
Published in Transactions on Machine Learning Research (June/2025)

Theoretical Learning Performance of Graph Networks: the
Impact of Jumping Connections and Layer-wise Sparsifica-
tion

Jiawei Sun sunj11@rpi.edu
Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute

Hongkang Li lihk@seas.upenn.edu
Department of Electrical and Systems Engineering
University of Pennsylvania

Meng Wang wangm7@rpi.edu
Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute

Reviewed on OpenReview: https: // openreview. net/ forum? id= Q9AkJpfJks& nesting= 2& sort= date-desc

Abstract

Jumping connections enable Graph Convolutional Networks (GCNs) to overcome over-
smoothing, while graph sparsification reduces computational demands by selecting a sub-
matrix of the graph adjacency matrix during neighborhood aggregation. Learning GCNs
with graph sparsification has shown empirical success across various applications, but a
theoretical understanding of the generalization guarantees remains limited, with existing
analyses ignoring either graph sparsification or jumping connections. This paper presents
the first learning dynamics and generalization analysis of GCNs with jumping connections
using graph sparsification. Our analysis demonstrates that the generalization accuracy of
the learned model closely approximates the highest achievable accuracy within a broad class
of target functions dependent on the proposed sparse effective adjacency matrix A∗. Thus,
graph sparsification maintains generalization performance when A∗ preserves the essential
edges that support meaningful message propagation.We reveal that jumping connections
lead to different sparsification requirements across layers. In a two-hidden-layer GCN, the
generalization is more affected by the sparsified matrix deviations from A∗ of the first layer
than the second layer. To the best of our knowledge, this marks the first theoretical char-
acterization of jumping connections’ role in sparsification requirements. We validate our
theoretical results on benchmark datasets in deep GCNs.

1 Introduction
Graph neural networks (GNNs) outperform traditional machine learning techniques when learning graph-
structured data, that comprises a collection of features linked with nodes and a graph representing the
correlation of the features. As one of the most popular variants of GNN, Graph Convolutional Networks
(GCNs) (Kipf & Welling, 2017) perform the convolution operations on graphs by aggregating neighboring
nodes to update the feature presentation of every node. GCNs have demonstrated great empirical success
such as text classification (Norcliffe-Brown et al., 2018; Zhang et al., 2018) and recommendation systems
(Wu et al., 2019; Ying et al., 2018). Because GCNs are easy and computationally efficient to implement,
they are the preferred choice for large-scale graph training Duan et al. (2022); Zhang et al. (2022).

1

https://openreview.net/forum?id=Q9AkJpfJks&nesting=2&sort=date-desc

Published in Transactions on Machine Learning Research (June/2025)

As the depth of vanilla GCNs increases, there is a tendency for the node representations to converge toward
a common value, a phenomenon known as “over-smoothing” (Li et al., 2018). A widely adopted mitigation
approach is to incorporate jumping connections, which allow features to bypass intermediate layers and
directly contribute to future layers’ output (Li et al., 2019; Xu et al., 2018b). Moreover, jumping connections
are shown to accelerate the training process (Xu et al., 2021). Jumping connections have thus become an
essential component of GCNs.

Processing large-scale graphs can be computationally demanding, particularly when dealing with the re-
cursive neighborhood integration in GCNs. To alleviate this computational burden, graph sampling or
sparsification methods select a subset of nodes or edges from the original graph when computing neigh-
borhood aggregation. Various graph sampling approaches have been developed, including node sampling
methods like GraphSAGE (Hamilton et al., 2017), layer-wise sampling like FastGCN (Chen et al., 2018),
subgraph sampling methods like Graphsaint (Zeng et al., 2020). The graph sparsification methods (Li et al.,
2020; Chen et al., 2021; You et al., 2020; Liu et al., 2023) usually co-optimize weights and sparsified masks to
find optimal sparse graphs and remove the task-irrelevant edges. Ioannidis et al. (2020); Zeng et al. (2020);
Srinivasa et al. (2020) introduce simple pruning methods that remove less significant edges without needing
complex iterative training.

Although GCNs have demonstrated superior empirical success, their theoretical foundation remains relatively
underdeveloped. Some works analyze the expressive power of GCNs in terms of the functions they can
represent Morris et al. (2019); Cong et al. (2021); Oono & Suzuki (2019); Xu et al. (2019); Chen et al.
(2019), while some works characterize the generalization gap which measures the gap between the training
accuracy and test accuracy Esser et al. (2021); Liao et al. (2020); Tang & Liu (2023b). All these works
ignore training dynamics, i.e., they do not characterize how to train a model to achieve great expressive
power or a small generalization gap. Some works exploit the neural tangent kernel (NTK) technique to
analyze the training dynamics of stochastic gradient descent and generalization performance simultaneously
Yang et al. (2023). These analyses apply to deep neural networks, only when the network is impractically
overparameterized, i.e., the number of neurons is either infinite Du et al. (2019a) or polynomial in the total
number of nodes Qin et al. (2023).

Li et al. (2022a); Zhang et al. (2023b); Tang & Liu (2023a) analyze the training dynamics of SGD for
GCNs with sparsification and prove that the learned model is guaranteed to achieve desirable generation.
These analyses focus on two-hidden-layer GCNs, but the learning problem is already a nonconvex problem
for these shallow networks. However, their network architectures exclude jumping connections. Xu et al.
(2021) investigates training dynamics of jumping connections in multi-layer GCNs, but that paper does not
provide generalization results and only considers linear activation functions.

To the best of our knowledge, this paper provides the first theoretical analysis of the training dynamics and
generalization performance for two-hidden-layer GCNs with jumping-connection using graph sparsification.
Our method focuses on the interaction of the jumping-connection and the intermediate layer and explains
how jumping-connection influences training and graph sparsification across layers. We consider the semi-
supervised node regression problem, where given all node features and partial labels, the objective is to
predict the unknown node labels. Our major results include:

(1) We analyze training two-hidden-layer GCNs by stochastic gradient descent (SGD) with a jumping connec-
tion, using a pruning method that prefers the large weight edges from the adjacency matrix A. Our analysis
demonstrates that the generalization accuracy of the learned model approximates the highest achievable
accuracy within a broad class of target functions, which map input features to labels. Each target function
is a sum of a simpler base function that contributes significantly to the output and a more complicated
composite function that has a comparatively smaller impact on the output. This class encompasses a wide
range of functions, including two-hidden-layer GCNs with jumping connections.

(2) This paper extends the concept of the sparse effective adjacency matrix, denoted as A∗, which is first
introduced in Li et al. (2022a) for GCNs lacking jumping connections. This paper shows that A∗ also
characterizes the influence of graph sparsification in GCNs with jumping connections. We find that the
adjacency matrix A of a graph often includes redundant information, suggesting that an effectively sparse
graph can perform as well as or even surpass A in training GCNs. Then the goal of graph pruning shifts

2

Published in Transactions on Machine Learning Research (June/2025)

from minimizing the difference between sampled adjacency matrix, denoted by As, and A to minimizing the
difference between As and A∗. Consequently, even when the pruned adjacency matrix As is very sparse and
significantly deviates from A, as long as there exists an A∗ closely enough to As, graph sparsification does
not compromise the model’s generalization performance.

(3) This paper theoretically demonstrates that, owing to the presence of jumping connections, sparsifying in
different layers has different impacts on the model’s output. Specifically, the first layer connects directly to
the output through the jumping connection, and as a result, the deviation of the sampled matrix from the
sparse effective matrix A∗ has a more significant effect than the deviation of the second layer. In contrast, the
second layer influences the output through a composite function that contributes less significantly, allowing
for more substantial deviations from A∗ in the process without compromising error rates. To the best of our
knowledge, this is the first theoretical characterization of how jumping connections influence sparsification
requirements, while previous analyses such as (Li et al., 2022a) assume that the sparsification approach
remains consistent across different layers. Besides, our experiments on the deep-layer Jumping Knowledge
Network GCN, demonstrate the significant impact of graph sampling in shallow layers compared to deeper
layers. This empirical evidence supports our theoretical claims and the relevance of our two-layer model
analysis in understanding deeper GCN architectures.

1.1 Related works
Other theoretical analysis of GNNs focus on expressive power and convergence analysis. Xu et al.
(2018a); Morris et al. (2019) show the power of 1-hop message passing is upper bounded by 1-WL test.
Feng et al. (2022); Wang & Zhang (2022) extend the analysis to k-hop message passing neural networks
and spectral GNNs. Zhang et al. (2023a) explores the expressive power of GNNs from the perspective of
graph biconnectivity. Oono & Suzuki (2020); Ramezani et al. (2020); Cong et al. (2021) investigates the
optimization of GNN training.

Generalization analyses of Neural Networks (NNs). Various approaches have been developed to
analyze the generalization of feedforward NNs. The neural tangent kennel (NTK) approach shows that
overparameterized networks can be approximated by kernel methods in the limiting case (Jacot et al., 2018;
Du et al., 2019b). The model estimation approach assumes the existence of a ground-truth one-hidden-layer
model with desirable generalization and estimates the model parameters using the training data (Zhong
et al., 2017; Zhang et al., 2020; Li et al., 2022b). The feature learning approach analyzes how a shallow
NN learns important features during training and thus achieves desirable generalization (Li & Liang, 2018;
Allen-Zhu & Li, 2022; 2023). All works ignore the jumping connection except Allen-Zhu & Li (2019), which
analyzes the generalization of two-hidden-layer ResNet. Our analysis builds upon Allen-Zhu & Li (2019)
and extends to GCNs with graph sparsification.

Various GNN sparsification methods. Node-wise sampling (Hamilton et al., 2017) randomly selects
nodes and their multi-hop neighbors to create a localized subgraph. Layer-wise sampling (Chen et al., 2018;
Zou et al., 2019; Huang et al., 2018) sample a fixed number of nodes in each layer. Subgraph-based sampling
(Zeng et al., 2020; Chiang et al., 2019) generates subgraphs by sampling nodes and edges. As for graph
sparsification, SGCN (Li et al., 2020) introduces the alternating direction method of multipliers (ADMM)
to sparsify the adjacency matrix. UGS (Chen et al., 2021), Early-Bird (You et al., 2020), and ICPG (Sui
et al., 2022) design a pruning strategy to sparsify the graph based on the lottery ticket hypothesis. CGP
(Liu et al., 2023) proposes a graph gradual pruning framework to reduce the computational cost. DropEdge
Rong et al. (2019), which randomly drops edges per layer during training.

2 Training GCNs with Layer-wise Graph Sparsification: Summary of Main
Components

2.1 GCN Learning Setup

Let G = {V, E} represent an undirected graph, where V is the set of nodes with |V| = N nodes and E is the
set of edges. ∆ is the maximum degree of G. An adjacency matrix Ã ∈ RN×N is defined to describe the
overall graph topology where Ã(i, j) = 1 if (vi, vj) ∈ E else Ã(i, j) = 0. A denotes the normalized adjacency
matrix with A = D− 1

2 (Ã + I)D− 1
2 where D is the degree matrix with diagonal elements Di,i =

∑
j Ã(i, j).

3

Published in Transactions on Machine Learning Research (June/2025)

Each element Aij of the matrix A represents the normalized weight of the edge between nodes i and j. an

denotes the nth column of the matrix A. Let X ∈ Rd×N denote the feature matrix of N nodes, where
x̃n ∈ Rd denotes the feature of node n. Assume ∥x̃n∥ = 1 for all n without loss of generality. yn ∈ Rk

represents the label of node n. Let Ω ⊂ V denote the set of labeled nodes. Given X and partial labels in Ω,
the objective of semi-supervised node-regression is to predict the unknown labels in V \ Ω.

We consider training a two-hidden-layer GCN with a single jumping connection, where the function out :
Rd×N × RN×N → Rk×N with

out(X, A; W, U) = Cσ(WXA) + Cσ(Uσ(WXA)A) (1)

where σ(·) applies the ReLU activation ReLU(x) = max(x, 0) to each entry, W ∈ Rm×d, U ∈ Rm×m, and
C ∈ Rk×m denote the first hidden-layer, second hidden-layer, and output layer weights, respectively. We
only train W and U . The output of the nth node can be written as outn : Rd×N × RN → Rk is

outn(X, A; W, U) = Cσ(W Xan) + Cσ(Uσ(W XA)an) (2)

We focus on the ℓ2 regression task and the prediction loss of the nth node is defined as

Objn(X, A, yn; W, U) = 1
2∥yn − outn(X, A; W, U)∥2

2 (3)

The learning problem solves the following empirical risk minimization problem:

min
W,U

LΩ(W, U) = 1
|Ω|
∑
n∈Ω

Objn(X, A, yn; W, U) (4)

2.2 Training with stochastic gradient descent and graph sparsification
The recursive neighborhood aggregation through multiplying the feature matrix with A is costly in both
computation and memory. Graph sparsification prunes the graph adjacency matrix A to reduce the compu-
tation and memory requirement. For example, one common theme of various edge sampling or sparsification
methods is to retain the large weight edges Aij from the adjacency matrix A in As while pruning small
weights (Chen et al., 2018; Zeng et al., 2020). To further reduce the computation, layer-wise sampling is also
employed that uses different sampling rates in different layers, see, e.g., Chen et al. (2018).

