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ABSTRACT

With a growing interest in understanding neural network prediction strategies,
Concept Activation Vectors (CAVs) have emerged as a popular tool for model-
ing human-understandable concepts in the latent space. Commonly, CAVs are
computed by leveraging linear classifiers optimizing the separability of latent rep-
resentations of samples with and without a given concept. However, in this paper
we show that such a separability-oriented computation leads to solutions, which
may diverge from the actual goal of precisely modeling the concept direction. This
discrepancy can be attributed to the significant influence of distractor directions,
i.e., signals unrelated to the concept, which are picked up by filters (i.e., weights)
of linear models to optimize class-separability. To address this, we introduce
pattern-based CAVs, solely focussing on concept signals, thereby providing more
accurate concept directions. We evaluate various CAV methods in terms of their
alignment with the true concept direction and their impact on CAV applications,
including concept sensitivity testing and model correction for shortcut behavior
caused by data artifacts. We demonstrate the benefits of pattern-based CAVs using
the Pediatric Bone Age, ISIC2019, and FunnyBirds datasets with VGG, ResNet,
ReXNet, EfficientNet, and Vision Transformer as model architectures.1.

1 INTRODUCTION

In recent years, eXplainable Artificial Intelligence (XAI) has gained increased interest, as Deep
Neural Networks (DNNs) are ubiquitous in high-stake decision processes, such as medicine (Brinker
et al., 2019), finance (Rouf et al., 2021), and criminal justice (Završnik, 2021; Travaini et al., 2022),
with black-box predictions being unacceptable. Whereas local explainability methods compute the
relevance of input features for individual predictions, global XAI approaches aim at identifying
global prediction strategies employed by the model, often to be represented as human-understandable
concepts. Backed by recent research, suggesting that DNNs encode concepts as superpositions in
latent space (Alain & Bengio, 2017; Elhage et al., 2022; Nanda et al., 2023; Wang et al., 2023),
Concept Activation Vectors (CAVs), originally introduced for concept sensitivity testing (Kim et al.,
2018), model concepts in DNNs by finding directions pointing from samples without the concept
to samples with the concept. Commonly, the direction is estimated by taking the weight vector of
a linear classifier (e.g., a linear Support Vector Machine (SVM)), representing the normal to the
decision hyperplane separating the two sample sets. However, while linear classifiers optimize the
separability of two classes, they might fail at precisely identifying the signal direction encoding the

1Code is available at https://github.com/frederikpahde/pattern-cav
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Figure 1: CAVs obtained from filters, i.e. weight vectors from linear classifiers, are optimized
for class separability, but fail at precisely estimating concept signal directions. Left: Different
CAV computation strategies are employed to estimate the “band-aid” concept, a confounding ar-
tifact in the ISIC2019 dataset. Right: Weaknesses of filter-based CAVs are apparent for simple
transformations in a 2D toy experiment, where we scale concept features (x-axis) differently than
other (e.g., distracting) features or rotate distracting directions. Only pattern-based CAVs pre-
cisely estimate the concept signal direction, while filter-based CAVs diverge to optimize class
separability. Animated visualizations for these and additional 2D experiments can be found here:
https://github.com/frederikpahde/pattern-cav/tree/main/animations.

concept. This can be attributed to the significant influence of distractor (i.e., non-signal) directions
contained in the data, which are picked up by filters (i.e., weights) of linear models to optimize
class-separability (Haufe et al., 2014). This decomposition of filters into signal and distractor patterns
has also been addressed in the context of local explainability methods (Kindermans et al., 2018).
We follow their approach and introduce pattern-based CAVs for global explainability, disregarding
distractors and thereby precisely estimating the concept signal direction (see Fig. 1).

Despite directional divergence from the true concept signal, CAVs have been employed for a plethora
of tasks in recent years, such as concept sensitivity testing (Kim et al., 2018), model correction for
shortcut removal (Anders et al., 2022; Dreyer et al., 2024), knowledge discovery by investigation
of internal model states (McGrath et al., 2022), and training of post-hoc concept bottleneck mod-
els (Yuksekgonul et al., 2023). Many of these applications can be improved by more precise concept
directions, as provided by pattern-CAVs, instead of optimized class-separability, as provided by filters.
To demonstrate the superiority of pattern-CAVs, we run controlled and non-controlled experiments
using the Pediatric Bone Age, ISIC2019, and FunnyBirds datasets with VGG, ResNet, ReXNet,
EfficientNet, and Vision Transformer architectures. Our main contributions include the following:

1. We introduce pattern-CAVs, more precisely estimating the concept signal direction and
being less influenced by distractors.

2. We measure the alignment of CAVs with the true concept direction in controlled settings,
confirming that pattern-CAVs align with the true concept direction, while the widely used
filter-CAVs diverge.

3. We measure the impact of directional shifts in popular CAV applications, including Testing
with CAV (TCAV) and model correction with Class Artifact Compensation (ClArC) in
controlled and real-world experiments, demonstrating benefits of pattern-CAV in both cases.

2 RELATED WORK

A variety of approaches has emerged to identify human-understandable concepts in DNNs. Some
works consider single neurons as concepts (Olah et al., 2017; Achtibat et al., 2023), while others focus
on identifying interesting subspaces (Vielhaben et al., 2023) or linear directions (Nanda et al., 2023).
We follow the latter approach and encode concepts as linear combinations of neurons, also known as
superposition (Elhage et al., 2022). These directions can be identified through unsupervised activation
matrix factorization (Fel et al., 2023) or by the supervised training of CAVs, i.e., vectors pointing from
samples without to samples with the concept. In the absence of concept labels, automated concept
discovery approaches can further streamline this process (Ghorbani et al., 2019; Zhang et al., 2021).
Various methods leverage CAVs as latent concept representation. For instance, TCAV measures a
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model’s sensitivity towards specific concepts. ClArC aims to unlearn model shortcuts, i.e., prediction
strategies based on unintended correlations between target labels and data artifacts, represented
by CAVs. Post-hoc concept bottleneck models project latent representations into a space spanned
by CAVs to obtain an interpretable latent representation. Beyond these applications, CAVs have
been employed to understand the strategies learned by AlphaZero in playing chess (McGrath et al.,
2022) and to identify meaningful directions for manipulation (e.g. no-smile → smile) in diffusion
autoencoders (Preechakul et al., 2022). Related works aim to enhance CAV robustness by alleviating
the linear separability assumption (Chen et al., 2020; Pfau et al., 2021), for example by representing
concepts as regions (Crabbé & van der Schaar, 2022). In contrast, our approach adheres to the linear
separability assumption but improves the precision of the modeled direction.

3 ESTIMATING SIGNAL OF CONCEPT DIRECTION

We view a DNN as a function f : X → Y , mapping input samples x ∈ X to target labels y ∈ Y . With-
out loss of generality, we assume that at any layer l with m neurons, f can be split into a feature ex-
tractor a : X → Rm, computing latent activations at layer l, and a model head f̃ : Rm → Y , mapping
latent activations to target labels. We further assume binary concept labels t ∈ {+1,−1}. CAVs are
intended to point from latent activations of samples without concept A− = {a(xi) ∈ Rm | ti = −1}
to activations of samples with concept A+ = {a(xi) ∈ Rm | ti = +1}. The optimal choice of layer
l depends on the type of concept, as simple concepts (e.g., color and edges) are learned on earlier
layers, while more abstract concepts (e.g., band-aid) are learned closer to the model output (Olah
et al., 2017; Radford et al., 2017; Bau et al., 2020).

3.1 FILTER-BASED CAV COMPUTATION

Traditionally, a CAV h is identified as the weight vector w ∈ Rm from a linear classifier, describing a
hyperplane separating latent activations of samples with the concept A+ from activations of samples
without the concept A−. Commonly (Kim et al., 2018; Yuksekgonul et al., 2023), linear SVMs
are used, minimizing the hinge loss with L2 regularization (Cortes & Vapnik, 1995). Other options
include Lasso (Tibshirani, 1996), Logistic, or Ridge (Hoerl & Kennard, 1970) regression.

Concretely, the classification task is usually described as a linear regression problem. With concept
labels t as dependent variable and latent activations a(x) ∈ Rm as regressors, we assume a linear
model flinear(x) = a(x)⊤h+ b with weight vector (or filter) h ∈ Rm and bias b ∈ R. Using ridge
regression as an example, the optimization task to find a filter-CAV hfilt is then given by

hfilt : min
h,b

∥t−Ah− 1b∥2 + λ∥h∥2, (1)

where A ∈ Rn×m is summarizing latent activations for all n samples in X in matrix form, t ∈ Rn

is the vector with concept label ti as its ith element and 1 ∈ Rn is a vector of 1s. The optimization
objectives differ by the type of linear model (see Appendix B.1).

However, research from the neuroimaging realm suggests that filters from linear classifiers not only
model the signal separating the two classes but also capture a distractor component (Haufe et al.,
2014). This component can arise from noise, but also from unrelated features in the data, which are
not directly related to the signal. In the context of CAVs, any information unrelated to the concept is
considered a distractor. The filters are optimized to weigh all features to achieve optimal separability
w.r.t. t. However, this optimization does not disentangle concept signals from distractor signals. As a
result, distractor pattern present in the training data influence the direction of filter-CAVs.

3.2 PATTERN-BASED CAV

We introduce a pattern-based CAV, which is based on the assumption that we can model latent
activations given the concept label t via the linear function f̃linear(t) = th+ b for a vector h ∈ Rm

and a bias vector b ∈ Rm. The difference in activations with and without the concept, h, can be
obtained by optimizing the following objective (Haufe et al., 2014):
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hpat : min
h,b

∥A− th⊤ − 1b⊤∥F , (2)

where ∥ · ∥F denotes the Frobenius norm. Contrary to Eq. (1), which finds an h maximizing the
class-separability, Eq. (2) finds a pattern best explaining A w.r.t. concept label t. This is solved as
linear regression task for each feature dimension, leading to

hpat =
1

σ2
t |X |

∑
x,t∈X

(a(x)− Ā)(t− t̄) (3)

with mean latent activation Ā, mean concept label t̄ and sample concept label variance σ2
t , which is

equal to the sample covariance between the latent activations a(x) and the concept labels t divided by
the sample concept label variance. In contrast to filter-CAVs, the resulting pattern-CAV is invariant
under feature scaling and more robust to noise, as further outlined in Appendix B.2. Given binary
concept labels, Eq. (3) simplifies to the difference of cluster means, as shown in Appendix B.3.
Note, that the computation of pattern in regression manner as described in Eq. (3) allows to further
incorporate prior knowledge, e.g., sparseness constraints (Haufe et al., 2014).

3.3 2D TOY EXPERIMENTS

We demonstrate the difference between filter- and pattern-CAVs in a toy experiment inspired by
Kindermans et al. (2018). We simulate n activations Ai ∈ R2 split equally between the concept
labels ti ∈ {+1,−1} in the following manner: Each activation Ai = si +Di is decomposed into
a deterministic signal part si and a random (non-signal-, noise-) distractor part Di. The signal part
si = 1(ti = +1)(1 0)⊤ is aligned with the x-axis, the distractor part Di is modeled by identically
distributed independent two-dimensional Gaussians of mean 0, variance σ2 in each dimension and
no correlation between dimensions. The distractor contains true noise and signal related to other
concepts. Both are “noise” for the concept signal estimation. We experiment with two distractor
patterns in Figure 1 (right):

Scaling: We multiply values on the x-axis with scaling factor λ = 103, such that the signal si
is scaled proportionally and therefore signal features are on a larger scale than distractor features.
The filter-CAV diverges from the true concept direction (1 0)⊤, as the entry of the weight vector
in direction of the signal scales anti-proportionally to the scaling factor in logistic regression (see
Appendix B.6 for the derivation). Feature normalization is commonly disregarded in CAV training.

Noise Rotation: We add another distractor term Drot
i = rτεi with εi

i.i.d.∼ N (0, 1), which is oriented
parallel to the vector rτ = (sin τ cos τ)⊤. This rotates the distractor direction based on τ . Only the
pattern-CAV hpat obtained via Eq. (3) precisely identifies the concept direction, while the filter-CAV
prefers diverging directions which increase the angle to rτ , thus minimizing the variance of the
datapoints in direction of the weight vector (see Appendix B.7 for the mathematical derivation).

Moreover, filter-based CAVs face further challenges, including sensitivity to regularization strength
and random seeds, particularly in low data scenarios, as demonstrated in Appendix B.4.

4 EXPERIMENTS

After describing our experimental setup (Section 4.1), we measure how precise CAVs represent true
concept directions (Section 4.2), as well as the impact of CAVs on applications, including concept
sensitivity testing with TCAV (Section 4.3.1) and CAV-based model correction (Section 4.3.2).

4.1 EXPERIMENT DETAILS

We conduct experiments with three controlled and one real-word datasets. For the former, we
insert artificial concepts into ISIC2019 (Codella et al., 2018; Tschandl et al., 2018; Combalia et al.,
2019), a dermatologic dataset for skin cancer detection with images of benign and malignant lesions,
and a Pediatric Bone Age dataset (Halabi et al., 2019), with the task to predict bone age based on
hand radiographs. Specifically, we insert timestamps as a text layover into 1% of samples of class
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Figure 2: Example for timestamp artifact inserted into ISIC2019 samples (left) and RelMax
visualization for neurons (right) corresponding to the largest absolute values in filter- and pattern-
CAVs, along with the Conv filter ID and the fraction of all (absolute) CAV values. While the
filter-CAV picks up noisy neurons, the pattern-CAV uses neurons related to the relevant concept.

“Melanoma” of ISIC2019, encouraging the model to learn the timestamps as a shortcut. For the Bone
Age dataset, we insert an unlocalizable concept by increasing the brightness (i.e., increase pixel
values) of 20% of samples of only one class. We implemented bone age prediction as a classification
task, with target ages binned into five equal-sized groups. Lastly, we use FunnyBirds (Hesse et al.,
2023), a synthetic dataset with part-level annotations, to synthesize a dataset with 10 classes of
birds, where each category is defined by exactly one part (e.g., wings, beak). Other parts are chosen
randomly per sample, forcing the model to use the class-defining part (i.e., concept) as the only valid
feature. Detailed class definitions and examples for synthesized images are provided in Appendix C.1.
Further, we consider real data artifacts present in ISIC2019, including “band-aid”, “ruler”, and
“skin marker”. We finetune VGG16 (Simonyan & Zisserman, 2015), ResNet18/50 (He et al., 2016;
Wightman et al., 2021), ResNeXt50 (Xie et al., 2017), ReXNet100 (Han et al., 2021), EfficientNet-
B0 (Tan & Le, 2019), EfficientNetV2-(Tan & Le, 2021), and Vision Transformer (Dosovitskiy et al.,
2020) models pre-trained on ImageNet (Deng et al., 2009; Ridnik et al., 2021) for all datasets with
training details given in Appendix C.2.

4.2 PRECISENESS OF CONCEPT REPRESENTATION

The primary goal of Pattern-CAVs is the optimization of the precision of concept representations.
Therefore, to assess how precisely CAVs represent true concept directions both qualitatively and
quantitatively, we (1) visualize the key neurons associated with the CAV, and (2) quantify the
alignment between CAVs and the ground truth direction.

How clean are CAVs qualitatively? We investigate the focus of CAV h fitted on layer l by em-
ploying feature visualization to neurons corresponding to the largest absolute, hence most impactful,
values in h. Specifically, we use RelMax (Achtibat et al., 2023) to retrieve input samples maximizing
the relevance, computed by feature attribution methods, for the neurons with the largest absolute
values in h. We further use receptive field information to zoom into the most relevant region and
mask out irrelevant information. Results for filter- and pattern-based CAVs for the timestamp artifact
in ISIC2019 are shown in Fig. 2. Whereas the pattern-CAV leverages neurons focusing on the desired
concept, i.e., the timestamp, the filter-CAV is distracted by other features. In addition, we show
the percentage for the value associated with the neuron of the entire CAV and higher values, as
observed for Pattern-CAV, indicate a less uniform distribution over neurons and a larger focus on the
corresponding top neurons. Additional neuron visualizations for different filter- and pattern-CAVs
are shown in Appendix D.2.

