
Under review as a conference paper at ICLR 2023

A GENERALIZED CONVOLUTIONAL NEURAL NET-
WORK FOR SMALL DATASET CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel variant of neural networks, Generalized Convolutional Neu-
ral Networks, GConvNets, characterized by structured neurons. In contrast to
conventional neural networks such as ConvNets, which predominantly employ
‘scalar’ neurons, GConvNets utilize structured ‘tensor’ neurons. In other words,
we generalize ConvNets by substituting each scalar neuron in ConvNets with a
tensor neuron in GConvNets, while preserving the weight-sharing mechanism.
These structured neurons manifest as tensors with adaptable shapes and dimen-
sions across different layers. To ensure their practical applicability, we have de-
veloped a mechanism that enables seamless handling of hybrid structured tensor
neurons as they transition from one layer to the next. We conducted a comparative
analysis between GConvNets and the currently popular ConvNets, which include
ResNets, MobileNets, EfficientNets, RegNets, among others, using datasets such
as CIFAR10, CIFAR100, and Tiny ImageNet. The experimental results demon-
strate that GConvNets exhibit superior efficiency in terms of parameter usage.

1 INTRODUCTION

ConvNets are continually growing in size. A notable example is ChatGPT, which comprises an im-
pressive 175 billion parameters—twice as many as the human brain. While the initial motivation for
the increasing size of models was primarily driven by their improved performance on large datasets,
subsequent research has revealed additional advantages associated with these larger models. One
of them is discriminability. With an increased number of parameters, larger models have the poten-
tial to capture intricate and complex features when provided with ample data and training epochs,
leading to improved performance on challenging tasks. Recent advancements in generative models
for languages, images, and videos further substantiate this claim. To summarize, the preference for
larger model sizes stems from their ability to exhibit superior performance on large datasets, achieve
commendable results on complex tasks, and enhance robustness when confronted with adversarial
scenarios.

1.1 OVERPARAMETERIZATION & TRADITIONAL SOLUTIONS

Nowadays, large models often comprise billions of parameters, which limits their usage in resource-
constrained devices or real-time applications. Consequently, researchers have been reflecting the
necessity of using so many parameters. This contemplation has revealed that ConvNets often suf-
fer from the problem of overparameterization. In response, researchers have devised various ap-
proaches to reduce the size of ConvNets, including pruning, compression, distillation, binarization,
and others. Pruning involves the removal of connections or neurons in a network that has limited
contribution to the final output or limited impact on performance. This can be accomplished by di-
rectly removing connections with small weights or activations, or by applying heuristic algorithms
to selectively remove neurons to achieve a balance between maximizing neuron removal and pre-
venting significant degradation in the pruned model’s performance. Compression generally adopts
matrix decomposition techniques like SVD or Tucker decomposition, etc. to replace the original
weight matrix with smaller ones. Binaryzation replaces float weights with binary numbers, which
may reduce a model’s size at the cost of performance. Distillation has the classic teacher-student
framework, where a smaller neural network (the student) is trained using soft targets provided by
the original network (the teacher). As a result, the knowledge is transferred from the teacher net-

1



Under review as a conference paper at ICLR 2023

Figure 1: Capsule Networks.

work to the student network, resulting in the student achieving comparable performance while being
more compact. Each of these techniques may have varying degrees of impact on the performance
compared to the original model.

All of the mentioned approaches follow a common principle: initially constructing large ConvNets
and subsequently reducing their sizes. By employing pruning and compression techniques, it is
possible to reduce the size of many large ConvNets, sometimes up to 90%. This raises the question:
if a significant portion of parameters in ConvNets can be reduced, why not utilize fewer parameters
from the beginning? Can we create a compact neural network in the first place? Some researchers
have discovered that traditional ConvNets with some structured neurons or hidden representations
help alleviate overparameterizations. Structured neurons or hidden representations mean that we
consider a group of neurons or the corresponding activations as a whole, where they together serve
one target.