We allow the sparsification methods with different parameter settings in different layers. Specifically, in the
tth iteration, let A1t and A2t denote the sparsified adjacency matrix A in the first and second hidden layers,
respectively.

In Algorithm 1, (4) is solved by the stochastic gradient descent (SGD) method starting from random ini-
tialization. In each iteration, the gradient of the prediction loss of one randomly selected node is used to
approximate the gradient of LΩ. Let W (t) and U (t) denote the current estimation of W and U . When
computing the stochastic gradient, instead of (2), we use1

out(X, A1t, A2t; W (t),U (t)) = Cσ(W (t)XA1t) + Cσ(U (t)σ(W (t)XA1t)A2t) (5)

The main notations are summarized in Table 1 in Appendix.

3 Main Algorithm and Theoretical Results
3.1 Informal Key Theoretical Findings
We first summarize our major theoretical insights and takeaways before formally presenting them.

1. The first theoretical generalization guarantee of two-hidden-layer GCNs with jumping-
connection. We demonstrate that training a single jumping-connection two-hidden-layer GCN using

1If different layers use different adjacency matrices, we specify both matrices in the function representation. Otherwise, we
use one matrix to simplify notations.

4

Published in Transactions on Machine Learning Research (June/2025)

our Algorithm 1 returns a model that achieves the label prediction performance almost the same as the
best prediction performance using a large class of target functions. We also characterize quantitatively the
required number of labeled nodes, referred to as the sample complexity, to achieve the desirable prediction
error. To the best of our knowledge, only Li et al. (2022a); Zhang et al. (2023b) provide explicit sample
complexity bounds for node classification using graph neural networks, but for shallow GCNs with no jumping
connection. Our work is the first one that provides a theoretical generalization and sample complexity
analysis for the practical GCN architecture with jumping connections.

2. Graph sparsification affects generalization through the sparse effective adjacency matrix A∗.
We show that training with edge pruning produces a model with the same prediction accuracy as a model
trained on a GCN with A∗ as the normalized adjacency matrix, i.e., replacing A with A∗ in (1). The effective
adjacency matrix is first discussed in (Li et al., 2022a), in the setup of node sampling for two-hidden-layer
GCNs with no jumping connection, but A∗ in (Li et al., 2022a) is dense. We show that the effective adjacency
matrix also exists for edge pruning on GCNs with jumping connection and can be sparse, indicating that
the sparsified matrices can be very sparse without sacrificing generalization.

3. Layer-wise graph sparsification due to jumping connection. We show that in the two-hidden-
layer GCN with a single jumping connection, the first hidden-layer learns a simpler base function that
contributes more to the output, while the second hidden-layer learns a more complicated function that
contributes less to the output. Therefore, compared with the first hidden layer, the second hidden layer is
more robust to graph sparsification and can tolerate a deviation of the pruned matrix to A∗ without affecting
the prediction accuracy. To the best of our knowledge, this is the first theoretical characterization of how
jumping connections affect the sparsification requirements in different layers, while the previous analysis in
(Li et al., 2022a) assumes the same matrix sampling deviations for all layers.

3.2 Graph Topology Sparsification Strategy

Our theoretical sparsification strategy differs slightly from Algorithm 1 due to our adjustments aiming to
facilitate and simplify the theoretical analysis. Nevertheless, our core concept is remaining more large-weight
edges with a higher probability, while remaining small-weight edges with a smaller probability.

We follow the same assumption on node degrees as that in Li et al. (2022a). Specifically, the node degrees
in G can be divided into L (L ≥ 1) groups, with each group having Nl nodes (l ∈ [L]). The degrees of all Nl

nodes in group l are in the order of dl, i.e., between cdl and Cdl for some constants c ≤ C. dl is order-wise
smaller than dl+1, i.e., dl = o(dl+1).

Let pk
ij ∈ [0, 1

2] (k = 1, 2) denote the probability of pruning the larger entries in ABij
, i.e., the larger entries

are retained with probability 1 − pk
ij . A smaller pk

ij corresponds to more conservative pruning in retaining
larger entries, while a larger pk

ij corresponds to a more aggressive pruning.

• Sampling procedure: Our pruning strategy operates block-wise. At each iteration, for each submatrix
ABij , we retain the top entries as follows:

Case (1) If i > j, each of the top2 d1

√
di

dj
largest entries Aij in ABij

is retained independently with high
probability 1− pk

ij . The remaining entries in ABij
are retained independently with a probability of pk

ij .

Case (2) If i ≤ j, each of the top d1 largest entries Aij in ABij is retained with probability 1 − pk
ij . The

remaining entries in ABij are retained independently with a probability of pk
ij .

• Layer-wise flexibility: Although we consider a simplified sampling strategy for theoretical tractability
and clarity, our framework allows pruning rates to vary across layers. This reflects the same core idea as
practical layer-wise sampling methods Rong et al. (2019); Zeng et al. (2020); Chiang et al. (2019). Moreover,
our sampling strategy differs from the theoretical analysis in Li et al. (2022a), where we adopt edge-level

2The values d1

√
di
dj

and d1 for selecting the top largest entries in Aij are chosen to simplify our theoretical analysis. In
fact, any values in these orders are sufficient for our theoretical analysis. Note that the main idea of retaining lower-degree
edges with higher probability is maintained in our sparsification strategy.

5

Published in Transactions on Machine Learning Research (June/2025)

Algorithm 1 SGD with Layer-wise Sparsification (LWS)
1: Input: Graph G with normalized adjancey matrix A, node features X, known labels in Ω, step size ηw

and ηv, number of iterations T , pruning rate p1
ij and p2

ij .
2: Initialize W (0), V (0), C. W0 = 0, V0 = 0
3: for t = 0, 1, · · · , T − 1 do
4: Retain the top q1 fraction of the largest entries with probability (1 − p1

ij) and retain the remaining
1− q1 fraction of smaller entries with probability (p1

ij) to get A1t.
5: Retain the top q2 fraction of the largest entries with probability (1 − p2

ij) and retain the remaining
1− q2 fraction of smaller entries with probability (p2

ij) to get A2t. (q1 > q2 and p1
ij < p2

ij).
6: Randomly sample n from Ω.
7: Calculate the gradient of L in (27) and update weight deviations through

Wt+1 ←Wt − ηw
∂L(W,V)

∂W

∣∣∣
W=Wt,V=Vt

Vt+1 ← Vt − ηw
∂L(W,V)

∂V

∣∣∣
W=Wt,V=Vt

8: end for
9: Output: W (T) = W (0) + WT , V (T) = V (0) + VT .

sampling with a layer-wise sparsification schedule, in contrast to their node-level sampling that is uniform
across layers.

• Degree-aware prioritization: This sampling strategy inherently favors low-degree nodes. To see this,
assume for simplicity that pk

ij < 1/2 is the same across all groups. For two groups j and j′ where group j has
a smaller degree, i.e., dj < dj′ , we have d1

√
di

dj
> d1

√
di

dj′
. According to Case (1) of our sampling strategy,

more entries in ABij than those in ABij′ will be retained with probability 1−pk
ij , while the remaining entries

are kept with probability pk
ij < 1 − pk

ij . This means that more edges between groups i and j are preserved
than edges between i and j′. This introduces a structural bias toward retaining informative, low-degree
connections.

To analyze the impact of this graph topology sparsification on the learning performance, we define the sparse
effective adjacency matrix A∗ where in each submatrix A∗

Bij
:

(1) if i > j, the top d1

√
di

dj
largest values in ABij

remain the same, while other entries are set to zero.

(2) if i ≤ j, the top d1 largest values in ABij
remain the same, while other entries are set to zero.

One can easily check from the definition that ∥A∗∥1 = O(1), i.e., the maximum absolute column sum of A∗

is bounded by a constant. Moreover, A∗ is sparse by definition.

3.3 Concept Class and Hierarchical Learning

In the context of GCNs, a concept class represents the set of possible target functions that map node features
to labels. Defining this space is essential for understanding the function approximation capability of a learned
GCN model and its ability to generalize to unseen data. Our theoretical generalization analysis establishes
that the prediction error of the learned GCN model is bounded by a small constant multiple of the minimum
achievable error within a well-defined concept class. This implies that the model effectively approximates the
optimal function within this space. When the concept class accurately captures the true mapping from node
features to labels, the minimum achievable prediction error approaches zero. Consequently, the learned GCN
model also attains a low prediction error. This concept class depends on the sparsified adjacency matrix
A∗ rather than the original A. We show that as long as the sparsified matrices At remain close to A∗, even
when highly sparse, graph sparsification does not degrade generalization performance.

To formally describe the concept class, consider a space of target functions H, consisting of two smooth
functions F and G : Rd×N × RN×N → Rk×N , along with a constant α ∈ R+:

6

Published in Transactions on Machine Learning Research (June/2025)

HA∗ (X) = FA∗ (X) + αGA∗ (FA∗ (X)), (6)

where the r-th row (r ∈ [k]) of FA∗ and GA∗ , denoted by Fr and Gr : Rd×N × RN×N → R1×N , satisfy:

Fr
A∗ (X) =

pF∑
i=1

a∗
F,r,i · Fr,i(w∗T

r,i XA∗),

Gr
A∗ (X) =

pG∑
i=1

a∗
G,r,i · Gr,i(v∗T

r,i XA∗),

(7)

where pF , pG are the counts of basis functions used to construct the decompositions of Fr and Gr;
a∗

F,r,i, a∗
G,r,i ∈ [−1, 1] are scalar coefficients for given r, i; w∗

r,i ∈ Rd and v∗
r,i ∈ Rk are vectors with norms

∥w∗
r,i∥ = ∥v∗

r,i∥ = 1√
2 for all r, i; Fr,i,Gr,i : R→ R are smooth activation functions applied element-wise.

The complexities of F and G are represented by the tuples (pF , Cs(F), Cm(F , error)) and
(pG , Cs(G), Cm(G, error)), respectively. Cm and Cs represent model and sample complexities, respectively.
The overall complexity of H is quantified by the tuple (pF , pG , Cs(F), Cs(G), Cm(F , error), Cm(G, error)).
The complexity of F (or G) is determined by the most complex sub-target function among the pF (or pG)
smooth functions. Specifically, the complexities for F and G are defined as:

Cm(F , error) = max
r,i

{
Cm(Fr,i, error, ∥A∗∥1)

}
, Cs(F) = max

r,i

{
Cs(Fr,i, ∥A∗∥1)

}
,

Cm(G, error) = max
r,i

{
Cm(Gr,i, error, ∥A∗∥1)

}
, Cs(G) = max

r,i

{
Cs(Gr,i, ∥A∗∥1)

}
.

(8)

The model and sample complexity definitions follow similarly to those in Li et al. (2022a) (Section 1.2) and
Allen-Zhu & Li (2019) (Section 4). Please see Appendix B for details.

F and G can both be viewed as one-hidden-layer GCNs with smooth activation functions and adjacency ma-
trix A∗. The target function H includes the base signal F , which is less complex yet contributes significantly
to the target, and G, which is more complicated but contributes less. We will show that the learner networks
defined in (5) can learn the concept class of target functions defined in (6). Intuitively, we will show that
using a two-hidden-layer GCN with a jumping connection, the first hidden layer learns the low-complexity
F , and the second hidden layer learns the high-complexity G(F) with the help of F learned by the first
hidden layer using the jumping connection.

We will also show that the learned GCN by our method performs almost the same as the best function in
the concept class in predicting unknown labels. Let Dx̃n

and Dyn
denote the distribution from which the

feature and label of node n are drawn, respectively. Let D denote the concatenation of these distributions.
Then the given feature matrix X and partial labels in Ω can be viewed as |Ω| identically distributed but
correlated samples (X, yn) from D. The correlation results from the fact that the label of node i depends on
not only the feature of node i but also neighboring features.