CAV Alignment with True Concept Direction Using our controlled datasets, we generate pairs
of samples with and without the concept (x+

i and x−
i ) and compute the sample-wise true latent

concept direction hgt
i = a(x+

i )− a(x−
i ).

2 This definition aligns with TCAV’s intuition, i.e., adding
activations along the concept direction corresponds to adding the concept in input space. To quantify
the alignment between CAV h and hgt

i per sample, we use cosine similarity as the similarity function

2In FunnyBirds, we remove concepts by randomizing the class-defining part, while keeping others identical.
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Figure 3: Left: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability (bottom), using filter- (SVM) and pattern-CAV for all Conv layers of VGG16
trained on ISIC2019, Bone Age, and FunnyBirds. While expectedly filter-CAVs have superior class-
separability, pattern-CAVs have a better alignment with the true concept direction. Right: Cosine
similarity between true concept direction hgt

i and CAVs with different feature pre-processing methods
fitted on the last Conv layer of VGG16 trained on ISIC2019 and Bone Age. Compared to filter-CAVs,
pattern-CAV has a higher alignment with hgt

i and is invariant to feature pre-processing.

sim(h,hgt
i ). We calculate the overall alignment ā by averaging the alignment scores for all samples:

ā = 1/|X |
∑
i

sim(h,hgt
i ) . (4)

Moreover, we measure the separability of samples w.r.t. concept label t by computing the AUC of
h⊤a(x). Fig. 3 (left) presents the results, including standard errors, for both CAV alignment (top)
and separability (bottom) across all 13 convolutional (Conv) layers in the VGG16 models for all three
controlled datasets. We estimate standard errors of AUC scores using the Wilcoxon-Mann-Whitney
statistic as an equivalence (Cortes & Mohri, 2004). The alignment with hgt

i is significantly higher for
pattern-based CAVs across all layers for all datasets, confirming a more precise estimation of the true
concept direction. As expected, filter-based CAVs exhibit higher concept separability. Additional
experiments in Appendix D.3 demonstrate the superior robustness of pattern-CAVs towards the
reduction of concept set sizes and concept labeling errors. Moreover, the experiments show that
pattern-CAVs outperform concept directions found in unsupervised manner in terms of precision. We
further investigate the relation between the distribution of noise in the activations and the divergence
of estimated concept directions from the true concept direction in Appendix D.6.

Moreover, we study the sensitivity of CAVs to different pre-processing methods for latent activations,
specifically centering, max-scaling, and their combination. Results for CAVs fitted on the last Conv
layer of VGG16 for ISIC2019 and Bone Age are shown in Fig. 3 (right). While filter-CAVs have
better alignment with true concept directions when features are re-scaled, which is often overlooked
in practice, pattern-CAVs consistently outperform filter-CAVs regardless of activation pre-processing.
This can be attributed to the fact that the covariance (see Eq. (3)) is translation invariant, while scale
invariance is proven in Appendix B.2. Another disadvantage of filter-CAVs is their dependence on
hyperparameters, e.g., regularization strength. In contrast, pattern-CAVs do not require parameter
tuning and are therefore more computationally efficient.

4.3 IMPACT OF DIRECTIONAL SHIFTS ON CAV APPLICATIONS

We measure the impact of different CAVs on applications requiring precise concept directions, namely
concept sensitivity testing with TCAV and concept-based model correction with ClArC.

4.3.1 TESTING WITH CAV

TCAV (Kim et al., 2018) is a technique to assess the sensitivity of a DNNs’ prediction w.r.t. a given
concept represented by CAV h. Specifically, given the directional derivative ∇af̃(a(x)), we measure

6



Published as a conference paper at ICLR 2025

SerifShow SVG Download SVG

\tau=45^{\circ}Enter LaTeX

con
cep

t

distractor

pattern 
CAV

filter 
CAV

class B

class A
(without concept)

class A
(with concept)

weights of  

Serif

Show SVG

Download SVG

f

Enter LaTeX

2D Toy Example Rotating Distractor Concept Sensitivity over 
Distractor Rotation

SerifShow SVG Download SVG

\tau=135^{\circ}Enter LaTeX

TCAV>0.5

TCAV=0.5

TCAV<0.5

Figure 4: Left: 2D TCAV experiment with distractor rotated by τ = 45◦ with samples from class
A (purple with concept, blue without concept) and class B (green). The model f classifies between
classes A and B. CAVs are fitted on samples with and without concept from class A. The pattern-CAV
aligns with the concept direction, while the filter-CAV diverges to optimize class-separability. Right:
TCAVsens for model f plotted over distractor rotation τ . Positive and negative values indicate a
positive and negative influence of the concept direction and 0 indicates insensitivity (TCAV = 0.5).

the model’s sensitivity towards the concept for a sample x as

TCAVsens(x) = ∇af̃(a(x)) · h . (5)

The TCAV score measures the fraction of the sample subset containing the concept X+ =
{xi ∈ X | ti = +1} where the model shows positive sensitivity towards changes along the esti-
mated concept direction h:

TCAV =
|{x ∈ X+ | TCAVsens(x) > 0}|

|X+| . (6)

Hence, to truthfully measure the model’s sensitivity, a precise estimated concept direction h is
required. A TCAV score ≈ 0.5 indicates minimal influence of the concept on the model’s decisions,
while scores above and below 0.5 indicate positive and negative impacts. We show the effects of
directional divergence by conducting experiments in 2D and with our controlled FunnyBirds dataset.

TCAV in 2D Toy Experiment Consider samples x ∈ R2 with class labels y ∈ {+1,−1}, referred
to as class A and B, perfectly separable by a linear model f with weights w = (1 −1)⊤ and bias
b = 0. We introduce a data artifact in class A where some samples contain concept c with concept
direction c = (1 1)⊤ perpendicular to w. As f is insensitive to concept c, we expect a TCAV score
of 0.5. Using the notation from Section 3.3, we rotate the distractor rτ with τ ∈ [0, π] relative to c.
CAVs are fitted to separate samples with and without c from class A, using concept labels t instead of
class labels y. Results are shown in Fig. 4. For τ = π/4 = 45◦(left), hpat aligns with the concept
direction c, whereas hfilt diverges significantly from the true concept direction. Plotting the models
sensitivity towards c, here measured as TCAVsens = w⊤h, with w as the gradient of f w.r.t. x, over
τ (right), we observe that hpat consistently achieves TCAVsens = 0 (corresponding to the expected
TCAV score 0.5), while for hfilt, the sensitivity towards c incorrectly depends on τ . These results
demonstrate that relying on the widely used SVM-CAVs (i.e., filter-CAV) may produce arbitrary
TCAV scores, making the concept sensitivity testing procedure highly unreliable. In contrast, our
proposed pattern-CAV is invariant to the distractors and leads to consistent TCAV scores.

Controlled Experiment with FunnyBirds The comparison of TCAV scores computed with
different CAV methods requires ground truth information on the true concept sensitivity, which is
commonly unavailable for DNNs. To address this, we use our FunnyBirds dataset designed to enforce
certain concepts, as for each class all concepts but one are randomized per sample. For each class k,
we define a subset Xk = {xi ∈ X | yi = k} and compute a TCAV score w.r.t. to the class-defining
concept (see Appendix C.1). These TCAV scores are expected to be ̸= 0.5, as the concepts are the
only valid features. Fig. 5 (left) presents the results averaged across all 10 classes with pattern-CAVs
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Figure 5: Left: ∆TCAV (averaged over class-defining concepts) for different CAVs fitted on last
Conv layers of VGG16, ResNet18, and EfficientNet-B0 trained on FunnyBirds. As models must use
these concepts by experimental design, high scores are better. In contrast to filter-CAVs, pattern-
CAVs achieve best scores for all models. Right: Concept-sensitivity maps, measured as element-
wise product ∇af̃(a(x)) ⊙ h using filter- and pattern-CAVs for three concepts with VGG16 and
EfficientNet-B0. Results are shown for the last Conv layer, upsampled to input space dimensions.
While pattern-CAVs precisely localize the concepts, filter-CAVs lead to noisy sensitivity maps.

and different filter-CAVs computed for the last Conv layers of VGG16, ResNet18, and EfficientNet-
B0. Additionally, we report the TCAV scores using the ground truth concept direction hgt

i (GT). The
TCAV score is reported as ∆TCAV = |TCAV − 0.5|, i.e. the delta from the score representing no
sensitivity. Higher values reflect a stronger impact on the model’s decision and are expected in this
experiment. To evaluate statistical significance, we run a two-sided t-test and found that all ∆TCAV
scores are significantly different from the random baseline score of 0. We report the corresponding
p-values, accuracies for filter-CAVs on the test set, and results for additional model architectures in
Appendix D.5. While for VGG16 and EfficientNet-B0, pattern-based CAVs achieve a perfect score
of 0.5, the TCAV score for filter-based CAVs does not fully indicate the model’s dependence on the
concept. Interestingly, all CAV variants achieve a perfect score for ResNet18, which can be explained
by not well localized concepts, as further qualitative investigations in Appendix D.4 indicate.

The above observations are supported by qualitative results in Fig. 5 (right), where pattern-CAVs
precisely localize concepts and measure positive concept sensitivity (red) correctly. In contrast,
filter-CAVs produce noisy concept-sensitivity maps, negatively impacting the TCAV score. This
is because TCAVsens(x) for sample x is computed over all elements of the concept-sensitivity map
∇af̃(a(x))⊙ h. For instance, for the “wing”-concept samples (2nd and 3rd row), the dominance of
negative sensitivity (blue) caused by noise over positive sensitivity (red) in VGG16’s filter-CAVs
leads to an incorrect negative overall concept sensitivity.

4.3.2 CAV-BASED MODEL CORRECTION (CLARC)

The ClArC framework (Anders et al., 2022) uses CAVs to model data artifacts in latent space
to unlearn shortcuts, i.e., prediction strategies based on artifacts present in the training data with
unintended relation to the task. Specifically, Right Reason ClArC (RR-ClArC) (Dreyer et al., 2024) is

a recent approach that finetunes the model with an additional loss term LRR(x) =
(
∇af̃(a(x)) · h

)2

.
This loss term penalizes the use of latent features, measured via the gradient, pointing into the direction
of CAV h, representing the data artifact. An accurate estimated concept direction is crucial to ensure
that the intended direction is penalized. Hence, we intentionally poison models by encouraging them
to use our controllable concepts (timestamp and brightness) as shortcuts, followed by the application
of ClArC to unlearn these concepts. We further correct models trained on ISIC2019 w.r.t. the known
artifacts “band-aid”, “ruler”, and “skin marker” with artifact-specific CAVs. Training details are
given in Appendix D.7.

Quantitative Evaluation We evaluate the effectiveness of model correction with different CAVs
by studying the impact of data poisoning on the model’s accuracy and its sensitivity to data artifacts.
For the former, we measure the accuracy on a clean (artifact-free) and a biased test set, with the
artifact inserted into all samples. For the real artifacts in ISIC2019, we automatically compute input
localization masks (Pahde et al., 2023) to cut (localizable) artifacts from known artifact samples and
paste them onto clean test samples. To probe the model’s sensitivity to the artifact, we measure the
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Table 1: Model correction results with RR-ClArC for VGG16, ResNet50, EfficientNet-B0, and
ViT trained on Bone Age | ISIC2019 (controlled) | ISIC2019 (real). We report accuracy on clean
and biased test set, the fraction of relevance on the region of localizable artifacts, and the TCAV
score (as ∆TCAVgt) with the sample-wise ground-truth concept direction hgt

i , measuring the models’
sensitivity towards the artifacts after model correction. Stars indicate statistical significance according
to z-tests with significance level 0.05, and arrows whether low (↓) or high (↑) are better.

model CAV Accuracy (clean) ↑ Accuracy (biased) ↑ Artifact relevance ↓ ∆TCAVgt ↓

V
G

G
-1

6

Vanilla 0.78 | 0.82 | 0.83 0.50 | 0.28 | 0.75 - | 0.62 | 0.51 0.29 | 0.14 | 0.10
lasso 0.77 | 0.82 | 0.82 0.55 | 0.30 | 0.76 - | 0.60 | 0.49 0.25 | 0.13 | 0.12
logistic 0.72 | 0.82 | 0.82 0.63 | 0.37 | 0.78 - | 0.54 | 0.43 0.25 |0.07∗ | 0.09
ridge 0.71 | 0.82 | 0.82 0.61 | 0.31 | 0.76 - | 0.59 | 0.50 0.24 | 0.13 | 0.12
SVM 0.69 | 0.81 | 0.82 0.70 | 0.36 | 0.78 - | 0.55 | 0.46 0.24 | 0.10 | 0.11
Pattern (ours) 0.78 | 0.80 | 0.82 0.75∗ |0.69∗ | 0.79 - |0.26∗ |0.31∗ 0.14∗ | 0.10 |0.03∗

R
es

N
et

50

Vanilla 0.77 | 0.85 | 0.87 0.48 | 0.51 | 0.82 - | 0.46 | 0.34 0.14 | 0.04 | 0.27
lasso 0.77 | 0.84 | 0.87 0.53 | 0.58 | 0.82 - | 0.44 | 0.30 0.03 | 0.02 | 0.05
logistic 0.77 | 0.85 | 0.87 0.55 | 0.69 | 0.83 - | 0.39 | 0.24 0.04 | 0.05 | 0.05
ridge 0.77 | 0.84 | 0.87 0.52 | 0.58 | 0.82 - | 0.45 | 0.30 0.13 | 0.03 | 0.05
SVM 0.77 | 0.85 | 0.87 0.55 | 0.68 | 0.83 - | 0.40 | 0.26 0.04 | 0.04 | 0.05
Pattern (ours) 0.78 | 0.84 | 0.87 0.59∗ | 0.71 | 0.83 - |0.37∗ |0.22∗ 0.01 | 0.03 | 0.04

E
ffi

ci
en

t
N

et
-B

0

Vanilla 0.79 | 0.87 | 0.88 0.46 | 0.55 | 0.83 - | 0.55 | 0.22 0.46 | 0.39 | 0.12
lasso 0.79 | 0.86 | 0.88 0.70 | 0.64 | 0.83 - | 0.52 | 0.22 0.01 | 0.11 | 0.11
logistic 0.77 | 0.85 | 0.88 0.75 | 0.67 | 0.83 - | 0.51 | 0.22 0.00 | 0.02 | 0.12
ridge 0.78 | 0.82 | 0.88 0.74 | 0.67 | 0.83 - | 0.52 | 0.22 0.21 | 0.12 | 0.12
SVM 0.77 | 0.85 | 0.88 0.75 | 0.65 | 0.83 - | 0.52 | 0.22 0.00 | 0.03 | 0.11
Pattern (ours) 0.77 | 0.85 | 0.88 0.75 |0.72∗ | 0.83 - |0.48∗ | 0.22 0.00 | 0.05 |0.03∗

V
iT

Vanilla 0.73 | 0.88 | 0.89 0.38 | 0.67 | 0.82 - | 0.15 | 0.10 0.47 | 0.25 | 0.05
lasso 0.74 | 0.88 | 0.89 0.39 | 0.67 | 0.82 - | 0.16 | 0.10 0.42 | 0.25 | 0.06
logistic 0.73 | 0.88 | 0.89 0.62 | 0.72 | 0.82 - | 0.16 | 0.10 0.02∗ | 0.25 | 0.04
ridge 0.74 | 0.88 | 0.89 0.48 | 0.66 | 0.82 - | 0.16 | 0.10 0.12 | 0.25 | 0.06
SVM 0.73 | 0.87 | 0.89 0.48 | 0.61 | 0.82 - | 0.22 | 0.10 0.46 | 0.50 | 0.04
Pattern 0.74 | 0.88 | 0.89 0.61 | 0.73 | 0.82 - | 0.16 | 0.10 0.06 | 0.25 | 0.11

fraction of relevance, computed with Layer-wise Relevance Propagation (LRP) (Bach et al., 2015) for
convolutional architectures and SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) for
transformer-based models, on the artifact region using our localization masks. No artifact relevance
is reported for the brightness artifact, as it is considered unlocalizable. Moreover, we compute the
TCAV score after model correction using the ground truth concept direction hgt

i . For real artifacts,
the ground truth direction is computed for “attacked” samples xatt with artificially inserted artifacts,
as hgt

i = a(xatt
i ) − a(xi). The model correction results for VGG16, ResNet50, EfficientNet-B0,

and Vision Transformer (ViT) for ISIC2019 (timestamp artifact, controlled), Pediatric Bone Age
(brightness, controlled), and ISIC2019 (“band-aid”, real) are shown in Table 1. We perform model
correction on one of the last three Conv layers for the former three architectures, and on the last
fully-connected linear layer for ViT. We use filter-based (lasso, logistic, ridge regression, and SVM)
and pattern-based CAVs as introduced in Eq. (3) to represent the direction to be unlearned. The
models are finetuned and compared to a Vanilla model, which is trained without added loss term.
Further training details are provided in Appendix C.2. For VGG16, the accuracy on clean test sets
remains largely unaffected, while pattern-CAVs outperform other methods in terms of accuracy on the
biased test set. Moreover, pattern-CAVs yield best results for reduced artifact sensitivity, measured
through artifact relevance and ∆TCAVgt. Similar artifact sensitivity results can be observed for
the other architectures. Furthermore, pattern-CAVs achieve the highest accuracies on biased test
sets in the controlled settings. For the “band-aid” artifact, all CAVs yield similar accuracy scores
on both clean and biased test sets. This can be attributed to the minimal impact of the artifact on
EfficientNet-B0 and ResNet50, as indicated by the small accuracy difference between the two test sets.
Detailed results with standard errors for additional model architectures, e.g., ResNeXt50, ReXNet100,
and EfficientNetV2, are shown in Appendix D.7.

