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Abstract

We introduce a method for learning to embed001
word senses as defined in a given set of given002
dictionaries. In our approach, sense defini-003
tion pairs, <word, definition> are transformed004
into low-dimension vectors aimed at maximiz-005
ing the probability of reconstructing the defini-006
tions in an autoencoding setting. The method007
involves automatically training sense autoen-008
coder for encoding sense definitions, automat-009
ically aligning sense definitions, and automat-010
ically generating embeddings of arbitrary de-011
scription. At run-time, queries from users are012
mapped to the embedding space and re-ranking013
is performed on the sense definition retrieved.014
We present a prototype sense definition em-015
bedding, SenseNet, that applies the method to016
two dictionaries. Blind evaluation on a set of017
real queries shows that the method significantly018
outperforms a baseline based on the Lesk al-019
gorithm. Our methodology clearly supports020
combining multiple dictionaries resulting in ad-021
ditional improvement in representing sense def-022
initions in dictionaries.023

1 Introduction024

In many natural language processing (NLP) sys-025

tems, texts are represented by word embeddings,026

and an increasing number of methods have been027

proposed to embed words and senses to low-028

dimensional dense vectors. For example, word2vec029

and GloVe learn these vectors from a large corpus,030

while the works published by Hill et al. (2016) and031

Bosc and Vincent (2018) learn from dictionaries.032

Word embeddings such as word2vec and GloVe033

typically represent each word form as a single vec-034

tor. However, the vector of an ambiguous word035

may be dominated by its most frequent senses (Hed-036

derich et al., 2019). Additionally, word-based re-037

verse dictionary systems such us OneLook 1 and038

WantWords 2 suffer from overwhelming users with039

1https://onelook.com/reverse-dictionary
2https://wantwords.thunlp.org/

unrelated words. It would be beneficial if the sys- 040

tems only provide the most related words and def- 041

initions. However, the model adopted by Want- 042

Words map sense queries into the vector space of 043

word embeddings (Zheng et al., 2020) instead of 044

sense embeddings. These queries could be an- 045

swered more precisely if they were mapped to and 046

searched in the space of sense embeddings. 047

Consider the query “pale brownish color like 048

sand” which is submitted to a reverse dictionary 049

system. The best answer for this query is probably 050

not only the target words “sandy” and “flaxen”, 051

which are returned by the systems such as OneLook 052

and WantWords, but rather the senses “sandy: of 053

hair color; pale yellowish to yellowish-brown” and 054

“flaxen: of hair color; pale yellowish to yellowish- 055

brown”. A good response of such systems should 056

not contain unrelated senses of the target words 057

such as “sandy: abounding in sand” but rather the 058

most related senses. The definition of a sense can 059

be retrieved by embedding the sense definitions 060

and the given query. Intuitively, by autoencoding 061

the sense definitions, we can represent definitionay 062

word senses (i.e., definitions) as vectors. 063

We present a prototype system, SenseNet, that 064

automatically learns to embed definitions from mul- 065

tiple dictionaries into a vector space expected to 066

reflect the semantic meaning of the senses and sup- 067

port sense-based NLP tasks. An example SenseNet 068

session where the top 3 most relevant senses re- 069

trieved for the query “pale brownish color like 070

sand” is shown in Figure 1. SenseNet has embed- 071

ded the query in the space of the sense embed- 072

dings and find thesee neighbor senses. SenseNet 073

learns this effective embeddings automatically dur- 074

ing training by autoencoding a collection of defi- 075

nitions in the given dictionaries. We describe the 076

SenseNet training process in more detail in Sec- 077

tion 3. 078

At run-time, SenseNet generates effective em- 079

beddings for each word sense by training. Due 080
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to the nature of encoding definitions, SenseNet is081

inherently more suitable and promising for sense-082

related tasks such as reverse dictionary. Alterna-083

tively, the sense embeddings can be used to dis-084

ambiguate the senses of a set of synonyms and to085

integrate information from multiple dictionaries.086

The rest of the article is organized as follows. We087

review the related work in the next section. Then in088

Section 3, we present our method for automatically089

learning to embed sense definitions into vectors090

and computing sense embeddings using these vec-091

tors. As part of our evaluation, we compare the092

alignment of sense definitions across two dictionar-093

ies, done using SenseNet with what is done using094

a LESK-inspired baseline over a set of random se-095

lected senses and queries (Section 4) and Section 5.096

Finally, we conclude with some future research097

directions in Section 6.098

Figure 1: A screenshot of the system retrieves the senses
related to the query “pale brownish color like sand”.

