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Abstract001

Autoregressive decoding in large language002
models (LLMs) necessitates a full forward003
pass for each generated token, significantly004
increasing inference latency. To address this005
limitation, we propose Fractal-LLM, a lossless006
self-speculative decoding method that embeds007
a compressed model within selected decoder008
layers of the original model. Specifically,009
our approach generates multiple draft tokens010
in parallel by injecting compressed layers011
into selected decoder layers. These draft012
tokens are subsequently verified through a013
single forward pass of the original model,014
ensuring the final outputs exactly match those015
produced by the original model. Experimental016
results across diverse benchmarks—including017
GSM8K, XSUM, CNN/DailyMail, and018
HumanEval—demonstrate that our method019
achieves substantial inference speed-ups (up020
to 2.47×) compared to standard autoregressive021
decoding, without requiring any additional022
training.023

1 Introduction024

Recently, large language models (LLMs) have025

demonstrated remarkable performance across var-026

ious natural language processing tasks. However,027

autoregressive decoding requires a full forward028

pass for each generated token, causing significant029

latency in practical applications. Speculative de-030

coding methods (Chen et al., 2023; Li et al., 2024)031

mitigate this issue by proposing multiple draft to-032

kens simultaneously and verifying them with fewer033

forward passes, thus reducing overall decoding034

steps. Yet, existing approaches often require ei-035

ther an external draft model (Chen et al., 2023),036

additional decoding heads integrated within the037

original model (Cai et al., 2024), or employ self-038

speculative strategies (Zhang et al., 2024; Liu et al.,039

2024) that do not fully escape the token-by-token040

autoregressive decoding constraint.041

In this paper, we introduce Fractal-LLM, which 042

embeds compressed layers within selected decoder 043

layers, enabling parallel draft token generation in 044

a single forward pass. Generated tokens are subse- 045

quently verified by one additional forward pass of 046

the original model, ensuring that outputs precisely 047

match those of standard autoregressive decoding. 048

This approach significantly reduces inference la- 049

tency without auxiliary models or extra training. 050

The contributions of this paper are summarized 051

as follows: (1) Layer Embedded Self-Compression: 052

We introduce a novel design that embeds a com- 053

pressed model into selected decoder layers for par- 054

allel token generation without removing original 055

layers; (2) Lossless Self-speculative Decoding: We 056

generate and verify tokens within a single model in 057

parallel, preserving output quality identical to the 058

base model; (3) Efficiency Analysis: We conduct a 059

detailed study of how the number of embedded lay- 060

ers and the size of the draft window jointly affect 061

inference speed-up. 062

2 Related Work 063

Speculative Decoding. Early research on speeding 064

up autoregressive generation introduced the idea 065

of speculative decoding, in which a small draft 066

model proposes multiple tokens for each step, and 067

the main (larger) model verifies them in a single 068

forward pass (Chen et al., 2023). This approach 069

can effectively reduce the number of sequential 070

decoding steps, but often requires an additional 071

model that must be trained or at least carefully 072

aligned to the target LLM. Some work, such as 073

MEDUSA (Cai et al., 2024), extends this paradigm 074

by adding multiple look-ahead heads, constructing 075

a tree of candidate continuations in parallel. Re- 076

cently, EAGLE (Li et al., 2024) further enhanced 077

speculative decoding by introducing feature-level 078

autoregression, which leverages the top-layer out- 079

puts of an LLM for predicting token features, and 080
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a context-aware dynamic draft tree for improved081