Qualitative Evaluation We compare attribution heatmaps for the Vanilla model with heatmaps
for models corrected with RR-ClArC using filter- (SVM) and pattern-based CAVs w.r.t. the band-
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DifferenceHeatmap
RR-ClArC (Lasso)

DifferenceHeatmap
RR-ClArC (Logistic)

DifferenceHeatmap
RR-ClArC (Ridge)

DifferenceHeatmap
RR-ClArC (SVM)

DifferenceHeatmap
RR-ClArC (Pattern)

VanillaInput

Figure 6: Qualitative results for model correction w.r.t. real artifacts band-aid (top), ruler (middle),
and skin marker (bottom) in ISIC2019 using VGG16. In addition to attribution heatmaps for models
corrected with filter- and pattern-CAVs, we show heatmaps highlighting the differences compared
to the Vanilla model attribution heatmap, with red and blue indicating higher and lower relevance
after correction, respectively. Whereas filter-CAVs have limited impact, pattern-CAVs successfully
increases the relevance on the mole and decreases the relevance on data artifacts.

aid, ruler, and skin marker artifacts using the VGG16 model trained on ISIC2019 in Fig. 6. In
addition to the attribution heatmap computed with LRP using the εz+♭-composite (Kohlbrenner
et al., 2020) in zennit (Anders et al., 2021), we show another heatmap highlighting the difference
between the normalized relevance heatmaps of the corrected and the Vanilla model, with blue and red
showing areas with lower and higher relevance after correction. Pattern-CAVs reduce the relevance
of data artifacts after model correction significantly, while traditional SVM-CAVs have little impact.
Additional examples are shown in Appendix D.7.

5 CONCLUSION

While filters from linear classifiers can accurately predict the presence of concepts, they fall short in
precisely modeling the direction of the concept signal. As many applications of CAVs, including
TCAV and ClArC, heavily rely on accurate concept directions, we address this drawback by introduc-
ing pattern-based CAVs, which disregard distractor signals and focus solely on the concept signal. We
provide both theoretical and empirical evidence to support the improved estimation of the true concept
direction compared to widely used filter-based CAVs. Furthermore, we demonstrate the positive
impact on applications leveraging CAVs, such as estimating the model’s sensitivity towards concepts
and correcting model shortcut behavior caused by data artifacts. Future research might explore
the optimization of concept directions beyond binary labels, the incorporation of prior knowledge,
semi-supervised concept discovery, and the disentanglement of correlated concept directions.

Limitations Our results confirm that pattern-CAVs exhibit superior alignment with ground truth
concept directions compared to filter-CAVs. This has a positive impact on CAV applications heavily
relying on precise concept directions, such as concept sensitivity testing (TCAV) and model correction
with ClArC. However, for CAV applications in which class-separability is more important, i.e.,
determining whether a concept is present in a given sample, filter-based CAVs might be a better
choice. For instance, post-hoc concept bottleneck models (Yuksekgonul et al., 2023) project latent
embeddings into an interpretable concept space spanned by CAVs and fit a linear classifier in the
resulting concept space. The linear classifier can handle directional divergence in CAVs and requires
a precise decision hyperplane, making filter-based CAVs superior in such scenarios. Thus, the choice
of CAV computation methods should be carefully considered based on the specific task at hand.
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APPENDIX

A BROADER IMPACT

This work presents drawbacks of widely used filter-based concept activation vectors (CAV), specifi-
cally their tendency to deviate from the true concept direction. To address this, our paper introduces
robust pattern-based CAVs, providing more accurate concept directions. This advancement directly
impacts safety-critical CAV applications like concept sensitivity testing and model debugging, thereby
promoting the transparency, accountability, and understandability of deep neural networks. Ulti-
mately, this work contributes to increasing the trustworthiness of AI and advancing the development
of reliable and explainable AI systems, extending its impact to societal dimensions.

B METHODS

In the following, we provide additional details and proofs related to our methods. Specifically, we
provide details for linear models considered for filter-based CAVs in Section B.1, prove the robustness
to noise and scaling of pattern-CAVs in Section B.2, and further prove that in case of binary target
labels the pattern is equivalent to the difference of cluster means in Section B.3. Moreover, we
present additional 2D toy experiments in Section B.4, scale the toy experiment to high dimension
in Section B.5, and provide proofs of divergence for filter-based approaches in Section B.6 and
Section B.7 for feature scaling and noise rotation, respectively.

B.1 DETAILS FOR FILTER-BASED CAV APPROACHES

We briefly summarize the optimization objectives for linear models for filter-based CAV approaches,
including lasso, logistic, and ridge regression, as well as SVMs. All methods aim to find a hyperplane
that separates a dataset X ⊂ Rm of size n into two sets, defined by their concept label t ∈ {+1,−1}.
This is achieved by fitting a weight vector w ∈ Rm and a bias b ∈ R such that the hyperplane consists
of all x which satisfy w⊤x+ b = 0.

Lasso regression (Tibshirani, 1996) aims to minimize residuals ri =
(
ti − (w⊤xi + b)

)
with L1-

norm regularization, thereby encouraging sparse coefficients. The optimization problem is given
by

min
w,b

 1

n

∑
i∈[n]

r2i + λ
∑
j∈[m]

|wj |

 . (7)

Similarly, ridge regression (Hoerl & Kennard, 1970) fits a linear model which minimizes the residuals
ri with L2-norm regularization by solving

min
w,b

 1

n

∑
i∈[n]

r2i + λ

√ ∑
j∈[m]

w2
j

 . (8)

The logistic regression model estimates probabilities via

P̂w,b(t = +1 | x) = ew
⊤x+b

1 + ew⊤x+b
= σ(w⊤x+ b),

where σ denotes the sigmoid function σ(z) = ez

1+ez . The linear model is now fitted by maximizing
the log likelihood of the observed data:

max
w,b

L(w, b;X ) = max
w,b

∑
i∈[n]

1(ti = +1) log P̂w,b(t = +1 | xi)

+ 1(ti = −1) log
(
1− P̂w,b(t = +1 | xi)

)
.

(9)

Lastly, and most commonly used for CAVs, SVMs (Cortes & Vapnik, 1995) fit a linear model by
finding a hyperplane that maximizes the margin between two classes using the hinge loss, defined
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as li = max
(
0, 1− ti

(
w⊤xi + b

))
and L2-norm regularization with the following optimization

objective:

min
w,b

 1

n

∑
i∈[n]

li + λ

√ ∑
j∈[m]

w2
j

 . (10)

B.2 FEATURE SCALING AND NOISE ON PATTERN-CAV

In this section, we investigate the effect of feature scaling and additive noise on the resulting pattern-
CAV. We start from the known solution for a simple linear regression task provided in Equation 3,
resulting in a pattern-CAV of

hpat =
1

σ2
t |X |

∑
x,t∈X

(a(x)− Ā)(t− t̄). (11)

Feature Scaling We start with the effect of feature scaling on hpat. Specifically, we investigate the
effect on the CAV, when we scale a specific dimension k of features a ∈ Rm (of dimension m) with
a factor γ, i.e.,

aγi =

{
ai if i ̸= k

γai if i = k.
(12)

Then, with Eq. (11), we get for the corresponding pattern-CAV

(hγ)
pat
i =

1

σ2
t |X |

∑
x,t∈Xh

(aγi (x)− āγi )(t− t̄)

=

{
hpat
i if i ̸= k

γhpat
i if i = k.

(13)

meaning that the CAV hpat scales with the features (contrary to many classification-based CAVs).

Additive Noise We add random noise ϵ with zero mean E[ϵ] = 0, that is independent to the concept
labels t to a feature dimension k. Then in expectation

E[h′pat
i ] =

1

σ2
t

E[(ai − āi + δikϵ)(t− t̄)]

=
1

σ2
t

[E[(ai − āi)(t− t̄)] + E[ϵk(t− t̄)]]

=
1

σ2
t

E[(ai − āi)(t− t̄)] = hpat
i ,

(14)

where we used the independence of ϵ and t, i.e., E[ϵt] = E[ϵ]t = 0.

B.3 PATTERN-CAV REDUCING TO THE DIFFERENCE OF MEANS

Assuming for easier notation we have binary concept labels t ∈ {0, 1}. We start from Eq. (3) for the
pattern-CAV, given by the known solution for a simple linear regression task given as

hpat =
1

σ2
t |X |

∑
x,t∈X

(a(x)− Ā)(t− t̄). (15)

For the sample covariance term, we get

1

|X |
∑

x,t∈X
(a(x)− Ā)(t− t̄) =

1

|X |

 ∑
x,t∈X+

(a(x)− Ā)(1− t̄)−
∑

x,t∈X−

(a(x)− Ā)t̄

 . (16)
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We have |X+| positive (with concept) sample activations A+ and |X−| negative (without concept)
sample activations A−. We further introduce α± = |X±|

|X | , therefore, t̄ = α+ and 1− t̄ = α− using
t ∈ {0, 1}. Thus, we can write

1

|X |
∑

x,t∈X
(a(x)− Ā)(t− t̄) =

1

|X |

α−
∑

x,t∈X+

(a(x)− Ā)− α+
∑

x,t∈X−

(a(x)− Ā)


=

1

|X |
[
α−|X+|(Ā+ − Ā)− α+|X−|(Ā− − Ā)

]
,

(17)

where we used for the last step that

Ā± =
1

|X±|
∑

x,t∈X±

a(x). (18)

Finally, we receive

1

|X |
∑

x,t∈X
(a(x)− Ā)(t− t̄) =

|X+||X−|
|X |2 (Ā+ − Ā−) = σ2

t (Ā+ − Ā−) (19)

and

hpat = Ā+ − Ā−. (20)

B.4 2D TOY EXAMPLES

In addition to the 2D experiments conducted in Section 3.3 in the main paper, we investigate two
more scenarios in which we (1) increase the standard deviation and (2) vary the random seed.
For the former, we randomly sample data points for class A from N ((0 1)⊤,Σ) and for class B

from N ((5 1)⊤,Σ) with Σ =

(
σ2 0
0 σ2

)
and incrementally increase σ. For the latter, we sample

from the same distributions with fixed σ = 1, but use different random seeds for each run. We
fit both pattern- and filter-CAVs for both experiments. As filter, we use a hard-margin SVMs.
Fig. 7 presents results for additional runs for the settings discussed in the main paper, namely
noise rotation (1st row) and feature scaling (2nd row), as well as the new 2D settings, including
increased standard deviation (3rd row) and different random seeds (4th row). In addition to the
observations discussed in the main paper, we can see that filter-CAVs from hard-margin SVMs
diverge for increased values for σ, as samples are not perfectly separable anymore. Moreover, the
filter-CAVs is sensitive to random seeds. In contrast, pattern-CAVs constantly point into the correct
direction for all settings. Animated visualizations for all challenges discussed can be found here:
https://github.com/frederikpahde/pattern-cav/tree/main/animations.

B.5 HIGH-DIMENSIONAL TOY EXPERIMENT

We extended our 2D toy experiment to 1024-dimensional data with the concept signal in one
dimension, noise rotation, and further 100 distractor signals in randomly selected dimensions. We
measure the cosine similarity with the ground truth concept direction and report results in Fig. 8. The
quality of pattern-CAV remains high, while SVM-CAVs are distracted by the rotated noise.

B.6 PROOF OF DIVERGENCE: SCALING

We consider the general case of logistic regression on a set of activations A ⊂ Rm. For a weight
vector w ∈ Rm and bias term b ∈ R logistic regression models the probability of an activation a
corresponding to concept label t = +1 as

P̂w,b(t = +1 | a) = ew
⊤a+b

1 + ew⊤a+b
= σ(w⊤a+ b), (21)
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Figure 7: Multiple runs for 2D toy experiments. For noise rotation (1st row), the filter-CAV (magenta)
diverges depending on the distractor direction, while pattern-CAV (green) stays constant. When
increasing the scale of the x-axis (2nd row), the filter CAV scales antiproportional. For increased
standard deviation (3rd row), filter-CAVs (here: hard-margin SVM) diverge when the clusters are not
perfectly separable anymore. Lastly, different random seeds for not perfectly separable clusters lead
to varying directions for filter-based CAVs (4th row).

where σ denotes the sigmoid function σ(z) = ez

1+ez . We predict t = +1 for an activation a if

P̂w,b(t = +1 | a) > 0.5 and t = −1 otherwise. To train an unpenalized logistic regression classifier,
we seek to maximize the log likelihood of our observed activations A

L(w, b;A) =
∑
i∈[n]

1(ti = +1) log P̂w,b(t = +1 | ai) + 1(ti = −1) log
(
1− P̂w,b(t = +1 | ai)

)
.

(22)

Assume for our unscaled set A, we have found an optimal choice

ŵ, b̂ ∈ argmax
w∈Rm,b∈R

L(w, b;A). (23)

To introduce the scaling along an axis, for a given vector a ∈ Rn and a dimension k ∈ [n] we denote
by aγ the vector which has the same entries as a except for the k-th entry, which has been replaced
by γak. Further, let Aγ = {aγ | a ∈ A} denote the set of scaled activations. Finally, for the weight
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Figure 8: Cosine similarity with ground truth direction over degree of noise rotation in experiment with
1024-dimensional generated toy data with true concept direction oriented along the first dimension,
noise rotation, and 100 additive distractor signals in randomly sampled directions. Pattern-CAV
consistently points into the correct direction, while SVM-CAV is distracted by the rotated noise.

vector w we introduce the equivalent notation w1/γ for the vector in which only the k-th entry of w
has been changed to 1

γwk. Then we derive the following equality(
w1/γ

)⊤
aγ + b = w1a1 + . . .+

(
1

γ
wk

)
(γak) + . . .+ wmam + b = w⊤a+ b, (24)

which implies the equalities of the predicted probabilities

P̂w1/γ ,b(t = +1 | aγ) = P̂w,b(t = +1 | a) (25)

and thus of the log likelihoods

L(w1/γ , b;Aγ) = L(w, b;A). (26)

Therefore it follows that the optimal solution to logistic regression on the scaled dataset relates to our
original solution on the unscaled dataset via

ŵ1/γ , b̂ = argmax
w∈Rm,b∈R

L(w, b;Aγ). (27)

In conclusion, scaling the activations by a factor of γ in one dimension leads the signal to also scale by
factor of γ in this dimension. The filter-based CAV calculated as the weight vector of an unpenalized
logistic regression, however, exhibits a scaling in the same dimension which is antiproportional to
the scaling factor γ. Such antipropotional scaling will misalign the filter-based CAV unless it is
either perfectly aligned or perfectly orthogonal to the direction of scaling. This shows that even if the
filter-based CAV theoretically lies aligned or orthogonal to the scaling dimension due to noise and
constraints in machine precision, logistic regression may be hugely affected by the lack of feature
scaling.