1.2 STRUCTURED HIDDEN REPRESENTATIONS

One example of such an approach is Capsule Networks (CapsNets). CapsNets consist of convo-
lutional layers, capsule layers, and capsule output layers. The convolutional layers have the same
structures as those in ConvNets, and so do their roles (extracting low-level features like edges, col-
ors, etc.) In capsule layers, the neurons are re-grouped as capsules. The output of each capsule layer
is a set of vectorized hidden representations, with each vector representing the presence or property
of an entity. These hierarchical structures built by capsules are supposed to capture the relationship
between different entities at various levels. Thus, CapsNets as a whole can better model spatial rela-
tionships. Furthermore, CapsNets incorporate design elements such as routing mechanisms (which
determine coupling coefficients between capsules in adjacent layers) and vectorized output. How-
ever, the key innovation in CapsNets lies in the concept of capsules. Despite their primary purpose
of capturing spatial relationships and handling viewpoint variations, the hierarchical nature of Cap-
sNets allows for fewer neurons (parameters) to achieve the same or better performance (Hinton et al.,
2018).

Another example is the attention mechanism. It draws inspiration from the way human attention op-
erates, allowing individuals to dynamically monitor various information while simultaneously han-
dling multiple tasks. A typical attention mechanism involves three vectors, namely query, key, and
value. The hierarchical structures of the attention mechanism make it fall into the slot of structured
hidden representations. Similar to the routing mechanism in CapsNets, the attention mechanism
also assign weights to different parts of the input sequence based on similarities. Some popular neu-
ral network structures like Transformers are also built on top of attention mechanisms. Networks
usually achieve better performance and efficiency (fewer parameters) after introducing attention
mechanisms.

In summary, we can observe two similarities between the attention mechanism and CapsNets.
Firstly, both methods incorporate structured hidden representations into ConvNets. Secondly, they
both utilize information routing mechanisms to assign varying degrees of importance to different
elements or entities in the input data.

1.3 STRUCTURED NEURONS

It is worth noting that both Transformers and CapsNets leverage feature maps originating from con-
volutional layers and subsequently re-organize these feature maps. Why not produce these structured

2



Under review as a conference paper at ICLR 2023

.

Figure 2: An example of Generalized Convolution. The 3x3 structured hidden representations, with
a shape of 1x3x3x(1x3), transform to yield a single structured tensor with a shape of 1x(4x4x4x4).
Note that in this context, the term 3x3 refers to the kernel size, and we make the assumption that
both the input feature maps and output feature maps consist of only one channel (the 1s in the first
dimension).

hidden representations from nerons directly? GConvNets employ structured neurons to directly
generate these structured representations, eliminating the need for this additional step. Further-
more, GConvNets regard ConvNets as its special form, wherein each structured neuron comprises
only a single scalar neuron. Consequently, we can seamlessly substitute the convolutional layers
in ConvNets with general convolutional layers in GConvNets throughout the entire network. These
structured neurons function as the fundamental building blocks across the network, diverging from
the specialized components observed in Transformers and CapsNets.

1.4 GENERALIZED CONVNETS BUILT ON STRUCTURED NEURONS

So how are we supposed to build such a neural network? First, we employ high-rank tensors as the
structured neurons and utilize the tensor product as the fundamental operations within the network.
Secondly, we eliminate the need for information routing procedures, as the importance-based at-
tention or coupling coefficients are learnable. By removing the information routing procedures, we
can significantly reduce the overall overhead involved in the process. Next, we incorporate param-
eter sharing within each layer, similar to how convolutions operate, but with the use of structured
neurons. However, it is important to note that CapsNets or the attention mechanism do not involve
parameter sharing, and instead follow a similar style to fully-connected neural networks.

In summary, we adopt high-rank tensors as structured neurons, employ parameter sharing within
each layer similar to ConvNets, package and unpackage the input/output to form and decompose
tensors, maintain the same initialization, activation, and loss functions, and make the tensor product
the default operation across layers. This new neural network, known as Generalized Convolutional
Neural Networks (GConvNets), follows a similar organizational structure to ConvNets, except that
each neuron is replaced with a high-rank neuron tensor. Therefore, when each structured neuron
comprises only a single scalar neuron, GConvNets essentially reduce to regular ConvNets. In other
words, ConvNets can be viewed as a specialized type of GConvNets, while GConvNets represent a
more general form of ConvNets. Figure 2 shows one example of generalized convolutions.