token acceptance rates. Ouroboros (Zhao et al.,082

2024) extends speculative decoding by enabling083

draft models to generate entire phrases at once,084

subsequently concatenating high-quality phrases085

selected during verification to significantly enhance086

decoding efficiency.087

Instead of relying on a second model, recent self-088

speculative techniques generate drafts by skipping089

layers or using partial forward passes within the090

same network, then apply the full model to verify091

and correct these drafts (Zhang et al., 2024; Liu092

et al., 2024; Metel et al., 2024). However, these093

methods commonly retain a strictly token-by-token094

mechanism, thus limiting potential speedups from095

token-level parallelism.096

Another way to reduce latency is to generate sev-097

eral tokens per iteration. Block-wise or multi-token098

algorithms (Stern et al., 2018) split the sequence,099

guess a chunk of tokens in parallel, then verify or100

refine them before continuing. Look-ahead decod-101

ing (Fu et al., 2024) uses a modified attention mask102

to simultaneously predict multiple future tokens103

without additional training.104

Layer Compression and Quantization. A com-105

plementary approach to boosting decoding effi-106

ciency is to reduce the size or depth of the network107

itself. Early work such as Xu et al. (2020) and Fan108

et al. (2020) demonstrates that partial or probabilis-109

tic layer dropping can preserve performance while110

lowering computational costs. Likewise, quantiz-111

ing weights and activations often yields faster in-112

ference with minimal accuracy loss (Guo et al.,113

2023). However, these methods neither address the114

bottleneck imposed by token-by-token decoding115

nor guarantee preservation of the original model’s116

output quality.117

3 Method118

3.1 Problem Definition119

Speculative decoding generally consists of the fol-120

lowing two steps: (1) Draft Phase: From the cur-121

rent input sequence {x1, ..., xp} generate a new set122

of K draft tokens, forming {x1, ..., xp+k}; (2) Ver-123

ification Phase: Subsequently, use the target model124

(the original LLM) in a single forward pass to ver-125

ify these draft tokens in parallel. If a certain draft126

token is found to be incorrect, that position is re-127

placed with the token predicted by the target LLM,128

and from that token onward, a new round of the129

draft phase begins.130

Suppose that, until the complete sequence is gen- 131

erated, this pair of draft and verify phases repeats 132

a total of Nphase times. Following the draft → 133

verify phases, if we denote the time spent in each 134

phase as Tphase, the overall generation time can be 135

expressed as 136

Ttotal = Nphase × Tphase (1) 137

Our goal is to minimize Ttotal, however, this 138

introduces a trade-off between the accuracy and 139

efficiency of the draft process (Zhang et al., 2024). 140

From the point of view of precision, the closer the 141

draft is to the output of the original model, the 142

greater the number of tokens that pass the verifi- 143

cation, potentially reducing the Nphase. However, 144

from the point of view of efficiency, ensuring that 145

the quality of the draft matches the original model 146

closely can require significant computational cost, 147

thus increasing Tphase. 148

3.2 Layer Embedded Self-Compression 149

Fractal Layer. The core idea of our method is 150

to compress the model and inject it between the 151

original decoder layers. Concretely, when we des- 152

ignate the i-th decoder layer as a Fractal Layer, 153

we attach these compressed layers (including the 154

compressed LM head and embedding) before the 155

original layer Li. This arrangement facilitates mul- 156

tiple draft-token proposals mid-forward, leveraging 157

the partial hidden states up to layer (i− 1) without 158

having to re-run all preceding layers for each new 159

token. 160

Draft Phase. We begin by appending w (draft 161

window) draft tokens at the end of the input se- 162

quence. These tokens are newly initialized special 163

tokens without any contextual information. Let 164

hi−1 be the hidden state from the (i− 1)-th origi- 165

nal layer. 166

Fractal Layer forwards hi−1 through the upper 167

compressed layers (L′
i . . . L

′
l), yielding logits that 168

range from the prefix’s last token to the w newly 169

appended tokens. We then apply the compressed 170

LM head to select the top token (via argmax) at 171

each of these positions, resulting in w + 1 new 172

tokens (one from the prefix’s final logit, plus w 173

more from the newly appended slots). 174

Next, we re-embed the updated sequence (con- 175

sisting of the original prefix plus the newly gener- 176

ated w+1 tokens) using the compressed embedding 177

layer. We then pass this re-embedded sequence 178

through the lower compressed layers (L′
1 . . . L

′
i−1), 179
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Figure 1: A schematic illustration of our Fractal-LLM approach. The original hidden state passes through the
compressed layers, produces provisional logits for draft tokens, re-embeds newly selected tokens, and merges them
back into the main sequence.

