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Abstract

NLPers frequently face reproducibility crisis
in a comparison of various models of a real-
world NLP task. Many studies have empiri-
cally showed that the standard splits tend to
produce low reproducible and unreliable con-
clusions, and they attempted to improve the s-
plits by using more random repetitions. How-
ever, the improvement on the reproducibility
in a comparison of NLP models is limited at-
tributed to a lack of investigation on the rela-
tionship between the reproducibility and the
estimator induced by a splitting strategy. In
this paper, we formulate the reproducibility in
a model comparison into a probabilistic func-
tion with regard to a conclusion. Furthermore,
we theoretically illustrate that the reproducibil-
ity is qualitatively dominated by the signal-to-
noise ratio (SNR) of a model performance es-
timator obtained on a corpus splitting strate-
gy. Specifically, a higher value of the SNR of
an estimator probably indicates a better repro-
ducibility. On the basis of the theoretical moti-
vations, we develop a novel mixture estimator
of the performance of an NLP model with a
regularized corpus splitting strategy based on
a blocked 3 × 2 cross-validation. We conduct
numerical experiments on multiple NLP tasks
to show that the proposed estimator achieves
a high SNR, and it substantially increases the
reproducibility. Therefore, we recommend the
NLP practitioners to use the proposed method
to compare NLP models instead of the method-
s based on the widely-used standard splits and
the random splits with multiple repetitions.

1 Introduction

In NLP domain, the reproducibility of empirical
experimental conclusions has attracted most re-
searchers’ attention because the reproducibility cri-
sis becomes more and more serious along with
the increasing complexity of the proposed model
architectures for a specific NLP task (Belz et al.,
2021). In particular, in the past few decades, many

researchers found that the majority of the conclu-
sions in model comparisons can not be well repro-
duced in similar or slightly different experimen-
tal settings involving many real-world NLP tasks
(Berg-Kirkpatrick et al., 2012; Søgaard et al., 2014;
Belz et al., 2023), including POS tagging, parsing,
text summarization, machine translation and so on.

Although a checklist methodology has been rec-
ommended in many NLP conferences, the checklist
could merely address the reproducibility problem-
s in the levels of methods and results rather than
in the level of inferential conclusions (Bouthillier
et al., 2019). Considering that about 70% of pa-
pers had an unpromising low reproducibility (Belz
et al., 2021), whether a conclusion in an NLP mod-
el comparison is reproducible if one draw it from
a different experimental setup is still an important
problem that is not sufficiently addressed. In actu-
al, the reproducibility of a conclusion depends on
multiple variates or factors in an NLP experiment,
such as source code, text corpus and so on.

An important factor that affects the reproducibil-
ity is the splitting strategy of a text corpus, which
has been well recognized in recent years. As a
thumb rule, standard splits on a text corpus are
frequently used to ensure a fair comparison. How-
ever, Gorman and Bedrick (2019) found that the
conclusion obtained on the standard splits is less
reproducible and instable, and thereby they rec-
ommended random splits for NLP practitioners.
Different from their views, Søgaard et al. (2021)
pointed out that the random splits lead to overly
optimistic performance estimators and harm the
NLP model comparison. Thus, they recommended
multiple biased splits for assessing NLP models.
Moreover, Rob (2021) proposed a novel splitting
strategy and introduced a tune set to select an opti-
mal neural model in hundreds of epochs for fairness
in subsequent comparisons. These studies provided
sufficient empirical evidences to show the impor-
tance of a splitting strategy on the reproducibility



in a comparison but lacking of a necessary theoret-
ical investigation on the relationship between the
reproducibility and the estimator induced from a
splitting strategy. Thus, the improvement on the
standard splits is limited. Essentially, various split-
ting strategies lead to different estimators of the
performance of an NLP model. The variance and
the expectation of a performance estimator are crit-
ical to the reproducibility of the comparison of two
NLP models. Therefore, in order to select an opti-
mal splitting strategy and a reasonable estimation
method, it is necessary to establish the theoreti-
cal relationship between the reproducibility and a
performance estimator in a model comparison.

