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Abstract

In this paper, we explore a principal way to enhance the quality of object masks
produced by different segmentation models. We propose a model-agnostic solution
called SegRefiner, which offers a novel perspective on this problem by interpreting
segmentation refinement as a data generation process. As a result, the refinement
process can be smoothly implemented through a series of denoising diffusion
steps. Specifically, SegRefiner takes coarse masks as inputs and refines them
using a discrete diffusion process. By predicting the label and corresponding
states-transition probabilities for each pixel, SegRefiner progressively refines the
noisy masks in a conditional denoising manner. To assess the effectiveness of
SegRefiner, we conduct comprehensive experiments on various segmentation tasks,
including semantic segmentation, instance segmentation, and dichotomous image
segmentation. The results demonstrate the superiority of our SegRefiner from
multiple aspects. Firstly, it consistently improves both the segmentation metrics and
boundary metrics across different types of coarse masks. Secondly, it outperforms
previous model-agnostic refinement methods by a significant margin. Lastly,
it exhibits a strong capability to capture extremely fine details when refining
high-resolution images. The source code and trained models are available at
github.com/MengyuWang826/SegRefiner.

1 Introduction

Although segmentation in image [35, 23, 24, 14, 11] and video [54, 37, 38, 16, 15] has been
extensively studied in the past decades, obtaining accurate and detailed segmentation masks is always
challenging since high-quality segmentation requires the model to capture both high-level semantic
information and fine-grained texture information to make accurate predictions. This challenge is
particularly pronounced for images with resolutions of 2K or higher, which requires considerable
computational complexity and memory usage. As a result, existing segmentation algorithms often
predict masks at a smaller size, inevitably leading to lower accuracy due to the loss of fine-grained
information during downsampling.

Since directly predicting high-quality masks is challenging, some previous works have shifted their
attention to the refinement of coarse masks obtained from a preceding segmentation model. A popular
line of direction [29, 57, 27, 28] is to augment the segmentation models (and features) with a new
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(a) Image (b) Coarse Mask (c) CRM [44] (d) SegRefiner (ours)

Figure 1: Diverse errors presented in the previous segmentation results. The top row and middle row
show the significant false positives and false negatives caused by incorrect semantics, the bottom row
shows the inaccurate in capturing fine-grained details. Please zoom in for a better view.

module for masks correction. However, such approaches are usually model-specific, and hence
cannot be generalized to refine coarse masks produced by other segmentation models. Another part
segmentation refinement works [47, 56, 12, 44], on the other hand, resort to model-agnostic approach
by taking only an image and the coarse segmentation as input for refinement. These methods have
greater practical utility, as they are applicable to refine different segmentation models. However, the
diverse types of errors (e.g., errors along object boundaries, failure in capturing fine-grained details
in high-resolution images and errors due to incorrect semantics) presented in the coarse masks pose a
great challenge to the refinement model thus causing underperformance (refer to Fig. 1).

In response to this challenge, we draw inspiration from the working principle of denoising diffusion
models [45, 22, 2]. Diffusion models perform denoising at each timestep and gradually approach
the image distribution through multiple iterations. This iterative strategy significantly reduces the
difficulty of fitting the target distribution all at once, empowering diffusion models to generate high-
quality images. Intuitively, by applying this strategy to the segmentation refinement task, refinement
model can focus on correcting only some “most obvious errors” at each step and iteratively converge
to an accurate result, thus reducing the difficulty of correcting all errors in a single pass and enabling
refinement model to handle more challenging instances.

Under this perspective, we present an innovative interpretation of the task by representing segmenta-
tion refinement as a data generation process. As a result, refinement can be implemented through a
sequence of denoising diffusion steps with coarse segmentation masks being the noisy version of
ground truth. To work with binary masks, we further devise a novel discrete diffusion process, where
every pixel performs unidirectional randomly states-transition. The proposed process can gradually
convert ground truth into a coarse mask during training and employ the coarse mask as sampling
origination during inference. In other words, we formulate the mask refinement task as a conditional
generation problem, where the input image serves as the condition for iteratively updating/refining
the erroneous predictions in the coarse mask.

To our best knowledge, we are the first to introduce diffusion-based refinement for segmentation
masks. Our method, called SegRefiner, is model-agnostic, and thus applicable across different
segmentation models and tasks. We extensively analyze the performance of SegRefiner across
various segmentation tasks, demonstrating that our SegRefiner not only outperforms all previous
model-agnostic refinement methods (with +3.42 IoU, +2.21 mBA in semantic segmentation and +0.9
Mask AP, +2.2 Boundary AP in instance segmentation), but can also be effortlessly transferred to
other segmentation tasks (e.g., the recently proposed dichotomous image segmentation task [40])
without any modification. Additionally, SegRefiner demonstrates a strong capability for capturing
extremely fine details when applied to high-resolution images (see Fig. 1 and Fig. 4).
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2 Related Work
Segmentation Refinemement The aim of segmentation refinement is to improve the quality of
masks in pre-existing segmentation models. Some works focus on enhancing specific segmentation
models. PointRend [29] employs an MLP to predict the labels of pixels with low-confidence scores
output from Mask R-CNN [21]. RefineMask [57] incorporates a semantic head to Mask R-CNN as
additional guidance. MaskTransfiner [27] employs an independent FCN [35] to detect incoherent
regions and refines their labels with a Transformer [49]. These works have demonstrated notable
performance enhancements over their preceding models. However, their scope of improvement
is model-specific and they lack the capacity to directly refine the coarse mask derived from other
models. There are also some refinement methods that adopt model-agnostic approaches, such as
[47, 56, 61, 12, 44, 31]. These strategies emphasize utilizing diverse forms of input, including whole
images, boundary patches, edge strips, etc. Even though these techniques can refine coarse masks
derived from different models, their applicability remains confined to specific segmentation tasks. As
a special case, SegFix [56], which learns a mapping function between edge pixels and inner pixels
and subsequently replaces inaccurate edge predictions with corresponding inner pixel predictions, is
employed in both semantic segmentation and instance segmentation within the Cityscapes dataset
[13]. While the performance of SegFix is significantly constrained by its ability to accurately identify
objects within an image, which consequently leads to a decline in performance on datasets with a
more extensive range of categories (e.g., COCO [34]).

