intelligence.

Qi Liu, Matt J Kusner, and Phil Blunsom. 2020. A
survey on contextual embeddings. arXiv preprint
arXiv:2003.07278.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing

(EMNLP), pages 1532—1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086.

Mohammad Taher Pilehvar. 2019. On the importance of
distinguishing word meaning representations: A case
study on reverse dictionary mapping. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2151-2156.

Julien Tissier, Christophe Gravier, and Amaury Habrard.
2017. Dict2vec: Learning word embeddings using
lexical dictionaries. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 254-263.

Tim Van de Cruys, Thierry Poibeau, and Anna Korho-
nen. 2011. Latent vector weighting for word mean-
ing in context. In Empirical Methods in Natural
Language Processing.

David Yarowsky. 1992. Word-sense disambiguation us-
ing statistical models of roget’s categories trained on
large corpora. In COLING 1992 Volume 2: The 14th
International Conference on Computational Linguis-
tics.

Lei Zheng, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Qun Liu, and Maosong Sun. 2020. Multi-channel re-
verse dictionary model. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 312-319.


http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640

