Revisiting Uncertainty Estimation and Calibration of
Large Language Models

Linwei Tao Yi-Fan Yeh
School of Computer Science School of Computer Science
University of Sydney University of Sydney
linwei.tao@sydney.edu.au yyeh7345@uni.sydney.edu.au
Minjing Dong Tao Huang
City University of Hong Kong Shanghai Jiao Tong University
minjdong@cityu.edu.hk t.huang@sjtu.edu.cn
Jialin Yu Philip Torr
Department of Engineering Science Department of Engineering Science
University of Oxford University of Oxford
jialin.yu@eng.ox.ac.uk philip.torr@eng.ox.ac.uk
Chang Xu
School of Computer Science
University of Sydney

c.xu@sydney.edu.au

Abstract

As large language models (LLMs) are increasingly deployed in high-stakes applica-
tions, robust uncertainty estimation is essential for ensuring the safe and trustworthy
deployment of LLMs. We present the most comprehensive study to date of uncer-
tainty estimation in LLMs, evaluating 80 models spanning open- and closed-source
families, dense and Mixture-of-Experts (MoE) architectures, reasoning and non-
reasoning modes, quantization variants and parameter scales from 0.6B to 671B.
Focusing on three representative black-box single-pass methods, including token
probability-based uncertainty (TPU), numerical verbal uncertainty (NVU), and lin-
guistic verbal uncertainty (LVU), we systematically evaluate uncertainty calibration
and selective classification using the challenging MMLU-Pro benchmark, which
covers both reasoning-intensive and knowledge-based tasks. Our results show that
LVU consistently outperforms TPU and NVU, offering stronger calibration and
discrimination while being more interpretable. We also find that high accuracy does
not imply reliable uncertainty, and that model scale, post-training, reasoning ability
and quantization all influence estimation performance. Notably, LLMs exhibit
better uncertainty estimates on reasoning tasks than on knowledge-heavy ones, and
good calibration does not necessarily translate to effective error ranking. These
findings highlight the need for multi-perspective evaluation and position LVU as a
practical tool for improving the reliability of LLMs in real-world settings.
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Figure 1: AUROC vs. ECE across various LLMs, evaluated using Linguistic Verbal Uncer-
tainty (LVU), Numerical Verbal Uncertainty (NVU) and Token Probability-based Uncertainty
(TPU). Model families are distinguished by color and marker shape. Reasoning-focused models
are highlighted with thick black borders, while non-reasoning models are shown with dashed gray
borders. Marker size reflects model size.

1 Introduction

As large language models (LLMs) become increasingly integrated into high-stakes applications such
as medical decision support and legal consultation [[1} 2} 3| 4} S]], growing concerns have emerged
around the public’s over-reliance on their outputs [6} [7]. For instance, a New York lawyer relied
on ChatGPT for legal research and subsequently submitted fabricated case citations generated by
the model [8]. A promising way to mitigate such risks is to equip LLMs with reliable uncertainty
estimation—enabling the model not only to quantify its uncertainty in a given response (uncertainty
calibration), but also to distinguish between likely correct and incorrect predictions (selective
classification). These capabilities support safer deployment: systems can abstain from uncertain
predictions, flag high-risk outputs for human review, or adjust decision thresholds dynamically. In
short, trustworthy LLMs must not only be accurate, but also well-calibrated and uncertainty-aware.

To extract uncertainty from large language models, a variety of methods have been proposed, which
can be broadly categorized into five classes, as summarized in Tablem (i) Token Probability-Based
Uncertainty (TPU) estimates uncertainty from output token probabilities, such as perplexity [9} [10];
(ii) Internal state-based methods leverage model internals like hidden states or attention maps [11}
12, [13]], but require white-/gray-box access. In contrast, black-box-friendly approaches include:
(iii) Consistency-based methods, which compute uncertainty from the disagreement across multiple
generations [14} [15]; (iv) Numerical Verbal Uncertainty (NVU), where the model self-reports a
numeric uncertainty score [[16, [17]; and (v) Linguistic Verbal Uncertainty (LVU), which infers
uncertainty from hedging language in responses, evaluated via a separate judging LLM (18,19, [12].
Besides, LVU offers interpretable and user-friendly uncertainty signals.

Yet, to date there has been no comprehensive study that systematically evaluates uncertainty estimation
across the diverse landscape of modern LLMs. Xiong et al. [17] provide an empirical evaluation
of NVU, but their study focuses only on prompting techniques. Yona et al. [18] explore LVU, but
evaluate only a small number of models. The most related work, Zhu et al. [20], analyzes LLM
calibration but does not cover newer models or estimation methods. Given the rapid evolution of
LLMs [21} 122123 [24] 25]], the saturation of older benchmarks [26] [27]], and the emergence of novel
uncertainty estimation techniques [17, 18], there is a clear need for a comprehensive evaluation.

In this work, we present such an evaluation, systematically studying uncertainty estimation in 80
state-of-the-art LLMs. Our benchmark covers both closed-source (e.g., OpenAl GPT, Anthropic
Claude, Google Gemini) and open-source (e.g., Meta LLaMA, Qwen3, LLaMA-4, DeepSeek, Mistral)
models, ranging from 0.6B to 671B parameters. We assess uncertainty through two complementary
tasks: uncertainty calibration, which evaluates how well predicted uncertainty aligns with correctness
(measured by ECE), and uncertainty-based selective classification, which assesses the model’s
ability to distinguish correct from incorrect predictions (measured by AUROC). All evaluations are
conducted on MMLU-Pro [28]], a recent and challenging benchmark combining reasoning-intensive
(e.g., math, physics) and knowledge-heavy (e.g., law, history) multiple-choice tasks.



Table 1: Taxonomy of uncertainty estimation methods for LLMs.

Category Representative Work Black-Box Single Gen. Description

Token Probability-Based Uncertainty  [O]0J29 X v Computes uncertainty from token-level probabilities, such
as perplexity over the response.

Internal State-Based Uncertainty [T2IE0 X v ]?(tréc[s }mcer?amly f_rom‘m[emal activations like hidden
states or attention weights.

Consistency-Based Uncertainty [II5IBT v X Estimates uncertainty via disagreement across multiple
sampled generations.

Numerical Verbal Uncertainty L7116 v v l?ron}pts th: m.odel [,(,) output a numeric score, e.g., “Un-
certainty score: 0.35”.

Linguistic Verbal Uncertainty [I8IT0IZ v v Infers uncertainty from hedging language in the response

(e.g., “probably”, “might”), judged by another model.

We exclude methods that are either computationally expensive or infeasible in black-box settings.
Specifically, multi-generation approaches such as semantic entropy [14], which capture question-level
uncertainty rather than uncertainty about a specific output, and internal state-based methods that rely
on hidden activations or logits unavailable in real-world deployments. Instead, we focus on three
black-box, single-pass uncertainty estimation methods: (i) Token Probability-Based Uncertainty
(TPU) [10]], which estimates uncertainty from token-level probabilities using the inverse of perplexity
over the generated response; (ii) Numerical Verbal Uncertainty (NVU) [17], where the model is
explicitly prompted to produce a self-rated uncertainty score (e.g., between 0 and 100) alongside its
answer; and (iii) Linguistic Verbal Uncertainty (LVU) [18]], which infers uncertainty from hedging
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expressions (e.g., “probably”, “might”) embedded in the response, judged by a separate LLM.