Diffusion Models for Detection and Segmentation Recently, diffusion models have received
a lot of attention in research. Initial studies [45, 22, 2, 46, 8, 3] primarily sought to enhance and
expand the diffusion framework. Following these, subsequent works ventured to incorporate diffusion
models across a broader array of tasks [43, 9, 30] and to formulate comprehensive conditional
generation frameworks [41, 58]. The application of diffusion models to detection and segmentation
tasks has also been the focus of an escalating number of studies. Baranchuk et al. [4] capture the
intermediate activations from diffusion models and employ an MLP to execute per-pixel classification.
DiffusionDet [6] and DiffusionInst [19] adapt the diffusion process to perform denoising in object
boxes and mask filters. Some other works [1, 52, 53, 7, 26] consider the image segmentation task as
mask generation. These studies predominantly follow the Gaussian diffusion process of DDPM [22]
and leverage an additional image encoder to extract image features as condition to generate masks. To
the best of our knowledge, our SegRefiner is the first work that applies a diffusion model to the image
segmentation refinement task, and it also pioneers the abandonment of the Gaussian assumption in
favor of a newly designed discrete diffusion process in diffusion-based segmentation tasks.

3 Methodology

3.1 Preliminaries: Diffusion Models

Diffusion models consist of a forward and a reverse process. The forward process q(x1:T |x0) uses a
Markov or None-Markov chain to gradually convert the data distribution x0 ∼ q(x0) into complete
noise xT whereas the reverse process deploys a gradual denoising procedure pθ(x0:T ) that transforms
a random noise back into the original data distribution.

Continuous Diffusion Models The majority of existing continuous diffusion models [22, 46, 41]
adheres to the Gaussian assumption and defines p(xT ) = N (xT |0, 1). The mean and variance
of forward process are defined by a hyperparameter βt and the reverse process utilizes mean and
variance from model predictions, thus formulating as:

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI), (1)
pθ(xt−1|xt) = N (xt−1|µθ(xt, t),Σθ(xt, t)). (2)

Discrete Diffusion Models Compared to continuous diffusion models, there is less research on
discrete diffusion models. Sohl-Dickstein et al. [45] first introduce binary diffusion to reconstruct one-
dimensional noisy binary sequences. xT is defined to adhere to the Bernoulli distribution B(xT |0.5).
The forward process and reverse process are represented as:

q(xt|xt−1) = B(xt|xt−1(1− βt) + 0.5βt), (3)
pθ(xt−1|xt) = B(xt−1|fb(xt, t)). (4)
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Figure 2: An overview of the proposed SegRefiner (best viewed in color). On the right is the
transition sample module we proposed, which randomly samples pixels from the current mask based
on the input states-transition probabilities and change their values to match those in the target mask.
During training, the transition sample module transforms the ground truth into a coarse mask, thus
coarse mask is the target mask. During inference, target mask refers to the predicted fine mask and
this module updates the values in the coarse mask in each timestep based on the predicted fine mask
and the transition probabilities.

where βt ∈ (0, 1) is a hyperparameter and fb(xt, t) is a model predicting Bernoulli probability. After
the great success of DDPM [22], Austin et al. [2] extended the architecture of Discrete Diffusion
Model to a more general form. They define the forward process as a discrete random variable
transitioning among multiple states and use states-transition matrix Qt to characterize this process:

[Qt]m,n = q(xt = n|xt−1 = m). (5)

3.2 SegRefiner

In this work, we propose SegRefiner, with a unique discrete diffusion process, which can be applied
to refine coarse masks from various segmentation models and tasks. SegRefiner performs refinement
with a coarse-to-fine diffusion process. In the forward process, SegRefiner employs a discrete
diffusion process which is formulated as unidirectional random states-transition, gradually degrading
the ground truth mask into a coarse mask. In the reverse process, SegRefiner begins with a provided
coarse mask and gradually transforms the pixels in the coarse mask to the refined state, correcting the
wrongly predicted area in the coarse mask. In the following paragraphs, we will provide a detailed
description of the forward and reverse process.

Forward diffusion process In the forward process, we gradually degrade the ground truth mask/
fine mask Mfine, transiting it into a coarse mask Mcoarse. In other words, we have m0 = Mfine

and mT = Mcoarse. At any intermediate timestep t ∈ {1, 2, ..., T − 1}, the intermediate mask mt is
therefore in a transitional phase between Mfine and Mcoarse.