The n-th column of HA∗ , denoted Hn,A∗ : Rd×N × RN×N → Rk, represents the target function for node n.
To measure the label approximation performance of the target function, define

E
(X,yn)∼D,n∈V

[
1
2∥Hn,A∗(X)− yn∥2

2

]
= OPT (9)

as the minimum prediction error achieved by the best target function in the concept class in (8). OPT
decreases when the target functions are more complex, or the concept class enlarges, or if A∗ characterizes
the node correlations properly.

3.4 Modeling the prediction error of unknown labels
To simplify the analysis and representation, we re-parameterize U in (1) and (2) as V C, where V ∈ Rm×k.
Then, (2) can be rewritten as follows:

outn(X, A; W, V) = out1
n(X, A) + Cσ(V out1(X, A)an)

where out1(X, A; W) = Cσ(W XA),
out1

n(X, A; W) = Cσ(W Xan)
(10)

7

Published in Transactions on Machine Learning Research (June/2025)

We follow the conventional setup for theoretical analysis that C is fixed at its random initialization, and only
W and V are updated during training. C, W (0), V (0) are randomly initialized from Gaussian distributions,
Ci,j

i.i.d.∼ N
(
0, 1

m

)
, W

(0)
i,j

i.i.d.∼ N
(
0, σ2

w

)
and V

(0)
i,j

i.i.d.∼ N
(
0, σ2

v/m
)
, respectively.

The algorithm is summarized in Algorithm 1. When computing the stochastic gradient of a sampled label
yn, the loss is represented as a function of the weight deviations W, V from initiation W (0) and V (0), i.e.,

L(W, V) = Objn(X, A1t, A2t, yn; W (0) + W, V (0) + V). (11)

Wt and Vt denote the weight deviations of the estimated weights W (t) and V (t) in iteration t from W (0)

and V (0), i.e., W (t) = W (0) + Wt, V (t) = V (0) + Vt. We assume 0 < α ≤ Õ
(

1
Cs(G)

)
throughout the

training. We prove that ∥Wt∥2 and ∥Vt∥2 are bounded by Θ̃ (Cs(F)) and Θ̃ (αCs(G)) during training, i.e.,
∥Wt∥2 ≤ Θ̃ (Cs(F)), ∥Vt∥2 ≤ Θ̃ (αCs(G)) < 1 for all t.

The following lemma shows that graph sparsification in different layers contributes to the output approxi-
mation differently. In other words, to maintain the same accuracy in the output, the tolerable pruning rates
in different layers are different.
Lemma 3.1. For any given constant E, if the first and second layer matrices A1t and A2t are sparsified
with probabilities satisfying

p1
ij ≤ Θ̃

(√
didjE

NiNjCs(F)

)
, p2

ij ≤ Θ̃
(√

didjE

NiNjαCs(F)Cs(G)

)
, (12)

then with probability at least 1− e−Ω(E
√

didj/Cs(F)), we have∥∥A1t −A∗∥∥
1 ≤

E

Θ̃(Cs(F))
, (13)

∥∥A2t −A∗∥∥
1 ≤

E

Θ̃(αCs(F)Cs(G))
, (14)∥∥∥outn(X, A1t, A2t; W (t), V (t))− outn(X, A∗; W (t), V (t))

∥∥∥
2
≤ E. (15)

Lemma 3.1 demonstrates that skip connections enable more flexible sparsification in deeper layers. To see
this, note that since Θ̃(αCs(G)) < 1 (see Table 3 in the Appendix), the second-layer sparsification condition
in (12) permits larger values of p2

ij compared to p1
ij , allowing more aggressive pruning in the second layer

while still satisfying the output error bound in (15). This is because the skip connection ensures that the
final output aggregates features from each layer in a decoupled manner, allowing the approximation error at
each layer (see (13) and (14)) to be independently controlled.

We will show the learned model can achieve an error close to O(OPT). Our main theorem can be sketched
as follows,

Theorem 3.2. For α ∈
(

0, Θ̃
(

1
Cs(G)

))
, let ϵ0 = Θ̃(α4Cs(G)4) < 1 and define the target error ϵ = 10 ·

OPT + ϵ0. Suppose the pruning probabilities p1
ij , p2

ij satisfy (12) with E = ϵ0. Then there exist M0 =
poly

(
Cm(F , α), Cm(G, α), ∥A∗∥1, α−1), T0 = Θ̃

(
Cs(F)2

∥A∗∥1 min{0.1,ϵ2}

)
, N0 = Θ̃

(
∆4Cs(F)2∥A∗∥4

1 log N · ϵ−2) ,

such that for any m ≥ M0, T ≥ T0, and |Ω| ≥ N0, with high probability over the random initialization and
training process, the SGD algorithm satisfies:

1
T

T −1∑
t=0

E(X,yn)∼D, n∈V
∥∥yn − outn

(
X, A1t, A2t; Wt, Vt

)∥∥2
2 ≤ ϵ. (16)

(16) shows that the learned GCN achieves a prediction error no worse than ϵ, averaged over the data
distribution and training iterations. Note that when the concept class becomes more expressive, Cm and Cs

8

Published in Transactions on Machine Learning Research (June/2025)

increase, while the optimal error OPT decreases. According to Theorem 3.2, this leads to an increase in
the required the model complexity M0 (the number of neurons) and the sample complexity N0 (the number
of labeled nodes), while the generalization error epsilon decreases. Thus, as a sanity check, our theoretical
bounds match the intuition that a larger model and more labels improve the prediction accuracy.

In parallel, the pruning probabilities p1
ij and p2

ij are positively correlated with ϵ0, indicating that achieving
a smaller generalization error requires lower pruning probabilities, i.e., more conservative pruning improves
generalization. Between the two, p2

ij is consistently larger than p1
ij , suggesting that more aggressive pruning is

permissible in the second layer while maintaining conservative pruning in the first. Moreover, N0 = Θ̃(log N)
suggests that a logarithmic number of labels suffices to generalize to the entire graph under our assumptions.
Finally, as ∥A∗∥1 increases, the constants Cm and Cs also increase, which in turn raises M0 and N0. This
reflects a natural phenomenon: when the affective adjacency matrix becomes denser, the prediction task
becomes harder, and generalization performance degrades accordingly.

This proof of Theorem 3.2 builds upon the proof of Theorem 1 in Allen-Zhu & Li (2019), which analyzes
the generalization of a three-layer ResNet for a supervised regression problem. We extend the analysis to
training GCNs with graph sparsification for a semi-supervised node regression problem. The main technical
challenge is to handle the dependence of labels on neighboring features and the error in adjacency matrices
due to the sparsification. Compared with Li et al. (2022a) which also considers training GCN with graph
sampling, we consider a different sparsification method from that in Li et al. (2022a). The resulting A∗ in
Li et al. (2022a) is a dense matrix as A, while A∗ in our paper is a sparse matrix. Our results thus allow
the sparsified matrices to be very sparse while still maintaining the generalization accuracy. Moreover, the
sampling method is the same for both hidden layers in Li et al. (2022a), resulting the same deviation from
A∗ in both layers. Our results indicate that the jumping connection allows a more flexible sparsification
method in the second layer.

3.5 Proof Overview

In practice, for computational efficiency, we use the sparsified adjacency matrix At in the learning network.
Therefore, the discrepancy between the target function with A∗ and the practical learning network with At

can be viewed as two parts:∥∥Hn,A∗(X)− outn

(
X, A1t, A2t; Wt, Vt

)∥∥
2 ≤∥Hn,A∗(X)− outn (X, A∗)∥2

+
∥∥outn

(
X, A1t, A2t

)
− outn (X, A∗)

∥∥
2

(17)

the first part quantifies how well the learning network, trained with Wt and Vt using A∗, can approximate
the target function Hn,A∗ . We prove the existence of W∗ and V∗ (see Lemma C.3) Problem statementwith
m ≥M0, TstatementT0 and Ω ≥ N0 such that

∥Hn,A∗(X)− outn (X, A∗; W∗, V∗)∥2 ≤ ϵ0.− (18)

The second part quantifies the difference between the learning network’s output when using the sparse
adjacency matrices At and effective adjacency matrix A∗. Specifically, it is represented by the term:∥∥outn

(
X, A1t, A2t

)
− outn (X, A∗)

∥∥
2 ≤

∥∥Cσ(WXa1t
n)− Cσ(WXa∗

n)
∥∥

2 +∥∥Cσ(V out1
n(XA1t)a2t

n)− Cσ(V out1
n(XA∗)a∗

n)
∥∥

2

(19)

For the inequality
∥∥Cσ(WXa1t

n)− Cσ(WXa∗
n)
∥∥

2 ≤ ϵ0 to hold, it is required that
∥∥A1t −A∗

∥∥
1 ≤

ϵ0

Θ̃(Cs(F))
and similarly,

∥∥A2t −A∗
∥∥

1 ≤
ϵ0

Θ̃(αCs(F)Cs(G))
(see Appendix C.4). We establish that with appropriate pruning

probabilities p1
ij and p2

ij , the norms
∥∥A1t −A∗

∥∥
1 and

∥∥A2t −A∗
∥∥

1 can be sufficiently small (see Appendix
C.7).

Finally, consider the definition of OPT, we can prove
∥∥yn − outn

(
X, A1t, A2t; Wt, Vt

)∥∥
2 ≤ ϵ.

9

Published in Transactions on Machine Learning Research (June/2025)

4 Empirical Experiment
4.1 Experiment on synthetic data
We generate a graph G with N = 2000 nodes. Given A, the sparse A∗ is obtained following the procedure
in Section 3.2. The node labels are generated by the target function

FA∗ (X) = CW ∗XA∗,

GA∗ (FA∗ (X)) = C (sin (V ∗FA∗ (X)A∗) ⊙ tanh (V ∗FA∗ (X)A∗)) ,

HA∗ (X) = FA∗ (X) + αGA∗ (FA∗ (X)).
(20)

where X ∈ Rd×N , W ∗ ∈ Rr×d, V ∗ ∈ Rr×k, and C ∈ Rk×r are randomly generated with each entry i.i.d.
from N (0, 1). d = 100, k = 5, r = 30, α = 0.5. A two-hidden-layer GCN with a single jumping connection as
defined in (2) with m neurons in each hidden layer is trained on a randomly selected set Ω of labeled nodes.
The rest N − |Ω| labels are used for testing. The test error is measured by the ℓ2 regression loss in (3).

(a) (b)

Figure 1: Experiment on two-degree group synthetic data: To achieve the same test error, if ∥A∗∥1 is larger,
(a) then the number of neurons m is larger (when |Ω| = 1200 is fixed); (b) then the number of labeled nodes
is larger (when m = 50 is fixed).

How ∥A∗∥1 impacts model and sample complexities: In Figures 1, G has two-degree groups. Group
1 has N1 = 200 nodes, and the degree of each node follows a Gaussian distribution N

(
d1, σ2). Group 2

has N2 = 1800 nodes, and the degree of each node follows a Gaussian distribution N
(
d2, σ2). The degrees

are truncated to fall within the range of 0 to 500. We vary A∗ by changing d2 and the corresponding A .
We fix d1 = 200 and σ = 20. We directly train with A∗ to study the impact of A∗ on model and sample
complexities. In Figures 1 (a), |Ω| = 1200 and the number of neurons per layer m varies. To achieve the same
test accuracy, when ∥A∗∥1 increases, the number of neurons also increases, verifying our model complexity
M0 in Theorem 3.2. In Figures 1 (b), m = 50 and |Ω| varies. To achieve the same test accuracy, when ∥A∗∥1
increases, the required number of labels also increases, verifying our sample complexity N0 in Theorem 3.2.

In Figures 2, G has one-degree groups and the degree of each node follows a Gaussian distribution N
(
d, σ2).

d = 200. The degrees are truncated to fall within the range of 0 to 500. We vary A∗ by changing σ and the
corresponding A. We directly train with A∗ to study the impact of A∗ on model and sample complexities.
In Figures 2 (a), |Ω| = 1200 and the number of neurons per layer m varies. Fig. 2 (a) shows the testing
error decreases as m increases. When m is the same, the testing error increases as ∥A∗∥1 increases. This
verifies our model complexity in Theorem 3.2. In Figures 2 (b), m = 50 and |Ω| varies. Fig. 2 (b) shows the
testing error decreases as Ω increases. When Ω is the same, the testing error increases as ∥A∗∥1 increases.
This verifies our model complexity in Theorem 3.2.
Layer-wise Sparsification impact on generalization: We fix Ω = 1200, m = 50, ∥A∗∥1 = 1.27. We
sample adjacency matrices during training. Figure 3 shows the relationship between the test error and the
average deviation of sparsified matrices (A1t and A2t in the first and second hidden layers) from A∗. We
can see that pruning in the second hidden layer (blue dashed line) contributes to generalization degradation
much milder than pruning in the first hidden layer (green solid arrow). This verifies our Lemma 3.1 that the
sparsification requirements are more restrictive in the first layer than the second layer to maintain the same
generalization accuracy.