B.7 PROOF OF DIVERGENCE: NOISE ROTATION

With the additional rotational noise term and assuming the concept label ti to be fixed, our activations
Ai are distributed according to independent multivariate normal distributions N (µi,Σ) with

µi =

(
1
0

)
1(ti = +1),

Σ =

(
σ2 + sin2 τ sin τ cos τ
sin τ cos τ σ2 + cos2 τ

)
.

(28)

From this formulation we can see that this adds a noise which is correlated in the direction parallel
and orthogonal to the CAVs, unless τ is a multiple of π

2 in which case we only add noise parallel
or orthogonal to the CAVs respectively. It thus follows that the random variable w⊤Ai + b has the
following distribution:

w⊤Ai + b
ind.∼ N

(
w11(ti = +1) + b,V(w⊤Ai)

)
. (29)
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Note that the choice of w2 does not affect the expected value of w⊤Ai + b but may change its
variance. To study this effect on the variance, for a given λ ̸= 0 define the family of weight vectors

Wλ =

{
λ

(
1
w2

) ∣∣∣∣ w2 ∈ R
}
. (30)

Theorem B.1. Define the vector w̃λ = λ

(
1
w̃2

)
where w̃2 = − sin τ cos τ

σ2+cos2 τ . Then w̃λ is the unique

minimizer
w̃λ = argmin

w∈Wλ

V(w⊤Ai). (31)

Proof. The variance for w ∈ Wλ is given by

V(w⊤Ai) = λ2 (1 w2)

(
σ2 + sin2 τ sin τ cos τ
sin τ cos τ σ2 + cos2 τ

)(
1
w2

)
= λ2

{
σ2 + sin2 τ + 2w2 sin τ cos τ + w2

2σ
2 + w2

2 cos
2 τ

}
= λ2

{
σ2 + w2

2σ
2 + (sin τ + w2 cos τ)

2
}
.

(32)

Differentiating with respect to w2 gives the following expression

∂

∂w2
V(w⊤Ai) = λ2

{
2w2σ

2 + 2 cos τ(sin τ + w2 cos τ)
}
= 2λ2

{
(σ2 + cos2 τ)w2 + sin τ cos τ

}
(33)

This is set to zero if and only if w̃2 = − sin τ cos τ
σ2+cos2 τ . Furthermore, the second derivative is

∂2

∂w2
2

V(w⊤Ai) = 2λ2
(
σ2 + cos2 τ

)
> 0, (34)

so w̃2 indeed minimizes the variance.

The proofs of divergence for both logistic regression and SVMs are now analogous: Assuming there
are two vectors w, w̃ for which w⊤Ai + b has the same expected value but w̃ yields a smaller
variance, then the expected value of the objective function of the optimization problem of the model
(the log likelihood for logistic regression or the size of the margin for SVMs respectively) will be
larger for w̃. Together with Theorem B.1, this proves that a vector of the form w̃λ maximizes the
expected value of the objective function and is thus preferred as the weight vector over the true CAV
(1 0)⊤ with non-zero probability.

B.7.1 LOGISTIC REGRESSION

For logistic regression, we intend to maximize the log likelihood of our observed data. We may
express our log likelihood in terms of the random variables w⊤Ai + b by the formula

L(w, b;A)=
∑
i∈[N ]

1(ti = +1) log(σ(w⊤Ai + b)) + 1(ti = −1) log(1− σ(w⊤Ai + b))

=
∑
i∈[N ]

1(ti = +1) log(σ(w⊤Ai + b)) + 1(ti = −1) log(σ(−w⊤Ai − b)),
(35)

where σ denotes the sigmoid function.
Theorem B.2. Let w, w̃ be two weight vectors with E

[
w⊤Ai + b

]
= E

[
w̃⊤Ai + b

]
for all i ∈ [n]

and V(w⊤Ai + b) > V(w̃⊤Ai + b). Then

E [L(w̃, b;A)] > E [L(w, b;A)] . (36)

Proof. To focus on the effect of the variance on the log likelihood, we define independently distributed
random variables Yi ∼ N (µi, ς

2) with means µi and shared variance ς2 > 0. We allow the Yi to
have different means as the mean of the random variables w⊤Ai + b also differ depending on the
concept label ti. We may now define the functions f and gi which both depend on ς2 via

gi(Yi) = 1(ti = +1) log(σ(Yi)) + 1(ti = −1) log(σ(−Yi)) (37)
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and

f(ς2) = E

∑
i∈[n]

gi(Yi)

 =
∑
i∈[n]

E [gi(Yi)] , (38)

where we used the linearity of the expected value in the last step. After proving that the function f is
strictly decreasing the claim follows from inserting w⊤Ai + b for Yi. We prove first that log(σ(z))
is a strictly concave function by calculating the second derivative:

(log(σ(z)))′′ =

(
1

σ(z)
σ(z)(1− σ(z))

)′

= (1− σ(z))
′
= −σ(z)(1−σ(z)) < 0 for z ∈ R, (39)

which holds as the image of the sigmoid function is the open interval (0, 1). Because the logarithm
of the sigmoid is a strictly concave function, so is log(σ(−z)), hence each summand

gi(Yi) = 1(ti = +1) log(σ(Yi)) + 1(ti = −1) log(σ(−Yi)) (40)

is strictly concave in Yi.
Now consider two variances ς21 < ς22 and define independent random variables Y 1

i ∼ N (µi, ς
2
1 )

and Y ′
i ∼ N (0, ς22 − ς21 ) such that their sum are independently distributed random variables Y 2

i :=
Y 1
i + Y ′

i ∼ N (µi, ς
2
2 ). Using the conditional version of Jensen’s inequality on the strictly concave

functions gi, we derive

E
[
gi(Y

2
i )

]
= E

[
gi(Y

1
i + Y ′

i )
]
= E

[
E
[
gi(Y

1
i + Y ′

i ) | Y 1
i

]]
< E

[
gi
(
E
[
Y 1
i + Y ′

i | Y 1
i

])]
= E

[
gi
(
Y 1
i + E [Y ′

i ]
)]

= E
[
gi
(
Y 1
i

)]
,

(41)

where the second-to-last step follows from the properties of conditional expectation for completely
dependent and independent random variables. Summing over all i finally proves the desired inequality

f(ς21 ) =
∑
i∈[n]

E
[
gi
(
Y 1
i

)]
>

∑
i∈[n]

E
[
gi
(
Y 2
i

)]
= f(ς22 ). (42)

B.7.2 SVMS

We inspect the behavior of a linear hard-margin SVM, assuming that our data can be perfectly
separated by a linear hyperplane. Then the optimization problem for this particular SVM is given by

max
w,b

2

∥w∥2
subject to ti(w

⊤Ai + b) ≥ 1 for all i ∈ [n].

(43)

This states that we aim to maximize the margin which has length 2/∥w∥2 subject to every datapoint
lying on the correct side of the margin. A fitted SVM will have at least one vector of each class, the so-
called support vectors, on its margin, which can be equally formulated as minti=+1

(
w⊤Ai + b

)
= 1

and maxti=−1

(
w⊤Ai + b

)
= −1. We may use these quantities to reformulate the length of the

margin as
1

∥w∥2

{
min
ti=+1

(
w⊤Ai + b

)
− max

ti=−1

(
w⊤Ai + b

)}
, (44)

which is what we are trying to maximize in order to find the direction of our weight vector w.

Theorem B.3. Let w, w̃ be two weight vectors with E
[
w⊤Ai + b

]
= E

[
w̃⊤Ai + b

]
for all i ∈ [n],

V(w⊤Ai + b) > V(w̃⊤Ai + b) and ∥w∥2 ≤ ∥w̃∥2. Then for sufficiently large sample size n the
expected margin size for the SVM with normal vector in direction of w̃ is bigger than for the SVM
with normal vector in direction of w.
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Proof. We denote µ+ = E
[
w⊤Ai + b | ti = +1

]
, µ− = E

[
w⊤Ai + b | ti = −1

]
and ς2 =

V
(
w⊤Ai + b

)
, and further define random variables Ni, N

′
i as independent standard normal distribu-

tions. We can now write the expected size of the margin as

E
[

1

∥w∥2

{
min
ti=+1

(
w⊤Ai + b

)
− max

ti=−1

(
w⊤Ai + b

)}]
=

1

∥w∥2

{
µ+ − µ− + ςE

[
min

i∈[n/2]
Ni − max

i∈[n/2]
N ′

i

]}
=

1

∥w∥2

{
µ+ − µ− − ςE

[
max

i∈[n/2]
Ni + max

i∈[n/2]
N ′

i

]}
=

1

∥w∥2

{
µ+ − µ− − 2ςE

[
max

i∈[n/2]
Ni

]}
=

1

∥w∥2
{µ+ − µ− − 2ςm(n)} ,

(45)

where we define m(n) := E
[
maxi∈[n/2] Ni

]
and the step from the second to third line follows by the

symmetry of the standard normal distribution and the fact that min(S) = −max(S) for symmetric
sets S. Firstly, we show that the quantity m(n) grows unbounded. Let M > E [max (N1, 0)] =

1√
2π

.
Then

m(n) = E
[
max

(
max

i∈[n/2]
Ni, 0

)]
+ E

[
min

(
max

i∈[n/2]
Ni, 0

)]
≥ 4M · P(m(N) ≥ 4M)− E [max (N1, 0)]

≥ 4M · {1− P(Ni < 4M for all i)} −M

= 4M ·
{
1− P(N1 < 4M)[n/2]

}
−M

≥ 4M ·
{
1− 1

2

}
−M = 2M −M = M,

(46)

where the last inequality holds for sufficiently large n. As M may be chosen arbitrarily large, this
proves that m(n) is unbounded.
Now for two weight vectors w, w̃ with the same associated expected values µ+, µ−, variances
ς2 = V

(
w⊤Ai + b

)
> V

(
w̃⊤Ai + b

)
= ς̃2 and ∥w∥2 ≤ ∥w̃∥2 it follows by simple arithmetic

that the inequality

1

∥w̃∥2
{µ+ − µ− − 2ς̃m(n)} >

1

∥w∥2
{µ+ − µ− − 2ςm(n)} (47)

is equivalent to

2

(
ς

∥w∥2
− ς̃

∥w̃∥2

)
m(n) >

(
1

∥w∥2
− 1

∥w̃∥2

)
{µ+ − µ−}. (48)

Note, that since ς > ς̃ and ∥w∥2 < ∥w̃∥2, it follows that

ς

∥w∥2
− ς̃

∥w̃∥2
> 0. (49)

So the left side of the inequality grows unbounded with n while the right side remains constant. Hence,
for n sufficiently large, the inequality is fulfilled and the expected margin of the SVM associated with
w̃ is greater than the expected margin for the vector w.

C EXPERIMENT DETAILS

We provide dataset details in Section C.1 and training details in Section C.2. The former includes
details for controlled “Clever Hans” datasets (Section C.1.1) and the synthetic FunnyBirds dataset
(Section C.1.2).
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Figure 9: Examples from controlled datasets with clean and attacked samples for ISIC2019 (left) and
Bone Age (right), with timestamp and brightness artifacts, respectively.

C.1 DATASETS

C.1.1 CONTROLLED “CLEVER HANS” DATASETS

Details for our controlled datasets with artificial “Clever Hans” artifacts, i.e., shortcut features, are
provided in Tab. 2. Examples are shown in Fig. 9.

Table 2: Details for our controlled “Clever Hans” datasets, including artifact type, number of samples,
class names, the biased class, percentage of samples with artifact in the biased class (p-bias), and
train/val/test split.

number biased train / val / test
dataset artifact samples classes class p-bias split

Bone Age brightness 12,611 0-46, 47-91, 92-137,
138-182, 183-228 (months) 92-137 20% 80%/10%/10%

ISIC2019 timestamp 25,331 MEL, NV, BCC, AK,
BKL, DF, VASC, SCC MEL 1% 80%/10%/10%

C.1.2 FUNNYBIRDS DATASET

FunnyBirds (Hesse et al., 2023) provides a framework to synthesize images of different classes of
birds. Specifically, a bird is defined using 5 parts, for which the authors manually designed different
types (4 beaks, 3 eyes, 4 feet, 9 tails, 6 wings). Further varying color, this leads to 2592 possible
combinations, i.e., classes. We define a concept as a combination of part, type and color. For example,
the concept “beak::beak-01::yellow” entails the beak shape beak-01 in color yellow. As outlined
in Section 4.1 in the main paper, we construct a new version of FunnyBirds with 10 classes, with
exactly one valid feature, i.e. concept, per class. While the class-defining concept is identical for all
samples per class, all other concepts are chosen randomly per sample. The class-defining concepts
are listed in Tab. 3. When training models on this dataset, the class-defining property must be
used by the model. We synthesize 500 training samples and 100 test samples per class, totaling to
5000 training and 1000 test samples. The training set is further split into training/validation splits
(90%/10%). In order to remove concepts, e.g., for the computation of sample-wise ground truth
concept directions, we replace the class-defining property with another randomly chosen concept
(e.g., “beak::beak-01::yellow” → “beak::beak-03::yellow”), while keeping other parts unchanged.
Examples for original and manipulated samples are shown in Fig. 10.

C.2 TRAINING DETAILS

Tab. 4 provides training details for all models and datasets, including the source of the pre-trained
model checkpoint, optimizer, learning rate (LR), number of epochs, and milestones, after which we
divide the LR by 10. All models are pre-trained on ImageNet (Deng et al., 2009; Ridnik et al., 2021)
with weights provided from timm (Wightman, 2019) or torchvision (maintainers & contributors,
2016).
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Table 3: Class-defining concepts (part/shape/color) for all 10 classes in our synthetic FunnyBirds
dataset.

class-defining concept
class part shape color

1 beak beak-01 yellow
2 beak beak-02 yellow
3 beak beak-03 yellow
4 beak beak-04 yellow
5 wing wing-01 red
6 wing wing-02 red
7 wing wing-01 green
8 wing wing-02 green
9 wing wing-01 blue

10 wing wing-02 blue

Figure 10: Examples for samples from all 10 classes from our synthetic FunnyBirds dataset, including
clean samples (top) and identical samples with class-defining concept randomized (bottom).

C.3 COMPUTATIONAL RESOURCES

We ran all model training and correction jobs on GPUs of type NVIDIA Ampere A100 with 40
GB RAM. Depending on the architecture and correction layer, a model correction job including
evaluation took between 20 minutes and 2 hours. Depending on the architecture, model training took
6-12h for ISIC2019, 1-4h for Bone Age, and 8-30mins for FunnyBirds.