We define that every pixel in mt has two states: fine and coarse, and the forward process is thus
formulated as states-transition between these two states. Pixels in the fine state will retain their
values from Mfine, and vice versa. We propose a new transition sample module to formulate this
process. As shown in Fig. 2 right, during forward process, the transition sample module takes
the previous mask mt−1, coarse mask mT and a states-transition probability as input and outputs
a transitioned mask mt. The states-transition probability describes the probability of every pixel
in mt−1 transitioning to the coarse state. This module first performs Gumbel-max sampling [25]
according to the states-transition probability and obtains the transitioned pixels. Then, the transitioned
pixels will take values from mT while the non-transitioned pixels will keep unchanged.

Note that the transition sample module represents a unidirectional process in which only “transition
to coarse state” happens. The unidirectional property ensures that the forward process will converges
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Figure 3: Examples of SegRefiner’s inference process. xt and mt denote the state (we represent
state [0, 1] and [1, 0] as 0 and 1 in this figure) and the corresponding mask, respectively. SegRefiner
begins with xT = [0, 1] and mT = Mcoarse, and gradually refines until we obtain fine mask m0.

to Mcoarse, despite each step is completely random. This is a significant difference between our
SegRefiner and previous diffusion models in which forward process converges to a random noise.

With the reparameterization trick, we introduce a binary random variable x to formulate the above
process. We represent xi,j

t as a one-hot vector to represent the state of pixel (i, j) in mt and set
xi,j
0 = [1, 0] and xi,j

T = [0, 1] to represent the fine state and coarse state, respectively. The forward
process can thus be formulated as:

q(xi,j
t |xi,j

t−1) = xi,j
t−1Qt, where Qt =

[
βt 1− βt

0 1

]
, (6)

where βt ∈ [0, 1], and 1− βt corresponds to the states-transition probability used in our transition
sample module. Qt is a states-transition matrix. The form of Qt explicitly manifests the unidirectional
property, i.e., all pixels in the coarse state will never transition back to the fine state since q(xt|[0, 1]) =
[0, 1]. According to Eq. (6), the marginal distribution can be formulated as

q(xi,j
t |xi,j

0 ) = xi,j
0 Q1Q2 . . . Qt = x0Q̄t = x0

[
β̄t 1− β̄t

0 1

]
, (7)

where β̄t = β1β2 . . . βt. Given this, we can obtain the intermediate mask mt at any intermediate
timestep t without the need of step-by-step sampling q(xt|xt−1), allowing faster training.

Reverse diffusion process The reverse diffusion process takes a coarse mask mT and gradually
transforms it into a fine mask m0. However, since the fine mask m0 and the reversed states-transition
probability is unknown, following DDPM [22], we train a neural network fθ parameterized by θ to
predict the fine mask m̃0|t at each timestep, represented as

m̃0|t, pθ(m̃0|t) = fθ(I,mt, t), (8)

where I is the corresponding image. m̃0|t and pθ(m̃0|t) denote the predicted binary fine mask and
its confidence score, respectively. To obtain the reversed states-transition probability, according to
Eq. (6), Eq. (7), and Bayes’ theorem, we first formulate the posterior at timestep t− 1 as:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
=

xtQ
⊤
t ⊙ x0Q̄t−1

x0Q̄tx⊤
t

, (9)

where the fine state x0 is set to [1, 0] during training, indicating ground truth. While during inference,
x0 is unknown, as the predicted m̃0|t may not be entirely accurate. Since the confidence score
pθ(m̃0|t) represents the model’s level of certainty for each pixel prediction being correct, pθ(m̃0|t)
can also be interpreted as the probability being in the fine state. Therefore, intuitively, one could
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obtain the state of every pixel in m̃0|t by simply thresholding as done in [2]:

xi,j
0|t =

{
[1, 0] if pθ(m̃0|t)

i,j ≥ 0.5

[0, 1] otherwise,
(10)

where pixels with higher confidence scores will have xi,j
0|t = [1, 0], indicating they are in the fine

state, and vice versa. However, in such one-hot form, the values of states-transition probabilities
are determined solely by the pre-defined hyperparameters, leading to significant information loss.
Instead, we retain the soft transition and formulate xi,j

0|t = [pθ(m̃0|t)
i,j , 1− pθ(m̃0|t)

i,j ]. With this
setting, the reverse diffusion process can be reformulated as

pθ(x
i,j
t−1|x

i,j
t ) = xi,j

t P i,j
θ,t , where P i,j

θ,t =

[
1 0

pθ(m̃0,t)
i,j(β̄t−1−β̄t)

1−pθ(m̃0,t)i,j β̄t

1−pθ(m̃0,t)
i,j β̄t−1

1−pθ(m̃0,t)i,j β̄t

]
, (11)

where P i,j
θ,t is the reversed states-transition matrix. With the above reversed states-transition probabil-

ity, mt and m̃0|t as input, the transition sample module can transit a portion of pixels to the fine state
at each timestep, thereby correcting erroneous predictions.

Inference Given a coarse mask mT and its corresponding image I , we first initialize that all pixels
are in the coarse state thus xi,j

T = [0, 1]. We iterate between: (1) forward pass to obtain m̃0|t and
pθ(m̃0|t) (Eq. (8)); (2) compute the reversed states-transition matrix P i,j

θ,t and obtain xt−1 (Eq. (11));
(3) compute the refined mask mt−1 based on xt−1, mt and m̃0|t. The process (1)-(3) is iterated until
we obtain fine mask m0. Visualization examples of inference are shown in Fig. 3.