obtaining an updated hidden state ĥi−1. Finally,180

we merge by replacing only the draft-token com-181

ponents in hi−1 with those in ĥi−1, retaining the182

prefix intact. This merged state then feeds into the183

original layer Li. Since the prefix’s hidden states184

remain unaltered, the first newly generated token185

is guaranteed to be aligned with the preceding con-186

text. Furthermore, each Fractal Layer iteratively187

refines subsequent draft tokens, inducing the later188

draft tokens to incorporate updated contextual infor-189

mation. Thus, multiple tokens can simultaneously190

match the target outputs within a single compressed191

forward pass, breaking the conventional one-token-192

per-forward constraint. Fig. 1 provides an overview193

of our method.194

Verify Phase. During verification forward, the195

injected compressed network is omitted entirely,196

making this step identical to a standard forward197

pass of the target model. If we designate n layers198

in total as Fractal Layers, then we can produce199

w+n+1 draft tokens in one forward pass, verifying200

them against the full model. This guarantees that201

the final output exactly matches what the original202

model would produce under vanilla autoregressive203

decoding.204

4 Evaluation205

Setup. We benchmark three open Llama check-206

points— Llama-3-3B, Llama-3-8B (Grattafiori207

et al., 2024), and CodeLlama-13B (Roziere 208

et al., 2023). For each Llama-3-3B, Llama-3- 209

8B we randomly select 300 inputs each from 210

GSM8K (Cobbe et al., 2021), XSUM (Narayan 211

et al., 2018), and CNN/DailyMail (Nallapati et al., 212

2016). CodeLlama-13B is evaluated on the full 213

HumanEval (Chen et al., 2021) test set. Through- 214

put (tokens / s), relative speed-up, and theoreti- 215

cal FLOPs are measured under identical settings. 216

All experiments were conducted using RTX 3090 217

GPUs. Detailed implementation and hyperparame- 218

ters are described in Appendix D. 219

Results. Table 1 shows that our decoder consis- 220

tently out-runs the vanilla baseline on all three 221

tasks. On the 3B backbone we reach 14.6 222

tok/s on GSM8K ( ↑1.20× ) and 8.5 tok/s on 223

XSUM ( ↑1.48× ) with only a 7 % increase in 224

FLOPs, demonstrating that the injected compressed 225

model introduce negligible overhead in total. Our 226

method’s effectiveness increases with larger model 227

sizes. For instance, the 8B model achieves a 2.12x 228

speedup on the CNN/DM task, even though its 229

compute budget is approximately 20% larger than 230

the baseline. 231

We further evaluate our method on the 13B 232

CodeLlama model on HumanEval (Table 2). 233

Fractal-LLM achieves a 2.47× throughput im- 234

provement, demonstrating effective scaling to 235

larger models and computationally intensive code- 236

generation tasks, while preserving output identical 237
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Model Method
GSM8K XSUM CNN/DM

Tok/s Acc. FLOPs Tok/s Acc. FLOPs Tok/s Acc. FLOPs

Llama-3 3B
Baseline 12.20 1.00× 2.5 × 1014 5.74 1.00× 4.6 × 1014 3.13 1.00× 7.8 × 1014

Fractal 14.60 1.20× 2.7× 1014 8.49 1.48× 5.0× 1014 5.51 1.69× 8.3× 1014

Llama-3 8B
Baseline 4.26 1.00× 7.6 × 1014 2.25 1.00× 1.1 × 1015 1.01 1.00× 1.8 × 1015

Fractal 7.47 1.75× 9.0× 1014 4.06 1.80x 1.4× 1015 2.15 2.12x 2.2× 1015

Table 1: Throughput (tokens / sec), relative acceleration (Acc.), and estimated FLOPs of our decoding method
versus the vanila autoregressive baseline.