In this paper, we formulate the reproducibility in
an NLP model comparison from a probabilistic per-
spective and theoretically establish the relationship
between the reproducibility and the signal-to-noise
ratio (SNR) of an estimator of model performance.
We illustrate that an estimator with a higher SNR
probably leads to a better reproducibility in a com-
parison. Therefore, we establish an optimization
problem to maximize the SNR of an estimator in a
model comparison. We further summarize that the
solution to the problem should satisfy two criteri-
a with regard to the variance and the expectation
of the estimator, respectively. Motivated by the
criteria, we develop a novel method that uses a
blocked 3×2 cross-validation (BCV) coupled with
a mixture estimator of NLP model performance and
provide theoretical explanations of the method. We
conduct numerical experiments on multiple NLP
tasks to show that the proposed method produces
an estimator with a high SNR and substantially in-
creases the reproducibility of a conclusion in an
NLP model comparison.

2 Reproducibility in Model Comparison

In this paper, we merely consider the reproducibil-
ity in a comparison of two NLP models from the
perspectives of splitting strategy and estimation
method. When the number of models is larger
than two, the comparison can be decomposed in-
to a collection of comparisons of any two NLP
models among the candidates, and the comparison
results on multiple pairs of models can be further
reduced toward the final result with a proper correc-
tion, such as the Bonferroni procedure (Dror et al.,
2017).

We denote a text corpus asDn where n is the cor-
pus size, and all the samples inDn are IID-sampled

from population D. Let A and B be two NLP mod-
els built on the corpus Dn, and the corresponding
model instances are denoted asA(Dn) and B(Dn).
Furthermore, let ν be a commonly-used perfor-
mance metric, such as accuracy, F1 score and so on.
Without loss of generality, we assume that higher
values of ν indicate better performance. Further-
more, if a previous empirical study compared the
performance of models A(Dn) and B(Dn) based
on a particular splitting strategy S and published a
conclusion of ν(A(Dn)) > ν(B(Dn)) in a paper,
then we have to ask a question: How the splitting
strategy S affects the reproducibility of the con-
clusion ν(A(Dn)) > ν(B(Dn))? For example,
assume the conclusion is obtained based on stan-
dard splits. If another research group uses slightly
different splits to perform a similar comparison, to
what extent the conclusion is reproduced?

Formally, conditioned on a published model
comparison conclusion ν(A(Dn)) > ν(B(Dn)),
the reproducibility in a comparison can be formal-
ized into the following probabilistic form.

P (ν̂S(A(Dn)) > ν̂S(B(Dn))) = P (ν̂A−BS > 0),
(1)

where ν̂A−BS denotes the estimator of the difference
between the performance of models A(Dn) and
B(Dn) based on randomly-generated splits in S,
and the randomness in Eq. (1) comes from S.

An optimal splitting strategy S should make the
reproducibility in a comparison as large as possible.
Thus, we can purse the optimal splitting strategy
and estimator by solving the following optimization
problem.

(S∗, ν̂∗) = argmaxS,ν̂P (ν̂A−BS > 0), (2)

where the splitting strategy and estimator should
be optimized simultaneously because different esti-
mators can be constructed in an identical splitting
strategy.

It is hard to solve the optimization problem in
Eq. (2) since the distribution of ν̂A−BS is unknown
and varies over different NLP corpora. Therefore,
to develop an appropriate surrogation of Eq. (2),
conditioned on the conclusion of ν(A(Dn)) >
ν(B(Dn)), we apply the one-side Chebyshev in-
equality on Eq. (1) and obtain the following lower
bound.

P (ν̂A−BS > 0) ≥
SNR2(ν̂A−BS )

1 + SNR2(ν̂A−BS )
, (3)



where SNR(ν̂A−BS ) is the SNR of the estimator
ν̂A−BS with the following form.

SNR(ν̂A−BS ) =
E[ν̂A−BS ]√
V ar[ν̂A−BS ]

, (4)

where E[·] and V ar[·] stand for the expectation
and variance of an estimator, respectively.

Eq. (3) provides a lower bound of the repro-
ducibility. The lower bound is a monotonically
increasing function with regard to the SNR. The
lower bound further illustrates that a small variance
and a slightly large expectation of ν̂A−BS lead to a
high value of the SNR, which probably indicates a
better reproducibility. Therefore, instead of directly
addressing the problem in Eq. (2), we aim to figure
out a proper solution to the next best optimization
problem as follows.

(S∗, ν̂∗) = argmaxS,ν̂SNR(ν̂A−BS ). (5)

Furthermore, according to the definition of SNR
in Eq. (4), the solution to Eq. (5) should satisfy the
following two criteria.

Criterion I. The optimal splitting strategy and es-
timation method should reduce the variance
V ar[ν̂A−BS ] as much as possible.