2 Related Work099

Word embedding has been an area of active re-100

search. The most influential works in word embed-101

ding research are word2vec (Mikolov et al., 2013)102

and GloVe (Pennington et al., 2014), which involve103

capturing semantic and even syntactic information104

of a word given its context. Typical word embed-105

ding methods attempt to learn the word representa-106

tions in an unsupervised manner from a large cor-107

pus. Mikolov et al. (2013) proposed an influential108

paradigm of unsupervised learning, Skip-gram, to109

make the word2vec model consisting of a shallow110

neural network represent the word by its contexts.111

Training word2vec starts with randomly initialized112

vectors for each word in its vocabulary and uses the113

vectors to predict which words appear in the con-114

text window of a word. In our work we address an 115

aspect of word embedding that has been addressed 116

until recently. 117

More specifically, we focus on representing each 118

sense of a word as different vectors. Represent- 119

ing senses as vectors has been become more and 120

more active topic of word embeddings research. 121

The body of the sense representation research most 122

closely related to our work focuses on inducing 123

senses and unsupervisedly learning the sense rep- 124

resentations based on raw text corpora. (e.g., (Erk 125

and Padó, 2008) and (Van de Cruys et al., 2011)). 126

An interesting approach presented by (Liu et al., 127

2015) describes how to obtain context-sensitive 128

word representations for each of word types by 129

combining word embeddings and latent topics. In 130

general, unsupervised learning of sense representa- 131

tion uses web corpora as training data and assumes 132

there are underlying senses or word topics in the 133

corpora. In contrast, we will show how to utilize 134

dictionary definitions as a sense inventory and de- 135

rive sense representations on top of word-based 136

embeddings. 137

There are various NLP tasks that are context- 138

sensitive, and hence the works utilized or provided 139

contextual word representation, or say contextual 140

embeddings, achieved state-of-the-art performance 141

(Liu et al., 2020). ELMo (Peters et al., 2018) 142

trained a language model adopting a Bi-directional 143

LSTM (BiLSTM) to transform the fixed representa- 144

tion of a word into contextual embeddings with its 145

left and right contexts. For example, consider the 146

sentence “These flowers generally grow on river 147

banks and near streams.”, the representation of the 148

word “banks” used here should reflect the meaning 149

of “sloping land” instead of the dominant mean- 150

ing “financial institution”. However, a sequence 151

of words needs to be passed into the model to ac- 152

quire contextual embeddings. It makes context 153

embeddings infeasible to derive representations for 154

chosen senses. 155

Recently, various pre-trained transformer-based 156

language models have been proposed for ex- 157

tracting context embeddings used in downstream 158

tasks. Devlin et al. (2018) describe a method to 159

train BERT (Bidirectional Encoder Representations 160

from Transformers) on two unsupervised learning 161

tasks, masked language model (MLM) and next 162

sentence prediction (NSP). These two tasks are 163

used to enable BERT to understand natural lan- 164

guage texts. RoBERTa (Liu et al., 2019) improves 165
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BERT by removing NSP and applying dynamic166