10

Published in Transactions on Machine Learning Research (June/2025)

(a) (b)

Figure 2: Experiment on one-degree group synthetic data: (a) Test error with |Ω| = 1200. (b) Test error
with m = 50. The test error increases as ∥A∗∥1 increases while others remain the same.

(a)
(b)

Figure 3: Experiment on synthetic data of layer-wise sparsification. (a) Sampling in the first hidden layer
affects the test performance more significantly than the second hidden layer. (b) 2D heatmap of test error.

4.2 Experiments on Small-scale Real Datasets

Retaining large weights in the graph can perform as well as trained sparse graph methods. We
applied Algorithm 1 to a one-hidden-layer shallow GCN on small-scale datasets (Cora, Citeseer) for node
multi-class classification tasks, comparing it with state-of-the-art (SOTA) sparsification methods such as
CGP (Liu et al., 2023) and UGS (Chen et al., 2021). For these small datasets, multi-layer GCNs are not
necessary, so we employ the one-hidden-layer GCN (Kipf & Welling, 2017) with 512 hidden neurons and
preclude the use of different pruning rates for shallow and deep layers. We retain the top q fraction of the
largest edge weights with a 99% probability and retain the remaining 1 − q fraction of small weight with a
1% probability to get At, so the sparsify of our method (LWS) is 0.98q +0.01 and we vary q from 0.01 to 1.0.
In Figure 4, we only demonstrate that retaining large-weight edges from A using our method can achieve
performance comparable to that of trained sparse graphs produced by SOTA methods.

(a) (b)

Figure 4: Experiment on sparsifying shallow GCN models.

11

Published in Transactions on Machine Learning Research (June/2025)

4.3 Experiments on Large-scale Real Datasets

We also evaluate multi-layer GCNs with jumping connections on the large-scale Open Graph Benchmark
(OGB) datasets for node multi-class classification tasks. A summary of Ogbn datasets’ statistics is presented
in Table 2 in Appendix. While our theory does not explicitly model dropout or normalization, we follow
standard practice and include them in real-data experiments, where the theoretical insights remain valid.

The task of Ogbn-Arxiv is to classify the 40 subject areas of arXiv CS papers. We use 60% of the data for
training, 20% for testing, and 20% for verification. We deploy an 8-layer Jumping Knowledge Network (Xu
et al., 2018b) GCN with concatenation layer aggregation as a learner network. We treat the first four layers
as shallow layers and the last four layers as deep layers. Shallow and deep layers are sparsified differently.
The generalization is evaluated by the fraction of erroneous predictions of unknown labels.

Pruning in deep layers is more flexible with less generalization degradation. In this experiment,
we employ a simplified version of the graph sparsification method discussed in Section 3.2. For the shallow
layers, at each iteration t, we obtain a sparsified adjacency matrix A1t as follows: we retain the top q1
fraction of the largest weight edges Aij from the adjacency matrix A with a 99% probability, and retain
the remaining entries with a 1% probability. For the deep layers, the sparsified adjacency matrix A2t is
generated similarly, but we use the top q2 fraction of largest Aij , again retaining with probabilities of 99%
and 1% for the top and remaining entries, respectively.

Figure 5 shows test error when q1 and q2 vary. One can see that the test error decreases more drastically when
only increasing q1 (blue dashed arrow) compared with only increasing q2 (green solid arrow), indicating that
graph pruning in shallow layers has a more significant impact than graph pruning in deeper layers. When
both q1 and q2 are greater than 0.6, the test error is always small (less than 0.29) for a wide range of q1, q2.
That may suggest the existence of multiple sparse A∗ such that sparsified matrices At with different q1, q2
pairs approximate different A∗, and all A∗ can accurately represent the data correlations in the mapping
function from the features to the labels.

-

(a) (b)

Figure 5: Learning deep GCNs on Ogbn-Arxiv: (a) Deeper layers tolerate higher sampling rates than shallow
layers while maintaining accuracy. (b) 2D heatmap of test error rate.

Large-weight edges are more influential on generalization than small-weight edges. Note that
if nodes i and j have higher degrees, then Aij has a smaller value. We sparsify one matrix for the shallow
layers by keeping the values of Aij that are in the range of top s1 to s1 + 0.5 fraction and setting all other
values to zero. Similarly, we sparsify one matrix for the deep layers by keeping the values in the range of
top s2 to s2 + 0.5 fraction and setting all other values to zero. These two sparsified matrices are used during
training. When s1 and s2 increase, the resulting matrices have the same number of nonzero entries, and the
sparsified entries focus more on high-degree edges. Figure 6 shows the test error indeed increases as s1, s2
increases. This justifies the sparsification strategy to retain more large-weight edges.
For the Ogbn-Products dataset, we deploy a 4-layer Jumping Knowledge Network (Xu et al., 2018b) GCN
with concatenation layer aggregation. Each hidden layer consists of 128 neurons. We define the first two
layers as shallow layers and the last two layers as deep layers with sampling rate p2. The task is to classify

12

Published in Transactions on Machine Learning Research (June/2025)

-

(a)
(b)

Figure 6: Learning deep GCNs on Ogbn-Arxiv: (a) Retaining more large-weight edges (small s1, s2) outper-
forms retaining more small-weight edges (large s1, s2). (b) 2D heatmap of test error rate.

the category of a product in a multi-class, where the 47 top-level categories are used for target labels. We
use 60% of the data for training, 20% for testing, and 20% for verification.

We run the similar experiment as Figure 5 for Ogbn-Products dataset. We fix q1 = 0.1 and vary q2 from 0.1
to 1.0 at increments of 0.1, then fix q2 = 0.1 and vary q1 from 0.1 to 1.0 at increments of 0.1. Figure 7 shows
that with the increasing sampling rate in shallow layers, the test accuracy is higher than the test accuracy
with the increasing sampling rate in deep layers. It suggests that the generalization is more sensitive to the
sampling in the shallow layers rather than deep layers, consistent with observations in other datasets.

Figure 7: Layer-wise Sampling Rate Effect on Ogbn-Products

5 Conclusion and Future Work
This paper provides a theoretical generalization analysis of training GCNs with skip connections using graph
sampling. To the best of our knowledge, this paper provides the first analysis of how skip connection affects
the generalization performance. We show that for a two-hidden-layer GCN with a skip connection, the
first hidden layer learns a simpler function that contributes significantly to the output, making the choice of
sampling more crucial in the first hidden layer. In contrast, the second layer learns a composite function that
contributes less to the output, allowing for a more flexible sampling approach while preserving generalization.
This insight is verified on deep GCNs on benchmark datasets. Our analysis provides a general guideline:
apply conservative sparsification in shallow layers to preserve local neighborhood information, and more
aggressive pruning in deeper layers, especially when skip connections are present, to balance expressiveness
and efficiency.

Future work includes extending our analysis to other graph neural networks and practical architectures. For
example, our framework could be adapted to spatio-temporal GCNs by incorporating temporal edges into
the sparsified adjacency matrix. Extending the analysis to attention-based models such as Graph Attention
Networks (GATs) and Graph Transformers is another exciting direction, though it would require new tools
to characterize dynamic attention mechanisms and global message passing. Our insight of layer-wise decou-
pling via skip connections naturally extend to deeper GNNs, though formalizing these insights in very deep
architectures may require additional tools to handle cumulative sparsification effects and complex nonlin-
ear interactions. Additionally, understanding the interplay of skip connections with practical components

13

Published in Transactions on Machine Learning Research (June/2025)

such as dropout and normalization layers remains an open problem, as these mechanisms introduce distinct
theoretical challenges due to their stochasticity and feature-rescaling effects.

References
Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? Advances in

Neural Information Processing Systems, 32, 2019.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust deep
learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp.
977–988. IEEE, 2022.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=Uuf2q9TfXGA.

Jianfei Chen, Tianyi Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations (ICLR), 2018.

Ting Chen, Yidan Sui, Xiaohan Chen, Anima Zhang, and Zhihua Wang. A unified lottery ticket hypothesis
for graph neural networks. In International Conference on Machine Learning, pp. 1695–1706. PMLR,
2021.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph isomorphism
testing and function approximation with gnns. Advances in neural information processing systems, 32,
2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 257–266, 2019.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training graph
convolutional networks. Advances in Neural Information Processing Systems, 34:9936–9949, 2021.

Simon S. Du, Keyulu Hou, Ruslan R. Salakhutdinov, Barnabás Póczos, Ruosong Wang, and Keyulu Xu.
Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Advances in Neural
Information Processing Systems, pp. 5724–5734, 2019a.

Simon S. Du, Xiyu Zhai, Barnabás Póczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations (ICLR), 2019b.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu, and
Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking and rethinking.
Advances in Neural Information Processing Systems, 35:5376–5389, 2022.

Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can (sometimes)
explain generalisation in graph neural networks. Advances in Neural Information Processing Systems, 34:
27043–27056, 2021.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop message
passing graph neural networks. Advances in Neural Information Processing Systems, 35:4776–4790, 2022.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph repre-
sentation learning. In Advances in Neural Information Processing Systems, pp. 4558–4567, 2018.

Vassilis N Ioannidis, Siheng Chen, and Georgios B Giannakis. Pruned graph scattering transforms. In
International Conference on Learning Representations, 2020.

14

https://openreview.net/forum?id=Uuf2q9TfXGA

Published in Transactions on Machine Learning Research (June/2025)

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning (ICLR), 2017.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as cnns?
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9267–9276, 2019.

Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Generalization guarantee of training
graph convolutional networks with graph topology sampling. In International Conference on Machine
Learning (ICML), pp. 13014–13051. PMLR, 2022a.

Hongkang Li, Shuai Zhang, and Meng Wang. Learning and generalization of one-hidden-layer neural net-
works, going beyond standard gaussian data. In 2022 56th Annual Conference on Information Sciences
and Systems (CISS), pp. 37–42. IEEE, 2022b.

Jundong Li, Ting Zhang, Hanghang Tian, Shengnan Jin, Mingyi Fardad, and Reza Zafarani. Sgcn: A graph
sparsifier based on graph convolutional networks. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 275–287. Springer, 2020.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent
on structured data. Advances in neural information processing systems, 31, 2018.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds for
graph neural networks. In International Conference on Learning Representations, 2020.

Chuang Liu, Xueqi Ma, Yibing Zhan, Liang Ding, Dapeng Tao, Bo Du, Wenbin Hu, and Danilo P. Mandic.
Comprehensive graph gradual pruning for sparse training in graph neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, 2019.

Will Norcliffe-Brown, Stathis Vafeias, and Sarah Parisot. Learning conditioned graph structures for inter-
pretable visual question answering. Advances in neural information processing systems, 31, 2018.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classifi-
cation. arXiv preprint arXiv:1905.10947, 2019.

Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through gradient
boosting and application to multi-scale graph neural networks. Advances in Neural Information Processing
Systems, 33:18917–18930, 2020.

Lianke Qin, Zhao Song, and Baocheng Sun. Is solving graph neural tangent kernel equivalent to training
graph neural network? arXiv preprint arXiv:2309.07452, 2023.

Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubramaniam, and Mahmut Kandemir.
Gcn meets gpu: Decoupling “when to sample” from “how to sample”. Advances in Neural Information
Processing Systems, 33:18482–18492, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

15

Published in Transactions on Machine Learning Research (June/2025)

Rakshith S Srinivasa, Cao Xiao, Lucas Glass, Justin Romberg, and Jimeng Sun. Fast graph attention
networks using effective resistance based graph sparsification. arXiv preprint arXiv:2006.08796, 2020.

Yiding Sui, Xiaojie Wang, Ting Chen, Xiaoqiang He, and Tat-Seng Chua. Inductive lottery ticket learning
for graph neural networks. In International Conference on Learning Representations (ICLR), pp. 1–18,
2022.

Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks. In Fortieth
International Conference on Machine Learning (ICML), 2023a.

Huayi Tang and Yong Liu. Towards understanding generalization of graph neural networks. In International
Conference on Machine Learning, pp. 33674–33719. PMLR, 2023b.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In International
Conference on Machine Learning, pp. 23341–23362. PMLR, 2022.

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, and Guihai Chen. Dual graph
attention networks for deep latent representation of multifaceted social effects in recommender systems.
In The world wide web conference, pp. 2091–2102, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In International conference on
machine learning, pp. 5453–5462. PMLR, 2018b.

Keyulu Xu, Wei Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations (ICLR), 2019.