What advantages do GConvNets offer? First, GConvNets offer greater flexibility when it comes to
designing neural networks. In ConvNets, all layers consist of convolutional layers with scalar neu-
rons. In contrast, GConvNets allow for the utilization of diverse tensor neurons with varying shapes
and dimensions in different layers. Furthermore, our experiments demonstrate that employing high-
rank neuron tensors can lead to more efficient model construction, requiring fewer parameters.

2 RELATED WORK

GConvNets adopt structured neurons to produce structured hidden representations. Similarly, Cap-
sNets (Hinton et al., 2018) and Transformers (Vaswani et al., 2017) also take advatange structured
hidden representations by reorganizing extracted features.

3



Under review as a conference paper at ICLR 2023

CapsNets (Sabour et al., 2017) organize neurons as capsules to mimic the biological neural sys-
tems. Different from normal neural networks, which adopt neurons as basic units, CapsNets use a
group of neurons as capsules. A typical CapsNet is composed of several convolutional layers, a final
fully-connected capsule layer with a routing procedure, and a loss function. Another key design of
CapsNets is the routing procedure which can combine lower-level features with higher-level features
to better model hierarchical relationships. CapsNets can encode intrinsic spatial relationships among
features (parts or a whole) more efficiently than ConvNets. For example, the CapsNet with dynamic
routing (Sabour et al., 2017) can separate overlapping digits accurately, while the CapsNet with EM
routing (Hinton et al., 2018) achieves a lower error rate on smallNORB (LeCun et al., 2004). In con-
trast, ConvNets are usually overparameterized. As shown in (Liebenwein et al., 2020; Yang et al.,
2020; Li et al., 2020; Singh & Alistarh, 2020; van Baalen et al., 2020), their compressed/pruned
neural networks have much smaller sizes with hardly any accuracy drop. As a result, CapsNets
usually need a lot fewer parameters when reaching the same accuracy.

Transforms typically use a multi-headed attention mechanism. The assumption is that each at-
tention head has a separate projection of the representations, and multi-head attention can thus
take advantage of multiple representations subspaces. The representations are composed of
(key, value, query) triplets. In particular, each triplet contains three matrices (K,Q, V ). A lin-
ear transformation is applied between representations in adjacent layers, as Equation 1 shows,

atti (Ki, Qi, Vi) = softmax

(
QiK

T
i

di

)
Vi (1)

Where di is the length is Ki. When the attention heads are stacked and transformed linearly, we get
the values of a multi-head attention, as Equation 2 shows,

multi att (K,Q, V ) = [att0, stt1, . . . attn]W (2)

Where W is the linear transformation matrix after the attention heads are stacked on top of each
other. Fundamentally, the representations of a higher layer are weighted combinations of the repre-
sentations in the lower layer. The weights are calculated based on the similarities between queries
in the higher layer and keys in the lower layer.

We can see here both the matrix (vector) capsules and the key/query vectors in transformers encode
representations in a structured way. GConvNets differentiate from ConvNets with structured hidden
representations in three key aspects:

• GConvNets employ structured neurons to directly generate these structured hidden repre-
sentations, whereas Transformers or CapsNets produce these structured representations by
rearranging the feature maps from ConvNets.

• Structured neurons serve as the fundamental units throughout the entire GConvNets, as
opposed to being specialized components integrated into ConvNets.

• GConvNets do not rely on information routing mechanisms or specific encoding algo-
rithms. The relationships between adjacent structured hidden representations in GCon-
vNets are learnable, enabling the model to capture the necessary information without pre-
defined procedures.