masking to MLM on a larger and longer training167

corpus. Additionally, ALBERT (Lan et al., 2019)168

reduces the training cost of BERT by applying two169

parameter-reduction techniques however the time170

cost of inference remains the same.171

In a study more closely related to our work,172

Lauly et al. (2014) introduce an autoencoder to173

learn multilingual word representations, where the174

autoencoder is used to reconstruct the bag-of-words175

of a given sentence from the encoded representa-176

tions of its translation. For example, the phrase “le177

chien a jappe´” is encoded into a vector, then the178

vector is passed to the autoencoder to reconstruct179

the bag-of-words of the phrase “the dog barked”.180

The main difference from our current work is that181

in Lauly et al. (2014), the reconstruced output is182

the translation of the input sentence, while we re-183

construct the bag-of-words of the input.184

More recently, Tissier et al. (2017) present a185

framework named dict2vec for automatically learn-186

ing word embeddings, with the goal of gaining187

semantic information from dictionaries that can188

produce better word representations. Furthermore,189

Bosc and Vincent (2018) proposed a model, CPAE,190

with consistency penalty as part of the loss fuction191

to constrain the embeddings generated from dic-192

tionaries with pre-trained word embeddings. Our193

approach, methodology, and evaluation are sub-194

stantially different. For example, while training195

of CPAE assumes a single word vector can cap-196

ture polysemy, we address the problem of learning197

effective embeddings for each sense of words.198

In contrast to the previous research in word em-199

beddings and sense embeddings, we present a sys-200

tem that automatically learns how to embed senses201

in the form of definitions in multiple dictionaries,202

with the goal of providing effective and semantic-203

rich representation of word senses. We exploit204

inherent regularity and power of definitions in dic-205

tionaries by encoding sense definitions into low206

dimensional dense vectors to support sense-related207

NLP tasks.208

3 The SenseNet209

Representing words (e.g., “apple”) as a single210

vector often does not work very well. Pilehvar211

(2019) shows that a consistent improvement can be212

achieved by incorporating more fine-grained rep-213

resentations, sense representations, into a reverse214

dictionary application. However, word embedding215

methods typically compress the semantic informa- 216

tion of the senses of a polysemy word into a single 217

vector. Unfortunately, the word embeddings may 218

be dominated by the most frequent senses, leaving 219

rare senses under-represented. Such biased em- 220

beddings may then hamper the effectiveness of the 221

word representation as a whole. To represent a 222

word and all its word sense, a promising approach 223

is to automatically autoencode sense definitions in 224

multiple dictionaries. 225

3.1 Problem Statement 226

We focus on generating sense embeddings using 227

multiple dictionaries. These senses can be used to 228

return relevant words and senses in response to a 229

user query. The returned embeddings can be used 230

to determine similar senses of a given sense directly, 231

or passed on to sophisticated NLP systems utilizing 232

sense embeddings. (e.g., Kartsaklis et al. (2018) 233

and Hedderich et al. (2019)). Thus, it is crucial that 234

each word sense (definition) is represented with a 235

vector reflecting its meaning. At the same time, 236

definitions in two dictionaries of the same meaning 237

(e.g., “apple: fruit with red or yellow or green skin 238

and sweet to tart crisp whitish flesh” in WordNet 239

and “apple: a round fruit with firm, white flesh 240

and a green, red, or yellow skin” in Cambridge 241

Dictionary) should not be represented with two 242

different vectors. Therefore, our goal is to return 243

a set of sense vectors that capture the semantic 244

meaning of the word sense definitions. We now 245

formally state the problem that we are addressing. 246

Problem Statement: We are given a set of sense 247

definitions in two dictionaries D1 and D2 (e.g., 248

WordNet and Cambridge Dictionary). Our goal is 249

to generate sense embeddings and combine D1 and 250

D2. For this, we encode the definitions into vectors, 251

and aligning the sense definitions across D1 to D2 252

based on these vectors. 253

In the rest of this section, we describe our solu- 254

tion to this problem. First, we define a strategy for 255

aligning the sense definitions from two given dictio- 256

naries with the same meaning (Section 3.2). This 257

strategy relies on a set of <word, definition> pairs 258

(which we will describe in detail in Section 4.1) 259

for training a sense definition autoencoder. In this 260

section, we also describe our method for training 261

the sense autoencoder. Finally, we show how we 262

construct SenseNet works as a reverse dictionary to 263

convert a (definition-like) user query into a vector 264

and retrieve relevant words and sense definitions 265
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(Section 3.3).266