Criterion II. The optimal splitting strategy and
estimation method should maximize the ex-
pectation E[ν̂A−BS ] as much as possible.

3 Our Approach

Although the optimization problem in Eq. (2) is
relaxed into a second best problem in Eq. (5), the
latter is still not solved through an analytic method-
ology. Despite this, the two criteria obtained from
Eq. (5) may shed light on a heuristic design of a
better splitting strategy and estimation method.

3.1 3× 2 BCV

According to Criterion I, a reasonable splitting
strategy to reduce the variance of ν̂A−BS is using
more splits in S, which has been empirically veri-
fied by many researchers (Moss et al., 2018; Gor-
man and Bedrick, 2019). Nevertheless, the variance
depends not only on the number of splits but also
on its splitting ratio. Specifically, if a large portion
of Dn is used in training, then any two training
sets in two splits of S possess a large overlapping
samples that introduces unnecessary correlations

Repetition Index Fold 1 Fold 2
1 B(1), B(2) B(3), B(4)

2 B(2), B(4) B(1), B(3)

3 B(1), B(4) B(2), B(3)

Table 1: Splitting rules in a 3× 2 BCV.

in ν̂A−BS and enlarges the variance. As illustrat-
ed in the plots in the first row of Figure 2, when
a splitting ratio of 8:1 is used, the variance can
not be efficiently reduced even using more splits.
On the basis of a similar observation, Dietterich
(1998) decided to use a splitting ratio of 5:5 and
recommended a usage of repeated two-fold CV in
a model comparison because the expectation of the
number of overlapping samples between any two
two-fold CVs is only n/4 (Markatou et al., 2005).

The effectiveness of repeated two-fold CV on
a model comparison has been showed in a series
of studies, including but not limited to the work of
(Alpaydin, 1999; Yildiz, 2013; Wang et al., 2014;
Wang and Li, 2019). Moreover, a novel version of
the repeated two-fold CV, named m× 2 BCV, that
leads to a smaller variance in ν̂A−BS (Wang et al.,
2017a), achieves a better performance in model
comparison (Wang et al., 2017b).

A 3 × 2 BCV, recommended in this paper, is a
specific version of m× 2 BCV with m = 3. The
construction of a 3 × 2 BCV is straightforward:
divide a corpus Dn into four equal-sized block-
s, namely B(1), B(2), B(3), B(4), and combine the
blocks to form the splits according to the rules in
Table 1.

A 3× 2 BCV possesses at least four advantages
for ensuring the reproducibility in a comparison of
NLP models: (1) a 3 × 2 BCV leads to a smaller
variance of an estimator than a randomly generated
splits with a size of 6 and a ratio of 5:5 (Wang et al.,
2019); (2) a 3 × 2 BCV is straightforward to use
thanks to its simple combination rules in Table 1;
(3) when the sizes of a training set and a validation
set is equal, certain frequency distributions over
linguistic units of the training and validation sets
are consistent with a relatively high probability
(Wang and Li, 2019); and (4) each sample in Dn

occurs with the same counts in all training sets
of a 3 × 2 BCV, which facilitates us to design an
aggregated estimator based on majority voting and
is firstly proposed in this paper.



Validated Block Basis Models Basis Predictions Vote Predictions

B(1) A(2)(3), A(2)(4), A(3)(4) {ŷ(2)(3),(1)}, {ŷ(2)(4),(1)}, {ŷ(3)(4),(1)} {ŷv(1)}
B(2) A(1)(3), A(1)(4), A(3)(4) {ŷ(1)(3),(2)}, {ŷ(1)(4),(2)}, {ŷ(3)(4),(2)} {ŷv(2)}
B(3) A(1)(2), A(1)(4), A(2)(4) {ŷ(1)(2),(3)}, {ŷ(1)(4),(3)}, {ŷ(2)(4),(3)} {ŷv(3)}
B(4) A(1)(2), A(1)(3), A(2)(3) {ŷ(1)(2),(4)}, {ŷ(1)(3),(4)}, {ŷ(2)(3),(4)} {ŷv(4)}

Table 2: Aggregation rules in a vote estimation on 3× 2 BCV.