C.4 LICENSES FOR EXISTING ASSETS

Existing assets used in this paper have the following licenses and terms of uses:
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Table 4: Model training details including the pre-trained checkpoint, optimizer, learning Rate (LR),
number of epochs, and milestones, after which the learning rate is divided by 10.

epochs
dataset model pre-trained checkpoint optimizer LR (milestones)

Bone
Age

VGG16 torchvision/IMAGENET1K V1 SGD 0.005 100 (50,80)
ResNet18 timm/resnet18.a1 in1k Adam 0.005 100 (50,80)
ResNet50 timm/resnet50.a1 in1k Adam 0.005 100 (50,80)
ResNeXt50 timm/resnext50 32x4d.a1h in1k Adam 0.001 100 (50,80)
ReXNet100 timm/rexnet 100.nav in1k Adam 0.005 100 (50,80)
EfficientNet-B0 torchvision/IMAGENET1K V1 Adam 0.001 100 (50,80)
EfficientNet-V2-s torchvision/IMAGENET1K V1 Adam 0.001 100 (50,80)

Vision Transformer timm/vit base
patch16 224.augreg in21k

SGD 0.0005 100 (50,80)

Swin Transformer timm/swin base
patch4 window7 224.ms in22k

SGD 0.0005 100 (50,80)

ISIC2019
(controlled)

VGG16 torchvision/IMAGENET1K V1 SGD 0.005 300 (150,250)
ResNet18 timm/resnet18.a1 in1k Adam 0.0005 300 (150,250)
ResNet50 timm/resnet50.a1 in1k Adam 0.0005 300 (150,250)
ResNeXt50 timm/resnext50 32x4d.a1h in1k Adam 0.0005 300 (150,250)
ReXNet100 timm/rexnet 100.nav in1k Adam 0.0005 300 (150,250)
EfficientNet-B0 torchvision/IMAGENET1K V1 Adam 0.0005 300 (150,250)
EfficientNet-V2-s torchvision/IMAGENET1K V1 Adam 0.0005 300 (150,250)
Vision Transformer google/vit base patch16 224 SGD 0.001 300 (150,250)

Swin Transformer timm/swin base
patch4 window7 224.ms in22k

SGD 0.001 300 (150,250)

ISIC2019
(real)

VGG16 torchvision/IMAGENET1K V1 SGD 0.005 150 (80,120)
ResNet18 timm/resnet18.a1 in1k Adam 0.0005 300 (150,250)
ResNet50 timm/resnet50.a1 in1k Adam 0.0005 300 (150,250)
ResNeXt50 timm/resnext50 32x4d.a1h in1k Adam 0.0005 300 (150,250)
ReXNet100 timm/rexnet 100.nav in1k Adam 0.0005 300 (150,250)
EfficientNet-B0 torchvision/IMAGENET1K V1 Adam 0.0005 300 (150,250)
EfficientNet-V2-s torchvision/IMAGENET1K V1 SGD 0.001 300 (150,250)
Vision Transformer google/vit base patch16 224 SGD 0.0005 300 (150,250)

Funny
Birds

VGG16 torchvision/IMAGENET1K V1 SGD 0.005 50 (30)
ResNet18 timm/resnet18.a1 in1k Adam 0.005 50 (30)
ResNeXt50 timm/resnext50 32x4d.a1h in1k Adam 0.001 50 (30)
ReXNet100 timm/rexnet 100.nav in1k Adam 0.005 50 (30)
EfficientNet-B0 torchvision/IMAGENET1K V1 Adam 0.001 50 (30)
EfficientNet-V2-s torchvision/IMAGENET1K V1 Adam 0.001 50 (30)
Vision Transformer google/vit base patch16 224 SGD 0.005 50 (30)

• ISIC2019: CC-BY-NC
• Pediatric Bone Age: The terms of use are described here:

https://www.rsna.org/-/media/Files/RSNA/Education/AI-resources-and-
training/AI-image-challenge/RSNA-2017-AI-Challenge-Terms-of-Use-and-
Attribution Final.ashx?la=en&hash=F28B401E267D05658C85F5D207EC4F9AE9AE6FA9

• FunnyBirds: Apache License 2.0
• timm model checkpoints: Apache License
• torchvision checkpoints: BSD 3-Clause License

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 DETAILED CAV ALIGNMENT RESULTS

Additional CAV alignment results, including filter-(Lasso, Logistic, Ridge, and SVM) and pattern-
CAVs are shown in Figs 11, 12, 13, and 14 for ISIC2019, Figs 15, 16, 17, and 18 for Pediatric
Bone Age, and Figs 19, 20, and 21 for FunnyBirds, for VGG16, ResNet18, ResNet50, ResNeXt50,
ReXNet100, EfficientNet-B0, and EfficientNetV2 models. The results confirm the trends described
in the main paper in Section 4.2, i.e., a higher alignment with the ground truth concept direction for
pattern-CAVs and a better concept separability for filter-CAVs.
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Moreover, we report the cosine similarities between CAVs obtained with different feature pre-
processing methods (centering, max-scaling, and their combination) and the ground truth concept
direction for ISIC2019 and Bone Age datasets on the last Conv layers of ResNet18, ResNet50,
ResNeXt50, ReXNet100, EfficientNet-B0, EfficientNetV2, Vision Transformer and Swin Transformer
in Figs. 22, 23, 24, and 25.
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Figure 11: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and for all Conv layers of VGG16 trained on ISIC2019.
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Figure 12: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each block of ResNet18 (left) and ResNet50 (left) trained on ISIC2019.

D.2 QUALITATIVE CAV RESULTS

Following-up on the qualitative approach on Section 4.2, we present further RelMax visualizations
for the most important neurons for different CAVs in Fig 27. In contrast to Fig. 2 in the main paper,
we include all our CAV approaches, namely 4 filter-based (lasso, logistic, ridge, and SVM) and
the pattern-based CAV. Again, all filter-CAVs include unrelated neurons, whereas the pattern-CAV
mainly includes neurons focusing on the concept of interest.
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Figure 13: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each block of ResNeXt50 (left) and ReXNet100 (left) trained on ISIC2019.
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Figure 14: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each block of EfficientNet-B0 (left) and EfficientNetV2 (left) trained on ISIC2019.

D.3 REDUCTION OF SUPERVISION

In a further set of experiments, we want to analyze the possibility to reduce the manual labeling
efforts by (1) the unsupervised discovery of concept directions in Sec. D.3.1 and (2) the robustness of
(supervised) CAV directions towards labeling errors and reduction of data size in Sec. D.3.2.

D.3.1 ALIGNMENT OF UNSUPERVISED CAV DIRECTIONS

We do an unsupervised concept discovery in the penultimate layer of VGG16 trained on ISIC2019
(timestamp artifact) with CRAFT (Fel et al., 2023) (via Non-negative Matrix Factorization) and
compute the cosine similarity of each found concept direction with the ground truth direction and plot
a histogram of similarity scores in Fig. 28. It can be seen that the best CRAFT direction outperforms
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Figure 15: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each Conv layer of VGG16 trained on the Pediatric Bone Age dataset.
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Figure 16: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each block of ResNet18 (left) and ResNet50 (right) trained on the Pediatric Bone Age
dataset.

the SVM CAV, however, it is worse than pattern-CAV. Moreover, it is to note that unsupervised
concept discovery comes with two drawbacks in practice: (1) It requires manual inspection of found
concepts to decide which direction(s) represent the desired concept. (2) Matrix factorization will find
statistical groupings without guidance, hence there is no guarantee that one direction will represent
the desired concept.

D.3.2 ROBUSTNESS TOWARDS MISSING DATA AND LABELING ERRORS

As pattern-CAVs are more robust against noise in activations, they are more stable for low-data or
mislabeled samples compared to filter-based CAVs. We verified this in additional experiments was
activations from the penultimate layer of VGG16 trained on ISIC2019 (timestamp artifact) with
results shown in Fig 29: (1) We gradually decreased the number of known artifact samples before
CAV computation and found that pattern-CAV remains more precise than filter-based CAVs with
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Figure 17: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each block of ResNeXt50 (left) and ReXNet100 (right) trained on the Pediatric Bone Age
dataset.
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Figure 18: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each block of EfficentNet-B0 (left) and EfficientNetV2 (right) trained on the Pediatric Bone
Age dataset.

reduced data (left). (2) We gradually increased artifact mislabeling rate p (false positive rate) and
found that the quality of filter-CAVs decrease rapidly, while the quality of pattern-CAVs consistently
remains high (right).

D.4 QUALITATIVE TCAV RESULTS

Extending on our qualitative TCAV results from Section 4.3.1, we show further sensitivity heatmaps
for all considered CAV types, including four filter- (lasso, logistic, ridge, SVM) and our pattern-CAV
in Fig. 31. We observe similar trends as in the main paper. Specifically, filter-CAVs lead to noisy
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Figure 19: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each Conv layer of VGG16 (left) and ResNet18 (right) trained on FunnyBirds.
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Figure 20: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each block of ResNeXt50 (left) and ReXNet100 (right) trained on FunnyBirds.

sensitivity heatmaps, negatively impacting the TCAV score, while pattern-CAV precisely localizes
the concept with positive sensitivity.

Note, that for ResNet18, instead of precisely localizing concepts, the sensitivity in the last Conv
layer spreads over the entire sample (7× 7 pixels), as shown in Fig. 26. Therefore, TCAV scores for
ResNet18 are less impacted by noisy concept sensitivity maps in irrelevant regions. Similar trends
have been observed for ResNeXt50 and ReXNet100 models.

D.5 QUANTITATIVE TCAV RESULTS

In addition to the results for the controlled TCAV experiments with FunnyBirds shown in Fig. 5 in
Sec. 4.3.1, we present results for additional model architectures in Fig. 31, including ResNeXt50,
ReXNet100, EfficientNetV2, and Vision Transformer. Interestingly, ResNet18, ResNeXt50 and
ReXNet100 all share similar behavior, which is further discussed in the main paper. Note that due to
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Figure 21: Comparison of cosine similarity between CAVs and true concept direction (top) and
concept separability as AUC (bottom), using filter- (lasso, logistic, ridge, and SVM) and pattern-CAV,
and after each block of EfficientNet-B0 (left) and EfficientNetV2 (right) trained on FunnyBirds.
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Figure 22: Cosine similarity between true concept direction hgt and CAVs with different pre-
processing methods fitted on the last Conv layer of ResNet18 (left) and ResNet50 (right) trained on
ISIC2019 and Bone Age. Compared to filter-CAVs, pattern-CAV has a higher alignment with hgt and
is invariant to feature pre-processing.
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Figure 23: Cosine similarity between true concept direction hgt and CAVs with different pre-
processing methods fitted on the last Conv layer of ResNeXt50 (left) and ReXNet100 (right) trained
on ISIC2019 and Bone Age. Compared to filter-CAVs, pattern-CAV has a higher alignment with hgt

and is invariant to feature pre-processing.

the fact that the analyzed layer in Vision Transformers is a fully-connected linear layer instead of a
convolutional layer, TCAVsens(x) in Eq. 5 leads to a scalar per sample instead of per latent pixel. To
test for statistical significance, following the original TCAV method, we ran a two-sided t-test for our
controlled TCAV experiment with FunnyBirds conducted in Sec. 4.3.1. Specifically, we computed
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Figure 24: Cosine similarity between true concept direction hgt and CAVs with different pre-
processing methods fitted on the last Conv layer of EfficientNet-B0 (left) and EfficientNetV2 (right)
trained on ISIC2019 and Bone Age. Compared to filter-CAVs, pattern-CAV has a higher alignment
with hgt and is invariant to feature pre-processing.
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Figure 25: Cosine similarity between true concept direction hgt and CAVs with different pre-
processing methods fitted on the last Conv layer of Vision Transformer (left) and Swin Transformer
(right) trained on ISIC2019 and Bone Age. Compared to filter-CAVs, pattern-CAV has a higher
alignment with hgt and is invariant to feature pre-processing.
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Figure 26: Visualization of concept sensitivity maps, measured as element-wise product ∇af̃(a(a))⊙
h using filter- (SVM) and pattern-CAVs for three concepts on the last Conv layer of ResNet18. All
CAV variants detect a positive concept sensitivity (red) across all spatial locations (7 × 7 pixels).
This makes ResNet18 less susceptible to noise. Similar trends have been observed for ResNeXt50
and ReXNet100 models.

each CAV 500 times with different, randomly drawn subsets. Using a significance level of 5% and
applying a Bonferroni correction, all TCAV scores (for all CAV types, all 10 relevant concepts) are
significantly different from the random baseline score of 0.5 (corresponding to ∆TCAV = 0), except
for a few exceptions. Moreover, we collected accuracies for filter-based CAVs on an unseen test set
and found that most CAVs achieve scores of above 0.9. This confirms that most filter-CAVs do not
fail in fitting a generalizable decision boundary. Note, that hyperparameters for filter-CAVs have
been tuned using an validation set. All TCAV scores, p-values, and accuracies for filter-CAVs on an
unseen test set are shown in Tab. 5.
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Figure 27: RelMax visualization for neurons corresponding to the largest absolute values in different
CAVs, including 4 filter- (lasso, logistic, ridge, and SVM) and the pattern-CAVs, along with the
Conv filter ID and the fraction of all (absolute) CAV values. While the filter-CAV picks up noisy
neurons, the pattern-CAV uses neurons related to the relevant concept.

Figure 28: Histogram over CAV quality scores (cosine similarity with ground truth) for all CRAFT
directions computed via non-negative matrix factorization on the last Conv layer of a VGG16 for
ISIC2019 with timestamp artifact with markers for the best CRAFT direction, SVM-CAV, and pattern-
CAV. The best CRAFT direction has a higher quality than SVM-CAV, but lower than pattern-CAV.

D.6 ANALYSIS OF NOISE DISTRIBUTION

We further investigate the relation between the discrepancies in CAV quality found in our controlled
in experiments in Section 4.2 and the issues described in Sec. 3.3, namely feature scaling and rotated
noise.

Feature scaling: We plot the absolute difference between CAVs and ground truth concept direction
(how much does CAV diverge?) over the variance per dimension (how varying are feature scales?).
The results for VGG16, ResNet50, and EfficientNet-B0 with our controlled artifacts ISIC2019 and
Pediatric Bone Age are shown in Figs. 32, 33, and 34. As expected, in all experiments higher variance
leads to higher divergence for filter-CAVs but not for pattern-CAVs.

Noise rotation: To analyze the impact of distractor directions, we run a Principal Component
Analysis (PCA) to find the direction with the highest within-cluster variance for latent activations of
negative samples (without concept). We then computed the cosine similarity between that direction
and the CAV. Results for VGG16, ResNet50, and EfficientNet-B0 models trained on ISIC2019
and Bone Age datasets are shown in Tab. 6. For the filter-CAV, we get a cosine similarity close to
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Figure 29: CAV quality (cosine similarity with ground truth) averaged over 10 random seeds plotted
over number of known artifact samples (left) and mislabeling rate p (right) for SVM- and pattern-
CAVs trained on the penultimate layer of a VGG16 for ISIC2019 with artificial timestamp artifact.
In addition to the fact that pattern-CAVs represent the concept direction more precisely, the cosine
similarity stays consistently high even with less known artifact samples and high mislabeling rate.
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Figure 30: ∆TCAV (averaged over class-defining concepts) for different CAVs fitted on last Conv
layers of VGG16, ResNet18, ResNeXt50, ReXNet100, EfficientNet-B0, EfficientNetV2, and the last
linear layer of a Vision Transformer trained on FunnyBirds. As models must use these concepts by
experimental design, high scores are better. In contrast to filter-CAVs, pattern-CAVs achieve best
scores for all models.
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Figure 31: Visualization of sensitivity maps, measured as element-wise product ∇af̃(a(a))⊙h using
different filter- (lasso, logistic, ridge, and SVM) and pattern-CAVs for three concepts with VGG16
(middle) and EfficientNet-B0 (right). Results are shown for the respective last Conv layer, upsampled
to input space dimensions. While pattern-CAVs precisely localize the concepts, filter-CAVs lead to
noisy sensitivity maps.

0, meaning that it orients itself orthogonal to the (non-informative) distractor direction, while the
pattern-CAV does not show this behavior. Similar trends can be seen in Fig. 7 in Appendix B.4,
where filter-CAVs tend to orient themselves orthogonal to the distractor pattern.
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Figure 32: The absolute difference between CAVs and ground truth concept direction hgt on the
last convolutional layer of VGG16 models trained on ISIC2019 with timestamp artifact (left) and
Pediatric Bone Age with brightness artifact (right) plotted over the variance per feature dimension.
Higher variance leads to a larger difference from hgt for filter-CAVs but not for pattern-CAVs.