3.2 Learning to Transform Sense Definitions267

into Vectors268

We attempt to find transformations from sense defi-269

nitions into effective vectors that capture semantic270

meaning provided by the dictionaries. Our learning271

process is shown in Figure 2.272

3.2.1 Gathering Senses from Dictionaries273

In the first stage of the learning process (Step (1)274

in Figure 2), we gather a set of pairs of <word, def-275

inition> that represent senses as natural language276

texts defined by the dictionaries. For example, the277

pair <apple, fruit with red or yellow or green skin278

and sweet to tart crisp whitish flesh> is the word279

apple and a sense definition given by WordNet.280

The input to this stage is the two lexical dictio-281

naries, D1 and D2. The set of words and sense282

definitions provided by these dictionaries consti-283

tute the training data. The output of this stage is284

a set of pairs of <word, definition>, are shown in285

Table 1.286

To process the definitions for the learning pro-287

cess, we use a tokenizer to split a definition into288

words.289

3.2.2 Training Sense Autoencoder290

In the second stage of the learning algorithm (Step291

(2) in Figure 2), we train a sense autoencoder to292

encode sense definitions into sense embeddings.293

For this stage of the learning process, we use294

the collection of <word, definition> pairs gathered295

in the previous step. To update the model by con-296

suming a batch of the pairs, each pair is passed to297

our model to compute reconstruction error, and the298

middle hidden states are kept as sense embeddings.299

We compute consistency penalty (Bosc and Vin-300

cent, 2018) using sense embeddings and pre-trained301

word embeddings. Finally, the loss, a weighted sum302

over the reconstruction error and the consistency303

penalty, is backpropagated to update the model pa-304

rameters. We describe the procedures for updating305

the model with a batch of <word, definition> pairs306

derived from the previous stage. The procedures307

are shown in Figure 2.308

In Step (1) of the procedures, we use the pre-309

trained word embeddings, which we will discuss310

in Section 4., to be the initial representations of the311

tokenized definitions. The word embeddings are312

passed to an LSTM, and we keep the final hidden313

states. The final hidden states are passed to a fully314

procedure TrainingStep(batchWords, batchDefs, alpha,
beta)
(1) senseEmbeds = EncodeDefinitions(batchDefs)
(2) re = ReconstructionError(senseEmbeds)
(3) cp = ConsistencyPenalty(

batchWords, senseEmbeds)
(4) loss = alpha * re + beta * cp
(5) updatedModel = backpropagate(loss)
(6) return updatedModel

Figure 2: Steps for consuming a training batch of senses

connected neural network with a linear activation 315

function to obtain sense embeddings. 316

In Step (2) of the procedures, we compute the 317

reconstruction error by making the autoencoder 318

generate the definitions passed to the model using 319

the sense embeddings. Intuitively, this process en- 320

sures that the sense embeddings are relevant to the 321

definitions. 322

In Step (3) of the procedures, the consistency 323

penalty is computed by calculating the Euclidean 324

distance between the sense embeddings and the 325

word embeddings of the given word. Along with 326

the training process, the sense embeddings are get- 327

ting closed to the pre-trained word embeddings in 328

the vector space. This effect is desired since we 329

need to align the senses of the two different dictio- 330

naries in the next stage. Though sense embeddings 331

of a given word will be pulled to the same word 332

embeddings, each of the sense embeddings still 333

reflects its respective meaning of sense because of 334

the optimization of the reconstruction error. 335

In Step (4) of the procedures, we take a weighted 336

sum over the reconstruction error and the consis- 337

tency penalty as the loss function for the optimiza- 338

tion of our model, which can be written as the 339

following equation: 340

L = αLr + βLc (1) 341

where Lr and α is the reconstruction error and the 342

weight to it, and Lc and β is the consistency penalty 343

and the weight to it. 344

3.2.3 Aligning Sense Definitions 345

In the third stage of the learning algorithm (Step (3) 346

in Figure 2), we align the sense definitions given 347

by one of the two dictionaries to those given by the 348

other one using the sense embeddings derived from 349

the previous stage and a heuristic algorithm. 350

For each <word, definition> pair in the training 351

collection, we look up the dictionaries for the part 352

of speech (POS) tags of each sense. The raw POS 353
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word definition
apple fruit with red or yellow or green skin and sweet to tart crisp whitish flesh
apple a round fruit with firm, white flesh and a green, red, or yellow skin
baton a thick, heavy stick used as a weapon by police officers