Our large-scale evaluation reveals several key findings about uncertainty estimation in modern LLMs.
First, LVU consistently outperforms both TPU and NVU methods, yielding better calibration (lower
ECE) and discrimination (higher AUROC) across models and tasks. Second, we find that higher
accuracy does not imply better uncertainty estimate—some high-accuracy models (e.g., GPT-4.1)
are poorly calibrated, while others (e.g., Qwen3-235B-A22B) achieve reliable uncertainty estimates
despite lower accuracy. Third, model design and training factors such as scale, post training,
quantization and reasoning specialization significantly affect uncertainty performance. Reasoning
model in particular reduces overconfidence problem in high-confidence predictions. We also observe
that Mixture-of-Experts (MoE) models may offer advantages over dense models in estimating
uncertainty, although this trend requires further validation. Lastly, we find that uncertainty estimation
is task-sensitive: LLMs perform more reliably on reasoning-oriented subjects (e.g., math, biology)
than on knowledge-seeking ones (e.g., law, history), and good calibration does not necessarily imply
good selective classification—highlighting the need for multi-metric evaluation.

Our contributions can be summarized as follows:

1. Comprehensive evaluation at scale: We conduct the first comprehensive study of uncer-
tainty estimation across 80 LLMs, covering open- and closed-source models, dense and
MOoE architectures, and parameter scales ranging from 0.6B to 671B.

2. First large-scale analysis of linguistic uncertainty: We present the first extensive evalua-
tion of LVU, showing that it consistently outperforms both TPU and NVU in calibration and
selective classification. This establishes LVU as a strong and practical approach for future
work on uncertainty-aware LLMs.

3. Empirical insights to guide future development: Our analysis uncovers a range of
actionable empirical findings such as the effect of reasoning model, model scale, architecture,
quantization and task type on uncertainty estimation, offering valuable guidance for future
method design and theoretical analysis.

2 LLM Uncertainty Estimation and Evaluation

To estimate uncertainty in large language models (LLMs), a broad range of methods have been
proposed. These can be grouped into five major categories, as summarized in Table |l} (i) Token
Probability-Based Uncertainty (TPU) estimates uncertainty from output token probabilities (e.g.,
perplexity) [9,[10], aligning closely with the autoregressive nature of LLMs; (ii) Internal state-based
methods leverage hidden states or attention weights [L1 [12} [13]], but require white- or gray-box
access, limiting their applicability in practice.



Three black-box-friendly alternatives have gained increasing attention: (iii) Consistency-based
methods compute uncertainty based on disagreement across multiple sampled generations [[14]
15], capturing question-level uncertainty but at a high computational cost; (iv) Numerical Verbal
Uncertainty (NVU) prompts the model to output a self-reported scalar (e.g., “uncertainty: 0.35”) [16}
17]; (v) Linguistic Verbal Uncertainty (LVU) infers uncertainty from hedging expressions (e.g.,

“probably”, “might”) embedded in the response, evaluated using a separate judging LLM [18| [19,[12],
which offer more natural and interpretable uncertainty signals for human-facing applications.

2.1 LLM Uncertainty Estimation

In this work, we define uncertainty as a scalar in [0, 1], where 0 indicates complete certainty and
1 indicates maximum uncertainty. Formally, we write us(y | x) = 1 — py(y | x), where x is the
input, y is the generated output, and p,, is the model’s confidence. Our study focuses on pointwise
uncertainty—the model’s uncertainty about its actual response in a single generation—rather than
question-level uncertainty aggregated across multiple outputs. Thus, we adopt TPU, NVU, and LVU
as our baseline methods for systematic evaluation.

Token Probability-Based Uncertainty (TPU) This method estimates uncertainty using the model’s
output token probabilities. Let ) denote the vocabulary, and x € V' be an input prompt of / tokens.
The model generates a response y = (y1,-..,¥yn) € V", where n is the number of tokens in the
generated response. The autoregressive log-likelihood is given by:

log py(y | x) = Zlogp¢(yi | y<i,x), wherey<; = (y1,...,%i-1)- ey
i=1

To normalize for sequence length, we compute the average log-likelihood:

1 n
Uy %) = - > logps(yi | y<i %) )
i=1

Following [[10]], we define the Token Probability-Based Uncertainty as the complement of the
exponentiated average log-likelihood of the generated response:

uZ,PU(y [x):=1—exp (E(y | x)) =1—pu(y | x)l/” € [0,1], 3)

where lower values indicate greater confidence. This method is broadly applicable—even to gray-box
models—and serves as a strong baseline for uncertainty estimation.

Numerical Verbal Uncertainty (NVU) NVU elicits explicit uncertainty estimates directly from the
LLM. The model is prompted to output a numeric uncertainty score alongside its response, offering
an interpretable form of subjective uncertainty. We incorporate chain-of-thought (CoT) prompting to
extract better uncertainty estimation following [17]. The complete NVU prompting templates are
provided in Appendix [{

Linguistic Verbal Uncertainty (LVU) In contrast to NVU, LVU captures uncertainty implicitly
through hedging language embedded in the model’s response—e.g., phrases like “probably”, “might”,
or “possibly”. Rather than providing a numeric score, the model expresses its uncertainty through
natural language, aligning with how humans convey uncertainty in conversation. To quantify these
implicit signals, we adopt the approach of [18]], using LLaMA-4-Maverick-17B-128E-Instruct
as a separate evaluator to interpret and score linguistic uncertainty. This decouples generation
from evaluation: the primary model produces a response, and an external model assesses the
level of uncertainty conveyed linguistically. We provide an empirical analysis of the LLM judge’s
effectiveness in the Appendix [H] along with details of the generation and evaluation prompt templates
in Appendix [

2.2 Evaluation of Uncertainty Estimation

To assess the quality of uncertainty estimation in large language models (LLMs), we consider two
widely adopted evaluation tasks: uncertainty calibration and uncertainty-based selective classification.



Uncertainty calibration measures how well predicted uncertainty values reflect the true likelihood
of correctness, typically using the Expected Calibration Error (ECE) [32]. In contrast, selective
classification evaluates how well uncertainty scores distinguish correct from incorrect predictions,
using the Area Under the Receiver Operating Characteristic curve (AUROC) [33]].

Uncertainty Calibration Uncertainty calibration evaluates whether a model’s predicted uncertainty
values correspond to actual correctness likelihoods. For example, among predictions with uncertainty
0.2 (i.e., 0.8 confidence), approximately 80% should be correct for a well-calibrated model. Formally,
perfect calibration satisfies:

PY=Y|U=u=1-u, Yuel,1], )

where Y is the model’s prediction, Y is the ground truth, and U is the predicted uncertainty. In practice,
calibration is quantified using Expected Calibration Error (ECE), which partitions predictions into M
uncertainty bins and computes the weighted average absolute difference between empirical accuracy
and the implied certainty (1 — uncertainty):

M
B

ECE = — |ace(B,,) — (1 — unc(Bm))|, %)
where |B,,| is the number of predictions in bin mn, n is the total number of predictions, and unc(B,,,)
is the average uncertainty in bin m. Lower ECE indicates better calibration. We adopt number of
bins M = 10 for evaluation. We also use adaptive ECE [34] to ensure robustness against skewed
uncertainty distributions and reported in the Appendix [D] Reliability diagrams [35] are also used for
qualitative assessment.