3.2 Mixture Estimation for ν̂A−BS

In Criterion II, the expectation E[ν̂A−BS ] means
the expectation of the difference of the estimators
in two models A(Dn) and B(Dn). In theory, the
expectation in a single model is frequently regard-
ed as monotonically increasing with regard to a
corpus size of n. However, for the expectation of
the difference, i.e., E[ν̂A−BS ], it is not reasonable
to assume that it is increasing with regard to n. In
order to express clearly, we abbreviate E[ν̂A−BS ] as
νn of which the subscript is the size of a training
set. Furthermore, we consider the following two
cases about νn.

Case I. νn is an increasing function with regard to
n. It shows that as n increases, model A(Dn)
is substantially better than B(Dn).

Case II. νn is decreasing with regard to n. It mean-
s that when n becomes large, the performance
superiority of model A(Dn) is gradually dis-
appearing.

Although the relationship between νn and n in
a real-world NLP task may be more complex, the
assumptions in the above-mentioned two cases are
more loose than that in previous studies which fre-
quently assumed that the value of νn is almost un-
changed with regard to n (Dietterich, 1998; Nadeau
and Bengio, 2003; Wang and Li, 2019). More-
over, we assume that sgn(νn/2) = sgn(νn) where
sgn(·) is the sign function. We consider that the
assumption is natural when n is slightly large.

We adopt two different estimation methods for
the two cases respectively. In actual, in a 3 × 2
BCV, researchers frequently obtain six hold-out
estimators of ν. The six estimators correspond to
the six folds in Table 1. In theory, each hold-out
estimator is unbiased to νn/2.

For Case I, because νn is increasing with regard
to n, we obtain that νn/2 ≤ νn. Therefore, the
hold-out estimators and the average of the estima-
tors is an unpromising estimation method that can

not satisfy Criterion II in Section 3.2. In contrast,
an aggregation estimation method based on majori-
ty voting leads to a promising estimator of which
the expectation is more closer to νn than that of the
hold-out estimators (Yang et al., 2023). We abbre-
viate the aggregation estimation as vote estimator
and denote it as ν̂A−Bvote .

On the basis of the theoretical results in (Yang
et al., 2023), we obtain that the vote estimator sat-
isfies the following two properties.

νn/2 ≤ E[ν̂A−Bvote ]. (6)

|E[ν̂A−Bvote ]− νn| ≤ |νn − νn/2|. (7)

Thus, the vote estimator is more suitable to Cri-
terion II than the hold-out estimators and their
average.

We demonstrate the computation of a vote esti-
mator ν̂A−Bvote in a supervised NLP model. Denote
a supervised text corpus as Dn = {(xj , yj)}nj=1

where xj is the input text and yj corresponds to the
supervised labels. For example, for a semantic role
labeling task, x is a sentence with a pre-defined
target word, and y is the gold IOB2 labels for rep-
resenting the semantic role chunks in the sentence.
On the basis of a 3×2 BCV, six basis models are ob-
tained on Dn, denoted as A(1)(2), A(3)(4), A(2)(4),
A(1)(3), A(1)(4), A(2)(3), of which the subscripts
correspond to the indices of the blocks in Table 1.
Then, we use three of the basis models to validate
the samples in each block and obtain three sets of
basis predictions. Furthermore, on the basis of ma-
jority voting, we aggregate the three sets into a set
of vote predictions. The aggregation rules are given
in Table 2. Finally, we compare the vote predic-
tions {ŷvj }nj=1 = {ŷv(1)}∪ {ŷ

v
(2)}∪ {ŷ

v
(3)}∪ {ŷ

v
(4)}

and the gold predictions {yj}nj=1 to obtain the vote
estimator of modelA, denoted as ν̂Avote. In a similar
way, we can compute the vote estimator ν̂Bvote for
model B. Then, the vote estimator for Case I is
ν̂A−Bvote = ν̂Avote − ν̂Bvote.



For Case II, because νn is decreasing with n,
we obtain that νn/2 ≥ νn. Thus, we can prefer
the average of the six hold-out estimators because
the averaged estimator is unbiased to νn/2, and the
averaged estimator is more stable and more suitable
to Criteria I and II than the hold-out estimators
and the vote estimator. We denote the averaged
estimator as ν̂A−Bavg .

Unfortunately, for a real-world NLP model,
whether its νn satisfies Case I or Case II is un-
known. Thus, we have to construct a novel mixture
estimator to comprehensively consider the two cas-
es. The mixture estimator has a form as follows.