Keyulu Xu, Mengshi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural net-
works: Implicit acceleration by skip connections and more depth. In International Conference on Machine
Learning (ICML). PMLR, 2021.

Chenxiao Yang, Qitian Wu, David Wipf, Ruoyu Sun, and Junchi Yan. How graph neural networks learn:
Lessons from training dynamics. In Forty-first International Conference on Machine Learning, 2023.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 974–983, 2018.

Haoxiang You, Changxiao Li, Pengcheng Xu, Yonggan Fu, Yang Wang, Xiaohan Chen, Richard G. Baraniuk,
Zhihua Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more efficient training of deep
networks. In International Conference on Learning Representations (ICLR), 2020.

Hongyang Zeng, Hongyuan Zhou, Abhay Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. In International Conference on Learning Representa-
tions (ICLR), 2020.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via graph
biconnectivity. In The Eleventh International Conference on Learning Representations, 2023a.

Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model sparse
learning is provably efficient for graph neural networks. In The Eleventh International Conference on
Learning Representations, 2023b. URL https://openreview.net/forum?id=4UldFtZ_CVF.

Sijia Zhang, Mengqi Wang, Shichao Liu, Pin-Yu Chen, and Jinjun Xiong. Fast learning of graph neural
networks with guaranteed generalizability: One-hidden-layer case. In International Conference on Machine
Learning, pp. 11268–11277, 2020.

16

https://openreview.net/forum?id=4UldFtZ_CVF

Published in Transactions on Machine Learning Research (June/2025)

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, and Bin
Cui. Graph attention multi-layer perceptron. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4560–4570, 2022.

Yuhao Zhang, Peng Qi, and Christopher D Manning. Graph convolution over pruned dependency trees
improves relation extraction. arXiv preprint arXiv:1809.10185, 2018.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees for one-
hidden-layer neural networks. In International conference on machine learning, pp. 4140–4149. PMLR,
2017.

D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu. Layer-dependent importance sampling for training
deep and large graph convolutional networks. In Advances in Neural Information Processing Systems, pp.
11249–11259, 2019.

17

Published in Transactions on Machine Learning Research (June/2025)

A Preliminaries

We first restate some important notations used in the Appendix, which are summarized in Table 1.

Table 1: Summary of Notations
Notations Annotation
G = {V, E} G is an undirected graph consisting of a set of nodes V and a set of edges E .
N The total number of nodes in a graph.
A = D− 1

2 ÃD− 1
2 A ∈ RN×N is the normalized adjacency matrix computed by the degree matrix D and

the initial adjacency matrix Ã.
A∗ The effective adjacency matrix.
A1t, A2t The sparsified adjacency matrices A in the first and second hidden layers at the t-th

iteration, respectively.
M0 The required number of neurons (model complexity).
T0 The required number of iterations for convergence in the SGD algorithm.
N0 The required number of labeled samples (sample complexity).
W ∈ Rm×d The weight matrix for the first hidden layer.
U ∈ Rm×m The weight matrix for the second hidden layer.
C ∈ Rk×m The weight matrix for the output layer.
V ∈ Rm×k The re-parameterized weight matrix used in place of U in the second hidden layer.
an ∈ RN The n-th column of the adjacency matrix A, representing the connectivity of node n.

A summary of Ogbn datasets’ statistics in Table 2:

Table 2: Transposed Ogbn datasets statistics.
Dataset Ogbn-Arxiv
Nodes 169,343
Edges 1,166,243

Features 128
Classes 40
Metric Accuracy

Dataset Ogbn-Products
Nodes 2,449,029
Edges 61,859,140

Features 100
Classes 47
Metric Accuracy

Lemma A.1. If M ∈ Rn×m is a random matrix where Mi,j are i.i.d. from N (0, 1). Then,

• For any t ≥ 1, with probability 1− e−t2 , it satisfies

∥M∥2 ≤ O
(√

n +
√

m
)

+ t.

• If 1 ≤ s ≤ O
(

m
log2 m

)
, then with probability 1− e−(n+s log2 m) it satisfies

∥Mv∥2 ≤ O
(√

n +
√

s log m
)
∥v∥2

for all s-sparse vectors v ∈ Rm.

Proof: The statement can be found in Proposition B.2. from Allen-Zhu & Li (2019)
Lemma A.2. Suppose δ ∈ [0, 1] and g(0) ∈ Rm is a random vector g(0) ∼ N (0, Im). With probability at
least 1− e−Ω(mδ2/3), for all vectors g′ ∈ Rm with ∥g′∥2 ≤ δ, letting D′ ∈ Rm×m be the diagonal matrix where
(D′)k,k = 1(g(0)+g′)k

− 1(g(0))k
for each k ∈ [m], we have

∥D′∥0 ≤ O(m2/3) and ∥D′g(0)∥2 ≤ ∥g′∥2.

18

Published in Transactions on Machine Learning Research (June/2025)

Proof: The statement can be found in Proposition B.4. from Allen-Zhu & Li (2019)
Lemma A.3. Given a sampling set X = {xn}N

n=1 that contains N partly dependent random variables, for
each n ∈ [N], suppose xn is dependent with at most dX random variables in X (including xn itself), and
the moment generating function of xn satisfies E[esxn] ≤ eCs2 for some constant C that may depend on xn.
Then, the moment generation function of

∑N
n=1 xn is bounded as

E[es
∑N

n=1
xn] ≤ eCdX Ns2

.

Proof: The statement can be found in Lemma 7 from Zhang et al. (2020)
Lemma A.4. ∥Xan∥ ≤ ∥A∥1.

Proof:

∥Xan∥ = ∥
N∑

k=1
xkak,n∥

= ∥
N∑

k=1

ak,n∑N
k=1 ak,n

xk∥ ·
N∑

k=1
ak,n

≤
N∑

k=1

ak,n∑N
k=1 ak,n

∥xk∥ · ∥A∥1

= ∥A∥1

(21)

Lemma A.5. If F : Rd → Rk has general complexity (p, Cs(F), Cε(F)) , then for every x, y ∈ Rd , it satisfies
∥F(x)∥2 ≤

√
kpCs(F) · ∥x∥2 and ∥F(x)−F(y)∥2 ≤

√
kpCs(F) · ∥x− y∥2 .

Proof: The boundedness of ∥F(x)∥2 is trivial so we only focus on ∥F(x) − F(y)∥2 . For each component

g(x) = Fr,i

(
⟨w∗

1,i,(x,1)⟩
∥(x,1)∥2

)
·
〈
w∗

2,i, (x, 1)
〉

, denoting by w∗
1 as the first d coordinate of w∗

1,i , and by w∗
2,i as the

first d coordinates of w∗
2,i , we have

g′(x) = Fr,i

(〈
w∗

1,i, (x, 1)
〉

∥(x, 1)∥2

)
· w∗

2

+
〈
w∗

2,i, (x, 1)
〉
· F ′

r,i

(〈
w∗

1,i, (x, 1)
〉

∥(x, 1)∥2

)
·

w∗
1 · ∥(x, 1)∥2 −

〈
w∗

1,i, (x, 1)
〉
· (x, 1)/∥(x, 1)∥2

2

∥(x, 1)∥2
2

This implies

∥g′(x)∥2 ≤

∣∣∣∣∣Fr,i

(〈
w∗

1,i, (x, 1)
〉

∥(x, 1)∥2

)∣∣∣∣∣+ 2
∣∣∣∣∣F ′

r,i

(〈
w∗

1,i, (x, 1)
〉

∥(x, 1)∥2

)∣∣∣∣∣ ≤ 3Cs (Fr,i)

As a result, |Fr(x)−Fr(y)| ≤ 3pCs (Fr,i) .
Lemma A.6. For every smooth function ϕ, every ϵ ∈ (0, 1

C(ϕ,a)
√

a2+1), there exists a function h : R2 →
[−Cm(ϕ, a)

√
a2 + 1, Cm(ϕ, a)

√
a2 + 1] that is also Cm(ϕ, a)

√
a2 + 1-Lipschitz continuous on its first coordinate

with the following two (equivalent) properties:
(a) For every x1 ∈ [−a, a] where a > 0:∣∣∣E [1

α1x1+β1
√

a2−x2
1+b0≥0h(α1, b0)

]
− ϕ(x1)

∣∣∣ ≤ ϵ

where α1, β1, b0 ∼ N (0, 1) are independent random variables.
(b) For every w∗, x ∈ Rd with ∥w∗∥2 = 1 and ∥x∥ ≤ a:∣∣∣E [1wX+b0≥0h(w⊤w∗, b0)

]
− ϕ(w∗⊤x)

∣∣∣ ≤ ϵ

19

Published in Transactions on Machine Learning Research (June/2025)

where w ∼ N (0, I) is an d-dimensional Gaussian, b0 ∼ N (0, 1).
Furthermore, we have Eα1,b0∼N (0,1)[h(α1, b0)2] ≤ (Cs(ϕ, a))2(a2 + 1).
(c) For every w∗, x ∈ Rd with ∥w∗∥2 = 1, let w̃ = (w, b0) ∈ Rd+1, x̃ = (x, 1) ∈ Rd+1 with ∥x̃∥ ≤

√
a2 + 1,

then we have ∣∣∣E [1w̃⊤x̃≥0h(w̃[1 : d]⊤w∗, w̃[d + 1])
]
− ϕ(w∗⊤x̃[1 : d])

∣∣∣ ≤ ϵ

where w̃ ∼ N (0, Id+1) is an d-dimensional Gaussian.
We also have Ew̃∈N (0,Id+1)[h(w̃[1 : d]⊤w∗, w̃[d + 1])2] ≤ (Cs(ϕ, a))2(a2 + 1).

Proof: The statement can be found in Lemma B.1. from Li et al. (2022a)

B Concept Class

To quantify complexity in (8), we define model complexity Cm and sample complexity Cs as in Li et al.
(2022a) (Section 1.2) and Allen-Zhu & Li (2019) (Section 4). For a smooth function ϕ(z) =

∑∞
i=0 ciz

i:

Cm(ϕ, error, R) =
∞∑

i=0

(C∗R)i +
(√

log(1/error)√
i

C∗R

)i
 |ci|, (22)

Cs(ϕ, R) = C∗
∞∑

i=0
(i + 1)1.75Ri|ci|, (23)

where R ≥ 0 and C∗ is a sufficiently large constant. These two quantities are used in the model complexity
and sample complexity, which represent the required number of model parameters and training samples to
learn ϕ up to error , respectively. Many population functions have bounded complexity. For instance, if ϕ(z)
is exp(z), sin(z), cos(z) or polynomials of z, then Cm(ϕ, O(1)) ≤ O(poly(1/error)) and Cs(ϕ, O(1)) ≤ O(1).

Thus, the complexities of F and G are given by the tuples (pF , Cs(F), Cm(F , error)) and
(pG , Cs(G), Cm(G, error)). F and G are composed by pF and pG different smooth functions.

We also state some simple properties regarding our complexity measure. We define BF := maxn ∥Fn,A∗(X)∥2,
BF◦G := maxn ∥Gn,A∗(FA∗(X))∥2 for all X satisfying ∥xn∥ = 1. Assume G(·) is LG Lipschitz continuous. It
is simple to verify (see Lemma A.5) that BF ≤

√
kpFCs(F , ∥A∗∥1) ∥A∗∥1, LG ≤

√
kpGCs(G,BF ∥A∗∥1) and

BF◦G ≤ kpFCs(F , ∥A∗∥1) · pGCs(G,BF ∥A∗∥1)BF ∥A∗∥1.

C Theorem 3.2 Proof Details

Let us define learner networks that are single-skip two-hidden-layer with ReLU activation outn : Rd×N ×
RN → Rk with

outn(X, A; W, V) = out1
n(X, A) + Cσ(V out1(X, A)an) (24)

and
out1(X, A) = CDW ⊙ (WXA1) ∈ Rk×N , (25)

out1
n(X, A) = CDn

W WXa1
n ∈ Rk (26)

where

• A =
[
a1, a2, · · · , aN

]
∈ RN×N denotes the normalized adjacency matrix.

• X ∈ Rd×N denotes the the matrix of d dimension features of N nodes.

• W ∈ Rm×d denotes the first hidden layer weight.

20

Published in Transactions on Machine Learning Research (June/2025)

• V ∈ Rm×k denotes the second hidden layer weight.

• C ∈ Rk×m denotes the output layer weight.