3 GCONVNETS

The primary operation at the core of ConvNets is convolution, which is a linear combination consist-
ing of two sequential steps. Initially, it involves performing an element-wise multiplication between
scalar neurons of the kernel size and feature maps of the same size. Following this, the resultant
scalar values are aggregated to yield a single scalar value in the subsequent layer. In contrast, the
foundational operation in GConvNets, known as generalized convolution, entails a linear combina-
tion of tensors. Unlike traditional convolutions, generalized convolutions commence by conducting
tensor product operations between structured neurons of the kernel size and structured hidden rep-
resentations of the same size. Afterward, a combination operation is applied to these output tensors,
which are structured hidden representations.

As a consequence, every convolution operation yields a single value, whereas each step of gener-
alized convolution generates a multidimensional tensor. This leads to ConvNets and GConvNets

4



Under review as a conference paper at ICLR 2023

.

Figure 3: Two GConvNets residual structures. Left: the triple skips block, Block#1 Right: the
quadruple skips block, Block#2. W ∈ Rk1×k2×k3×k4 is the neuron tensor. Each layer is followed
by a PReLU (He et al., 2015) layer and a Batch Normalizaiton Layer (Ioffe & Szegedy, 2015)

having analogous yet distinct types of feature maps. Standard feature maps maintain a consistent
homogeneity across layers, primarily differing in their dimensions (height, width, and number).
Conversely, feature maps within GConvNets can display varying structures across layers. For ex-
ample, a ConvNet feature map might be denoted as 32x128x128, signifying the presence of 32
channels, each with dimensions 128x128. In contrast, GConvNet feature maps are expressed as
32x128x128xT, where T can vary between layers, ranging from T=1 to more complex tensors like
T=3x4x5x6. When T equals 1, a generalized convolutional layer essentially becomes a conven-
tional convolutional layer. Moreover, if T remains consistently equal to 1 throughout the network,
GConvNets essentially transform into ConvNets.

Next, we provide a comprehensive explanation of generalized convolution and elaborate on certain
adjustments we implement to ensure the feasibility of training GConvNets.

3.1 GENERALIZED CONVOLUTION

Structured neurons serve as the fundamental units within the entire GConvNet architecture, respon-
sible for converting input feature maps into output feature maps. For instance, they can transform an
input tensor, denoted as U ∈ R1×2×3×4, into an output tensor, denoted as V ∈ R1×2×7×8, through
the application of a tensor product operation with W ∈ R4×3×7×8, as Equation 3 shows. In theory,
the structured neurons within GConvNets have the capability to convert tensors of any shape into
tensors of any other shape. This particular step serves a role analogous to the head projection +
attention distribution in Transformers or the capsule transformation + routing in CapsNets.

Vi = Ui

⊗
Wi (3)

After the tensor production, GConvNets apply liner combinations, which can be defined as,

V =

n∑
i

Vi (4)

Where n = k × k ×m, k is the kernel size and m is the number of input channels. In comparison,
the basic operation of ConvNets is linear combinations of scalars, V =

∑n
i Vi.

3.2 INPUT&OUTPUT IN GCONVNETS

We process each input image as in Figure 2 shows. To illustrate, consider a 128x128x3
color image, which can be regarded as a one-channel structured feature map with dimensions
of U ∈ R1×128×128×(1×3). If we employ a structured neuron with dimensions of (W ∈
R(3×3)×1×1×3×1×4×4×4×4), the input can be transformed to a one-channel structured feature map
with dimensions of V ∈ R4×63×63×(4×4×4×4), as Equation 3 shows. In this context, we are assum-
ing a kernel size of 3, a stride of 2, and no padding.

5



Under review as a conference paper at ICLR 2023

Table 1: The structure of g conv net. The neuron tensor of Layer#0 is Win ∈ R3×1×9×9 that can
transforms each input tensor Uin ∈ R3×1 to an output tensor V ∈ R9×9. Layer#0 is followed
by a BatchNorm Layer and a PReLU layer. So are the following layers. In the immediate layers,
Win ∈ R9×9×9×9 that can transforms each tensor Uin ∈ R9×9 to an output tensor V ∈ R9×9.
In Layer#4, Wf ∈ R4×9×9×9×9. In Layer#6, the final output number depends on the number of
classes.