Table 1: Example of <word, definition> pairs for training

tags are normalized by being mapped to the univer-354

sal POS tagset (Petrov et al., 2011) so that the two355

dictionaries share the same POS tags. As a result,356

we extend <word, definition> to <word, POS, defi-357

nition> pairs. We then attempt to align the sense358

definitions provided by one of the dictionaries to359

the other one given a word w and a POS tag p by360

the heuristic algorithm describe as the following361

steps shown in Figure 3.362

In Step (1) of the algorithm, there are two sets363

of sense definitions from the two dictionaries re-364

spectively. We make the larger set target sense365

definitions and the other set source sense defini-366

tions.367

In Step (2) of the algorithm, we derive <source368

sense, target sense> pairs from the Cartesian prod-369

uct of the source and target sense definitions. We370

then compute the cosine similarities of sense em-371

beddings of each sense definition pair.372

In Step (3) of the algorithm, we sort the pairs by373

the similarities in decreasing order (Step (3a)). For374

each <sourceSense, baseSense> pair of the sorted375

pairs, we include a pair to aligned sense definitions376

(Step (3d)) if neither the source sense definition nor377

the target sense definition has been included (Step378

(3c)).379

Finally, we obtain senses by processing each380

< w, p > pair where w is the word defined by D1381

or D2, and p is the POS tag defined by the universal382

POS tagset.383

3.2.4 Generating Sense Embeddings384

In the fourth and final stage of the learning algo-385

rithm (Step (4) in Figure 2), we generate sense386

embeddings to represent the senses derived from387

the previous stage.388

We use sense embeddings to represent the sense389

definitions not align with other ones. However, for390

a sense definition aligning with the other one, there391

are two sense embeddings to represent the same392

word meaning. We address this problem by taking393

the average over the two sense embeddings.394

3.3 Run-Time Sense Embeddings 395

Once the set of the senses and the sense em- 396

beddings are automatically induced and trained, 397

in addition to providing static sense embeddings, 398

SenseNet can also compute embeddings for any 399

definition-like sentences or phrases at run time. In- 400

tuitively, we can perform reverse dictionary at a 401

sense level using the system. 402

Given a definition-like query from a user, 403

SenseNet then evaluates a given query using the 404

procedure in Figure 4. 405

In Step (1), the system encodes the query into 406

a vector using the sense autoencoder described in 407

Section 3.2.2. 408

In Steps (2a), (2b), and (2c), for each sense in- 409

duced in Section 3.2.3, we compute the cosine simi- 410

larity between the query vector and the sense vector 411

derived from Section 3.2.4. 412

In Step (3), we sort the senses by the similarities 413

computed in the previous step in a decreasing order. 414

Finally, the system can return the senses which are 415

similar to the query. 416

4 Experiments 417

SenseNet was designed to learn sense embeddings 418

from multiple dictionaries. As such, SenseNet will 419

be trained and evaluated with the dictionaries. Fur- 420

thermore, since one of the goals of SenseNet is 421

to align sense definitions across the dictionaries, 422

we evaluate SenseNet on the sense level. Finally, 423

the reverse dictionary is an inherent application of 424

SenseNet, we use the task as an extrinsic evaluation 425

of the system. 426

In this section, we first present the details of 427

training SenseNet for the evaluation (Section 4.1). 428

Then, Section 4.2 lists the systems that we use in 429

our comparison. Finally, Section 4.3 introduces 430

the evaluation metrics for the performance of the 431

systems. 432

4.1 Training SenseNet 433

We used a collection of approximately 203,000 434

<word, definition> pairs for training, obtained from 435
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procedure AlignSensesGivenWordAndPos(d1Senses, d2Senses)
(1) sourceSenses, baseSenses = DetermineBaseAndSource(d1Senses, d2Senses)
(2) sensePairs = CalculateSimilarities(CartesianProduct(sourceSenses, baseSenses)
(3a) sortedSensePairs = SortPairsBySimilarity(sensePairs)

alignedSenses = ∅
(3b) For each <sourceSense, baseSense> in sortedSensePairs
(3c) If not (isAligned[sourceSense] or isAligned[baseSense])

isAligned[sourceSense] = True
isAligned[baseSense] = True

(3d) alignedSenses += (sourceSense, baseSense)
(4) return alignedSenses

Figure 3: Aligning sense definitions given a word and a POS tag

procedure reverseDictionary(userQuery)
(1) queryEmbeds = SenseAutoEncoder(userQuery)

results = ∅
(2a) For each alignedSense in alignedSenses
(2b) alignedSenseEmbeds = senseEmbeds[alignedSense]
(2c) similarity = cosineSimilarity(queryEmbeds, alignedSenseEmbeds)

results += (alignedSense, similarity)
(3) sortedResults = sortResultsBySimilarity(results)
(4) return sortedResults

Figure 4: Reverse dictionary at run time

POS tag # of pairs
NOUN 83,600
VERB 37,900
ADJ 26,900
ADV 45,00
Total 153,000 (approx.)