ν̂A−Bmix = ∆ · ν̂A−Bvote + (1−∆) · ν̂A−Bavg , (8)

where ∆ is an indicator function such that ∆ = 1
when ν̂A−Bvote > ν̂A−Bavg and ∆ = 0 otherwise. In a
comparison, we consider that when ∆ = 1, Case I
has a higher probability to occur than Case II, and
vice versa. Therefore, we use ∆ as a switcher to
adaptively select an estimator between ν̂A−Bvote and
ν̂A−Bavg .

3.3 Baselines
Four baselines are considered in this paper.

Standard splits (ST). The conventional stan-
dard splits on a corpus is static and designed in
advance. The standard splits frequently use a ration
of 8:1 to split a text corpus into a training set and
a validation set (Gorman and Bedrick, 2019). The
static property in standard splits tend to produce an
obvious over-fitting phenomenon attributing to the
well-known "file-drawer" problem (Scargle, 2000)
and the adaptive usage problem of a fixed hold-out
(Dwork et al., 2015). Therefore, to eliminate the
static property, we randomly generate splits with a
ratio of 8:1 in a hold-out manner and use them as
our first baseline. We also named them as standard
splits.

Random splits (RS). The random splits for NLP
model comparison are recommended in (Gorman
and Bedrick, 2019). They proposed to use multiple
repetitions of hold-out validation with a splitting
ratio of 8:1 to compare NLP models. The repetition
count is set to an integer in [3, 10] in this paper,
which is the same with (Søgaard et al., 2021). It
is noted that a vote estimator is hard to construct
in random splits because the occurrence counts of
the samples in all training sets of random splits
are different. Moreover, for a fair comparison, we
mainly compare our 3× 2 BCV with the random
splits with 6 repetitions.

3× 2 BCV with an averaged estimator (Avg).
We adopt the averaged estimator ν̂A−Bavg based on a
3 × 2 BCV as a baseline in all experiments. The
3× 2 BCV averaged estimator has been studied in
a comparison task of supervised classifiers (Wang
et al., 2015).

3 × 2 BCV with a vote estimator (Vote). The
vote estimator ν̂A−Bvote based on a 3 × 2 BCV is
used as a baseline over all NLP model comparisons.
This baseline is first developed in this paper.

Moreover, the training and validation sets pro-
duced by the splitting strategy proposed in (Sø-
gaard et al., 2021) possess biased and different
distributions. This characteristic differs from the
fundamental assumption in our paper that the train-
ing and validation sets should be drawn from an
identical distribution D. Therefore, we don’t con-
sider the method in (Søgaard et al., 2021) as our
baseline. The method in (Rob, 2021) focuses on
a situation of tuning a neural NLP model that is
out of our consideration. Thus, we don’t use the
method in (Rob, 2021) as a baseline.

We named our proposed method, i.e., the mix-
ture estimator based on a 3× 2 BCV, as Mixture.

4 Experiments

We compare our proposed method with the base-
lines in Section 3.3 on the following NLP tasks.

Semantic role labeling task (SRL): Identify
the boundaries of all semantic role chunks in a
Chinese sentence with gold word segmentation
and a pre-defined target word based on the Chi-
nese FrameNet annotation convention. A Chinese
FrameNet training corpus is used as Dn that con-
tains 35,473 Chinese sentences and 78,749 seman-
tic chunks. A Bi-LSTM algorithm coupled with
linguistic features of word, POS, target word, and
frame name, is used to train and validate an SRL
model. Considering the embedding size of a target
word is an important hyper-parameter, we compare
the two SRL models obtained from the settings of
the embedding size being 10 and 20, respectively.

Named entity recognition task (NER): Identi-
fy the boundaries of all NER chunks without recog-
nizing their type labels. We use CoNLL 2003 En-
glish NER training set as Dn that contains 14,987
sentences and 23,499 chunks. The corpus contains
four types of named entities, including PER, LOC,
ORG, and MISC. We consider the NER task as a
sequence labeling problem and use CRFs to train
and validate an NER model. Two labeling sets of



Task
Sample Means (%) Standard Errors (×10−4) Confidence Intervals (%)

A(Dn) B(Dn) A(Dn) B(Dn) A(Dn) B(Dn)

SRL 61.98 61.60 5.90 5.94 [61.87, 62.10] [61.48, 61.71]
NER 89.38 89.20 1.86 2.07 [89.34, 89.42] [89.16, 89.24]

Chunking 82.25 82.20 1.16 1.10 [82.23, 82.27] [82.18, 82.22]

Table 3: Confidence intervals of model performance on the three NLP tasks.