#Layer Neural Tensors #Channel
0 Block#1 1
1 Block#2 1
2 Block#1 1
3 Block#2 1
4 3× 3× Wf 4
5 Pooling 4
6 324× 10/100/200 10/100/200

With both the input and the neurons structured, the resulting output naturally inherits a structured
format. Consequently, this necessitates the loss functions specifically designed to handle structured
data, such as the margin loss in CapsNets. However, these loss functions often require additional
steps. A more convenient approach is to destructurize the output and then use a regular loss function.
Specifically, we deconstruct the structured feature maps into normal feature maps, subsequently
incorporating a pooling layer prior to inputting them into a loss function.

To streamline the design process and leverage the advancements made in ConvNets, we preserve
most other components in ConvNets, including activation functions, initialization functions, batch
normalizations, loss functions, residual structures, etc., untouched. The residual structures in our
paper can be found in Figure 3.

4 EXPERIMENTS

We conducted experiments with GConvNets on several small datasets, specifically CI-
FAR10 (Krizhevsky et al.), CIFAR100 (Krizhevsky et al.), and TinyImageNet (Le & Yang, 2015).
Initially, we evaluated GConvNets against other ConvNets in a conventional manner, employing
various data augmentation techniques such as resizing, cropping, flipping, and normalization. Sub-
sequently, we conducted experiments without applying these techniques, maintaining the original
input size and avoiding resizing, cropping, or flipping. Additionally, we omitted the normalization
step based on prior knowledge. This approach was chosen to eliminate extraneous factors and pro-
vide a more accurate assessment and comparison of the performance across different neural network
architectures. Throughout this paper, we maintain the same choice of a learning rate of 1e-3, a mini-
batch size of 32, and the utilization of the Adam optimizer (Kingma & Ba, 2015) across all datasets
and settings.

We employ a singular GConvNets, referred to as g conv net, for all the datasets. The comprehensive
configuration of this network can be observed in Table 1.

4.1 CIFAR10

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per
class. There are 50000 training images and 10000 test images. For every sample in CIFAR10,
our preprocessing pipeline involves resizing each image to dimensions of 42x42. Subsequently, we
apply random cropping, resulting in a final size of 38x38. We also incorporate horizontal flipping
for data augmentation purposes. Finally, each channel of an image is normalized using mean values
of (0.485, 0.456, 0.406) and standard deviations of (0.229, 0.224, 0.225).

We then refrain from any preprocessing of the original CIFAR10 data. Specifically, we utilize the
original input size of 32x32 and do not apply resizing, cropping, or normalization. As Table 2 shows,

6



Under review as a conference paper at ICLR 2023

Table 2: GConvNets Performance Results on CIFAR10, CIFAR100, and Tiny ImageNet. The
epoch# here is the epoch number when the lowest validation loss is recorded. For each accuracy
item, the number on the left indicates the utilization of augmentations, while the number on the
right indicates the absence of any augmentations.

Datasets Model Acc. #Params #Epochs

CIFAR10

shufflenet v2 x0 5 (Zhang et al., 2018) 76.5%/60.5% 0.35M 47/9
g conv net 88.4%/ 78.4% 1.43M 71/11

mobilenet v3 small (Sandler et al., 2018) 80.0%/63.2% 1.53M 17/13
mobilenet v2 (Sandler et al., 2018) 84.4%/73.0% 2.24M 32/17

regnet y 400mf (Radosavovic et al., 2020) 82.7%/68.0% 3.91M 30/14
EfficientNet-B0 (Agarwal et al., 2019) 85.6%/70.0% 4.0M 79/8

regnet y 800mf (Radosavovic et al., 2020) 82.9%/33.5% 5.66M 21/6
EfficientNet-B1 (Agarwal et al., 2019) 87.2%/72.9% 6.5M 66/14
EfficientNet-B2 (Agarwal et al., 2019) 86.1%/75.0% 7.72M 43/20

resnet18 (He et al., 2015) 86.1%/73.9% 11.18M 13/6
resnet34 (He et al., 2015) 86.5%/74.2% 21.29M 17/8

convnext tiny (Liu et al., 2022) 76.2%/60.4% 27.82M 19/5
convnext small (Liu et al., 2022) 84.6%/59.8% 49.45M 15/5