Selective Classification Selective classification assesses the discriminative power of uncertainty
scores in ranking correct versus incorrect predictions. The most common metric is AUROC, which
measures the probability that a randomly chosen correct prediction is assigned lower uncertainty than
a randomly chosen incorrect one. An AUROC of 0.5 corresponds to random guessing, while a value
closer to 1.0 indicates stronger discrimination.

Models We evaluate 80 state-of-the-art LLMs, including both open- and closed-source models, with
parameter scales ranging from 0.6B to 671B. Representative models include: Open-source—Meta
LLaMA 3 (1B—405B) [36], LLaMA 4 (109B, 400B) [23]], DeepSeek [21} 37], Qwen2.5/Qwen3
(0.6B-235B) [38,, 22], Mistral [39], and Google Gemma [40]; Closed-source—OpenAl GPT-
4.1/GPT-40/03/04 [41} 142, 24], Anthropic Claude 3 [43]], Google Gemini [44], and xAI Grok [25]. A
complete model list is in Appendix[l|

Dataset We conduct all evaluations on MMLU-Pro [28]], a comprehensive benchmark released in
June 2024 that includes both reasoning-centric tasks (e.g., math, physics, engineering) and knowledge-
centric tasks (e.g., law, history, psychology). Compared to prior benchmarks, MMLU-Pro is more
challenging and less saturated, making it a robust testbed for evaluating uncertainty estimation.

Prompt Design To enable consistent and fair uncertainty extraction across methods, we adopt a
unified prompt template that combines numerical verbal uncertainty and linguistic verbal uncertainty
formats [[17} [18]], with an additional concise CoT component. This design allows fair comparison
across all models and uncertainty modalities. Detailed prompt formats are provided in Appendix [F}

Uncertainty Extraction All models are prompted to produce answers in a predefined format. We
use regular expressions to extract uncertainty scores. Outputs that deviate from the expected formats
are excluded from analysis. Extraction scripts and format rules are described in Appendix [F]

3 Results and Discussion

3.1 Larger Models Generally Yield More Reliable Uncertainty Estimates

Model scale plays a critical role in shaping uncertainty estimation. While earlier studies in con-
ventional deep learning suggest that larger models tend to be more overconfident and poorly cali-
brated [32], our findings in the LLM setting suggest otherwise. Across all three methods, we observe
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Figure 2: Uncertainty estimation performance of Qwen3 across three variants: no post-training
(Base), with post-training (Intruct), and reasoning-enhanced (Think). Point size reflects model scale.
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Figure 3: Reliability diagram and bin density between reasoning and non-reasoning LLMs.

that larger models tend to produce more calibrated and discriminative uncertainty scores. This trend
is evident in Figures|[T] especially under NVU and TPU.

To isolate the effect of model size, we examine the Qwen3 series trained under similar conditions,
ranging from 0.6B to 32B parameters. As shown in Figure [2] larger models such as Qwen3-14B
and Qwen3-32B consistently outperform their smaller counterparts in both calibration (lower ECE)
and selective classification (higher AUROC). However, we also find that performance gains saturate
at scale, and that mid-sized models like Qwen3-8B can achieve competitive results. In contrast,
lightweight models such as Qwen3-0.6B and Qwen3-1.7B struggle to produce meaningful uncertainty
scores, often approaching random guessing. This underscores the practical limitations of compact
LLMs in scenarios that demand reliable uncertainty quantification.

Interestingly, under LVU, this trend appears partially reversed when evaluating AUROC. Upon further
inspection, we find that smaller models tend to generate responses that poorly follow instructions
or omit uncertainty cues altogether. The judge model tends to assign high LVU uncertainty to such
non-compliant outputs, many of which are indeed incorrect. This results in strong discriminative
uncertainty for smaller models—not because their uncertainty estimates are intrinsically better, but
because instruction violations correlate strongly with failure.

3.2 Post-Training Enhances Uncertainty Estimation

Modern post-training techniques, including instruction fine-tuning and Direct Preference Optimization
(DPO), are designed to align LLM outputs with human expectations and communication styles. Our
results show that these techniques also significantly enhance uncertainty estimation. By comparing
Qwen3-Base (no post-training) and Qwen3-Instruct (with post-training) models as shown in Figure |ZL
we observe consistent improvements across all three methods: post-trained models achieve lower
ECE and higher AUROC, indicating both better calibration and stronger ability to distinguish between
correct and incorrect predictions. This improvement is robust across model sizes. These findings
suggest that post-training helps models not only generate more helpful outputs but also express
uncertainty more reliably. For all other model series, we include only post-trained variants in our
main evaluation to ensure fair comparisons. This aligns with and extends the findings of [20], and
highlights post-training as an effective mechanism for enhancing LLLM uncertainty awareness.
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3.3 Reasoning Mode Improves Uncertainty Without Needing Higher Accuracy

Qwen3 support both standard and reasoning-enhanced modes (denoted as ‘Instruct’ and “Think”).
Comparing these variants across model sizes (Figure[2), we find that reasoning mode consistently
improves uncertainty estimation. For example, Qwen3-4B in reasoning mode matches or exceeds the
uncertainty performance of much larger models like GPT-4.1, as shown in Figures|l} Figure 4| (left)
shows reasoning-enhanced models have marked gains in calibration and modest improvements in
selective classification, compared to non-reasoning models (averaged over all evaluated models).

To understand this effect in depth, we analyze reliability diagrams and bin density plots for represen-
tative models (Figure[3). Reasoning variants exhibit better alignment between predicted and actual
correctness, particularly in high-confidence regions. Moreover, reasoning reduces the proportion of
highly overconfident predictions by more than 20%, indicating its effectiveness in curbing model
overconfidence. These results demonstrate that reasoning models not only enhances interpretability
but also significantly boosts the model’s ability to estimate uncertainty.

3.4 MoE Models May Offer Improved Uncertainty Estimation over Dense Models

Mixture-of-Experts (MoE) has emerged as a compelling architectural paradigm for scaling LLMs
efficiently, with recent adoption in models such as Qwen3-MoE, LLaMA-4, Grok-3, and DeepSeek.
Unlike fully dense models, MoE models activate only a subset of parameters per input, potentially
enabling more adaptive and specialized behavior. However, due to their recent emergence, head-to-
head comparisons with dense counterparts remain limited.

One relatively fair comparison is between Qwen3-30B-A3B (MoE) and Qwen3-32B (dense), which
share similar total parameter counts and follow closely matched training protocols [45]. The Qwen3-
30B-A3B model activates 3B parameters per forward pass, while Qwen3-32B is fully dense.

As shown in Figure |4 (right), Qwen3-30B-A3B consistently outperforms its dense counterpart in
both reasoning and non-reasoning tasks when evaluated using LVU, achieving better calibration and
more reliable selective classification. This result suggests that the conditional computation of MoE
may facilitate more nuanced uncertainty estimation. Nevertheless, the sample size of comparable
MoE—dense model pairs remains small, and further systematic comparisons are needed to confirm
whether MoE architectures generally confer an advantage in uncertainty estimation.