4 Experiments

4.1 Implementation Details

Model Architecture Following [39], we employ U-Net for our denoising network. We modify the
U-Net to take in 4-channel input (concatenation of image and the corresponding mask mt) and output
a 1-channel refined mask. Both input and output resolution is set to 256×256. All others remain
unchanged other than the aforementioned modifications.

Objective Function Following [12], we employ a combination of binary cross-entropy loss and
texture loss for training our model, i.e., L = Lbce + αLtexture, where texture loss is characterized as
an L1 loss between the segmentation gradient magnitudes of the predicted mask and the ground truth
mask. α is set to 5 to balance the magnitude of both losses.

Noise Schedule Theoretically, the unidirectional property of SegRefiner ensures that any noise
schedule can make the forward process converge to the coarse mask given an infinite number of
timesteps. However, in practice, we use much fewer timesteps (T = 6 this work) to ensure efficient
inference. We designate β̄T = 0 such that xT = [0, 1] for all pixels and mT = Mcoarse (Eq. (7)).
Following DDIM [46], we directly set a linear noise schedule from 0.8 to 0 on β̄t.

Training Strategy Our SegRefiner model has been developed into two versions for refinement
of different resolution images: a low-resolution variant (hereafter referred to as LR-SegRefiner)
and a high-resolution variant (hereafter referred to as HR-SegRefiner). While these two versions
employ different training datasets, all other settings remain consistent. LR-SegRefiner is trained on
the LVIS dataset [20], whereas HR-SegRefiner is trained on a composite dataset merged from two
high-resolution datasets, DIS5K [40] and ThinObject-5K [32]. These datasets were chosen due to
their highly accurate pixel-level annotations, thereby facilitating the training of our model to capture
fine details more effectively. Following [12], the coarse masks used for training are obtained through
various morphological operations, such as randomly perturbing some edge points of the ground
truth and performing dilation, erosion, etc. During training, we first train LR-SegRefiner on the
low-resolution dataset until convergence. Subsequently, it is fine-tuned on the high-resolution dataset
to yield HR-SegRefiner.

We employed double random crop as the primary data augmentation technique. It entails the random
cropping of each image to generate two distinct model inputs: one encapsulating the entire foreground
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target, and the other containing only a partial foreground. Both crops are subsequently resized to
match the model’s input size. This operation ensures that the model is proficient in refining both entire
objects and incomplete local patches, a capability that proved instrumental in subsequent experiments.
All the following experiments were conducted on 8 NVIDIA RTX 3090. For more details on the
training process, please refer to the supplemental materials.

4.2 Semantic Segmentation

Dataset and Metrics As the refinement task emphasizes the enhancement of mask quality, a dataset
with high annotation quality and sufficient detailed information is required to evaluate the model’s
performance. Hence, we report the results on BIG dataset [12], a semantic segmentation dataset
specifically designed for high-resolution images. With resolutions ranging from 2048 × 1600 to
5000 × 3600, this dataset provides a challenging testbed for evaluating refinement methods. The
metrics we used are the standard segmentation metric IoU and the boundary metric mBA (mean
Boundary Accuracy [12]), which is commonly used in previous refinement works.

Settings Because of the high resolution of images in BIG dataset, we employ the HR-SegRefiner in
this experiment. While the model’s output size is only 256× 256, which is insufficient for such a
high-resolution dataset and results in the loss of many edge details. Consequently, during inference,
we deploy the first T − 1 timesteps to perform global refinement, which takes the resized entire
image as input, and the final timestep as a local step that takes original-size local patches as input. In
order to identify the local patches that require refinement, we filter out pixels with low state-transition
probabilities from the globally refined mask and use them as the center points for the local patches.
We allocate more timesteps for global refinement since global steps need to handle more severe errors,
thus presenting a higher difficulty level. The training strategy we have employed ensures that the
model can adapt to both global and local input without modification.

Results As shown in Tab. 1, we compare the proposed SegRefiner with three model-agnostic seman-
tic segmentation refinement methods, SegFix [56], CascadePSP [12], and CRM [44]. Additionally,
we include the fine-grained matting method, MGMatting [55], which employs an image and mask for
matting and can also be utilized for refinement purposes. The proposed SegRefiner demonstrates
superior performance over previous methods when using coarse masks from four different semantic
segmentation models, as evident in both IoU and mBA metrics. Notably, our SegRefiner outperforms
CRM, which is specifically designed for ultra-high-resolution images, showcasing significant ad-
vancements. We report the error bar (± in gray) in this experiment due to the relatively small size of
the BIG dataset (consisting of 100 testing images). The error bar represents the maximum fluctuation
value among the results of five experiments, and the results in Tab. 1 are the average of these five
trials. In subsequent experiments, the stability of the results is ensured by the availability of an ample
number of testing images.

4.3 Instance Segmentation

Dataset and Metrics To evaluate the effectiveness of our SegRefiner in refining instance segmenta-
tion, we select the widely-used COCO dataset [34] with LVIS [20] annotations. LVIS annotations
offer superior quality and more detailed structures compared to the original COCO annotations and
other commonly used instance segmentation datasets such as Cityscapes [13] and Pascal VOC [17].
This makes LVIS annotations more suitable for assessing the performance of refinement models.
The evaluation metrics are the Mask AP and Boundary AP. It worth noting that these metrics are
computed using the LVIS [20] annotations on the COCO validation set. The Boundary AP metric,
introduced by Cheng et al. [10], is a valuable evaluation metric that measures the boundary quality of
the predicted masks and is highly sensitive to the accuracy of edge prediction. It provides a detailed
assessment of how well the refined masks capture the boundaries of the objects.