• DW =
[
1(W Xa1≥0), 1(W Xa2≥0), · · · , 1(W XaN ≥0)

]
, Dn

W = diag{1(W Xan≥0)}

• DV =
[
1(V out1

n(X,A)a1≥0) 1(V out1
n(X,A)a2≥0) · · · 1(V out1

n(X,A)aN ≥0)
]
, Dn

V =
diag{1(V out1

n(X,A)an≥0)}

The l2 loss is represented as a function of the weight deviations W, V from initiation W (0) and V (0), i.e.,

L(W, V) = Objn(X, A1t, A2t, yn; W (0) + W, V (0) + V). (27)

Let W (t) = W (0) + Wt, V (t) = V (0) + Vt. We assume 0 < α ≤ Õ
(

1
kpGCs(G,BF ∥A∗∥1)

)
throught the training.

We prove that ∥Wt∥2 and ∥Vt∥2 are bounded by τw and τv in Table 3 during training, i.e., ∥Wt∥2 ≤ τw,
∥Vt∥2 ≤ τv for all t. See Appendix C.4 for the proof.

Table 3: Parameter choices
σw m− 1

2 +0.01 ≤ σw ≤ m−0.01 σv σv = Θ(polylog(m))
τw τw = Θ̃ (kpFCs(F , ∥A∗∥1)) and m

1
8 +0.001σw ≤ τw ≤ m

1
8 −0.001σ

1
4
w

τv τv = Θ̃ (αkpGCs(G,BF ∥A∗∥1)BF ∥A∗∥1) and σv

(
k
m

) 3
8 ≤ τv ≤ σv

polylog(m)∥A∗∥1
< 1

C.1 Coupling

Lemma C.1. We show that the weights after a properly bounded amount of updates stay close to the
initialization, and many good properties occur. Suppose that ∥W∥2 ≤ τw, ∥V∥2 ≤ τv, W0 from N

(
0, σ2

w

)
and V0 from N

(
0, σ2

v/m
)
, we have that

1. ∥∥Dn
W(0) −Dn

W+W0

∥∥
0 ≤ O

(
(τw

σw
)2/3m2/3

)
(28)

2. ∥∥CDn
W+W0

WXan −CDn
W+W0

(W + W0) Xan

∥∥
2 ≤ Õ

(√
s√
m

τw ∥A∥1 +
√

kσw ∥A∥1

)
(29)

3. ∥∥out1
n(X, A; W)

∥∥
2 ≤ Õ(τw ∥A∥1) (30)

4. ∥∥Dn
V(0) −Dn

V+V0

∥∥
0 ≤ O

(
(τv

σv
)2/3m

)
(31)

5. ∥∥CDn
V+V0

V out1(X, A)an −CDn
V+V0

(V + V0) out1(X, A)an

∥∥
2

≤ Õ

(
(
√

k√
m

σv +
√

s√
m

τv)∥ out1
n(X, A)∥2∥A∥1

)
(32)

6. ∥∥CDn
V+V0

V0
∥∥

2 ≤ τv(τv

σv
)1/3 (33)

21

Published in Transactions on Machine Learning Research (June/2025)

7.
∥CDn

V+V0
(V + V0) out1(X, A)an∥2 ≤ Õ

(
τv∥ out1

n(X, A)∥2 ∥A∥1
)

(34)

Proof:

1. ∥WXan∥2 ≤ ∥W∥2 ∥Xan∥2 ≤ τw ∥Xan∥2 and ⟨W0, Xan⟩j ∼ N (0, ∥Xan∥2
2 σ2

w), using Lemma A.2,
we have ∥∥Dn

W(0) −Dn
W+W0

∥∥
0 ≤ O

(
(τw ∥Xan∥2
σw ∥Xan∥2

√
m

)2/3m

)
(35)

2. We write CDn
W+W0

WXa∗1
n − CDn

W+W0
(W + W0) Xa∗1

n = −CDn
W0

W(0)Xa∗1
n +

C
(
Dn

W0
−Dn

W+W0

)
W0Xa∗1

n . For the first term,
∥∥Dn

W0
W0Xan

∥∥
2 ≤ ∥W0Xan∥2 ≤

O (σw ∥A∥1
√

m), so
∥∥CDn

W0
W0Xan

∥∥
2 ≤ Õ

(√
kσw ∥A∥1

)
For the second term, using Lemma A.2 again, we have∥∥(Dn

W0
−Dn

W+W0

)
W0Xan

∥∥
2 ≤ ∥WXan∥2 ≤ τw ∥A∥1

Using Lemma A.1, for every s-sparse vector y, it satisfies ∥Ay∥2 ≤ eO(√ s
m)∥y∥2 with

high probability. The sparsity of the second term is s = (τw

σw∥A∥1
)2/3m2/3, so we have∥∥C

(
Dn

W0
−Dn

W+W0

)
W0Xan

∥∥
2 ≤ Õ

(√
s√
m

)
· ∥WXan∥2 ≤ Õ

(√
s√
m

τw ∥A∥1

)
.

3.
∥∥out1

n(X, A)
∥∥

2 ≤
∥∥CDn

W+W0
WXan

∥∥
2+
∥∥CDn

W+W0
WXan −CDn

W+W0
(W + W0) Xan

∥∥
2. Using

∥C∥2 ≤ 1 with high probability, we have
∥∥CDn

W+W0
Xan

∥∥
2 ≤ Õ(τw ∥A∥1)

4. Similar to (28),
∥∥V out1(X, A)an

∥∥
2 ≤ τv

∥∥out1(X, A)an

∥∥
2 and

〈
V0, out1(X, A)an

〉
j
∼

N (0,
∥∥out1(X, A)an

∥∥2
2 σ2

v), using Lemma A.2 we can prove it.

5. We write CDn
V+V0

V out1(X, A)an − CDn
V+V0

(V + V0) out1(X, A)an =
−CDn

V0
V(0) out1(X, A)an + C

(
Dn

V0
−Dn

V+V0

)
V0 out1(X, A)an. Similar to (29),

we have ∥CDn
V0

V(0) out1(X, A)an∥2 ≤ Õ(
√

k/
√

m) · O
(
σv∥ out1(X, A)an∥2

)
and∥∥C

(
Dn

V0
−Dn

V+V0

)
V0 out1(X, A)an

∥∥
2 ≤ Õ

(√
s√
m

τv∥ out1(X, A)an∥2

)
. ∥ out1(X, A)an∥2 ≤

∥ out1
n(X, A)∥2∥A∥1

6. From 5, it is easy to get.

7. From 3, it is easy to get.

C.2 Existantial

Consider random function Sn ((X, A); W∗) =
(
S1

n ((X, A); W∗) , . . . , Sk
n ((X, A); W∗)

)
in which

Sr
n ((X, A); W∗) def=

m∑
i=1

ar,i · ⟨w∗
i , Xan⟩ · 1〈w

(0)
i

,Xan

〉
≥0 (36)

where W ∗ is a given matrix, W 0 is a random matrix where each w
(0)
i is i.i.d. from N

(
0, I

m

)
and ar,i is i.i.d.

from N (0, 1).

Based on Lemma B.1. from Li et al. (2022a) and Lemma E.1. from ?, we have
Lemma C.2. Given any F : Rd → Rk with general complexity (p, Cs(F , ∥A∥1)∥A∥1, Cε(F , ∥A∥1)∥A∥1), for
every ϵ ∈

(
0, 1

pkCs(F,∥A∥1)∥A∥1

)
, there exist M = poly (Cε(F , ∥A∥1), ∥A∥1, 1/ε) such that if m ≥ M , then

with high probability there is a construction W∗ = (w∗
1 , . . . , w∗

m) ∈ Rm×d with

∥W∗∥2,∞ ≤
kpCε(F , ∥A∥1), ∥A∥1

m
and ∥W∗∥F ≤ Õ

(
kpCs(F , ∥A∥1)∥A∥1√

m

)
(37)

22

Published in Transactions on Machine Learning Research (June/2025)

satisfying, for every xn ∈ Rd and ∥xn∥2 ≤ 1, with probability at least 1− e−Ω(
√

m)

k∑
r=1
|Fr

n(X, A)− Sr
n (X, A; W ∗)| ≤ ε · ∥A∥1 (38)

where Gn(X, A; W ∗) =

S1
n(X, A; W ∗)

...
Sk

n(X, A; W ∗)

 and Sn(X, A; W ∗) = CDn
W +W0

W ∗Xan

Proof: Define w∗
j =

∑
r∈[k] ar,j

∑
i∈[p] a∗

r,ih
(r,i)

(√
m
〈

w
(0)
j , w∗

1,i

〉)
w∗

2,i has the same distribution with α1 in
Lemma A.6.

Using Lemma A.6 we have
∣∣h(r,i)

∣∣ ≤ Cε(F , ∥A∥1)∥A∥1 and using Lemma E.1. from ?, we have for our
parameter choice of m, with probability at least 1− e−Ω(mε2/(k4p2Cε(F,∥A∥1)∥A∥1))

|Fr
n(X, A)− Sr

n (X, A; W ∗)| ≤ ε

k
.

We have for each j ∈ [m], with high probability
∥∥w∗

j

∥∥
2 ≤ Õ

(
kpCε(F,∥A∥1)∥A∥1

m

)
. This means ∥W∗∥2,∞ ≤

Õ
(

kpCε(F,∥A∥1)∥A∥1
m

)
. As for the Frobenius norm,

∥W∗∥2
F =

∑
j∈[m]

∥∥w∗
j

∥∥2
2 ≤

∑
j∈[m]

Õ

(
k2p

m2

)
·
∑
i∈[p]

h(r,i)
(√

m
〈

w
(0)
j , w∗

1,i

〉)2
(39)

Applying Hoeffding’s concentration, we have with probability at least 1− e−Ω(
√

m)

∑
j∈[m]

h(r,i)
(√

m
〈

w
(0)
j , w∗

1,i

〉
,
√

mb
(0)
j

)2
≤ m · (Cs(F , ∥A∥1)∥A∥2

1),

+ m3/4 · (Cε(F , ∥A∥1)∥A∥1)2,

≤ 2m(Cs(F , ∥A∥1)∥A∥1)2.

(40)

Putting this back to (39) we have ∥W∗∥2
F ≤ Õ

(
k2p2(Cs(F,∥A∥1)∥A∥1)2

m

)
.

Lemma C.3. Under the assumptions of Lemma C.1, suppose α ∈ (0, 1) and α̃ =
α

k(pF Cs(F,∥A∥1)+pGCs(G,∥A∥1)) , there exist M = poly
(
C

α̃
(F , ∥A∥1), C

α̃
(G, ∥A∥1), ∥A∥1, α̃−1) satisfying

that for every m ≥M ,∥W∗∥F ≤ Õ (kpFCs(F)) and ∥V∗∥F ≤ Õ (α̃kpGCs(G)) with high probability

1.
En∈V,(X,yn)∼D

[∥∥CDn
W0

W∗Xan −Fn(X, A)
∥∥

2

]
≤ α̃2 ∥A∥1 (41)

2.
∥CDn

V0
V∗ out1(X, A)an − αGn

(
out1(X, A), A

) ∥∥2 ≤ α̃2·
∥∥ out1

n(X, A)∥2 ∥A∥1 (42)

3.
En∈V,(X,yn)∼D [∥CDn

WW∗Xan −Fn(X, A)∥2] ≤ O(α̃2 ∥A∥1) (43)

4. ∥∥CDn
VV∗ out1(X, A)an − αGn

(
out1(X, A), A

)∥∥
2

≤

(
α̃2 + O

(
τv

(
τv

σv

)1/3
))∥∥out1

n(X, A)
∥∥

2 ∥A∥1
(44)

23

Published in Transactions on Machine Learning Research (June/2025)

5.
En∈V,(X,yn)∼D

[∥∥CDn
W0+W(W∗ −W)Xan − (Fn(X, A)− out1

n(X, A))
∥∥

2

]
≤ α̃2 ∥A∥1 (45)

Proof:

1. Using Lemma C.2, we can find a W∗ satisfying
∥∥CDn

W0+WW∗Xan −Fn(X, A)
∥∥

2 small enough
with probability at least 1− e−Ω(

√
m).

2. Using Lemma C.2 and
∥∥out1(X, A)an

∥∥
2 ≤ ∥ out1

n(X, A)∥2 ∥A∥1, we can easily prove it.

3. ∥W∗Xan∥2 ≤ O (∥W∗∥F ∥Xan∥2) ≤ O (τw ∥A∥1).
∥∥C(Dn

W −Dn
W0

)W∗Xan

∥∥
2 ≤

O (
√

sτw ∥A∥1 /
√

m) where s is the maximum sparsity of (Dn
W − Dn

W0
). Using (28), we know

s ≤ O
(

(τw

σw
)2/3m2/3

)
. This, combining with (41) gives

En∈V,(X,yn)∼D [∥CDn
WW∗Xan −Fn(X, A)∥2] ≤ α̃2 ∥A∥1 + O

(
τw(τw

σw
)1/3/m1/6

)
≤ O(α̃2 ∥A∥1)

(46)

4. Using (31) and
∥∥V∗ out1(X, A)an

∥∥
2 ≤ O

(
τv∥ out1

n(X, A)∥2 ∥A∥1
)

we can easily prove it.