3.5 High Accuracy Does Not Guarantee Reliable Uncertainty Estimation

While recent advancements in LLM development have predominantly emphasized improving accu-
racy, our results reveal that high accuracy does not necessarily imply reliable uncertainty estimation un-
der LVU. As shown in Figure []left, several top-performing models—including LLaMA-4-Maverick,
LLaMA-3.1-405B, and GPT-4.1—exhibit strong accuracy but poor uncertainty estimation under
TPU, as indicated by elevated ECE and reduced AUROC scores. We observe similar discrepancies
across the NVU and LVU methods, detailed in the Appendix [E]

Notably, Qwen3-235B-A22B (Reasoning), which achieves only moderate accuracy (67%)—about
15 points lower than models such as DeepSeek-R1, GPT-4. 1, or Grok-3—yet consistently delivers
top-tier uncertainty performance across all three methods. This suggests that reliable uncertainty
estimation is not merely a byproduct of better accuracy, but a distinct capability shaped by model
architecture, training, and prompting.
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Figure 6: Left: Kendall Rank Correlation among Uncertainty Estimation Methods. Right: LLMs
exhibit better uncertainty estimates in reasoning tasks, as measured by AUROC using LVU.

3.6 Linguistic Verbal Uncertainty Shows High Potential for Reliable Uncertainty Estimation

To compare the overall effectiveness of different uncertainty estimation methods, we compute average
AUROC and ECE scores across all 80 evaluated models. As shown in Figure[|right, LVU consistently
outperforms both NVU and TPU, with roughly 10% improvement in both AUROC and ECE over the
second-best methods. Among the three black-box, single-pass methods, LVU not only achieves the
strongest empirical performance, but also offers the most interpretable and human-aligned uncertainty
signals, leveraging hedging language such as “probably” and “might.” Despite these advantages,
LVU remains underexplored in the literature, underscoring its potential as a promising direction for
future uncertainty-aware LLM development.

To better understand their relationship, we compute Kendall rank correlations [46] between ECE and
AUROC across the three uncertainty estimation methods. As shown in Figure [f]left, we observe high
internal consistency within each metric—particularly between LVU and NVU on ECE—indicating
agreement in how well each method captures calibrated uncertainty. However, the correlation between
AUROC values across methods is notably weaker, suggesting that different approaches capture distinct
signals relevant to ranking performance. We also include the comparisons with multi-generation
based uncertainty in the Appendix [B|for a comprehensive understanding.

3.7 Calibration and Selective Classification Capture Distinct Dimensions of Uncertainty

While both calibration and selective classification are standard tasks for evaluating uncertainty, they
assess fundamentally different aspects. Calibration (measured by ECE) evaluates the alignment
between predicted uncertainty and actual correctness, while selective classification (measured by
AUROC) evaluates how well uncertainty separates correct from incorrect predictions.

Notably, when we check the correlation between metrics in Figure |§| left, the correlation between
calibration (ECE) and selective classification (AUROC) is generally low or even close to zero,
especially for LVU, where calibration and ranking scores are nearly uncorrelated. This suggests
that good calibration does not imply strong discriminative ability, and vice versa. These findings
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(Instruct), FP8, and Activation-aware Weight Quantization (Awq). Point size reflects model scale.

reinforce the need for multi-metric evaluation in uncertainty estimation, as each metric provides a
complementary view of uncertainty reliability.

3.8 LLMs Estimate Uncertainty More Reliably on Reasoning Tasks

We further investigate how uncertainty estimation varies across task types. MMLU-Pro offers a diverse
set of subjects, covering both reasoning-intensive domains (e.g., math, physics) and knowledge-
seeking ones (e.g., law, history). To compare model performance across these categories, we report
AUROC scores for 80 models using LVU, as shown in Figure [6] right, where reasoning-related
subjects are marked in red and knowledge-heavy subjects in light gray.

We group reasoning-intensive tasks as math, biology, health, and physics, and knowledge-seeking
tasks as law, philosophy, history, and psychology. Our analysis reveals that models estimate uncer-
tainty more reliably on reasoning tasks, with an average AUROC improvement of over 10% compared
to knowledge-based tasks. This pattern is robust across all three uncertainty estimation methods,
suggesting that the structured nature of reasoning problems may allow LLMs to form more consistent
and discriminative uncertainty estimates.

3.9 Quantization Slightly Degrades Uncertainty Estimation Performance

Quantization has become increasingly important for deploying LLMs on edge and resource-
constrained environments. To evaluate its impact on uncertainty estimation, we analyze quantized
variants (FP8 and AWQ) of the Qwen3 series. As shown in Figure[7] quantization generally leads to
mild degradation in uncertainty estimation, with effects more noticeable in smaller models. Under
LVU and TPU, both AUROC and ECE worsen slightly after quantization. Interestingly, NVU shows
marginal improvements in small models but degrades as scale increases. Overall, the impact of
quantization remains modest, typically within a 5% margin.

4 Conclusion and Future Work

Our large-scale evaluation yields several key insights into understanding and improving uncertainty
estimation in LLMs. First, we find that model characteristics—such as size, reasoning specialization,
quantization and post-training strategies—significantly influence uncertainty behavior. Second,
although underexplored, LVU consistently demonstrates strong empirical performance, indicating
that natural language cues can serve as effective and intuitive signals for uncertainty. Third, we
observe that predictive accuracy is not a reliable proxy for uncertainty quality: high-accuracy models
may still exhibit poor calibration or fail to distinguish correct from incorrect predictions.

These findings highlight several promising directions for future research. First, while our study
establishes LVU as a strong and interpretable method, its underlying mechanisms and potential
applications remain underexplored. Recent work [47]] shows that natural-language uncertainty cues
can mitigate user over-reliance by encouraging further consideration on uncertain responses. Future
studies could investigate how LVU may be leveraged to improve model-user interaction, particularly



in high-stakes scenarios. Furthermore, unlike numerical scores or internal logits, LVU aligns more
naturally with human communication norms. This makes it a promising candidate for integration into
the post-training phase—e.g., as part of preference optimization or instruction tuning—to enhance a
model’s uncertainty awareness and communicative grounding.

Second, our analysis reveals a structural mismatch between calibration and discrimination: models
with low ECE do not necessarily achieve high AUROC, and vice versa. This suggests the need for new
evaluation metrics or learning objectives that jointly reflect both calibration and selective prediction
performance. Finally, we advocate for moving beyond static evaluation and incorporating uncertainty
estimation into downstream LLM workflows, such as selective answering, fallback prompting, and
user-facing warnings. These uncertainty-informed behaviors offer a practical pathway to improving
the safety, reliability, and accountability of language models in real-world deployments.

Finally, a limitation of our study lies in the evaluation of LVU: the effectiveness of the LLM judge
was only assessed in a small-scale experiment. Its general reliability across tasks, domains, and model
families remains unclear. We encourage future work to develop standardized evaluation protocols for
assessing the quality and robustness of LLM-based uncertainty judges.
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A Related Works

A.1 More Uncertainty Estimation Approaches

Multi-Generation Consistency-Based Methods Recent advancements in uncertainty estimation
for large language models have introduced several methods leveraging multi-generation consistency.
SelfCheckGPT [15] identifies hallucinations by generating multiple responses to the same prompt
and assessing their consistency using metrics like BERTScore, n-gram overlap, and natural language
inference (NLI). Inconsistencies among responses suggest potential hallucinations. Generating with
Confidence [48]] proposes evaluating the variability among multiple generated outputs to estimate
uncertainty. Semantic Entropy [14}31] addresses the challenge of semantic equivalence in natural
language by clustering semantically similar responses and computing entropy over these clusters,
providing a more accurate measure of uncertainty for open-end questions.