Table 2: The Number of Training Pairs from WordNet

two dictionaries, WordNet and Cambridge Dictio-436

nary. Table 1 shows a sample of the word-definition437

pairs. We obtained WordNet from an open-source438

library, NLTK (Bird et al., 2009), and obtained439

Cambridge Dictionary from a public website 3. For440

the purpose of Section 3.2.3, we manually build a441

table to map the POS tags of the two dictionaries442

to the universal POS tagset. The number of word-443

definition training pairs in the collection for each444

of the dictionaries and universal POS tags is shown445

in Table 2 and Table 3. We used an open-source446

library, spaCy (Honnibal and Montani, 2017), to447

tokenize the definitions.448

In developing SenseNet, we downloaded the449

word2vec word embeddings from Google 4 as the450

starting embeddings. As to training parameters, we451

3https://dictionary.cambridge.org/dictionary/english-
chinese-traditional/

4https://code.google.com/archive/p/word2vec/

POS tag # of pairs
NOUN 28,000
ADJ 11,000
VERB 9,100
ADV 1,400
X 500
NUM 80
PRON 80
DET 60
CCONJ 40
SYM 1
Total 50,000 (approx.)

Table 3: The Number of Training Pairs from CECD

set the hidden size of the LSTM to 300, the learn- 452

ing rate to 0.0003, the batch size to 32, the number 453

of epochs to 50, the weight to the reconstruction 454

error, α, to 1, and the weight to the consistency 455

penalty, β, to 50. Most of the hyperparameters 456

are referred to the settings presented by Bosc and 457

Vincent (2018). We did not test hyperparameters 458

exhaustively and further fine-tuning may improve 459

the performance of the system. The system is based 460

on an open-source NLP platform of deep learning, 461

AllenNLP (Gardner et al., 2017). We perform the 462

training with a single GPU, GeForce GTX 1080, 463
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for 50 minutes.464