IOB2 and IOBES are used to induce two different
NER models that are compared in our experiments.

Chinese base-phrases chunking task (Chunk-
ing): Identify the boundaries of all base-phrases in
a Chinese sentence with gold word segmentation.
The Chinese base-phrases corpus is developed by
Zhang and Zhou (2002). The corpus is used as Dn

that contains 14,248 sentences and 186,319 chunks.
We use CRFs based on different labeling sets of
IOB2 and IOBES to obtain two different chunking
models that are compared in our experiments.

The above three tasks usually adopt precision,
recall, and F1 score as evaluation metrics. Due to
space limitation, we merely report the results about
F1 score.

For the three NLP tasks, we consider the follow-
ing empirical conclusions in model comparisons.

• For the SRL task, we consider that the embed-
ding size of 20 (model A) is better than that
of 10 (model B) as a conclusion.

• For the NER task, IOBES (modelA) is empir-
ically better than IOB2 (model B).

• For the chunking task, the conclusion of IOB2
(model A) outperforming IOBES (model B)
is considered because a base-phrase chunk is
frequently short, and IOBES is too delicate.

To check the correctness of the above empir-
ical conclusions, i.e., ν(A(Dn)) > ν(B(Dn)),
we conduct numerical simulations to obtain the
performance of models A and B. Specifically,
we combine the original training and test sets
and randomly sample a training set and a test set
in a without-replacement manner from the com-
bined data set. The sampling ratio is the same
as the original splitting ratio. Then, we inde-
pendently perform the process 1,000 times and
use the sample mean of the 1,000 values of es-
timators ν̂(A(Dn)) and ν̂(B(Dn)) to approximate
ν(A(Dn)) and ν(B(Dn)). Considering that the
1,000 estimators are IID, we further compute the

standard errors and the confidence intervals with
α = 0.05. The results listed in Table 3 illustrate
that for each of the three NLP tasks, the confidence
intervals between models A(Dn) and B(Dn) are
not overlapped. Therefore, the empirical conclu-
sions are considered to be correct.

On the basis of a text corpus and a splitting s-
trategy, we randomly generate the corresponding
splits and use the splits to train and validate the
compared NLP models and obtain the correspond-
ing estimators of the difference of the performance
of the two compared models. This process is inde-
pendently repeated in 1,000 times, and we obtain
1,000 values of an estimator that is used to compute
the corresponding SNR and reproducibility.

For the computation of the SNR, we approximate
the expectation and the variance of an estimator
with the sample mean and the sample variance of
the 1,000 values of an estimator. Then, we use Eq.
(4) to compute the numerical value of the SNR.

For the computation of the reproducibility, we
compute the proportion of the 1,000 values greater
than zero. Then, we obtain the numerical value of
the reproducibility by replacing the probability in
Eq. (1) with the empirical proportion.

We organize experiments into three groups to
illustrate (1) the relationship between the SNR and
the reproducibility; and (2) the distribution of an
estimator in each of different methods; and (3)
the reproducibility over different baselines and our
method.

4.1 Experiments on SNR vs. Reproducibility

We first perform experiments to illustrate the rela-
tionship between the SNR and the reproducibility
based on random splits. Specifically, we vary the
repetition count of random splits from 3 to 10 and
depict the corresponding SNR and reproducibility
in Figure 1.

Intuitively, when the repetition count increas-
es, the SNR becomes large. From Figure 1, it
is obtained that with an increasing SNR, the re-
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Figure 1: Illustration of the relationship between reproducibility and SNR.
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Figure 2: Box plots of the distributions of the estimators in different methods.

producibility increases qualitatively. The increase
doesn’t strictly hold in a quantitative manner be-
cause the analytic form in the right-hand side of Eq.
(3) with regard to the SNR is a lower bound rather
than an equivalent form of the reproducibility. As
showed in the third plot in Figure 1, when the repe-
tition count changes from 4 to 5, the SNR increases
but the reproducibility slightly decreases. A few
similar observations can also be found in Table 4.
Despite this, the qualitative relationship still allow
us to maximize the SNR as the second best choice
to find a better splitting strategy and estimation
method for ensuring a high reproducibility.

4.2 Experiments on Distribution of ν̂A−BS

We further provide the distributions of the values of
the estimators in different baselines and our method
in box-plots showed in Figure 2. The horizontal
dotted line indicates a zero value.