Internal State-Based Uncertainty Recent research has also explored leveraging the internal states
of LLMs to estimate uncertainty and detect hallucinations. Azaria and Mitchell [49] demonstrate that
hidden layer activations can be utilized to predict the truthfulness of generated statements by training a
classifier on these activations. Li et al. [50] introduce Inference-Time Intervention (ITT), a technique
that adjusts model activations during inference to enhance truthfulness, significantly improving
performance on benchmarks like Truthful QA. Kossen et al. [[11] propose Semantic Entropy Probes
(SEPs), which estimate semantic uncertainty directly from hidden states without requiring multiple
generations, offering a computationally efficient method for hallucination detection. Ji et al. [12]]
identify a linear feature within the model’s representation space that governs verbal uncertainty,
enabling calibration to reduce overconfident hallucinations. Burns et al. [29] present an unsupervised
approach to uncover latent knowledge by identifying directions in activation space that correspond to
logical consistency, allowing accurate yes-no question answering without labeled data. Lastly, Liu
et al. [51]] propose a supervised method that leverages labeled datasets to estimate uncertainty from
hidden activations, demonstrating robust performance across various tasks and model access levels.

A.2 Study on Uncertainty Estimation for LLMs

Recent research has delved into the challenges and methodologies of uncertainty estimation in
LLMs. Geng et al. [52] provide a comprehensive survey on confidence estimation and calibration
techniques. Huang et al. [S3] offer a hierarchical categorization of uncertainty estimation methods
and drawing relations with traditional machine learning approaches. Zhu et al. [20] examine token
probability-based uncertainty, analyzing the effects of model size and instruction tuning, though
they focus on a single estimation method and do not include modern LLM design elements like
Direct Preference Optimization (DPO) and Mixture-of-Experts (MoE) architectures. Liu et al. [54]
present a recent survey exploring the sources of uncertainty in LLMs and methods for uncertainty
quantification and confidence calibration. Further, benchmarking efforts by researchers [33] utilize
conformal prediction to assess uncertainty, revealing insights into the relationship between model
accuracy and uncertainty. Studies by Yona et al. [[18] and Xiong et al. [17] investigate the expression
of uncertainty in LLMs, focusing on linguistic verbal uncertainty and numerical verbal confidence,
respectively, under specific conditions.
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B Comparison with Multi-Generation Based Uncertainty

We primarily compare two multi-generation based uncertainty estimation methods: (1) consis-
tency 14, [15} [18]], which measures the rate of contradiction between the anchor response and a
set of sampled responses; and (2) majority vote [31], which estimates prediction confidence as the
proportion of sampled responses that agree with the majority answer.

Since our evaluation is conducted under a multiple-choice setting, we focus only on the predicted
label from each response, disregarding its full textual content.

Consistency Formally, given a question (), a generated response R, and its corresponding predicted
answer A, we sample k additional responses { Ry, ..., Ry} and extract their respective predictions
{A4,..., Ax}. The model’s uncertainty in Ais then quantified as the fraction of sampled predictions
that contradict A:

unc(4) =

| =

k
Z 1[A contradicts A;] (6)
i=1

To ensure a fair comparison, we use the same response R as those employed in LVU, NVU, and TPU,
and set k£ = 10.

Majority Vote  As an additional baseline, we adopt a majority vote strategy following [31]. In our
multiple-choice setting, we omit the semantic clustering step and define the predicted label as the
most frequent answer among the k sampled responses. The proportion of responses that agree with
this majority label is treated as the model’s confidence.

Note that for models that fail to follow instructions (i.e., do not produce a valid prediction), we
exclude the corresponding instances from evaluation.

We conduct experiments on the Qwen3 model series, ranging from 0.6B to 32B parameters, post
trained models (with instruct fine tunning and DPO) and quantized variants (FP8). As shown in
Figure[8] we compare post-trained Qwen3 series using multi-generation-based methods (Consistency
and Majority Vote) and single-generation methods (LVU, NVU, and TPU). Overall, multi-generation
approaches tend to yield better uncertainty estimation. In particular, Consistency consistently
outperforms others in terms of calibration, achieving an ECE as low as 0.08 at the 32B model scale.
However, the improvement in AUROC is relatively marginal.

ECE vs Model Size 10 AUROC vs Model Size
NVU
0.6 TPU
] 08
0.5 Consistency
Majority Vote 0 0.6
w 0.4 o
@] 4
w >
03 <04 NVU
TPU
0.2 0.2 LvU :
Consistency
0.1 Majority Vote
0.0
0.6 1.7 4 8 14 30 32 0.6 1.7 4 8 14 30 32
Model Size Model Size

Figure 8: Comparison with multi-generation based uncertainty estimation.

Full evaluation results on multi-generation based uncertainty are provided in[B.1]
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B.1 Full evaluation results of multi-generation based uncertainty

Table 2: Multi-generation based uncertainty estimation evaluation for Qwen3 series.

Model Accuracy Accuracy ECE AUROC
(Maj. Vote) NVU TPU LVU Consi. Maj. Vote NVU TPU LvU Consi. Maj. Vote

Qwen3-0.6b 0.248 0.250 0.663 0.579 0.356 0.334 0.401 0.526 0.570 0.763 0.628 0.626
Qwen3-1.7b 0.399 0.418 0.499 0.539 0.337 0.299 0.354 0.584 0.616 0.778 0.698 0.668
Qwen3-4b 0.529 0.544 0.370 0.418 0.328 0.258 0.294 0.691 0.654 0.743 0.735 0.716
Qwen3-8b 0.587 0.602 0.320 0.363 0.299 0.226 0.252 0.712 0.572 0.732 0.734 0.712
Qwen3-14b 0.632 0.649 0.266 0.292 0.247 0.178 0.203 0.704 0.700 0.723 0.768 0.745
Qwen3-30b-a3b 0.662 0.686 0.264 0.269 0.243 0.155 0.174 0.733 0.733 0.748 0.789 0.757
Qwen3-32b 0.697 0.723 0.228 0.149 0.218 0.082 0.101 0.689 0.688 0.705 0.817 0.783
Qwen3-0.6b-fp8 0.250 0.252 0.635 0.583 0.369 0.311 0.398 0.532 0.570 0.749 0.631 0.627
Qwen3-1.7b-fp8 0.395 0.416 0.472 0.540 0.341 0.277 0.349 0.611 0.612 0.770 0.704 0.671
Qwen3-4b-fp8 0.530 0.551 0.368 0.417 0.329 0.243 0.284 0.689 0.652 0.734 0.736 0.705
Qwen3-8b-fp8 0.588 0.613 0.323 0.361 0.301 0.208 0.238 0.708 0.571 0.730 0.750 0.714
Qwen3-14b-fp8 0.630 0.649 0.269 0.291 0.245 0.172 0.199 0.706 0.699 0.733 0.768 0.741

C Code and Resources

Our code and resources are anonymously available at: |https://anonymous.4open.science/r/LLM+

|Calibration-Study-203D/|
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D Evaluation with Adaptive ECE

We also adopt Adaptive-ECE [34] as an alternative metric to evaluate calibration performance. The
results of Adaptive-ECE closely align with those of ECE, demonstrating the robustness of our

calibration evaluation using ECE across different binning strategies in this work.