4.2 Systems Compared465

Recall that SenseNet starts with a collection of466

word-definition pairs, and aligns senses from dif-467

ferent dictionaries. The output of SenseNet is a set468

of senses and sense embeddings. In this study, we469

compared two systems with different methods to470

align sense definitions and perform reverse dictio-471

nary.472

473

Aligning Sense Definitions474

• LESK adopts Lesk algorithm (Lesk, 1986)475

to compute the similarity between two sense476

definitions when aligning sense definitions.477

More specifically, we transform the sense def-478

initions into vectors by one-hot encoding and479

regard the inner product of these vectors as480

the similarities.481

• SenseNet aligns sense definitions as we de-482

scribed in Section 3.2.3.483

484

Reverse Dictionary485

• LESK computes the similarity between a486

given query and a sense consisting of aligned487

sense definitions by taking the inner product488

of the one-hot encoding vector of the query489

and the vectors derived from performing an490

“OR” operation on the one-hot encoding vec-491

tors of the sense definitions.492

• SenseNet performs reverse dictionary as we493

described in Section 3.3.494

4.3 Evaluation Metrics495

Methods for aligning senses need to be compared496

based on the quality of the induced senses. This497

quality can be quantified using two metrics, recall,498

and precision. For the evaluation of reverse dic-499

tionary, we compute two metrics, top-K precision500

and Mean Reciprocal Rank (MRR), to measure the501

relevance by inspecting the K senses returned by502

the various systems that we compare (Section 4.2)503

for each query that we consider. We will describe504

these four metrics in detail below.505

506

Aligning Sense Definitions507

• recall: The percentage of the senses from a508

ground truth have been induced by a system509

that aligns sense definitions. The recall can be 510

defined as the following equation: 511

recall =
n

M
(2) 512

where n is the number of induced senses are 513

in the ground truth, and M is the number of 514

the senses in the ground truth. 515

• precision: The percentage of the senses in- 516

duced by the system are in the ground truth. 517

The precision can be defined as the following 518

equation: 519

precision =
n

N
(3) 520

where N is the number of the senses induced 521

by the system. 522

523

Reverse Dictionary 524

• top-K precision: The percentage of senses 525

relevant to a query among the top K senses 526

returned by a reverse dictionary system for the 527

query. The top-K precision can be defined as 528

the following equation: 529

top-K precision =
n

K
(4) 530

where n is the number of the returned senses 531

which are relevant to the query. 532

• MRR: The average of the reciprocal rank val- 533

ues over all evaluated queries. The MRR can 534

be defined as the following equation: 535

MRR =
1

N

N∑
i=1

1

rqi
(5) 536

where N is the number of the evaluated 537

queries, and rqi is the highest rank of a sense 538

returned by a system that is judged relevant 539

for the i-th query. 540

5 Evaluation Results 541

In this section, we report the results of the experi- 542

mental evaluation using the methodology described 543

in the previous section. First, in Section 5.1 we re- 544

port the results of our evaluation of aligning sense 545

definitions of the polysemous 12 words evaluated 546

by Yarowsky (1992). In Section 5.2 we present 547

the results of an extrinsic evaluation, reverse dic- 548

tionary, which totaled 96 queries evaluated by a 549

human judge. 550
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System Recall Precision
SenseNet 0.81 0.88
Lesk 0.61 0.68

Table 4: Alignment recall and precision of SenseNet
and Lesk

5.1 Results from the Alignment Evaluation551

During the first evaluation, the 12 polysemous552

words were evaluated. We manually induced 115553

senses as the ground truth, and automatically in-554

duced senses using the two systems for compari-555

son.556

Table 4 shows the evaluation results. As we can557

see, SenseNet outperforms the baseline, Lesk, by558

33% on the recall and 29% on the precision. This559

indicates that our system can capture the semantic560

meaning of sense definitions so it performs better561

than Lesk which computes sense similarities on a562

discrete word level.563

5.2 Results from the Reverse Dictionary564

Evaluation565

We now report results from the evaluation of re-566

verse dictionary with 96 queries randomly selected567

from the book, Flip Dictionary (Kipfer, 2001). We568

present an expert on computational linguistics with569

these queries along with the senses returned by the570

compared systems. The expert was asked to select571

the senses which are relevant to the queries.572

Table 5 shows the evaluation results. We can573

see that SenseNet substantially outperforms Lesk.574

As we described in Section 4.2, Lesk finds the rel-575

evant senses to a query by comparing the words576

used in the query and the sense definitions. The577

significant improvements shown in Table 5 indi-578

cate that SenseNet is a robust sense embedding579

system. More specifically, SenseNet has success-580

fully mapped the queries not from dictionaries to581

the space of sense embeddings which are trained582

on dictionaries.583

Although embeddings generally reflect meaning584

better that one-hot representation based on word,585

word level information is still very useful in reverse586

dictionary application, since definitions typically587

were written with a core vocabulary and tends to588

have a high degree of consistency across dictio-589

naries. Our methods is limited by not taking into590

account the actural words in a given query and def-591

initions. A combination of vector space similarity592

and Lesk-like similarity might work better that our593

System MTP-10 MRR
SenseNet 0.21 0.57
Lesk 0.07 0.29

Table 5: Mean top-10 precision (MTP-10) and MRR of
SenseNet and Lesk

current method. 594

6 Conclusion and Future Work 595

There are many directions for future research and 596

improvement of our system. For example, con- 597

sistency penalty could be down-weight as we are 598

computing on sense level rather than word level. 599

Definitions in more dictionaries could be autoen- 600

coded and aligned to improve the coverage and 601

quality of SenseNet. Additionally, an interesting di- 602

rection to explore is creating a multilingual vector 603

space of sense embeddings so definitions written in 604

one language can be mapped to senses in another 605

language. For example, the Chinese translation of 606

“hats worn by bishops”, “主教戴的帽子”, can be 607

mapped to the word “bishop” with a sense defini- 608

tion “a liturgical headdress worn by bishops on 609

formal occasions”. 610

In summary, we have introduced a method for 611

learning sense embeddings that improves the abil- 612

ity to represent words at a more fine-grained level 613

using a deep learning model and an aligning algo- 614

rithm. The method involves training a sense defini- 615

tion autoencoder, aligning sense definitions across 616

dictionaries, generating integrated sense embed- 617

dings for more than one dictionaries, and run-time 618

embedding any definition-like queries into vectors. 619

We have implemented and thoroughly evaluated 620

the method as applied to embedding and aligning 621

sense definitions, as well as a reverse dictionary ap- 622

plication. In extensive blind evaluations, we have 623

shown that the method substantially outperforms 624

the baseline of representing with one-hot vectors 625

or on the word level. 626
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