The three plots in the first row of Figure 2 pro-
vide the distributions of the estimators in random
splits over the three NLP tasks with an increasing
repetition count. From the three plots, we obtain
that when the repetition count is greater than 5,
the width of the box-plot keeps almost unchanged.
In other words, the variance and the SNR of the

estimator in random splits cannot be efficiently re-
duced even using more splits. An important reason
is that the overlapping samples between any two
training sets in random splits account for a large
proportion (about 70%) of Dn.

In the second row of Figure 2, the distributions of
the estimators in different methods are compared.

From the perspective of Criterion I in Section
2, a common observation can be found over three
NLP tasks. Standard splits and random splits pos-
sess a larger variance than the other three methods
based on a 3 × 2 BCV that verifies the minimal
variance property of an estimator in a 3× 2 BCV,
as described in Section 3.1.

Moreover, with the perspective of Criterion II,
we concentrate on the expectations of the estima-
tors. Several interesting observations are found
over the three NLP tasks.

For the SRL task, considering the plot in the left
bottom of Figure 2, we find that the expectations
of the estimators in different methods are almost
identical, i.e., νn/2 ≈ νn. That corresponds to the
assumption adopted in previous studies. In this
case, the estimator that owns the smallest variance
performs better in the model comparison.



Task
ST RS Avg Vote Mixture

Splitting Strategy 8:1 hold-out 6 repetitions of 8:1 3× 2 BCV

SRL
SNR 0.181 0.414 0.465 0.645 0.684

Reproducibility 0.636 0.665 0.659 0.694 0.714

NER
SNR 0.510 1.258 0.889 1.179 1.421

Reproducibility 0.678 0.893 0.830 0.900 0.940

Chunking
SNR 0.195 0.483 3.200 1.818 3.063

Reproducibility 0.590 0.665 1.000 0.960 1.000

Table 4: SNR and reproducibility of different methods on the three NLP tasks.

For the NER task, the estimator in random splits
has a higher expectation than the averaged estima-
tor in a 3 × 2 BCV. The phenomenon indicates
that Case I in Section 3.2 occurs, i.e., νn/2 ≤ νn.
In this case, even the averaged estimator has the
smallest variance, its SNR is not high (as shown in
Table 4), because the expectation of the averaged
estimator is small.

For the chunking task, the plot in the right bot-
tom of Figure 2 shows that the expectation of ran-
dom splits is lower than that of the averaged esti-
mator. In other words, Case II in Section 3.2 holds,
i.e., νn/2 ≥ νn, and the averaged estimator has a
higher SNR.

From the above observations with regard to the
expectation, we have to re-state that the relationship
between νn and n varies over different NLP tasks
and is unknown in advance. This is an important
motivation for us to develop a mixture estimation
based on a 3× 2 BCV.

Moreover, it is noted that we concentrate on the
experimental settings of model A being slightly
better than model B in Figure 2 because when mod-
el A is substantially better than model B (such as
BERT vs. CRFs), all splitting strategies, including
ST, RS, and 3× 2 BCV, tend to achieve the best re-
producibility (=1.0). Thus, it is hard to observe the
difference between the effects of the different split-
ting strategies on the reproducibility even though
our proposed method still owns a higher SNR.

4.3 Experiments on Reproducibility

Several experiments are performed to compute the
reproducibility of different splitting strategies and
estimation methods over the three NLP tasks. The
results are given in Table 4. Several observations
are obtained on Table 4.

The standard splits possess the lowest SNR and

reproducibility that indicates the optimality of the
selected NLP models based on standard splits can-
not be guaranteed. This conclusion is similar with
that in (Gorman and Bedrick, 2019; Rob, 2021).

The random splits have a higher SNR and re-
producibility than the standard splits because the
former uses more repetitions to make the estimator
more stable. Thus, we consider the improvements
in (Gorman and Bedrick, 2019) are effective and
significant. However, the room for improvement on
the reproducibility in random splits by using more
splits is limited attributing to the large portion of
the overlapping samples between the training sets.

Compared with the standard splits and the ran-
dom splits, the estimators in a 3×2 BCV achieve a
better SNR and reproducibility. Therefore, a 3× 2
BCV is a better splitting strategy in an NLP mod-
el comparison. Furthermore, comparing the three
estimators in a 3× 2 BCV, we obtain that in most
situations, the mixture estimator achieves the high-
est SNR and reproducibility. Thus, the mixture
estimator in a 3 × 2 BCV, proposed in this paper,
should be preferred in an NLP model comparison.