AdaptiveECE
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Numerical Verbal Uncertainty

Token Probability-Based Uncertainty
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Figure 9: AdaptiveECE vs AUROC across all methods.

OCOeLROI+R*GrHO

Llama4

Llama3
Deepseek
Qwen2

Qwen3

OpenAl

Gemma

Gemini

Mistral

Claude

Grok

Phi

Reasoning Model
Non-Reasoning Model

E High Accuracy Does Not Guarantee Reliable Uncertainty Estimation

As discussed in Section[3.3] our experiments using LVU reveal that high accuracy does not necessarily
imply reliable uncertainty estimation. We observe similar trends under NVU and TPU, as illustrated
in Figures [T0]and [TT} Notably, although Qwen3-235B-A22B exhibits the lowest accuracy among
the evaluated models, it consistently achieves the highest AUROC and lowest ECE across all three
uncertainty estimation methods. Note that the DeepSeek series does not provide valid token-level
probabilities; hence, its AUROC and ECE values under TPU are omitted due to invalidity.
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Figure 10: Comparison of top-tier models under NVU.
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Figure 11: Comparison of top-tier models under TPU.
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F Prompts and Regular Expressions

F.1 Prompt Sharing for MMLU-PRO Response Sampling

The following prompt is used to sample responses, incorporating NVU and LVU elicitation as well as
a concise CoT, where {Letters} and {Question} are placeholders. A single response from this
prompt is shared between and used by all uncertainty methods.

Shared prompt for MMLU-Pro response sampling

Read the question, analyze step by step, provide your answer and your confidence in this
answer. Note: The confidence indicates how likely you think your answer is true.

If you are uncertain about your answer to the question, convey this uncertainty linguistically
by precisely hedging this answer. Use the following format to answer:

Explanation: [insert short step-by-step analysis here]

Answer: [ONLY the option LETTER, where the LETTER is one of {Letters}]
Confidence (0-100): [Your confidence level, please only include the numerical number in the
range of 0-100]%

Only give me the reply according to this format, don’t give me any other words.

{Question}
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F.2 Prompts for Linguistic Uncertainty (LVU) Judge

The following details the few-shot prompt used to instruct the LVU judge, where QUESTION and
Response are placeholders. The response sampled from the shared prompt has been post-processed
to remove numerical verbal confidence to avoid leading or biased LVU judgment.

Prompt for the LVU judge

You will be given a question and a proposed answer generated by a language model. Your
task is to output an confidence score: a number in [0,1] representing how certain the language
model is about the truthfulness of its generated answer, judged solely based on the provided
answer. You should pay special attention to the usage of any hedging modifiers in the original
answer, used to convey uncertainty in the truthfulness of the answer. A score close to 1.0
indicates that the model is very certain about the truthfulness answer. And a score close to
0.0 means that the model is highly uncertain, and the answer likely contains some hedg-
ing expressions. If the proposed answer punts the question, the confidence score should be 0.0.

Here are some examples:

Question: criminal minds episode where jj becomes a profiler

Proposed answer: I think JJ officially becomes a profiler in Criminal Minds season 6,
episode 2.

Confidence score: 0.8

Question: criminal minds episode where jj becomes a profiler

Proposed answer: JJ officially becomes a profiler in Criminal Minds season 6, in either the
first or second episode.

Confidence score: 0.5

Question: criminal minds episode where jj becomes a profiler

Proposed answer: I’'m not really sure about this, but I think the episode in which JJ officially
becomes a profiler in Criminal Minds may be episode 2 in season 6.

Confidence score: 0.6

Question: criminal minds episode where jj becomes a profiler
Proposed answer: I don’t know which episode you're referring to.
Confidence score: 0.0

Here are the question and proposed answer to be judged:
Question:
{Question}

Proposed Answer:
{Response}

Provide your response only in the following format:
Confidence score: [confidence score (0-1)].
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F.3 Answer and Numerical Verbal Confidence Extraction Regular Expressions

The following presents the regex collection used to extract the answer from the LLM responses.

Multiple-choice answer extraction regex

r"[Aa]lnswer:?[\s]*[\nl*([A-J])",

r" [Aa]nswer: [\s]*[\n]*\(?([A-J])\) 7",
r" [Aalnswer: [\s]*[\nl*\[?([A-JI)\]?",
r" [Aa]lnswer: [\s]*[\nl*([A-J])[,D]1",
r"[Aalnswer: [\s]*[\n]*([A-J])\s*,?.*",
r"Answer:\n([A-J])\nConfidence",
r"answer is\s*\[?\(?([A-J])\]I?\)?",
r"answer should be\s*\[?\(?([A-J])\]1?\)?7",
r"best option is \(?7([A-J])\)7",
r"best match is option \(?7([A-J])\)7",
r"the closest is \(?([A-J])\)?",
r"Answer:\nx~ ([A-J])$",

"~ ([A-J])$"

\ J

The following regex collection is used to extract and remove Numerical Verbal Confidence from the
responses.

Numerical Verbal Confidence extraction and removal regex

r" [Cclonfidence\s*\ (0-100\) :\sx [\ (J7[\[17(\a+) [\)I7[\117%?",
r"[Cclonfidence[:17\sx(\d+)%?",

r"[Cclonfidence [\(0-100\)17:\s*x\[(\d+)%?\]1"

r"[Cclonfidence [L1]evells#*\(0-100\) :\sx(\d+)%?",
r"[Cclonfidence [Ll]evell[:]?\sx(\d+)%7?",

r"[Cclonfidence [L1]level[\(0-100\)17:\s*\[(\d+)%?\]1",
r"[Cclonfidence \(100\) :\s*\w*,\s*x(\d+)%?",

r" [Cclonfidence\s*\ (\d+\)\s*:\sx(\d+)%?",

r"[Cclonfidence\s* [\ (J7(\d+) [\)]?%?"

. J

Any output falling outside the predefined regex patterns is treated as non-response, even if the
underlying content may be partially or fully accurate. As a result, correct answers and successful
confidence reporting are contingent upon both factual correctness and adherence to basic instruction-
following behavior.

Our observations suggest that answer and confidence extraction failures occur due to poor instruction
following, and the models often exhibit the following behavior.

 Implicit answers: the content of the response is correct, and yet the answer is not explicitly
stated.

* Maximum token length exceeded: especially evident in reasoning models, the models have
not finished outputting their chain of thought before hitting the maximum token length. i.e.
the answer and/or confidence have not yet been provided.

* Non-response error: due to model internal issues, null responses are produced arbitrarily.
* General regex mismatches: the answer output does not adhere to the allowed regex formats.

For subsequent analyses, all successful confidence extractions will be rescaled between 0 - 1. All
failed extractions will be dropped. On average, 17% of the responses are dropped due to the answer,
numerical confidence and/or linguistic confidence extraction failure.