5. Using (29) and (43), with larger enough m, we can prove it.

C.3 Optimization

We write the gradient of loss function as ∇W Objn(W) = ∇W Obj1n(W) + ∇W Obj2n(W), where
∇W Obj1n(W) = ∇W out1

n(X, A) and ∇W Obj2n(W) = ∇WCDn
V V out1(X, A)an, we can write its gradi-

ent as follows.

〈
∇W Obj1n(W),−W′〉 = tr(Xan(yn − outn(X, A))⊤CDn

W +W0
W′)

= tr((yn − outn(X, A))⊤CDn
W +W0

W ′Xan)
=
〈
yn − outn(X, A), CDn

W +W0
W ′Xan

〉 (47)

〈
∇W Obj2n(W),−W′〉 = tr(

N∑
i=1

aniXai(yn − outn(X, A))⊤CDn
V +V0

(V(0) + V)CDi
W +W0

W′)

= tr(
N∑

i=1
ani(yn − outn(X, A))⊤CDn

V +V0
(V(0) + V)CDi

W +W0
W′Xai)

= tr((yn − outn(X, A))⊤
N∑

i=1
aniCDn

V +V0
(V(0) + V)CDi

W +W0
W′Xai)

=
〈

yn − outn(X, A), CDn
V +V0

(V(0) + V)C(DW +W0 ⊙W ′XA)an

〉
(48)

⟨∇V Objn(V),−V′⟩ = tr(out(X)an(yn − outn(X, A))⊤CDn
V +V0

V′)
= tr((yn − outn(X, A))⊤CDn

V +V0
V′ out(X)an)

=
〈
yn − outn(X, A), CDn

V +V0
V′ out(X)an

〉 (49)

Let us define f(W′) = CDn
W +W0

W ′Xan + CDn
V +V0

(V(0) + V)C(DW +W0 ⊙ W ′XA)an and g(V′) =
CDn

V +V0
V′ out(X)an. Therefore,

⟨∇W,V Objn(W, V), (−W′,−V′)⟩ = ⟨yn − outn(X, A), f (W′) + g (V′)⟩ (50)

24

Published in Transactions on Machine Learning Research (June/2025)

Claim C.4. We have that for all W and V satisfying ∥W∥F ≤ τw and ∥V∥F ≤ τv, it holds that

∥∇W Obj(W, V; (x, y))∥F ≤ ∥A∥1∥yn − outn(X, A)∥2 ·O (σv + 1) (51)

∥∇V Obj(W, V; (x, y))∥F ≤ τw∥A∥1∥yn − outn(X, A)∥2 ·O (1) (52)

Proof:
∥∇W Obj(W, V; (x, y))∥F = ∥Xan(yn − outn(X, A))⊤

× (CDn
W +W0

+ CDn
V +V0

(V(0) + V)CDn
W +W0

)∥F

≤ ∥Xan∥2∥yn − outn(X, A)∥2

× ∥CDn
W +W0

+ CDn
V +V0

(V(0) + V)CDn
W +W0

∥2

≤ ∥A∥1∥yn − outn(X, A)∥2 ·O (σv + 1)

(53)

In (53), the last inequality uses ∥V (0)∥2 = O(τv) and ∥C∥2 ≤ 1.

∥∇V Obj(W, V; (x, y))∥F = ∥ outn(X, A)an(yn − outn(X, A))⊤CDn
V +V0

∥F

≤ ∥ outn(X, A)an∥2∥yn − outn(X, A)∥2∥CDn
V +V0

∥2

≤ τw∥A∥1∥yn − outn(X, A)∥2 ·O (1)
(54)

In (54), the last inequality uses (30) and ∥C∥2 ≤ 1.
Claim C.5. In the setting of Lemma C.1, we have f (W∗ −W)+g (V∗ −V) = Hn,A∗(X, A)−outn(X, A)+
Errn with

E
n∈V,(X,yn)∼D

∥Errn∥2 ≤ E
n∈V,(X,yn)∼D

[O (τv ∥A∥1 + αLG∥A∥1) · ∥Hn,A∗(X, A)− outn(X, A)∥2]

+ O
(

τ2
v ∥A∥

2
1 BF + τvα̃2 ∥A∥2

1 + ατv ∥A∥2
1 LGBF

) (55)

Proof: Based on the definition of f(W′) and g(V′), we have

f (W∗ −W; X, a∗
n) + g (V∗ −V; X, a∗

n) = CDn
W +W0

(W ∗ −W)Xan

+ CDn
V +V0

(V ∗ − V) out(X)an

+ CDn
V +V0

(V(0) + V)C(DW +W0 ⊙ (W ∗ −W)XA)an

= CDn
V +V0

(V(0) + V)C(DW +W0 ⊙ (W ∗ −W)XA)an︸ ︷︷ ︸
♣

+ CDn
W +W0

W ∗Xan + CDn
V +V0

V ∗ out1(X, A)an︸ ︷︷ ︸
♠

− (CDn
W +W0

WXan + CDn
V +V0

V out1(X, A)an)︸ ︷︷ ︸
♢

(56)

1. For the ♣ term,

♣ ≤
(∥∥∥CDn

V +V0
V(0)

∥∥∥
2

+ ∥C∥2
2∥V∥2

)
∥C(DW +W0 ⊙ (W ∗ −W)XA)an∥2

≤ O(1) ·O (τv) ·
N∑

i=1
ani

(
∥F(x)− out1

n(X, A)∥2 + O
(
α̃2 ∥A∥1

))
≤ O (τv)

(
∥F(x)− outi(x)∥2 ∥A∥1 + O

(
α̃2 ∥A∥2

1

)) (57)

together with τv ≤ 1
polylog (m) σv.

25

Published in Transactions on Machine Learning Research (June/2025)

2. For the ♠ term,
♠− (Fn(X, A) + αG(F(x), an) = CDn

W +W0
W ∗Xan −Fn(X, A)

+ CDn
V +V0

V ∗ out1(X, A)an − αG
(
out1

n(X, A), an

)
+ αG

(
out1

n(X, A), an

)
− αG (F(x), an)

(58)

The first term uses (41), the second term uses (42) and the third term uses the Lipscthiz continuity of G, so
we have

∥♠ − (F(x) + αG(F(x))∥2 ≤ O

(
α̃2 + τv(τv

σv
)1/3

)
· ∥out1

n(X, an)∥2 ∥A∥1

+ O (αLG) ∥F(X)an − out1
n(X)an∥2

≤O
(
τ2

v

)
· ∥out1

n(x)∥2 ∥A∥1 + O (αLG) ∥Fn(x)− out1
n(x)∥2 ∥A∥1

(59)

We use 1
σv
≤ τ2

v and definition of α̃.

3. For the ♢ term,
∥♢ − outn(X)∥2 ≤ O

((
∥out1

n(x)∥2 ∥A∥1
)

τ2
v

)
(60)

where the inequality uses (29) and (32).

In sum, we have

Err
def= f (W∗ −W; x) + g (V∗ −V; x)− (F(x) + αG(F(x))− outn(X, A) (61)

satisfy
E

n∈V,(X,yn)∼D
∥Err∥2 ≤ E

n∈V,(X,yn)∼D

[
O (τv ∥A∥1 + αLG∥A∥1)

× ∥F(x)− out1
n(X, A)∥2 + O

(
∥out1

n(x)∥2 ∥A∥1
)

τ2
v

]
+ O

(
τvα̃2 ∥A∥2

1

) (62)

Using ∥out1
n(x) ∥2 ≤∥ out1

n(X, A)−F(x)∥2 + BF , we have

E
n∈V,(X,yn)∼D

∥Err∥2 ≤ E
n∈V,(X,yn)∼D

[O (τv ∥A∥1 + αLG∥A∥1) · ∥H(x)− outn(X, A)∥2]

+ O
(

τ2
v ∥A∥1 BF + τvα̃2 ∥A∥2

1

)
+ O (τv ∥A∥1 + αLG∥A∥1) · (τv ∥A∥1 BF + αBF◦G)

(63)

Using BF◦G ≤
√

kpGCs(G, ∥A∥1 BF)(∥A∥1 BF)2BF ≤ τv

α BF , so we have

E
n∈V,(X,yn)∼D

∥Err∥2 ≤ E
n∈V,(X,yn)∼D

[O (τv ∥A∥1 + αLG∥A∥1) · ∥H(x)− outn(X, A)∥2]

+ O
(

τ2
v ∥A∥

2
1 BF + τvα̃2 ∥A∥2

1 + ατv ∥A∥2
1 LGBF

) (64)

Claim C.6. In the setting of Lemma C.1, if τv ∥A∥1 ≤
1

polylog(m) , we have∥∥out1
n(X, A)−Fn(X)

∥∥
2 ≤ 2

∥∥out1
n(X, A)−Hn(X, A)

∥∥
2 + αBF◦G + Õ (τv ∥A∥1 BF) (65)

Proof: Using 34 and ∥G(F(X), an)∥2 ≤ BF◦G , we have∥∥out1
n(X, A)−Fn(X)

∥∥
2 ≤

∥∥out1
n(X, A)−Hn(X, A)

∥∥
2 + αBF◦G

+ Õ
(
τv ∥A∥1

(
∥out1

n(X, an)−Fn(X, A)∥2 + BF
)) (66)

Using τv ∥A∥1 small enough, we have∥∥out1
n(X, A)−Fn(X)

∥∥
2 ≤ 2

∥∥out1
n(X, A)−Hn(X, A)

∥∥
2 + αBF◦G + Õ (τv ∥A∥1 BF) (67)

26

Published in Transactions on Machine Learning Research (June/2025)

C.4 Proof of Theorem 3.2

Proof: Using (50) and Claim C.5, in iteration t, we have

⟨∇W,V Objn (Wt, Vt)) , (Wt −W∗, Vt −V∗))⟩
= ⟨yn − out (Wt, Vt) , f (W∗ −W) + g (V∗ −V)⟩
= ⟨yn − outn (Wt, Vt) ,Hn,A∗(X)− outn (Wt, Vt) + Errt⟩

(68)

We also have
∥Wt+1 −W ∗∥2

F = ∥Wt − ηw∇W Objn(Wt)−W ∗∥2
F

= ∥Wt −W ∗∥2
F − 2ηw ⟨∇W Objn(Wt), Wt −W ∗⟩

+ η2
w ∥∇W Objn(Wt)∥2

F ,

(69)

∥Vt+1 − V ∗∥2
F = ∥Vt − ηv∇V Objn(Vt)− V ∗∥2

F

= ∥Vt − V ∗∥2
F − 2ηv ⟨∇V Objn(Vt), Vt − V ∗⟩

+ η2
v ∥∇V Objn(Vt)∥2

F

(70)

Using Algorithm 1, we have Wt+1 = Wt − ηw∇W Objn (Wt, Vt) and Vt+1 = Vt − ηv∇V Objn (Wt, Vt),
so we have

⟨∇W,V Objt (Wt, Vt) , (W−W∗, V−V∗))⟩

= ηw

2 ∥∇W Objt (Wt, Vt)∥2
F + ηv

2 ∥∇V Objt (Wt, Vt)∥2
F︸ ︷︷ ︸

♡

+ 1
2ηw
∥Wt −W∗∥2

F −
1

2ηw
∥Wt+1 −W∗∥2

F + 1
2ηv
∥Vt −V∗∥2

F −
1

2ηv
∥Vt+1 −V∗∥2

F

(71)

Using Claim C.4 and change all A to A∗, we have

♡ ≤ O
(
ηwσ2

v + ηvτ2
w

)
· ∥A∥2

1∥yn − outn(X, A∗)∥2
2

≤ O
(
ηwσ2

v + ηvτ2
w

)
· ∥A∥2

1

(
∥Hn,A∗ (X)− outn(X, A∗)∥2

2 + ∥Hn,A∗ (X)− yn∥2
2

) (72)

Therefore, as long as O
(
ηwσ2

v + ηvτ2
w

)
≤ 0.1, it satisfies

1
4 ∥Hn,A∗(X)− outn (X, A∗)∥2

2 ≤2 ∥Errt∥2
2 + 4 ∥Hn,A∗(X)− yn∥2

2

+ 1
2ηw
∥Wt −W∗∥2

F −
1

2ηw
∥Wt+1 −W∗∥2

F

+ 1
2ηv
∥Vt −V∗∥2

F −
1

2ηv
∥Vt+1 −V∗∥2

F

(73)

After telescoping for t = 0, 1, . . . , T0 − 1,

∥WT0 −W∗∥2
F

2ηwT0
+ ∥WT0 −V∗∥2

F

2ηvT0
+ 1

2T0

T0−1∑
t=0
∥Hn,A∗(X)− outn (X, A∗) ∥2

2

≤
∥W∗∥2

F

2ηwT0
+ ∥V

∗∥2
F

2ηvT0
+ O(1)

T0

T0−1∑
t=0
∥Errt∥2

2 + ∥Hn,A∗(X)− yt∥2
2 .