0 100 200 300

Variance

0.00

0.02

0.04

0.06

A
b

s
d

iff
er

en
ce

fr
om

tr
u

e
C

A
V

Filter

15

30

45

60

75

90

0 100 200 300

Variance

0.00

0.02

0.04

0.06

A
b

s
d

iff
er

en
ce

fr
om

tr
u

e
C

A
V

Pattern

15

30

45

60

75

90

ISIC2019

0 100 200

Variance

0.00

0.05

0.10

0.15

A
b

s
d

iff
er

en
ce

fr
om

tr
u

e
C

A
V

Filter

20

40

60

80

100

0 100 200

Variance

0.00

0.05

0.10

0.15

A
b

s
d

iff
er

en
ce

fr
om

tr
u

e
C

A
V

Pattern

20

40

60

80

100

Pediatric Bone Age

Figure 33: The absolute difference between CAVs and ground truth concept direction hgt on the
last convolutional layer of ResNet50 models trained on ISIC2019 with timestamp artifact (left) and
Pediatric Bone Age with brightness artifact (right) plotted over the variance per feature dimension.
Higher variance leads to a larger difference from hgt for filter-CAVs but not for pattern-CAVs.
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Figure 34: The absolute difference between CAVs and ground truth concept direction hgt on the last
convolutional layer of EfficientNet-B0 models trained on ISIC2019 with timestamp artifact (left) and
Pediatric Bone Age with brightness artifact (right) plotted over the variance per feature dimension.
Higher variance leads to a larger difference from hgt for filter-CAVs but not for pattern-CAVs.

D.7 MODEL CORRECTION WITH RR-CLARC

Model correction is performed with RR-ClArC for 10 epochs with the initial training learning rate
(see Table 4) divided by 10. To balance between classification loss and the added loss term LRR, we
weigh the latter term with λ ∈ {105, 106, ..., 1010}. The parameter is picked on the validation set and
selected λ values for all model correction experiments are shown in Tab. 7.

The results for our controlled datasets (Bone Age and ISIC2019) including standard errors are shown
in Table 8. Moreover, Tab. 9 presents the model correction results for all artifacts (“band-aid”, “ruler”,
and “skin marker”). Pattern-CAVs consistently yield better scores for artifact sensitivity, i.e., low
artifact relevance and ∆TCAVgt after model correction.
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DifferenceHeatmap
RR-ClArC (Lasso)

DifferenceHeatmap
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VanillaInput

Figure 35: Additional qualitative results for model correction w.r.t. real artifacts band-aid (top two),
ruler (middle two), and skin marker (bottom two) in ISIC2019 using VGG16. In addition to attribution
heatmaps for models corrected with filter- (lasso, logistic, ridge, and SVM) and pattern-CAVs, we
show heatmaps highlighting the differences compared to the Vanilla model attribution heatmap, with
red and blue indicating higher and lower relevance after correction, respectively. Whereas filte-CAVs
have limited impact, pattern-CAVs successfully increases the relevance on the mole and decreased
the relevance on data artifacts.

Fig. 35 presents additional relevance heatmaps after model correction w.r.t. the real ISIC2019 artifacts
for all CAV variants and their difference heatmap compared with the Vanilla model.

36



Published as a conference paper at ICLR 2025

Table 5: TCAV scores, p-values and accuracies for all CAV types on VGG16, ResNet18, ResNeXt50,
ReXNet100, EfficientNet-B0, EfficientNetV2 and Vision Transformer (ViT) models using the con-
trolled FunnyBirds dataset. Bold p-values indicate that ∆TCAV scores are not significantly different
from 0 using a significance level of 5% and applying a Bonferroni correction.

Concept GT Lasso Logistic Ridge SVM Signal
TCAV p-val TCAV p-val acc TCAV p-val acc TCAV p-val acc TCAV p-val acc TCAV p-val

V
G

G
16

beak01::yellow 0.5 0.0 0.25 0.066 0.96 0.50 0.0 0.96 0.48 0.0 0.96 0.50 0.0 0.96 0.5 0.0
beak02::yellow 0.5 0.0 0.35 0.001 0.98 0.50 0.0 0.97 0.25 0.192 0.98 0.49 0.0 0.98 0.5 0.0
beak03::yellow 0.5 0.0 0.33 0.040 0.98 0.50 0.0 0.98 0.02 0.942 0.96 0.50 0.0 0.98 0.5 0.0
beak04::yellow 0.5 0.0 0.45 0.0 0.99 0.08 0.457 0.98 0.38 0.0 0.98 0.16 0.015 0.99 0.5 0.0
wing01::blue 0.5 0.0 0.50 0.0 0.94 0.44 0.0 0.94 0.50 0.0 0.94 0.36 0.0 0.99 0.5 0.0
wing01::green 0.5 0.0 0.49 0.0 0.97 0.50 0.0 0.97 0.50 0.0 0.98 0.49 0.0 0.98 0.5 0.0
wing01::red 0.5 0.0 0.49 0.0 0.95 0.40 0.005 0.91 0.49 0.0 0.96 0.27 0.0 1.00 0.5 0.0
wing02::blue 0.5 0.0 0.50 0.0 0.97 0.48 0.0 0.99 0.50 0.0 0.98 0.50 0.0 0.99 0.5 0.0
wing02::green 0.5 0.0 0.50 0.0 0.96 0.50 0.0 0.98 0.50 0.0 0.98 0.50 0.0 0.99 0.5 0.0
wing02::red 0.5 0.0 0.50 0.0 0.98 0.50 0.0 0.98 0.49 0.0 0.98 0.45 0.0 0.99 0.5 0.0

R
es

N
et

18

beak01::yellow 0.5 0.0 0.5 0.0 0.48 0.5 0.0 0.90 0.5 0.0 0.78 0.5 0.0 0.97 0.5 0.0
beak02::yellow 0.5 0.0 0.5 0.0 0.98 0.5 0.0 0.93 0.5 0.0 0.98 0.5 0.0 0.98 0.5 0.0
beak03::yellow 0.5 0.0 0.5 0.0 0.98 0.5 0.0 0.98 0.5 0.0 0.98 0.5 0.0 0.99 0.5 0.0
beak04::yellow 0.5 0.0 0.5 0.0 0.95 0.5 0.0 0.98 0.5 0.0 0.95 0.5 0.0 0.98 0.5 0.0
wing01::blue 0.5 0.0 0.5 0.0 0.80 0.5 0.0 0.95 0.5 0.0 0.87 0.5 0.0 0.99 0.5 0.0
wing01::green 0.5 0.0 0.5 0.0 0.98 0.5 0.0 0.97 0.5 0.0 0.95 0.5 0.0 1.00 0.5 0.0
wing01::red 0.5 0.0 0.5 0.0 0.98 0.5 0.0 0.94 0.5 0.0 0.98 0.5 0.0 0.99 0.5 0.0
wing02::blue 0.5 0.0 0.5 0.0 0.94 0.5 0.0 0.93 0.5 0.0 0.95 0.5 0.0 1.00 0.5 0.0
wing02::green 0.5 0.0 0.5 0.0 1.00 0.5 0.0 0.98 0.5 0.0 1.00 0.5 0.0 1.00 0.5 0.0
wing02::red 0.5 0.0 0.5 0.0 0.98 0.5 0.0 0.97 0.5 0.0 0.97 0.5 0.0 0.99 0.5 0.0

R
es

N
eX

t5
0

beak01::yellow 0.5 0.0 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0 0.98 0.5 0.0 0.99 0.5 0.0
beak02::yellow 0.5 0.0 0.5 0.0 0.97 0.5 0.0 1.00 0.5 0.0 0.97 0.5 0.0 1.00 0.5 0.0
beak03::yellow 0.5 0.0 0.5 0.0 0.98 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0
beak04::yellow 0.5 0.0 0.5 0.0 0.93 0.5 0.0 0.96 0.5 0.0 0.92 0.5 0.0 0.99 0.5 0.0
wing01::blue 0.5 0.0 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0
wing01::green 0.5 0.0 0.5 0.0 0.70 0.5 0.0 0.90 0.5 0.0 0.98 0.5 0.0 0.99 0.5 0.0
wing01::red 0.5 0.0 0.5 0.0 0.93 0.5 0.0 0.92 0.5 0.0 0.94 0.5 0.0 0.99 0.5 0.0
wing02::blue 0.5 0.0 0.5 0.0 0.98 0.5 0.0 1.00 0.5 0.0 0.98 0.5 0.0 1.00 0.5 0.0
wing02::green 0.5 0.0 0.5 0.0 0.95 0.5 0.0 0.98 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0
wing02::red 0.5 0.0 0.5 0.0 0.90 0.5 0.0 0.99 0.5 0.0 0.98 0.5 0.0 1.00 0.5 0.0

R
eX

N
et

10
0

beak01::yellow 0.5 0.0 0.5 0.0 0.98 0.5 0.0 0.90 0.5 0.0 0.98 0.5 0.0 0.99 0.5 0.0
beak02::yellow 0.5 0.0 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 0.98 0.5 0.0 0.99 0.5 0.0
beak03::yellow 0.5 0.0 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0
beak04::yellow 0.5 0.0 0.5 0.0 0.97 0.5 0.0 0.98 0.5 0.0 0.97 0.5 0.0 0.98 0.5 0.0
wing01::blue 0.5 0.0 0.5 0.0 0.99 0.5 0.0 0.95 0.5 0.0 0.99 0.5 0.0 1.00 0.5 0.0
wing01::green 0.5 0.0 0.5 0.0 1.00 0.5 0.0 0.99 0.5 0.0 1.00 0.5 0.0 1.00 0.5 0.0
wing01::red 0.5 0.0 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 1.00 0.5 0.0 0.99 0.5 0.0
wing02::blue 0.5 0.0 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0
wing02::green 0.5 0.0 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 0.99 0.5 0.0 1.00 0.5 0.0
wing02::red 0.5 0.0 0.5 0.0 0.99 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0 1.00 0.5 0.0

E
ffi

ci
en

tN
et

-B
0

beak01::yellow 0.5 0.0 0.43 0.0 0.92 0.44 0.0 0.86 0.31 0.0 0.93 0.44 0.0 0.97 0.5 0.0
beak02::yellow 0.5 0.0 0.18 0.124 0.98 0.33 0.0 0.99 0.22 0.038 0.99 0.36 0.001 0.99 0.5 0.0
beak03::yellow 0.5 0.0 0.32 0.0 0.99 0.50 0.0 0.98 0.46 0.0 0.98 0.50 0.0 0.98 0.5 0.0
beak04::yellow 0.5 0.0 0.48 0.0 0.98 0.49 0.0 0.99 0.49 0.0 0.97 0.49 0.0 0.99 0.5 0.0
wing01::blue 0.5 0.0 0.43 0.0 0.98 0.50 0.0 0.99 0.46 0.0 0.99 0.50 0.0 0.99 0.5 0.0
wing01::green 0.5 0.0 0.50 0.0 0.50 0.50 0.0 0.99 0.48 0.0 0.99 0.50 0.0 0.99 0.5 0.0
wing01::red 0.5 0.0 0.47 0.0 0.99 0.50 0.0 0.99 0.48 0.0 0.99 0.50 0.0 0.99 0.5 0.0
wing02::blue 0.5 0.0 0.39 0.007 0.79 0.50 0.0 0.98 0.34 0.0 0.99 0.50 0.0 1.00 0.5 0.0
wing02::green 0.5 0.0 0.49 0.0 0.71 0.50 0.0 0.99 0.50 0.0 0.96 0.50 0.0 0.99 0.5 0.0
wing02::red 0.5 0.0 0.50 0.0 0.49 0.50 0.0 0.98 0.38 0.0 0.97 0.50 0.0 1.00 0.5 0.0

E
ffi

ci
en

tN
et

V
2

beak01::yellow 0.5 0.0 0.50 0.0 0.80 0.50 0.0 0.70 0.50 0.0 0.87 0.50 0.0 0.98 0.5 0.0
beak02::yellow 0.5 0.0 0.30 0.012 0.93 0.50 0.0 0.97 0.37 0.001 0.93 0.50 0.0 0.98 0.5 0.0
beak03::yellow 0.5 0.0 0.46 0.0 0.98 0.49 0.0 0.99 0.46 0.0 0.98 0.49 0.0 0.99 0.5 0.0
beak04::yellow 0.5 0.0 0.49 0.0 0.97 0.49 0.0 0.96 0.44 0.0 0.97 0.49 0.0 0.99 0.5 0.0
wing01::blue 0.5 0.0 0.50 0.0 0.98 0.50 0.0 0.96 0.50 0.0 0.99 0.50 0.0 1.00 0.5 0.0
wing01::green 0.5 0.0 0.45 0.0 1.00 0.50 0.0 1.00 0.48 0.0 1.00 0.50 0.0 1.00 0.5 0.0
wing01::red 0.5 0.0 0.50 0.0 0.99 0.50 0.0 0.99 0.50 0.0 0.99 0.50 0.0 0.99 0.5 0.0
wing02::blue 0.5 0.0 0.48 0.0 0.93 0.50 0.0 0.94 0.50 0.0 0.92 0.50 0.0 1.00 0.5 0.0
wing02::green 0.5 0.0 0.50 0.0 0.51 0.50 0.0 0.99 0.47 0.0 0.99 0.50 0.0 0.99 0.5 0.0
wing02::red 0.5 0.0 0.48 0.0 0.99 0.50 0.0 1.00 0.41 0.0 0.98 0.50 0.0 1.00 0.5 0.0

V
iT

beak01::yellow 0.5 0.0 0.5 0.0 0.80 0.5 0.0 0.92 0.5 0.0 0.81 0.5 0.0 0.95 0.5 0.0
beak02::yellow 0.5 0.0 0.5 0.0 0.94 0.5 0.0 0.97 0.5 0.0 0.95 0.5 0.0 0.98 0.5 0.0
beak03::yellow 0.5 0.0 0.5 0.0 0.95 0.5 0.0 0.97 0.5 0.0 0.95 0.5 0.0 0.98 0.5 0.0
beak04::yellow 0.5 0.0 0.5 0.0 0.97 0.5 0.0 0.96 0.5 0.0 0.98 0.5 0.0 0.99 0.5 0.0
wing01::blue 0.5 0.0 0.5 0.0 0.94 0.5 0.0 0.99 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0
wing01::green 0.5 0.0 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0
wing01::red 0.5 0.0 0.5 0.0 0.94 0.5 0.0 0.98 0.5 0.0 0.97 0.5 0.0 0.99 0.5 0.0
wing02::blue 0.5 0.0 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0 0.97 0.5 0.0 0.99 0.5 0.0
wing02::green 0.5 0.0 0.5 0.0 0.95 0.5 0.0 0.95 0.5 0.0 0.96 0.5 0.0 0.99 0.5 0.0
wing02::red 0.5 0.0 0.5 0.0 0.97 0.5 0.0 1.00 0.5 0.0 0.98 0.5 0.0 1.00 0.5 0.0
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Table 6: Cosine similarity between CAVs and (non-informative) distractor direction computed as
direction with highest within-cluster variance for activations of negative samples (without concept)
using PCA. Filter-CAVs orient themselves orthogonal to the distractor direction (i.e., cosine similarity
close to 0), while pattern-CAVs do not show this behavior.

Cosine Similarity
Dataset Model Filter-CAV Pattern-CAV

ISIC (timestamp)
VGG16 -0.036 0.536

ResNet50 0.048 0.155
EfficientNet-B0 -0.008 0.041

Bone (brightness)
VGG16 -0.003 0.169

ResNet50 0.005 0.076
EfficientNet-B0 0.005 -0.057
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Table 7: Selected λ values for model correction with RR-ClArC as weight for the added loss term
for experiments with VGG16, ResNet18, ResNet50, ResNeXt50, ReXNet100, EfficientNet-B0,
EfficientNetV2, and ViT with Bone Age (controlled), ISIC2019 (controlled), and ISIC2019 (real
artifacts). For the latter, we run separate corrections w.r.t. the “band-aid” (BA), “ruler” (R), and “skin
marker” (SM) artifacts.