G Efficient Confidence Evaluation: Stratified Sampling on MMLU-Pro

Since instruction following can be challenging for less-capable models such as Qwen3-0.6B, we
remove instances where the model fails to adhere to the instructions or produces nonsensical responses.
For example, Qwen3-0.6B has up to 5,000 such invalid responses excluded from evaluation. To
ensure that our confidence estimation remains reliable despite the reduced number of valid responses,
we conduct additional experiments demonstrating that the evaluation performance remains consistent
even with fewer samples.

Although MMLU-Pro comprises a substantial total of 12,032 questions spanning a diverse range
of academic disciplines, we are interested in the possibility of evaluating confidence on a subset to
reduce computational overhead without significantly compromising the reliability of the results.

To investigate this, we employ GPT-4.1-Mini to generate responses for the entire MMLU-Pro dataset
and construct stratified samples at proportions of from 10% to 90%. Each sample is generated
through stratified sampling, ensuring an equal number of questions from each field of study. For each
sampling proportion, we repeat the procedure 50 times to account for sampling variability and to
obtain robust performance estimates. The resulting distributions of ECE and AUROC are presented
in Figure[T2] The results demonstrate that stratified samples comprising at least 50% of the dataset
produce ECE and AUROC distributions that are closely aligned with those of the full dataset, thereby
validating that the use of stratified subsets are applicable for efficient calibration analysis.
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Figure 12: GPT-4.1-Mini’s spread of confidence distributions from different stratified subsets
sizes. Each box represents 50 stratified samples. The AUROC and ECE distributions start to stabilize
and trend towards those of the full set when the sample proportion exceeds 50%.
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H LLM as a Judge for LVU

We employ LLaMa-4-Maverick-17B-128E [23] as the judge for LVU in all evaluations. We replicate
the experiment carried out by [19] to explore the judge’s mapping between various hedging words
and their perceived numerical confidence (note that confidence and uncertainty are complementary,
i.e., uncertainty = 1 — confidence). The experiment involves evaluating a collection of sentences,
each of which consists of a single hedging word, and outputting a corresponding probability of truth
ascertained by the model. There are 20 non-verifiable statements on daily life events, where non-
verifiable statements are statements for which there is insufficient contextual information for external
observers to confidently believe whether they are true or false. This is designed to linguistically
assess the model’s sensitivity to hedging words rather than its knowledge.

H.1 Sentence Construction

Each sentence has the following structure:

Sentence structure

[NAME] believes it is [HEDGING WORD] that [STATEMENT]

where the name, hedging word, and statement are sourced from the following. The judge then
evaluates all the possible combinations of names, hedging words, and statements.

Possible options for [NAME]

"Brendan", "Bruce", "David", "Gary", "Isaac", "Jeffery", "Joey", "Johnnie", "Kenny", "Lance",
"Marco", "Mike", "Nathan", "Nick", "Raul", "Amanda", "Bonnie", "Camille", "Catherine",
"Cheri", "Ethel", "Gabriela", "Jacquelyn", "Jessica", "Laura", "Olga", "Roxanne", "Silvia",
"Tara", "Violet"

r
.

Possible options for [HEDGING WORD]

"non non non "non

"almost certain", "highly likely", "very likely", "probable", "somewhat likely", "possible",
"uncertain”, "somewhat unlikely", "unlikely", "not likely", "doubtful", "very unlikely", "highly
unlikely"

. J

Possible options for [STATEMENT]

"they will buy a new watch this Thanksgiving weekend.",

"they will be offered a promotion this fall.",

"the company will have another round of layoffs by mid-July.",
"there will be vegetarian options at the barbecue.",

"they will visit New York over winter break.",

"the restaurant near their apartment accepts reservations.",

"the new museum is offering complimentary admission.",
"there is a yoga studio within 2 miles of their workplace.",
"there are more than eighty students in the auditorium right now.",
"the temperature in the office is at least 72 degrees Fahrenheit.",
"their boss owns a blue car.",

"their friend has a leather jacket.",

"their cousin has a vegetable garden.",

"their classmate owns a guitar.",

"their boss has a stereo amplifier.",

"their cousin prefers spinach over broccoli.",

"their boss prefers coffee over tea.",

"their friend prefers running over cycling.",

"their neighbor prefers the beach over the mountains.",

"their coworker prefers reading books over watching movies."

,
;




H.2 Prompt Construction and Uncertainty Value Extraction

The following prompt is used to elicit the judge to output its perceived uncertainty with the presence
of a hedging word in the sentence.

Prompt to elicit LLMs’ perceived confidence

[SENTENCE]

From their perspective, considering the use of hedging words, what is the probability (from 0
to 100) that the statement is true? Concisely provide your response only in the following
format:

Probability: [0-100]

N J

The probability is then extracted using the following regular expression:

Regex to extract perceived confidence

r"\b(?7:Probability|Prob(?7:\. |ability)?|P)\s*[:=]?\sx(\d+)%"

H.3 Results

The prompt and regex used above successfully capture 99.85% of the sentences. The high success
rate represents the great instruction following ability of the judge.

As shown in Figure T3] the distribution patterns of linguistic expressions reveal a meaningful trend in
the model’s responses, wherein stronger verbal hedges such as “almost certain” consistently receive
higher confidence scores compared to weaker expressions like “probably not” or “unlikely.” This
indicates that the model demonstrates a robust understanding of the semantic gradation embedded
in hedging language. In particular, more decisive hedges—such as “almost certain” and “highly
likely”—are interpreted with high confidence, reflecting a clear semantic alignment with human intu-
itions regarding probability and certainty. Conversely, more negative hedges such as “highly unlikely”
and “probably not” exhibit lower values in their associated confidence scores. Such characteristics
make LLLaMa-4-Maverick-17B-128E a reliable linguistic judge for uncertainty evaluations.

highly unlikely { [ ———
very unlikely 4 }—{ }—{
unlikely 4 ‘ ‘ }—{
not likely - }—{ ‘ } i
possible 4 } S }
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almost certain - ‘:l
T > o 60 80 100

Perceived Confidence

Figure 13: LLaMa-4-Maverick-17B-128E’s mapping of hedging words to LVU demonstrates that
the model can distinguish between different relative levels of uncertainty. Specifically, perceived
confidence increases consistently with the apparent confidence expressed in a sentence.
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I Full Evaluation Results

Table 3: Full Evaluation Results (Part 1) Model naming format follows HuggingFace.