Table 1: IoU/mBA results on the BIG dataset comparing with other mask refinement methods.
IoU/mBA Coarse Mask SegFix [56] MGMatting [55] CascadePSP [12] CRM [44] SegRefiner (ours)
FCN-8s [35] 72.39 / 53.63 72.69 / 55.21 72.31 / 57.32 77.87 / 67.04 79.62 / 69.47 86.95±0.06 / 72.81±0.05

DeepLab V3+ [5] 89.42 / 60.25 89.95 / 64.34 90.49 / 67.48 92.23 / 74.59 91.84 / 74.96 94.86±0.04 / 77.64±0.05

RefineNet [33] 90.20 / 62.03 90.73 / 65.95 90.98 / 68.40 92.79 / 74.77 92.89 / 75.50 95.12±0.05 / 76.93±0.05

PSPNet [60] 90.49 / 59.63 91.01 / 63.25 91.62 / 66.73 93.93 / 75.32 94.18 / 76.09 95.30±0.03 / 77.46±0.04

Avg Improve 0.00 / 0.00 0.47 / 3.30 0.73 / 6.10 3.58 / 14.05 4.01 / 15.12 7.43 / 17.33
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(a) Image (b) GT (c) U-Net [42] (d) ISNet [44] (e) SegRefiner (ours)

Figure 4: Qualitative comparisons with other methods on DIS5K dataset [40]. Our SegRefiner has
the capability to capture finer details, allowing it to discern and incorporate more subtle nuances.
Please kindly zoom in for a better view. More visual results are provided in the supplemental file.

Settings In this experiment, we utilize the LR-SegRefiner model. To refine each instance, we extract
the bounding box region based on the coarse mask and expand it by 20 pixels on each side. The
extracted region is then resized to match the input size of the model. The output size is suitable for
instances in the COCO dataset, allowing us to perform instance-level refinement for all timesteps
without requiring any local patch refinement.

Results First, in Tab. 2, we compare the proposed SegRefiner with two model-agnostic instance
segmentation refinement methods, BPR [47] and SegFix [56]. As demonstrated in Tab. 2, our SegRe-
finer achieves significantly better performance compared to these two methods. The coarse masks
utilized in Tab. 2 are obtained from Mask R-CNN to ensure consistency with the original experiments
conducted in [47, 56]. This choice allows for a fair and direct comparison with the previous works.
Then in Tab. 3, we apply our SegRefiner to other 7 instance segmentation models. Our method
yields significant enhancements across models of varying performance levels. Furthermore, when
compared to three model-specific instance segmentation refinement models, including PointRend [29],
RefineMask [57], and Mask TransFiner [27], our SegRefiner consistently enhances their performance.
These results establish SegRefiner as the leading model-agnostic refinement method for instance
segmentation.

4.4 Dichotomous Image Segmentation

Dichotomous Image Segmentation (DIS) is a recently introduced task by Qin et al. [40], which
specifically targets the segmentation of objects with complex texture structures, such as the steel
framework of bridge illustrated in Fig. 4. To facilitate research in this area, Qin et al. also built the
DIS5K dataset, a meticulously annotated collection of 5,470 images with resolutions of 2K and above.
The DIS5K dataset, characterized by its abundance of fine-grained structural details, poses rigorous

Table 2: Comparision with other model-agnostic instance segmentation refinement methods on the
COCO val set using LVIS annotations.

Mask AP Boundary AP
Method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

MaskRCNN (Res50) 39.8 61.4 42.3 24.9 47.0 55.1 27.3 53.3 25.2 24.9 41.8 27.4
+ SegFix [56] 40.6 61.4 42.8 25.0 48.4 56.6 29.1 53.7 28.0 24.9 43.6 30.8
+ BPR [47] 41.0 61.4 43.1 24.8 48.5 57.8 30.4 55.2 29.5 24.7 43.8 33.7
+ SegRefiner (ours) 41.9 61.6 43.2 25.7 49.4 58.8 32.6 55.7 32.5 25.6 45.0 37.3

MaskRCNN (Res101) 41.6 63.3 44.4 26.5 49.5 57.8 29.0 55.2 26.7 26.3 44.4 29.8
+ SegFix [56] 42.2 63.4 44.7 26.5 50.9 59.1 30.6 56.1 30.0 26.3 46.0 33.1
+ BPR [47] 42.8 63.3 45.3 26.1 51.0 60.6 32.0 57.3 31.6 25.9 46.3 36.3
+ SegRefiner (ours) 43.6 63.3 45.2 27.4 51.4 61.6 34.1 57.2 34.9 27.2 47.1 39.9
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Table 3: Tansfering our SegRefiner to other instance segmentation models.
Mask AP Boundary AP

Method AP APS APM APL AP APS APM APL

PointRend [29] 41.5 25.1 49.0 59.3 30.6 25.0 44.2 34.1
+ SegRefiner 42.8 +1.3 25.9 +0.8 50.4 +1.4 61.3 +2.0 33.7 +3.1 25.8 +0.8 46.2 +2.0 40.1 +6.0

RefineMask [57] 41.2 24.0 48.1 59.2 30.5 23.8 43.5 34.1
+ SegRefiner 41.9 +0.7 24.6 +0.6 48.7 +0.6 60.7 +1.5 33.0 +2.5 24.5 +0.7 44.7 +1.2 39.4 +5.3