CIFAR100

shufflenet v2 x0 5 (Zhang et al., 2018) 39.7%/32.3% 0.44M 14/14
g conv net 56.8%/44.4% 1.46M 81/23

mobilenet v3 small (Sandler et al., 2018) 37.2%/33.8% 1.62M 20/28
mobilenet v2 (Sandler et al., 2018) 54.5%/38.8% 2.35M 46/20

regnet y 400mf (Radosavovic et al., 2020) 46.0%/31.9% 3.95M 19/8
EfficientNet-B0 (Agarwal et al., 2019) 53.0%/35.0% 4.14M 38/21

regnet y 800mf (Radosavovic et al., 2020) 49.2%/38.2% 5.73M 13/10
EfficientNet-B1 (Agarwal et al., 2019) 53.2%/32.2% 6.64M 80/8
EfficientNet-B2 (Agarwal et al., 2019) 54.2%/44.3% 7.84M 13/14

resnet18 (He et al., 2015) 53.8%/42.9% 11.23M 12/9
resnet34 (He et al., 2015) 53.4%/42.4% 21.34M 17/7

convnext tiny (Liu et al., 2022) 42.8%/30.4% 27.89M 15/5
convnext small (Liu et al., 2022) 44.1%32.6% 49.52M 16/8

Tiny ImageNet

shufflenet v2 x0 5 (Zhang et al., 2018) 35.7%/28.6% 0.55M 40/13
g conv net 48.5%/34.8% 1.49M 75/25

mobilenet v3 small (Sandler et al., 2018) 33.8%/28.7% 1.72M 83/18
mobilenet v2 (Sandler et al., 2018) 39.1%/32.4% 2.35M 35/16

regnet y 400mf (Radosavovic et al., 2020) 38.2%/29.3% 3.99M 21/12
EfficientNet-B0 (Agarwal et al., 2019) 42.6%/32.4% 4.26M 90/13

regnet y 800mf (Radosavovic et al., 2020) 40.5%/35.2% 5.8M 18/8
EfficientNet-B1 (Agarwal et al., 2019) 44.4%/32.2% 6.77M 92/17
EfficientNet-B2 (Agarwal et al., 2019) 40.4%/31.3% 7.98M 109/16

resnet18 (He et al., 2015) 40.0%/33.0% 11.28M 12/5
resnet34 (He et al., 2015) 39.9%/34.2% 21.39M 19/5

convnext tiny (Liu et al., 2022) 37.7%/26.9% 27.97M 14/9
convnext small (Liu et al., 2022) 38.2%/27.6% 49.59M 14/9

g conv net achieves the best performance with/without data augmentations than most models using
far fewer parameters.

4.2 CIFAR100 (KRIZHEVSKY ET AL.)

CIFAR100 has 100 classes containing 600 images each. There are 500 training images and 100
testing images per class. We first use exactly the same data augmentations as in section 4.1. Sub-
sequently, we eliminate all augmentation techniques and re-evaluate our model. As evidenced by
Table 2, g conv net exhibits the most superior performance among all models, both with and without
data augmentations.

7



Under review as a conference paper at ICLR 2023

4.3 TINY IMAGENET (LE & YANG, 2015)

Tiny ImageNet (Le & Yang, 2015) is a subset of the ImageNet dataset (Deng et al., 2009), which
contains 100,000 images of 200 classes (500 for each class) downsized to 64×64. The preprocessing
pipeline encompasses the resizing of each image to dimensions of 80x80. Following this, random
cropping is applied, resulting in a final size of 64x64. Additionally, horizontal flipping is incorpo-
rated for the purpose of data augmentation. Lastly, each channel of an image is normalized using
mean values of (0.485, 0.456, 0.406) and standard deviations of (0.229, 0.224, 0.225).