Model Accuracy ECE AUROC

NVYU TPU LVU NVU TPU LVU
Claude-3-5-haiku-20241022 0.603 0.297 / 0.272  0.676 / 0.718
Claude-3-7-sonnet-20250219 0.782 0.119 / 0.118 0.755 / 0.747
Claude-3-haiku-20240307 0.421 0.498 / 0.397 0.525 / 0.649
Deepseek-chat 0.784 0.112 / 0.166  0.757 / 0.718
Deepseek-reasoner 0.846 0.055 / 0.094 0.776 / 0.741
Gemini-1.5-flash 0.650 0.273 0.275 0.238 0.687 0.683 0.724
Gemini-1.5-flash-8b 0.542 0.358 0.328 0.281 0.614 0.642 0.713
Gemini-1.5-pro 0.741 0.207 0.189 0.188 0.674 0.661 0.705
Gemini-2.0-flash 0.785 0.177 0.091 0.162 0.721 0.707 0.744
Gemini-2.0-flash-lite 0.723 0.207 0.138 0.182 0.720 0.724 0.756
Gemma-2-27b-it 0.533 0.380 0.351 0.281 0.611 0.524 0.737
Gemma-2-9b-it 0.470 0.465 0398 0358 0.546 0.547 0.671
Gemma-2b-it 0.148 0.767 0.745 0457 0.504 0.535 0.683
Gemma-3-12b-it 0.607 0.347 / 0.275 0.678 / 0.765
Gemma-3-1b-it 0.175 0.782 0.694 0.298 0.513 0.514 0.754
Gemma-3-27b-it 0.667 0.234 / 0.230 0.718 / 0.747
Gemma-3-4b-it 0.430 0.525 / 0.372 0.616 / 0.757
Gpt-4.1 0.791 0.176  0.074 0.166 0.748 0.684 0.748
Gpt-4.1-mini 0.761 0.168 0.130 0.184 0.765 0.727 0.744
Gpt-4.1-nano 0.635 0.243 0.214 0.252 0.712 0.698 0.781
Gpt-40-2024-08-06 0.726 0.208 0.125 0.194 0.706 0.646 0.728
Gpt-40-mini-2024-07-18 0.601 0.286 0.240 0.274 0.740 0.676 0.759
Grok-2-1212 0.726 0.215 0.200 0.198 0.670 0.613 0.712
Grok-3-beta 0.774 0.081 0.164 0.097 0.790 0.703 0.774
Grok-3-mini-beta 0.829 0.102 0.138 0.101 0.791 0.676 0.783
Llama-3.1-nemotron-nano-4b-v1.1 0.502 0.332 0350 0.285 0.721 0.662 0.762
Llama-3.1-nemotron-nano-8b-v1 0.401 0.349 0.298 0302 0.637 0.628 0.707
Llama-3.2-1b-instruct 0.166 0.510 0.573 0342 0.525 0463 0.691
Llama-3.2-3b-instruct 0.317 0.536 0476 0370 0.589 0.521 0.738
Llama-3.1-8b-instruct 0.449 0.361 0366 0334 0.599 0.539 0.755
Llama-3.1-70b-instruct 0.610 0.282 0.215 0.253 0.638 0.565 0.718
Llama-3.1-405b-instruct 0.722 0.165 0.153 0.183 0.712 0.615 0.729
Llama-4-maverick-17b-128e-instruct-fp8 0.787 0.131 0.158 0.122 0.727 0.652 0.752
Llama-4-scout-17b-16e-instruct 0.740 0.198 0.220 0.176 0.700 0.684 0.750
Mistral-7b-instruct-v0.1 0.263 0.677 0.606 0341 0495 0486 0.760
Mistral-nemo-instruct-2407 0.405 0.580 0.446 0375 0.522 0.510 0.703
Mistral-small-24b-instruct-2501 0.598 0.309 0.275 0.283 0.651 0.544 0.696
Mistral-small-3.1-24b-base-2503 0.545 0.354 0308 0.244 0552 0471 0.624
01-mini-2024-09-12 0.713 0.218 / 0.210 0.776 / 0.777
03-mini-2025-01-31 0.797 0.161 / 0.152  0.757 / 0.752
04-mini-2025-04-16 0.832 0.083 / 0.106 0.776 / 0.738
Phi-3-medium-128k-instruct 0.504 0410 0.339 0323 0.611 0.576 0.742
Phi-3-mini-128k-instruct 0.399 0.506 0.407 0356 0.575 0.530 0.748
Phi-3.5-mini-instruct 0.442 0462 0.379 0370 0.620 0.534 0.722
Phi-3.5-moe-instruct 0.518 0.383 0.307 0.313 0.649 0.581 0.746
Phi-4-mini-instruct 0.460 0458 0.276 0348 0.598 0.654 0.759
Phi-4-mini-reasoning 0.801 0.149 0.094 0.135 0.666 0.751 0.715
Phi-4-reasoning 0.915 0.075 0.219 0.064 0.578 0.640 0.601
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Table 4: Full Evaluation Results (Part 2) Model naming format follows HuggingFace.

Model Accuracy ECE AUROC

NVU TPU LVU NVU TPU LVU
Qwen2.5-14b-instruct 0.571 0321 0.287 0.281 0.683 0.615 0.745
Qwen2.5-32b-instruct 0.663 0.251 0.200 0.230 0.709 0.669 0.737
Qwen2.5-3b-instruct 0.396 0.554 0435 0.344 0596 0577 0.767
Qwen2.5-7b-instruct 0.508 0389 0364 0.329 0642 0.615 0.725
Qwen3-0.6b 0.248 0.663 0.579 0.356 0.526 0.570 0.763
Qwen3-0.6b-base 0.275 0.711 0.546 0.321 0.501 0.575 0.784
Qwen3-0.6b-fp8 0.250 0.635 0.583 0.369 0.532 0.570 0.749
Qwen3-0.6b-think 0.415 0.556 0375 0.389 0519 0.713 0.793
Qwen3-1.7b 0.399 0.499 0.539 0.337 0584 0.616 0.778
Qwen3-1.7b-base 0.374 0.539 0435 0.334 0538 0.560 0.776
Qwen3-1.7b-fp8 0.395 0.472 0540 0.341 0611 0.612 0.770
Qwen3-1.7b-think 0.695 0.249 0.224 0.221 0.686 0.786 0.764
Qwen3-14b 0.632 0266 0.292 0.247 0.704 0.700 0.723
Qwen3-14b-awq 0.615 0273 0319 0.249 0.700 0.695 0.715
Qwen3-14b-base 0.593 0335 0.270 0.284 0.624 0.595 0.706
Qwen3-14b-fp8 0.630 0269 0.291 0.245 0.706 0.699 0.733
Qwen3-14b-think 0.829 0.096 0.090 0.084 0.750 0.809 0.752
Qwen3-235b-a22b-fp8-tput 0.728 0.193 0.190 0.188 0.727 0.704 0.732
Qwen3-235b-a22b-fp8-tput-think 0.880 0.025 0.048 0.015 0778 0.761 0.762
Qwen3-30b-a3b 0.662 0264 0.269 0.243 0.733 0.733  0.748
Qwen3-30b-a3b-base 0.604 0324 0.253 0.269 0.637 0.558 0.724
Qwen3-30b-a3b-think 0.861 0.068 0.080 0.052 0.794 0.791 0.788
Qwen3-32b 0.697 0228 0.149 0218 0.689 0.688 0.705
Qwen3-32b-awq 0.711 0.232 0.135 0217 0.672 0.676 0.706
Qwen3-32b-think 0.841 0.099 0.042 0.092 0.733 0.791 0.726
Qwen3-4b 0.529 0370 0418 0.328 0.691 0.654 0.743
Qwen3-4b-base 0.526 0403 0324 0329 0.643 0.573 0.735
Qwen3-4b-fp8 0.530 0368 0.417 0.329 0.689 0.652 0.734
Qwen3-4b-think 0.766 0.165 0.142 0.144 0.783 0.808 0.787
Qwen3-8b 0.587 0320 0363 0.299 0.712 0572 0.732
Qwen3-8b-base 0.556 0.359 0310 0.307 0.660 0.565 0.728
Qwen3-8b-fp8 0.588 0323 0361 0.301 0708 0.571 0.730
Qwen3-8b-think 0.840 0.073 0.072 0.068 0.764 0.785 0.765
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