Mask Transfiner [27] 42.2 25.9 49.0 60.1 31.6 25.8 44.5 35.8
+ SegRefiner 43.3 +1.1 26.8 +0.9 49.9 +0.9 62.0 +1.9 34.4 +2.8 26.6 +0.8 45.9 +1.4 41.3 +5.5

SOLO [51] 37.4 19.3 45.5 56.6 24.7 19.0 39.3 27.8
+ SegRefiner 40.5 +3.1 21.7 +2.4 49.3 +3.8 60.9 +4.3 31.3 +6.6 21.4 +2.4 44.8 +5.5 39.8+12.0

CondInst [48] 39.8 24.3 47.5 54.8 29.2 24.1 42.6 30.2
+ SegRefiner 41.1 +1.3 25.5 +1.2 48.8 +1.3 56.8 +2.0 32.2 +2.6 25.3 +1.2 44.5 +1.9 36.1 +5.9

QueryInst [18] 42.4 26.7 49.5 61.4 29.9 26.4 44.5 32.3
+ SegRefiner 44.2 +1.8 27.5 +0.8 51.4 +1.9 64.7 +3.3 34.9 +5.0 27.3 +0.9 47.2 +2.7 42.6 +10.3

Mask2Former [11] 46.8 27.9 54.9 69.1 37.0 27.8 50.1 44.6
+ SegRefiner 47.4 +0.6 28.5 +0.6 55.3 +0.4 69.8 +0.7 38.8 +1.8 28.4 +0.6 51.0 +0.9 48.5 +4.2

Table 4: Transfering our SegRefiner to DIS task. SegRefiner is employed to refine the segmentation
results from 6 different models. w/o and w/ indicates the original and refined results, respectively.

Dataset Metrics U-Net [42] PFNet [36] PSPNet [60] ICNet [59] HRNet[50] ISNet[44]
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

DIS-VD IoU 54.77 58.73 +3.96 56.20 60.44 +4.24 56.41 60.41 +4.00 56.47 61.38 +4.91 61.02 64.43 +3.41 67.10 68.27 +1.17
mBA 69.84 75.44 +5.6 63.69 74.83 +11.14 62.78 74.84 +12.06 66.47 75.55 +9.08 68.94 76.62 +7.68 74.13 76.64 +2.51

DIS-TE1 IoU 44.11 47.05 +2.94 46.97 49.01 +2.04 47.57 49.01 +1.44 46.22 49.74 +3.52 50.98 52.97 +1.99 56.17 57.00 +0.83
mBA 70.13 74.97 +4.84 65.13 74.67 +9.54 64.45 74.67 +10.22 67.19 75.01 +7.82 69.34 75.62 +6.28 73.63 75.49 +1.86

DIS-TE2 IoU 54.39 58.10 +3.71 57.04 60.26 +3.22 57.71 60.25 +2.54 56.50 60.33 +3.83 61.22 64.70 +3.48 67.05 67.84 +0.79
mBA 69.99 75.57 +5.58 64.64 75.05 +10.41 63.71 75.06 +11.35 66.79 75.57 +8.78 69.50 76.64 +7.14 74.03 76.35 +2.32

DIS-TE3 IoU 59.29 63.34 +4.05 59.46 63.42 +3.96 59.90 63.44 +3.54 59.83 64.20 +4.37 64.43 67.57 +3.14 69.94 70.87 +0.93
mBA 70.59 76.68 +6.09 64.00 76.06 +12.06 62.74 76.05 +13.31 66.73 76.55 +9.82 69.48 77.60 +8.12 74.65 77.39 +2.74

DIS-TE4 IoU 61.14 66.29 +5.15 59.11 66.63 +7.52 57.61 66.64 +9.03 60.53 67.01 +6.48 64.67 70.47 +5.80 70.12 72.21 +2.09
mBA 70.68 77.07 +6.39 62.78 76.43 +13.65 61.88 76.43 +14.55 66.42 77.06 +10.64 68.09 77.86 +9.77 74.35 77.66 +3.31

demands on a model’s capability to perceive and capture intricate information. Thus, it serves as a
suitable benchmark to evaluate the performance of our refinement method. The evaluation metrics
and other settings utilized in this experiment are consistent with those in Sec. 4.2.

Results Since the recent introduction of DIS5K, no prior refinement methods have reported results
on this dataset to date. Therefore, the main aim of this experiment is to evaluate the transferability of
our SegRefiner across various models. As shown in Tab. 4, our SegRefiner is applied to 6 segmentation
models. The results consistently demonstrate that our SegRefiner improves the performance of each
segmentation model in terms of both IoU and mBA. In Fig. 4, we provide qualitative comparisons
with previous methods, which reveal the superior ability of our SegRefiner to capture fine-grained
details, such as the dense and fine mesh of the chair.

4.5 Ablation Study

We conduct ablation studies on the BIG dataset [44] with high-resolution images. We first investigate
the effectiveness of the diffusion process in SegRefiner. The results are reported in Tab. 5a, where
the term “none” refers to the utilization of a U-Net without multi-step iteration, and “w/o diffusion”
denotes the direct utilization of the previous step’s mask as the input for the subsequent iteration,
without employing the diffusion sampling process, i.e., discarding the transition sample module. Since
there is no states-transition probability in non-diffusion methods, we use a sliding window strategy
similar to [12] in this experiment to obtain the input for local refinement. The results in Tab. 5a
demonstrate that the diffusion-based iterative process achieves the best performance, validating the
effectiveness of the diffusion process in SegRefiner.