In summary, we recommend three guidelines:

(1) Standard splits should be used with caution in
a comparison of two NLP models because s-
tandard splits may lead to a low reproducibility
and unreliable conclusion in the comparison.

(2) A 3× 2 BCV could be preferred when assess-
ing and comparing NLP models. The aver-
aged estimator and vote estimator on a 3 × 2
BCV can be considered because they achieve a
promising reproducibility in the task of model
comparison.

(3) NLP practitioners could give priority to the
mixture estimator coupled with a 3 × 2 BCV
in a comparison of two NLP models.



5 Related Work

In recent decades, a task of reproducing and/or
replicating results and conclusions in published
NLP papers has attracted many researchers’ atten-
tion. Many studies have illustrated that the repro-
ducibility in NLP models has a close relationship
with many factors, including availability of source
code (Arvan et al., 2022), randomization manner
of instances in a text corpus (Bestgen, 2020), na-
ture of an NLP task and under-specified or miss-
ing details in a published paper (Rim et al., 2020),
readability of a published paper and number of hy-
perlinks (Akella et al., 2022), splitting strategy of
a corpus (Gorman and Bedrick, 2019), statistical
test used in an NLP task (Søgaard, 2013; Søgaard
et al., 2014), tradition of publishing reproduction
attempts (Cohen et al., 2016), and so on. There-
fore, several systematic reviews and meta analy-
sis related to the reproducibility in NLP models
are conducted in recent years, including but not
limited to (Cohen et al., 2018; Arvan et al., 2022;
Belz et al., 2021, 2022, 2023). Furthermore, many
effective methods are recommended to ensure a
high reproducibility in an NLP study. For example,
Dror et al. (2017) proposed a novel replicability
analysis framework based on partial conjunction
testing. Dror et al. (2019) developed a deep dom-
inance method to properly compare neural NLP
models. Belz (2022) recommended a quantitative
measure of reproducibility from a metrological per-
spective. Magnusson et al. (2023) investigated the
commonly-used checklist method.

Besides the above-mentioned studies, an attrac-
tive direction is to investigate the relationship be-
tween a splitting strategy of a text corpus and the
reproducibility in a comparison of two NLP mod-
els. Moss et al. (2018) showed that the optimized
values of hyper-parameters in an NLP model are
highly sensitive to how a text data set is partitioned.
Gorman and Bedrick (2019) illustrated that the pop-
ular standard splits are insufficient to reproduce a
conclusion in the task of NLP model comparison.
They recommended multiple random splits of a text
corpus. Søgaard et al. (2021) further made an im-
provement on the splitting strategy of a text corpus
and proposed biased splits for NLP practitioners.
Rob (2021) introduced a tune set to make the op-
timization process of a neural NLP model more
reliable. These studies shed lights on the direction
and inspired us to further optimize the splitting
strategy from a different perspective.

6 Conclusions

In this paper, we theoretically analyze the relation-
ship between the reproducibility in an NLP model
comparison and the SNR of an estimator of the
difference of the performance of two NLP mod-
els. We further show that a higher value of the
SNR probably indicates a better reproducibility. To
increase the reproducibility, we formulate an opti-
mization problem to maximize the SNR and further
establish two criteria for figuring out an optimal
splitting strategy and a better estimation method.
We develop a novel method that uses a 3× 2 BCV
coupled with a mixture estimator and illustrate the
superiority of the proposed method through multi-
ple real-world NLP tasks. We recommend the NLP
practitioners to use a 3× 2 BCV and the mixture
estimator to compare their NLP models.

In future, we aim to investigate a comparison of
multiple NLP models and try our best to figure out
a better method to improve the reproducibility of
the comparison based on the splitting strategy of
an m× 2 BCV.

7 Limitations

Despite the novelty and benefits of our method for
reproducibility of a conclusion in an NLP mod-
el comparison, it does include some drawbacks.
In this paper, the theoretical analysis and experi-
mental results illustrate that our proposed method
can substantially improve the reproducibility of a
conclusion in a comparison of two NLP models.
However, we have not obtain an equivalent form
of the reproducibility with regard to the SNR that
indicates there is still a room for improvement from
a theoretical perspective. In addition, our proposed
method can be improved through adopting anm×2
BCV instead of a 3× 2 BCV and regularizing the
divergence between the empirical distributions of
the training and validation sets in an m× 2 BCV.
These would form our future directions.
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