(74)

Using O (τv ∥A∥1 + αLG) ≤ 0.1, we have

1
4T

T −1∑
t=0

E
n∈V,(X,yn)∼Z

∥Hn,A∗(X)− outn (X, A∗)∥2
2 ≤
∥W∗∥2

F

2ηwT
+ ∥V

∗∥2
F

2ηvT
+ O (OPT + ϵ0) (75)

27

Published in Transactions on Machine Learning Research (June/2025)

where
ϵ0 = Θ

(
α̃2τv ∥A∗∥2

1 + τ2
v ∥A∗∥1 BF + ατv ∥A∗∥1 LGBF

)2

= Θ̃
(

α̃2τv ∥A∗∥2
1 + α2(kpGCs(G,BF ∥A∗∥1)2(BF ∥A∗∥1)3

+α2kpGCs(G,BF ∥A∗∥1)(BF ∥A∗∥1)3 ∥A∗∥1
)2

= Θ̃
(

α4 (pGCs(G,BF ∥A∗∥1))4 (∥A∗∥1 BF)6
)

(76)

In practice, for computational efficiency, we use the sampled adjacency matrix At in the learning network,
so we should consider the discrepancy between the target function and the practical output∥∥Hn,A∗(X)− outn

(
X, A1t, A2t

)∥∥2
2 ≤∥Hn,A∗(X)− outn (X, A∗)∥2

2

+
∥∥outn

(
X, A1t, A2t

)
− outn (X, A∗)

∥∥2
2

(77)

We have already considered ∥Hn,A∗(X)− outn (X, A∗)∥2
2 and∥∥outn

(
X, A1t, A2t

)
− outn (X, A∗)

∥∥
2 ≤

∥∥Cσ(WXa1t
n)− CσWXa∗

n

∥∥
2

+
∥∥Cσ(V out1

n(XA1t)a2t
n)− Cσ(V out1

n(XA∗)a∗
n)
∥∥

2

(78)

Using (30), we have ∥∥Cσ(WXa1t
n)− CσWXa∗

n

∥∥
2 ≤ τw

∥∥Xa1t
n −Xa∗

n

∥∥
2 ≤ ∥Errt∥2 (79)

For the above equation to hold, it requires∥∥A1t −A∗∥∥
1 ≤

∥∥∥∥Errt

τw

∥∥∥∥
2

(80)

Using ∥A∗∥1 ≤ O(1) and (34), we have∥∥Cσ(V out1
n(XA1t)a2t

n)− Cσ(V out1
n(XA∗)a∗

n)
∥∥

2 ≤ τv

∥∥out1
n(XA1t)a2t

n − out1
n(XA∗)a∗

n

∥∥
2

≤ τvτw

∥∥A2t −A∗∥∥
1 ≤ ∥Errt∥2

(81)

For the above equation to hold, it requires
∥∥A2t −A∗

∥∥
1 ≤

∥∥∥Errt

τvτw

∥∥∥
2
.

Under assumptions of Lemma C.7, with high probability, we can ensure
∥∥A1t −A∗

∥∥
2 ≤

∥∥∥Errt

τw

∥∥∥
2
,∥∥A2t −A∗

∥∥
1 ≤

∥∥∥Errt

τvτw

∥∥∥
2
.

Using ∥W∗∥F ≤ τw/10, ∥V∗∥F ≤ τv/10 and ϵ ≥ OPT + ϵ0, we have

1
T

T −1∑
t=0

E
n∈V,(X,yn)∼D

∥∥Hn,A∗(X)− outn

(
X, A1t, A2t

)∥∥2
2 ≤ O(ϵ) (82)

as long as T ≥ Ω
(

τ2
w/ηw+τ2

v /ηv

ϵ

)
.

Finally, we should check ∥Wt∥F ≤ τw and ∥Vt∥F ≤ τv hold.

∥WT0 −W∗∥2
F

2ηwT0
+ ∥VT0 −V∗∥2

F

2ηvT0
≤
∥W∗∥2

F

2ηwT0
+ ∥V

∗∥2
F

2ηvT0
+ O(ϵ) + Õ

(
τw∥A∗∥1√

T0

)
(83)

Using the relationship τ2
w

ηw
= τ2

v

ηv
, we have

∥WT0∥
2
F

τ2
w

+ ∥VT0∥
2
F

τ2
v

≤
4 ∥W∗∥2

F

τ2
w

+ 4 ∥V∗∥2
F

τ2
v

+ 0.1 + Õ

(
ηw ∥A∗∥1

√
T0

τw

)
(84)

28

Published in Transactions on Machine Learning Research (June/2025)

Therefore, choosing T = Θ̃
(

τ2
w

∥A∗∥1 min{1,ϵ2}

)
and ηw = Θ̃(min{1, ϵ}) ≤ 0.1, we can ensure ∥WT0∥2

F

τ2
w

+
∥VT0∥2

F

τ2
v

≤ 1.

C.5 Graph sampling

Lemma C.7. Given a graph G with the minimum degree δ(G) ≥ Ω(
∥∥∥ τw

Errt

∥∥∥
2
), in iteration t, for the first layer

A1t is generated from the sampling strategy with the sampling probability p1
ij ≤ O(

√
didj∥Errt∥2

nijτw
) and for the

second layer A2t is generated from the sampling strategy with the sampling probability p2
ij ≤ O(

√
didj∥Errt∥2
nijτwτv

),
we have

Pr
[∥∥A1t −A∗∥∥

1 ≤ O(
∥∥∥∥Errt

τw

∥∥∥∥
2
)
]
≤ e−Ω(∥Errt∥2

√
didj/τw) (85)

Pr
[∥∥A2t −A∗∥∥

1 ≤ O(
∥∥∥∥Errt

τwτv

∥∥∥∥
2
)
]
≤ e−Ω(∥Errt∥2

√
didj/τwτv) (86)

Proof: The difference between At
Bij

and A∗
Bij

is

∆Bij =
∥∥∥At

Bij
−A∗

Bij

∥∥∥ =
nij∑
i=1

(at
ij − a∗

ij) (87)

where nij is the number of elements in A∗
Bij

and (at
ij − a∗

ij) are iid, with µij = E[∆Bij
] = nijpij

1√
didj

. The
Moment-generating function of (at

ij − a∗
ij) is

M(at
ij

−a∗
ij

)(s) = E
[
es(at

ij−a∗
ij)
]

= e
s 1√

didj pij + es·0(1− pij)

= 1 + pij

(
e

s√
didj − 1

)
≤ exp

(
e

s√
didj − 1

)
(88)

Thus, for any t > 0, using Markov’s inequality and the definition of MGF, we have

P(∆Bij
≥ k) ≤ min

s>0

∏nij

i=1 M(at
ij

−a∗
ij

)(s)
etk

= min
t>0

e
µ
√

didj

(
e

s√
didj −1

)
etk

(89)

If 0 ≤ δij ≤ 1, we plug in kij = (1 + δij)µij and the optimal value of sij =
√

didj ln(1 + ϵij) to the above
equation:

P(∆Bij
≥ (1 + δij)µij) ≤

(
eϵij

(1 + ϵij)(1+ϵij)

)µij

√
didj

≤ exp
(
−ϵ2

ijµij

√
didj

3

)
(90)

(1 + δij)(1+δij) = exp[(1 + δij)ln(1 + δij)]

= exp(δij +
δ2

ij

2 −
δ3

ij

6 + o(δ4
ij)) ≥ exp(δij +

δ2
ij

2 −
δ3

ij

6)
(91)

29

Published in Transactions on Machine Learning Research (June/2025)

Let δij = 1, µij = Θ(Errt), and di ≥ Ω(1
Errt

), we have pij ≤ O(
√

didjErrt

nij
).

C.6 Sample Complexity

Lemma C.8. Given a graph G with |V (G)| = N , if the maximum degree ∆(G) ≤ O((Nϵ2) 1
4)

and sample complexity Ω ≥ O(∆(G)2(τw∥A∥1)2 log N

ϵ2), with probability 1 − N−τw∥A∥1 , we have∣∣∣∣ E
n∈V,(X,yn)∼Z

∥∥yn − outn

(
X, A1t, A2t

)∥∥
2 − E

n∈V,(X,yn)∼D

∥∥yn − outn

(
X, A1t, A2t

)∥∥
2

∣∣∣∣ ≤ ϵ.

Proof: For the set of samples Z define

E
n∈V,(X,yn)∼Z

∥∥yn − outn

(
X, A1t, A2t

)∥∥
2 = 1

Ω

Ω∑
n=1

∥∥yn − outn

(
X, A1t, A2t

)∥∥
2 (92)

Denote the generalization error as

∣∣∣∣ E
n∈V,(X,yn)∼Z

∥∥yn − outn

(
X, A1t, A2t

)∥∥
2 − E

n∈V,(X,yn)∼D

∥∥yn − outn

(
X, A1t, A2t

)∥∥
2

∣∣∣∣
=
∣∣∣∣ E
n∈V,(X,yn)∼Z

∥∥outn

(
X, A1t, A2t

)∥∥
2 − E

n∈V,(X,yn)∼D

∥∥outn

(
X, A1t, A2t

)∥∥
2

∣∣∣∣
By Hoeffding’s inequality and ∥outn(X, an)∥2 ≤ O(τw ∥A∥1) , we have

E

e
s

∣∣∣∣ E
n∈V,(X,yn)∼Z

∥outn(X,A1t,A2t)∥2
− E

n∈V,(X,yn)∼D
∥outn(X,A1t,A2t)∥2

∣∣∣∣ ≤ e
(sτw∥A∥1)2

8 (93)

Define maximum degree of G is ∆(G). It is easy to know that
∥∥outn

(
X, A1t, A2t

)∥∥
2 is dependent with

at most its second order neighbor, so the maximum number of nodes related with
∥∥outn

(
X, A1t, A2t

)∥∥
2 is

∆(G)2. By Lemma 7 in Shuai, we have

Ees
∑Ω

n=1∥outn(X,A1t,A2t)∥2 ≤ e∆(G)2(sτw∥A∥1)2Ω/8 (94)

P
(∣∣∣∣ E

n∈V,(X,yn)∼Z

∥∥outn

(
X, A1t, A2t

)∥∥
2 − E

n∈V,(X,yn)∼D

∥∥outn

(
X, A1t, A2t

)∥∥
2

∣∣∣∣ ≥ ϵ

)
≤ exp

(
∆(G)2(sτw ∥A∥1)2Ω/8− sϵΩ

) (95)

Let s = 4ϵ
∆(G)2(τw∥A∥1)2 and ϵ = (τw ∥A∥1)2

√
∆(G)4 log N

Ω

P
(∣∣∣∣ E

n∈V,(X,yn)∼Z

∥∥outn

(
X, A1t, A2t

)∥∥
2 − E

n∈V,(X,yn)∼D

∥∥outn

(
X, A1t, A2t

)∥∥
2

∣∣∣∣ ≥ ϵ

)
≤ exp

(
−(τw∥A∥1)2 log N

)
≤ N−τw∥A∥1

(96)

with
Ω ≥ O(∆(G)2(τw ∥A∥1)2 log N

ϵ2) (97)

30

	Introduction
	Related works

	Training GCNs with Layer-wise Graph Sparsification: Summary of Main Components
	GCN Learning Setup
	Training with stochastic gradient descent and graph sparsification

	Main Algorithm and Theoretical Results
	Informal Key Theoretical Findings
	Graph Topology Sparsification Strategy
	Concept Class and Hierarchical Learning
	Modeling the prediction error of unknown labels
	Proof Overview

	Empirical Experiment
	Experiment on synthetic data
	Experiments on Small-scale Real Datasets
	Experiments on Large-scale Real Datasets

	Conclusion and Future Work
	Preliminaries
	Concept Class
	Theorem 3.2 Proof Details
	Coupling
	Existantial
	Optimization
	Proof of Theorem 3.2
	Graph sampling
	Sample Complexity