In Tab. 5b and Tab. 5c, we evaluate various alternatives used in prior experiments. Tab. 5b shows
the analysis of global and local refinement used in high resolution images. As can be seen, global
refinement significantly improves IoU; however, for high-resolution images, the resulting smaller
output size leads to a lower mBA. Local refinement applied to local patches of the original size
greatly improves mBA, while its enhancement in IoU is less significant due to the absence of global
information. The combination of local and global refinement achieves better performance in both
IoU and mBA. Tab. 5c presents the results corresponding to different input image sizes. Considering
computational load and memory usage, 256× 256 is selected as the default setting, which performs
well without introducing too much computational overhead.
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Table 5: Ablation studies on BIG dataset [44]. The best results are highlighted in bold and the default
settings are marked with gray.

(a) Effectiveness of the diffusion process.
Iteration Type IoU mBA

none 94.10 75.03
w/o diffusion 94.11 75.10
w/ diffusion 94.85 77.64

(b) Ablation on global and local refinement.
Method IoU mBA

only global 92.43 60.58
only local 89.73 63.56

global+local 94.85 77.64

(c) Ablation on input size.
Input Size IoU mBA
128×128 93.10 74.28
256×256 94.85 77.64
512×512 94.97 77.56

5 Conclusion and Discussion

We propose SegRefiner, which is the first diffusion-based image segmentation refinement method
with a new designed discrete diffusion process. SegRefiner performs model-agnostic segmentation
refinement and achieves strong empirical results in refinement of various segmentation tasks.

While SegRefiner has achieved significant improvements in accuracy, one limitation lies in that
the diffusion process leads to slowdown of the inference due to the multi-step iterative strategy. As
shown in Tab. 6, we conduct an experiment on instance segmentation about the relationship between
the model’s accuracy, computational complexity, time consumption (the average time consumed
per image), and the number of iteration steps. It can be observed that, while the iterative strategy
has provided SegRefiner with a noticeable improvement in accuracy, it has also introduced a linear
increase with the number of steps in both time consumption and computational complexity. As
the first work applying diffusion models to the refinement task, the proposed SegRefiner primarily
concentrates on devising a suitable diffusion process for general refinement tasks. While improving
the efficiency of diffusion models will be a crucial research direction in the future, not only in the
field of image generation but also in other domains where diffusion models are applied.

Table 6: The relationship between SegRefiner’s accuracy, efficiency and the number of iteration steps
on instance segmentation.

Steps 0 1 2 3 4 5 6
Mask AP 39.8 40.7 41.0 41.4 41.6 41.9 41.9
Boundary AP 27.3 29.9 30.6 31.5 32.1 32.5 32.6
Time (s) n/a 0.52 1.01 1.53 1.98 2.45 2.94
GFLOPs n/a 249 497 746 994 1243 1492
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Appendix

Here we first introduce the details of SegRefiner’s equation derivation in Sec. A. The implementation
details are shown in Sec. B. Moreover, we provide additional qualitative results in Sec. C.

A Equation Derivation Details

In the following, we will present the derivation of the posterior distribution (Eq. (9)) and the reverse
transition-probability (Eq. (11)). Firstly, for Eq. (9), it’s derived from the Bayes’ theorem:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
. (12)

According to Eq. (6) and Eq. (7), we can get all the items in Bayes’ theorem as:

q(xt|xt−1, x0) = xt−1Qtx
T
t , (13)

q(xt−1|x0)) = x0Q̄t−1x
T
t−1, (14)

q(xt|x0)) = x0Q̄tx
T
t . (15)

It appears to be slightly different from Eq. (6). The reason is that the results of Eq. (6) is a length-2
vector, representing the probabilities of two states respectively. While we use a scalar form here,
which includes an additional one-hot vector xT

∗ and is more suitable for subsequent derivations. For
the denominator of Eq. (9), we have obtained the same form. Let’s consider the numerator:

q(xt|xt−1, x0)q(xt−1|x0) = xt−1Qtx
T
t · x0Q̄t−1x

T
t−1

= xt−1(xtQ
T
t )

T · x0Q̄t−1x
T
t−1

= (xtQ
T
t )x

T
t−1 · (x0Q̄t−1)x

T
t−1

= [(xtQ
T
t )⊙ (x0Q̄t−1)]x

T
t−1,

(16)

where "·" refers to scalar multiplication and "⊙" refers to element-wise multiplication. This is the
scalar form, by removing the xT

t−1, we can get the corresponding vector form just as Eq. (9).

Secondly, for Eq. (11), it’s derived from Eq. (9) by substituting x0 with [pθ(m̃0|t)
i,j , 1− pθ(m̃0|t)

i,j ]

(we refer pθ(m̃0|t)
i,j to p0 in the following for simplicity).

p(xt−1|xt) =
[(xtQ

T
t )⊙ (x0Q̄t−1)]x

T
t−1

x0Q̄txT
t

, with x0 = [p0, 1− p0]

=
xt(Q

T
t ⊙ [p0β̄t−1, 1− p0β̄t−1])x

T
t−1

[p0β̄t, 1− p0β̄t]xT
t

=

xt

[
p0β̄t 0

p0(β̄t−1 − β̄t) 1− p0β̄t−1

]
xT
t−1

xt[p0β̄t, 1− p0β̄t]T

= xt

[
1 0

p0(β̄t−1−β̄t)

1−p0β̄t

1−p0β̄t−1

1−p0β̄t

]
xT
t−1.