Bone Age ISIC2019 ISIC2019
model CAV (controlled) (controlled) (BA|R|SM)

VGG16

Lasso 107 107 107|108|107
Logistic 107 107 107|108|107
Ridge 107 107 107|108|107
SVM 107 107 107|107|107

Pattern 107 107 106|109|107

ResNet18

Lasso 109 107 105|107|106
Logistic 1010 106 105|105|105
Ridge 109 105 105|105|105
SVM 1010 107 105|105|105

Pattern 104 106 105|105|105

ResNet50

Lasso 104 1010 105|105|105
Logistic 104 106 105|105|109
Ridge 104 105 105|105|105
SVM 105 105 105|105|107

Pattern 104 106 105|105|105

ResNeXt50

Lasso 105 106 106|107|106
Logistic 108 106 105|108|106
Ridge 109 106 106|108|106
SVM 1010 106 106|108|105

Pattern 104 105 105|107|105

ReXNet100

Lasso 106 109 106|105|109
Logistic 1010 107 105|105|105
Ridge 1010 108 105|105|105
SVM 1010 108 106|105|105

Pattern 104 107 105|105|106

Efficient
Net-B0

Lasso 109 109 106|108|108
Logistic 1010 1010 105|106|105
Ridge 109 109 105|105|105
SVM 1010 109 105|105|105

Pattern 1010 109 108|105|106

EfficientNetV2

Lasso 107 105 105|109|108
Logistic 106 107 105|105|105
Ridge 106 105 105|109|107
SVM 106 106 105|108|105

Pattern 107 106 105|105|105

ViT

Lasso 106 105 106|105|105
Logistic 104 105 105|106|109
Ridge 106 107 106|105|108
SVM 106 106 106|105|105

Pattern 104 105 105|105|106

39



Published as a conference paper at ICLR 2025

Table 8: Results after model correction with RR-ClArC for VGG16, ResNet18/50, ResNeXt50,
ReXNet100, EfficientNet-B0, EfficientNetV2, and ViT trained on Bone Age | ISIC2019 (controlled)
including standard errors. We report accuracy on clean and biased test set, the fraction of relevance
put onto the data artifact region for localizable artifacts, and the TCAV score (reported as ∆TCAVgt)
using the sample-wise ground-truth concept direction hgt, measuring the models’ sensitivity towards
the artifacts after model correction. Stars indicate statistical significance according to z-tests with a
significance level of 0.05, and arrows whether low (↓) or high (↑) are better.
model CAV Accuracy (clean) ↑ Accuracy (biased) ↑ Artifact relevance ↓ ∆TCAVgt ↓

V
G

G
-1

6

Vanilla 0.78± 0.01 | 0.82± 0.01 0.50± 0.01 | 0.28± 0.01 - | 0.62± 0.01 0.29± 0.00 | 0.14± 0.02
lasso 0.77± 0.01 | 0.82± 0.01 0.55± 0.01 | 0.30± 0.01 - | 0.60± 0.01 0.25± 0.00 | 0.13± 0.02
logistic 0.72± 0.01 | 0.82± 0.01 0.63± 0.01 | 0.37± 0.01 - | 0.54± 0.01 0.25± 0.00 | 0.07± 0.02∗

ridge 0.71± 0.01 | 0.82± 0.01 0.61± 0.01 | 0.31± 0.01 - | 0.59± 0.01 0.24± 0.00 | 0.13± 0.02
SVM 0.69± 0.01 | 0.81± 0.01 0.70± 0.01 | 0.36± 0.01 - | 0.55± 0.01 0.24± 0.00 | 0.10± 0.02
Pattern 0.78± 0.01 | 0.80± 0.01 0.75± 0.01∗ | 0.69± 0.01∗ - | 0.26± 0.01∗ 0.14± 0.00∗ | 0.10± 0.02

R
es

N
et

-1
8

Vanilla 0.75± 0.01 | 0.84± 0.01 0.46± 0.01 | 0.43± 0.01 - | 0.31± 0.01 0.50± 0.00 | 0.50± 0.00
lasso 0.76± 0.01 | 0.83± 0.01 0.55± 0.01 | 0.51± 0.01 - | 0.27± 0.01 0.08± 0.00 | 0.01± 0.02
logistic 0.76± 0.01 | 0.83± 0.01 0.55± 0.01 | 0.59± 0.01 - | 0.25± 0.01 0.07± 0.00 | 0.01± 0.02
ridge 0.77± 0.01 | 0.83± 0.01 0.57± 0.01 | 0.51± 0.01 - | 0.27± 0.01 0.00± 0.00∗ | 0.00± 0.02
SVM 0.76± 0.01 | 0.83± 0.01 0.54± 0.01 | 0.57± 0.01 - | 0.26± 0.01 0.07± 0.00 | 0.01± 0.02
Pattern 0.75± 0.01 | 0.83± 0.01 0.59± 0.01 | 0.66± 0.01∗ - | 0.22± 0.01∗ 0.22± 0.01 | 0.05± 0.02

R
es

N
et

50

Vanilla 0.77± 0.01 | 0.85± 0.01 0.48± 0.01 | 0.51± 0.01 - | 0.46± 0.01 0.14± 0.00 | 0.04± 0.02
lasso 0.77± 0.01 | 0.84± 0.01 0.53± 0.01 | 0.58± 0.01 - | 0.44± 0.01 0.03± 0.00 | 0.02± 0.01
logistic 0.77± 0.01 | 0.85± 0.01 0.55± 0.01 | 0.69± 0.01 - | 0.39± 0.01 0.04± 0.00 | 0.05± 0.02
ridge 0.77± 0.01 | 0.84± 0.01 0.52± 0.01 | 0.58± 0.01 - | 0.45± 0.01 0.13± 0.00 | 0.03± 0.01
SVM 0.77± 0.01 | 0.85± 0.01 0.55± 0.01 | 0.68± 0.01 - | 0.40± 0.01 0.04± 0.00 | 0.04± 0.02
Pattern 0.78± 0.01 | 0.84± 0.01 0.59± 0.01∗ | 0.71± 0.01 - | 0.37± 0.01∗ 0.01± 0.00 | 0.03± 0.02

R
es

N
eX

t5
0

Vanilla 0.78± 0.01 | 0.86± 0.01 0.50± 0.01 | 0.45± 0.01 - | 0.60± 0.01 0.04± 0.00 | 0.12± 0.02
lasso 0.80± 0.01 | 0.84± 0.01 0.57± 0.01 | 0.64± 0.01 - | 0.56± 0.01 0.01± 0.00 | 0.01± 0.01
logistic 0.80± 0.01 | 0.85± 0.01 0.56± 0.01 | 0.73± 0.01 - | 0.52± 0.01 0.05± 0.00 | 0.08± 0.02
ridge 0.80± 0.01 | 0.84± 0.01 0.57± 0.01 | 0.63± 0.01 - | 0.56± 0.01 0.06± 0.00 | 0.01± 0.01
SVM 0.78± 0.01 | 0.85± 0.01 0.54± 0.01 | 0.69± 0.01 - | 0.54± 0.01 0.06± 0.00 | 0.09± 0.02
Pattern 0.79± 0.01 | 0.85± 0.01 0.64± 0.01∗ | 0.75± 0.01 - | 0.49± 0.01∗ 0.45± 0.00 | 0.03± 0.02

R
eX

N
et

-1
00

Vanilla 0.76± 0.01 | 0.88± 0.01 0.47± 0.01 | 0.71± 0.01 - | 0.22± 0.01 0.29± 0.01 | 0.50± 0.00
lasso 0.77± 0.01 | 0.88± 0.01 0.46± 0.01 | 0.73± 0.01 - | 0.23± 0.01 0.39± 0.01 | 0.16± 0.03
logistic 0.77± 0.01 | 0.88± 0.01 0.47± 0.01 | 0.74± 0.01 - | 0.22± 0.01 0.24± 0.01 | 0.17± 0.03
ridge 0.77± 0.01 | 0.88± 0.01 0.46± 0.01 | 0.74± 0.01 - | 0.22± 0.01 0.27± 0.01 | 0.15± 0.03
SVM 0.77± 0.01 | 0.88± 0.01 0.47± 0.01 | 0.74± 0.01 - | 0.22± 0.01 0.26± 0.01 | 0.16± 0.03
Pattern 0.76± 0.01 | 0.88± 0.01 0.57± 0.01∗ | 0.78± 0.01∗ - | 0.20± 0.01∗ 0.22± 0.01∗ | 0.05± 0.04∗

E
ffi

ci
en

t
N

et
-B

0

Vanilla 0.79± 0.01 | 0.87± 0.01 0.46± 0.01 | 0.55± 0.01 - | 0.55± 0.01 0.46± 0.00 | 0.39± 0.02
lasso 0.79± 0.01 | 0.86± 0.01 0.70± 0.01 | 0.64± 0.01 - | 0.52± 0.01 0.01± 0.00 | 0.11± 0.03
logistic 0.77± 0.01 | 0.85± 0.01 0.75± 0.01 | 0.67± 0.01 - | 0.51± 0.01 0.00± 0.00 | 0.02± 0.04
ridge 0.78± 0.01 | 0.82± 0.01 0.74± 0.01 | 0.67± 0.01 - | 0.52± 0.01 0.21± 0.01 | 0.12± 0.02
SVM 0.77± 0.01 | 0.85± 0.01 0.75± 0.01 | 0.65± 0.01 - | 0.52± 0.01 0.00± 0.00 | 0.03± 0.04
Pattern 0.77± 0.01 | 0.85± 0.01 0.75± 0.01 | 0.72± 0.01∗ - | 0.48± 0.01∗ 0.00± 0.00 | 0.05± 0.04

E
ffi

ci
en

t
N

et
V

2

Vanilla 0.77± 0.01 | 0.86± 0.01 0.46± 0.01 | 0.51± 0.01 - | 0.36± 0.01 0.25± 0.00 | 0.32± 0.03
lasso 0.78± 0.01 | 0.85± 0.01 0.75± 0.01 | 0.65± 0.01 - | 0.35± 0.01 0.00± 0.00 | 0.05± 0.02
logistic 0.78± 0.01 | 0.85± 0.01 0.73± 0.01 | 0.67± 0.01 - | 0.34± 0.01 0.03± 0.00 | 0.04± 0.02
ridge 0.78± 0.01 | 0.85± 0.01 0.75± 0.01 | 0.65± 0.01 - | 0.35± 0.01 0.00± 0.00 | 0.05± 0.02
SVM 0.78± 0.01 | 0.85± 0.01 0.75± 0.01 | 0.66± 0.01 - | 0.34± 0.01 0.00± 0.00 | 0.04± 0.02
Pattern 0.79± 0.01 | 0.85± 0.01 0.71± 0.01 | 0.70± 0.01∗ - | 0.32± 0.01∗ 0.03± 0.00 | 0.06± 0.02

V
iT

Vanilla 0.73± 0.01 | 0.88± 0.01 0.38± 0.01 | 0.67± 0.01 - | 0.15± 0.00 0.47± 0.02 | 0.25± 0.22
lasso 0.74± 0.01 | 0.88± 0.01 0.39± 0.01 | 0.67± 0.01 - | 0.16± 0.00 0.42± 0.03 | 0.25± 0.22
logistic 0.73± 0.01 | 0.88± 0.01 0.62± 0.01 | 0.72± 0.01 - | 0.16± 0.00 0.02± 0.06∗ | 0.25± 0.22
ridge 0.74± 0.01 | 0.88± 0.01 0.48± 0.01 | 0.66± 0.01 - | 0.16± 0.00 0.12± 0.05 | 0.25± 0.22
SVM 0.73± 0.01 | 0.87± 0.01 0.48± 0.01 | 0.61± 0.01 - | 0.22± 0.00 0.46± 0.02 | 0.50± 0.00
Pattern 0.74± 0.01 | 0.88± 0.01 0.61± 0.01 | 0.73± 0.01 - | 0.16± 0.00 0.06± 0.06 | 0.25± 0.22
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Table 9: Results for VGG16, ResNet18, ResNet50, ResNeXt50, ReXNet100, EfficientNet-B0,
EfficientNetV2, and Vision Transformer trained on ISIC2019 after model correction with RR-ClArC
w.r.t. to the real artifacts “band-aid”|“ruler”|“skin marker”. We report accuracy on clean and biased
test set, the fraction of relevance put onto the data artifact region for localizable artifacts, and the TCAV
score (reported as ∆TCAVgt) using the sample-wise ground-truth concept direction hgt, measuring
the models’ sensitivity towards the artifacts after model correction. Note, that we artificially insert
artifacts using estimated localization masks to create a biased test set and to compute hgt. Stars
indicate statistical significance according to z-tests with a significance level of 0.05, and arrows
whether low (↓) or high (↑) are better.
model CAV Accuracy (clean) ↑ Accuracy (biased) ↑ Artifact relevance ↓ ∆TCAVgt ↓

V
G

G
-1

6

Vanilla 0.83 | 0.83 | 0.83 0.75 | 0.72 | 0.75 0.51 | 0.32 | 0.23 0.10 | 0.07 | 0.04
lasso 0.81 | 0.82 | 0.82 0.77 | 0.77 | 0.75 0.48 | 0.25 | 0.22 0.12 | 0.07 | 0.05
logistic 0.82 | 0.81 | 0.81 0.78 | 0.75 | 0.75 0.46 | 0.28 | 0.22 0.09 | 0.07 | 0.05
ridge 0.81 | 0.82 | 0.82 0.76 | 0.77 | 0.75 0.49 | 0.26 | 0.22 0.12 | 0.07 | 0.05
SVM 0.82 | 0.82 | 0.81 0.78 | 0.74 | 0.75 0.46 | 0.28 | 0.22 0.11 | 0.07 | 0.05
Pattern 0.82 | 0.82 | 0.82 0.79 |0.79∗ | 0.75 0.31∗ |0.18∗ |0.18∗ 0.03∗ | 0.06 | 0.05

R
es

N
et

18

Vanilla 0.85 | 0.85 | 0.85 0.79 | 0.83 | 0.80 0.22 | 0.13 | 0.15 0.32 | 0.18 | 0.02
lasso 0.85 | 0.85 | 0.85 0.80 | 0.83 | 0.79 0.18 | 0.13 | 0.15 0.06 | 0.18 | 0.03
logistic 0.85 | 0.85 | 0.85 0.81 | 0.83 | 0.79 0.17 | 0.11 | 0.14 0.05 | 0.03 | 0.02
ridge 0.85 | 0.85 | 0.85 0.80 | 0.83 | 0.79 0.18 | 0.11 | 0.15 0.06 | 0.03 | 0.03
SVM 0.85 | 0.85 | 0.85 0.81 | 0.83 | 0.79 0.18 | 0.12 | 0.15 0.05 | 0.03 | 0.02
Pattern (ours) 0.85 | 0.84 | 0.84 0.81 | 0.83 | 0.79 0.16∗ | 0.11 | 0.14 0.09 | 0.05 | 0.04

R
es

N
et

50

Vanilla 0.87 | 0.87 | 0.87 0.82 | 0.84 | 0.81 0.34 | 0.14 | 0.19 0.27 | 0.03 | 0.07
lasso 0.87 | 0.87 | 0.87 0.82 | 0.85 | 0.81 0.30 | 0.12 | 0.19 0.05 | 0.03 | 0.07
logistic 0.87 | 0.87 | 0.87 0.83 | 0.85 | 0.81 0.24 | 0.13 | 0.18 0.05 | 0.03 | 0.07
ridge 0.87 | 0.87 | 0.87 0.82 | 0.85 | 0.81 0.30 | 0.12 | 0.18 0.05 | 0.03 | 0.02
SVM 0.87 | 0.87 | 0.87 0.83 | 0.85 | 0.81 0.26 | 0.13 | 0.18 0.05 | 0.03 | 0.08
Pattern (ours) 0.87 | 0.87 | 0.87 0.83 | 0.86 | 0.81 0.22∗ | 0.12 |0.17∗ 0.04 | 0.03 | 0.02

R
es

N
eX

t5
0

Vanilla 0.87 | 0.87 | 0.87 0.82 | 0.85 | 0.80 0.37 | 0.16 | 0.24 0.06 | 0.03 | 0.05
lasso 0.87 | 0.87 | 0.87 0.82 | 0.85 | 0.80 0.34 | 0.15 | 0.23 0.06 | 0.04 | 0.05
logistic 0.87 | 0.86 | 0.87 0.83 | 0.85 | 0.80 0.30 | 0.15 | 0.22 0.06 | 0.04 | 0.05
ridge 0.87 | 0.86 | 0.87 0.82 | 0.85 | 0.80 0.34 | 0.14 | 0.22 0.07 | 0.04 | 0.05
SVM 0.87 | 0.86 | 0.87 0.83 | 0.85 | 0.81 0.31 | 0.15 | 0.23 0.06 | 0.04 | 0.05
Pattern (ours) 0.87 | 0.86 | 0.87 0.83 | 0.86 | 0.81 0.27∗ | 0.14 | 0.23 0.04 | 0.03 | 0.04