Upon removing all preprocessing steps and retesting our model, we obtained results of 48.5% and
34.8% for the two respective settings. The utilization of data augmentation techniques leads to the
highest performance for g conv net. Without augmentations, g conv net still achieves the second-
best result with significantly fewer parameters compared to the best one.

4.4 DISCUSSION

One may wonder why GConvNets tend to outperform many larger ConvNets. We conjecture that
GConvNets can better capture spatial features from the samples and thus be less vulnerable to over-
fitting. The advantage that GConvNets exhibit is somewhat akin to the structured hidden represen-
tations employed by Transformers and CapsNets. However, it’s important to note that GConvNets
employ structured neurons to directly generate these structured hidden representations, whereas
Transformers or CapsNets produce these structured representations by rearranging the feature maps
from ConvNets.

The evidence supporting the reduced susceptibility to overfitting in GConvNets becomes apparent
when observing their comparatively narrower generalization gaps. To illustrate, both ResNet34 (He
et al., 2015) and EfficientNet-b3 (Agarwal et al., 2019) can attain nearly 100% accuracy on the Tiny
ImageNet training set, yet their accuracy on the validation set remains consistently at around 30%.

This paper primarily concentrates on classification tasks involving small datasets. An intriguing
inquiry is whether GConvNets can also surpass traditional ConvNets on larger datasets. Regret-
tably, due to the absence of hardware-accelerated algorithms, the training process for GConvNets
is considerably slower when compared to ConvNets. Conventional convolution can be viewed as
a small number of large matrix multiplications, whereas generalized convolution involves a signifi-
cant number of small matrix multiplications, a process not optimally supported by the current GPU
acceleration frameworks.

5 CONCLUSIONS

We propose a generalized variant of Convolutional Neural Networks named GConvNets, which
employ structured neurons to generate structured hidden representations. In particular, we expand
the traditional convolution operation from being a linear combination of scalars to involving tensor
product and tensor aggregation, thus making convolution a specialized instance of generalized con-
volution. Furthermore, we have developed a range of techniques to empower GConvNets to harness
the successful mechanisms utilized by ConvNets. Our experiments show that GConvNets demon-
strate enhanced efficiency in classification tasks across various datasets. We believe that GConvNets
have the potential to hold potential in other artificial intelligence tasks and datasets as well.

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
Efficient full-matrix adaptive regularization. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 102–110. PMLR, 2019. URL http://proceedings.mlr.press/v97/
agarwal19b.html.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

8

http://proceedings.mlr.press/v97/agarwal19b.html
http://proceedings.mlr.press/v97/agarwal19b.html


Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM routing. In Interna-
tional Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=HJWLfGWRb.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v37/ioffe15.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In IEEE Conference on Computer Vision and Pattern Recognition,
2004.

Shiyu Li, Edward Hanson, Hai Li, and Yiran Chen. Penni: Pruned kernel sharing for efficient cnn
inference. In International Conference on Machine Learning, 2020.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter
pruning for efficient neural networks. In International Conference on Learning Representations,
2020.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. Designing
network design spaces. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules. CoRR,
abs/1710.09829, 2017. URL http://arxiv.org/abs/1710.09829.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In Conference on Neural Information Processing Systems, 2020.

Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen
Blankevoort, and Max Welling. Bayesian bits: Unifying quantization and pruning. In Conference
on Neural Information Processing Systems, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

9

https://openreview.net/forum?id=HJWLfGWRb
https://openreview.net/forum?id=HJWLfGWRb
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1710.09829


Under review as a conference paper at ICLR 2023

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differen-
tiable scale-invariant sparsity measures. In International Conference on Learning Representa-
tions, 2020.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

10


	Introduction
	overparameterization & traditional solutions
	structured hidden representations
	structured neurons
	generalized ConvNets built on structured neurons

	Related Work
	GConvNets
	generalized convolution
	Input&Output in GConvNets

	experiments
	CIFAR10
	CIFAR100 cifar
	Tiny ImageNet tinyImagenet
	Discussion

	Conclusions