(17)

Same as Eq. (9), we can remove xT
t−1 and get the vector form of Eq. (11).

B Implementation Details

In this section, we give a detailed description of the model architecture and training/inference settings.
The overall workflow of the training and inference process are provided in Alg. 1 and Alg. 2.

Model Architecture Following [39], we use a U-Net with 4-channel input and 1-channel output.
Both input and output resolution is set to 256× 256. Considering computational load and memory
usage, we set the intermediate feature channels to 128 and only conduct self-attention in strides 16
and 32.
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Algorithm 1 Training
Input total diffusion steps T , datasetsD = {(I,Mfine,Mcoarse)

K}
repeat

Sample (I,Mfine,Mcoarse) ∼ D

Sample t ∼ Uniform(1, . . . , T )

Initialize m0 = Mfine, xi,j
0 = [1, 0]

q(xi,j
t |xi,j

0 ) = xi,j
0 Q̄t

Sample xi,j
t ∼ q(xi,j

t |xi,j
0 ), get xt ∈ {0, 1}2×H×W

Pixels Transition mt = xt[0]⊙Mfine + xt[1]⊙Mcoarse

Take gradient descent step on ∇θL(fθ(I,mt, t),Mfine)

until convergence

Algorithm 2 Inference
Input total diffusion steps T , image and coarse mask (I,Mcoarse)

Initialize xT = [0, 1], mT = Mcoarse

for t in {T, T − 1, . . . , 1} do
m̃0|t, pθ(m̃0|t) = fθ(I,mt, t)

pθ(x
i,j
t−1|x

i,j
t ) = xi,j

t P i,j
θ,t

Sample xi,j
t ∼ pθ(x

i,j
t−1|x

i,j
t ), get xt ∈ {0, 1}2×H×W

Pixels Transition mt−1 = xt−1[0]⊙ m̃0|t + xt−1[1]⊙Mcoarse

return m0

Training Settings All experiments are conducted on 8 NVIDIA RTX3090 GPUs with Pytorch.
During training, we first train the LR-SegRefiner on the LVIS dataset [20] with 120k iterations. The
AdamW optimizer is used with the initial learning rate of 4× 10−4. We use a multi-step learning rate
schedule, which decays by 0.5 in steps 80k and 100k. Subsequently, the HR-SegRefiner is obtained
from 40k-iterations fine-tuning based on the 80k checkpoint of LR-SegRefiner. Batch size is set to 8
in each GPU.

Inference Settings In instance segmentation, we use the LR-SegRefiner to perform refinement in
instance level. For each instance, we extract the bounding box region based on the coarse mask and
expand it by 20 pixels on each side. The extracted region is then resized to match the input size of the
model. After a complete reverse diffusion process, the output is resized to the original size.

In semantic segmentation and dichotomous image segmentation, because of the high resolution of
images, we employ the HR-SegRefiner and conduct a global-and-local refinement process. In order
to identify the local patches that require refinement, we filter out pixels with low state-transition
probabilities from the globally refined mask and use them as the center points for the local patches.
We apply Non-Maximum Suppression (NMS, with 0.3 as threshold) to these patches to remove
excessive overlapping.

C Qualitative Results

In this section, we provide more visual results in semantic segmentation, instance segmentation, and
dichotomous image segmentation. Fig. 5 shows the comparisons of SegRefiner and other models
(including instance segmentation models and refinement models) on COCO [34] validation set. Fig. 6
shows more comparisons between the coarse masks and refined masks on COCO validation set.
These results demonstrate that the proposed SegRfiner can robustly correct inaccurate predictions
in coarse masks. Fig. 7 and Fig. 8 show visual results on BIG dataset [12] and DIS5K dataset [40].
SegRefiner shows a strong capability for capturing extremely fine details on these two high-resolution
datasets.
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(a) Image

(b) Mask R-CNN [21]

(c) SOLO [51]

(d) QueryInst [18]

(e) CondInst [48]

(f) PointRend [29]

Figure 5: Visual comparisons with other instance segmentation and refinement methods on COCO
dataset. Our SegRefiner can robustly correct prediction errors both outside and inside the coarse
mask. (Please refer to the next page for the remaining portion of this figure.)
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(g) RefineMask [57]

(h) Transfiner [27]

(i) Mask R-CNN + SegFix [56]

(j) Mask R-CNN + BPR [47]

(k) Mask R-CNN + SegRefiner (Ours)

Figure 5: Visual comparisons with other instance segmentation and refinement methods on COCO
dataset. Our SegRefiner can robustly correct prediction errors both outside and inside the coarse
mask.
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(a) Coarse Mask (b) Refined Mask

Figure 6: More visual results on COCO dataset. Coarse masks are obtained from Mask R-CNN [21].
Our SegRefiner corrects the errors of coarse masks (see Refined Mask).
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(a) Image (b) Coarse Mask (c) Refined Mask

Figure 7: More visual results on BIG dataset [12]. Coarse masks are obtained from Deeplab v3+ [5].
Our SegRefiner greatly enhances the mask quality (see Refined Mask). Please kindly zoom in for a
better view.
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(a) Image (b) Coarse Mask (c) Refined Mask

Figure 8: More visual results on DIS5K dataset [40]. Coarse masks are obtained from ISNet [40].
Our SegRefiner captures extremely fine details (see Refined Mask). Please kindly zoom in for a better
view.
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