R
eX

N
et

10
0

Vanilla 0.88 | 0.88 | 0.88 0.82 | 0.86 | 0.83 0.21 | 0.10 | 0.14 0.16 | 0.11 | 0.11
lasso 0.88 | 0.88 | 0.88 0.82 | 0.86 | 0.83 0.21 | 0.10 | 0.14 0.33 | 0.11 | 0.01
logistic 0.88 | 0.88 | 0.88 0.82 | 0.86 | 0.83 0.21 | 0.10 | 0.14 0.34 | 0.11 | 0.01
ridge 0.88 | 0.88 | 0.88 0.82 | 0.86 | 0.83 0.21 | 0.10 | 0.14 0.33 | 0.11 | 0.01
SVM 0.88 | 0.88 | 0.88 0.82 | 0.86 | 0.83 0.21 | 0.10 | 0.14 0.33 | 0.11 | 0.01
Pattern (ours) 0.88 | 0.88 | 0.88 0.82 | 0.86 | 0.83 0.19∗ |0.08∗ |0.13∗ 0.30 |0.04∗ | 0.01

E
ffi

ci
en

t
N

et
-B

0

Vanilla 0.88 | 0.88 | 0.88 0.83 | 0.86 | 0.83 0.22 | 0.08 | 0.11 0.12 | 0.04 | 0.02
lasso 0.88 | 0.88 | 0.88 0.83 | 0.86 | 0.83 0.22 | 0.08 | 0.11 0.11 | 0.03 | 0.02
logistic 0.88 | 0.88 | 0.88 0.83 | 0.86 | 0.83 0.22 | 0.08 | 0.11 0.12 | 0.03 | 0.02
ridge 0.88 | 0.88 | 0.88 0.83 | 0.86 | 0.83 0.22 | 0.08 | 0.11 0.12 | 0.04 | 0.02
SVM 0.88 | 0.88 | 0.88 0.83 | 0.86 | 0.83 0.22 | 0.08 | 0.11 0.11 | 0.04 | 0.02
Pattern (ours) 0.88 | 0.88 | 0.88 0.83 | 0.86 | 0.82 0.22 | 0.08 | 0.11 0.03∗ | 0.02 | 0.02

E
ffi

ci
en

t
N

et
V

2

Vanilla 0.89 | 0.89 | 0.89 0.85 | 0.86 | 0.83 0.22 | 0.08 | 0.12 0.12 | 0.16 | 0.10
lasso 0.89 | 0.89 | 0.89 0.85 | 0.86 | 0.84 0.22 | 0.08 | 0.12 0.12 | 0.14 | 0.09
logistic 0.89 | 0.89 | 0.89 0.85 | 0.86 | 0.84 0.22 | 0.08 | 0.12 0.12 | 0.16 | 0.10
ridge 0.89 | 0.89 | 0.89 0.85 | 0.87 | 0.83 0.22 | 0.08 | 0.12 0.12 | 0.14 | 0.07
SVM 0.89 | 0.89 | 0.89 0.85 | 0.86 | 0.83 0.22 | 0.08 | 0.12 0.12 | 0.17 | 0.10
Pattern (ours) 0.89 | 0.89 | 0.89 0.85 | 0.86 | 0.83 0.22 | 0.08 | 0.12 0.09∗ | 0.09 | 0.09

V
iT

Vanilla 0.89 | 0.89 | 0.89 0.78 | 0.83 | 0.82 0.22 | 0.11 | 0.10 0.18 | 0.14 | 0.05
lasso 0.89 | 0.89 | 0.89 0.78 | 0.84 | 0.82 0.22 | 0.10 | 0.10 0.18 | 0.12 | 0.06
logistic 0.89 | 0.89 | 0.89 0.78 | 0.85 | 0.82 0.22 | 0.09 | 0.10 0.15 | 0.07 | 0.04
ridge 0.89 | 0.89 | 0.89 0.78 | 0.84 | 0.82 0.22 | 0.10 | 0.10 0.19 | 0.11 | 0.06
SVM 0.89 | 0.89 | 0.89 0.78 | 0.83 | 0.82 0.25 | 0.11 | 0.10 0.25 | 0.15 | 0.04
Pattern (ours) 0.89 | 0.89 | 0.89 0.78 | 0.85 | 0.82 0.22 |0.08∗ | 0.10 0.16 |0.01∗ | 0.11
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D.8 ADDITIONAL BONE AGE EXPERIMENTS

Complementing the experiments with the artificial brightness, we considered two additional artifacts
in the Bone Age dataset. Specifically, we insert an artificial (grayscale) timestamp artifact into 20%
of samples of exactly one class during training. Moreover, we consider a real-world artifact occurring
in the Bone Age dataset: Images are scaled such that all hands are of similar size, leading to larger
“L”-markers for hands of younger children, because the images needed a larger scaling factor due to
smaller hands. In both settings, we train VGG16, ResNet18/50, EfficientNet-B0 and EfficientNet-V2
models. In Tab. 10, we report the accuracy on the clean test set and the artifact relevance in both
settings, as well as the accuracy on the biased test set and ∆TCAVgt in the controlled experiment.
For the timestamp artifact, the Pattern-CAV outperforms filter-based CAVs both in terms of accuracy
on the biased data and artifact relevance by a large margin across all architectures, while maintaining
a high accuracy on the clean data. For the real-world artifact, the bias mitigation approach using
Pattern-CAV successfully reduces the artifact relevance by a large margin for all architectures.

In addition, similar to the qualitative analysis in Section 4.2, we present RelMax visualizations for the
most important neurons for different CAVs for a VGG16 model trained on Bone Age. We use CAVs
representing the real-world “L”-marker artifact (Fig. 36) and the artificial timestamp artifact (Fig. 37).
The same trends as with ISIC2019 (see Fig.27) cab be observed. Specifically, while Filter-CAVs
have high values for irrelevant or noisy neurons, Pattern-CAVs have a less uniform distribution over
neurons, with top neurons focusing on the concept of interest, i.e., the timestamp and the “L”-marker.

Table 10: Results for VGG16, ResNet18/50, and EfficientNet-B0/V2 trained on Bone Age after
model correction with RR-ClArC w.r.t. to the artificial timestamp (left) and the “L”-marker artifact
(right). We report accuracy on clean and biased test set, the fraction of relevance put onto the artifact
region, and the TCAV score (reported as ∆TCAVgt) using the sample-wise ground-truth concept
direction hgt, measuring the models’ sensitivity to the artifact. Stars indicate statistical significance
according to z-tests (significance level. 0.05), and arrows whether low (↓) or high (↑) are better.
model CAV Accuracy (clean) ↑ Accuracy (biased) ↑ Artifact relevance ↓ ∆TCAVgt ↓

V
G

G
16

Vanilla 0.79 | 0.79 0.33 | - 0.72 | 0.17 0.26 | -
lasso 0.77 | 0.79 0.34 | - 0.65 | 0.17 0.33 | -
logistic 0.77 | 0.79 0.37 | - 0.62 | 0.18 0.29 | -
ridge 0.77 | 0.79 0.34 | - 0.67 | 0.17 0.33 | -
SVM 0.79 | 0.79 0.35 | - 0.59 | 0.17 0.20 | -
Pattern (ours) 0.78 | 0.78 0.70∗ | - 0.30∗ |0.14∗ 0.11∗ | -

R
es

N
et

18

Vanilla 0.77 | 0.76 0.44 | - 0.36 | 0.19 0.03 | -
lasso 0.78 | 0.76 0.48 | - 0.32 | 0.18 0.06 | -
logistic 0.78 | 0.77 0.57 | - 0.28 | 0.18 0.06 | -
ridge 0.77 | 0.76 0.54 | - 0.30 | 0.17 0.05 | -
SVM 0.77 | 0.76 0.59 | - 0.28 | 0.18 0.02 | -
Pattern (ours) 0.77 | 0.75 0.62∗ | - 0.25∗ |0.15∗ 0.08 | -

R
es

N
et

50

Vanilla 0.79 | 0.78 0.49 | - 0.48 | 0.24 0.03 | -
lasso 0.80 | 0.78 0.59 | - 0.41 | 0.24 0.02 | -
logistic 0.80 | 0.79 0.70 | - 0.35 | 0.23 0.01 | -
ridge 0.80 | 0.78 0.66 | - 0.38 | 0.24 0.02 | -
SVM 0.80 | 0.79 0.68 | - 0.37 | 0.24 0.01 | -
Pattern (ours) 0.80 | 0.78 0.72 | - 0.33∗ |0.17∗ 0.02 | -

E
ffi

ci
en

t
N

et
-B

0

Vanilla 0.78 | 0.79 0.39 | - 0.61 | 0.36 0.24 | -
lasso 0.78 | 0.79 0.40 | - 0.61 | 0.36 0.24 | -
logistic 0.78 | 0.78 0.47 | - 0.58 | 0.36 0.21 | -
ridge 0.78 | 0.79 0.40 | - 0.61 | 0.36 0.24 | -
SVM 0.78 | 0.79 0.46 | - 0.59 | 0.36 0.21 | -
Pattern (ours) 0.78 | 0.71 0.64∗ | - 0.48∗ |0.22∗ 0.05∗ | -

E
ffi

ci
en

t
N

et
V

2

Vanilla 0.80 | 0.80 0.43 | - 0.44 | 0.18 0.08 | -
lasso 0.80 | 0.80 0.43 | - 0.44 | 0.18 0.08 | -
logistic 0.80 | 0.80 0.45 | - 0.44 | 0.18 0.06 | -
ridge 0.80 | 0.80 0.43 | - 0.44 | 0.18 0.08 | -
SVM 0.80 | 0.80 0.53 | - 0.38 | 0.18 0.07 | -
Pattern (ours) 0.81 | 0.77 0.62∗ | - 0.35∗ | 0.18 0.27 | -
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Figure 36: RelMax visualization for neurons corresponding to the largest absolute values in different
CAVs, including 4 filter- (lasso, logistic, ridge, and SVM) and the pattern-CAVs, along with the
Conv filter ID and the fraction of all (absolute) CAV values for the real-world “L”-marker artifact
in the Bone Age dataset using a VGG16 model. While the filter-CAV picks up noisy neurons, the
pattern-CAV uses neurons related to the relevant concept.
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Figure 37: RelMax visualization for neurons corresponding to the largest absolute values in different
CAVs, including 4 filter- (lasso, logistic, ridge, and SVM) and the pattern-CAVs, along with the Conv
filter ID and the fraction of all (absolute) CAV values for the artificial timestamp artifact in the Bone
Age dataset using a VGG16 model. While the filter-CAV picks up noisy neurons, the pattern-CAV
uses neurons related to the relevant concept.
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D.9 ADDITIONAL IMAGENET AND CELEBA EXPERIMENTS

We conducted additional bias mitigation experiments with a natural spurious correlation in
CelebA (Liu et al., 2015) and an artificial artifact in ImageNet (Deng et al., 2009). For the for-
mer, we study the negative correlation between the presence of ties and blonde hair for a hair color
predictor, caused by the existence of many dark-haired men wearing suits (with ties) in the dataset.
For the latter, we insert an artificial timestamp into 50% of samples of class “tench” (n01440764)
and finetune pre-trained models for 10 epochs. To amplify the impact of the artifact, we further insert
the artifact into 0.5% of samples from other classes as a backdoor by flipping the label to “tench”. On
both datasets, we train VGG16, ResNet18, ResNet50, EfficientNet-B0, and EfficientNet-V2 models
and report bias mitigation results with RR-ClArC in Tab. 11. For all architectures, Pattern-CAVs
outperform Filter-CAVs in terms of accuracy on the biased test set for ImageNet. Moreover, Pattern-
CAVs achieves superior artifact relevance and ∆TCAVgt for all architectures except for ResNet18,
where results are similar to those for Filter-CAVs.

Table 11: Results for VGG16, ResNet18/50, EfficientNet-B0 and EfficientNetV2 after model cor-
rection with RR-ClArC for ImageNet with the artificial timestamp artifact (left) and CelebA with
the real-world “tie”-artifact (right). We report accuracy on clean and biased test set, the fraction
of relevance put onto the data artifact region, and the TCAV score (reported as ∆TCAVgt) using
the sample-wise ground-truth concept direction hgt, measuring the models’ sensitivity towards the
artifacts after model correction. Stars indicate statistical significance according to z-tests with a
significance level of 0.05, and arrows whether low (↓) or high (↑) are better.
model CAV Accuracy (clean) ↑ Accuracy (biased) ↑ Artifact relevance ↓ ∆TCAVgt ↓

V
G

G
16

Vanilla 0.66 | 0.92 0.53 | - 0.15 | 0.30 0.15 | -
lasso 0.66 | 0.92 0.52 | - 0.15 | 0.24 0.24 | -
logistic 0.65 | 0.92 0.58 | - 0.13 | 0.24 0.13 | -
ridge 0.67 | 0.92 0.53 | - 0.13 | 0.22 0.22 | -
SVM 0.65 | 0.91 0.58 | - 0.14 | 0.23 0.16 | -
Pattern (ours) 0.65 | 0.91 0.63∗ | - 0.09∗ |0.14∗ 0.11∗ | -

R
es

N
et

18

Vanilla 0.66 | 0.93 0.55 | - 0.12 | 0.25 0.32 | -
lasso 0.63 | 0.92 0.60 | - 0.10 | 0.26 0.02 | -
logistic 0.64 | 0.93 0.63 | - 0.08 | 0.26 0.03 | -
ridge 0.64 | 0.92 0.62 | - 0.09 | 0.26 0.02 | -
SVM 0.64 | 0.93 0.62 | - 0.08∗ | 0.26 0.01∗ | -
Pattern (ours) 0.67 | 0.93 0.64∗ | - 0.09 | 0.26 0.05 | -

R
es

N
et

50

Vanilla 0.77 | 0.93 0.73 | - 0.10 | 0.29 0.06 | -
lasso 0.78 | 0.93 0.77 | - 0.07 | 0.29 0.05 | -
logistic 0.79 | 0.93 0.78 | - 0.07 | 0.28 0.05 | -
ridge 0.79 | 0.93 0.77 | - 0.11 | 0.29 0.09 | -
SVM 0.78 | 0.93 0.78 | - 0.07 | 0.28 0.06 | -
Pattern (ours) 0.78 | 0.93 0.78 | - 0.05∗ |0.27∗ 0.01∗ | -

E
ffi

ci
en

t
N

et
-B

0

Vanilla 0.74 | 0.92 0.52 | - 0.18 | 0.27 0.48 | -
lasso 0.74 | 0.92 0.51 | - 0.18 | 0.27 0.47 | -
logistic 0.75 | 0.92 0.55 | - 0.17 | 0.27 0.47 | -
ridge 0.74 | 0.92 0.51 | - 0.18 | 0.27 0.48 | -
SVM 0.75 | 0.92 0.53 | - 0.18 | 0.27 0.48 | -
Pattern (ours) 0.75 | 0.92 0.71∗ | - 0.10∗ |0.23∗ 0.42∗ | -

E
ffi

ci
en

t
N

et
V

2

Vanilla 0.81 | 0.90 0.68 | - 0.12 | 0.25 0.45 | -
lasso 0.81 | 0.90 0.69 | - 0.11 | 0.25 0.44 | -
logistic 0.81 | 0.90 0.72 | - 0.11 | 0.25 0.43 | -
ridge 0.81 | 0.90 0.69 | - 0.11 | 0.25 0.44 | -
SVM 0.81 | 0.90 0.72 | - 0.11 | 0.25 0.44 | -
Pattern (ours) 0.81 | 0.91 0.78∗ | - 0.10∗ |0.20∗ 0.23∗ | -
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