Model Method HumanEval

Tok/s Acc. FLOPs

CodeLlama-13B Baseline 1.79 1.00× 4.1× 1015

Fractal 4.43 2.47× 4.0 × 1015

Table 2: Throughput (tokens/s), relative acceleration
(Acc.), and average FLOPs over the first 300 decoding
steps on HumanEval.

to baseline autoregressive decoding. At this scale,238

our method even slightly reduces total FLOPs com-239

pared to baseline, as computational savings from240

fewer full forward passes outweigh overhead from241

compressed layers.242
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Analysis Our method’s efficiency depends signif-243

icantly on two hyperparameters: (1) the number of244

layers designated as Fractal Layers (n), and (2) the245

number of draft tokens proposed simultaneously246

(w). To clearly understand their effects, we con-247

ducted an analysis using the Llama-3 3B model on248

a random subset of 100 samples from the GSM8K249

dataset, across different combinations of these pa-250

rameters (Figure 2).251

As discussed in Eq 1, total generation time252

(Ttotal) depends on the number of phases (Nphase)253

and the duration per phase (Tphase). Increasing 254

Fractal Layers (n) progressively refines draft to- 255

kens within each forward pass, enhancing accuracy 256

and reducing Nphase, but simultaneously increases 257

internal computations, raising Tphase. Conversely, 258

fewer layers limit refinement quality, lowering draft 259

accuracy and thus potentially increasing Nphase. 260

The draft window size (w) determines the num- 261

ber of tokens the model attempts to predict in paral- 262

lel during each draft phase. Setting w too large in- 263

troduces a high number of inaccurate tokens, which 264

unnecessarily increases computational overhead 265

through additional attention and FFN computations. 266

Furthermore, incorrect tokens result in more cor- 267

rections during the verification phase, thereby ex- 268

tending the total decoding time. 269

Experimental results indicate that setting the 270

draft window size equal to or slightly smaller than 271

the number of Fractal Layers achieves an optimal 272

balance between computational overhead and draft 273

accuracy. Additional ablation studies (Appendix A) 274

confirm that this configuration consistently pro- 275

vides stable improvements in both draft token ac- 276

curacy and overall decoding speed. 277

5 Conclusion 278

In this paper, we introduced Fractal-LLM, a novel 279

lossless self-speculative decoding framework that 280

integrates a compressed model into selected orig- 281

inal decoder layers. Our approach facilitates the 282

parallel generation of multiple draft tokens within 283

a single forward pass, significantly reducing in- 284

ference latency. Experimental evaluations on di- 285

verse benchmarks demonstrated substantial im- 286

provements in inference speed (up to 2.47×) while 287

ensuring that outputs remain identical to original 288

decoding. Crucially, our method offers valuable 289

insights by demonstrating that autoregressive de- 290

coding need not strictly correspond to one token 291

per model forward pass, enabling the completion 292

of multiple tokens simultaneously. 293
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Limitations294

Our proposed method was evaluated under a simpli-295

fied setting that does not employ Key-Value (KV)296

caching. In a typical autoregressive decoding pro-297

cess, using KV caching allows reusing intermediate298

computations from previous tokens, thus speeding299

up inference. As part of future research, we plan300

to incorporate cache management of prefix part in301

practical manner.302

Another limitation is that the speed-up from303

Fractal Layers may vary based on their number304

and positions within the decoder stack (e.g., closer305

to the input or the output). Therefore we intend306

to investigate more systematic strategies for select-307

ing Fractal Layer positions to maximize efficiency308

gains.309
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Figure 3: Average correct tokens per layer.

Effect of Fractal Layer Fig 3 analyzes the im-409

pact of distributing N Fractal Layers uniformly410

within a 28-layer decoder architecture. We set411

N = 7, corresponding to one Fractal Layer every412

four layers, and highlight two critical insights. To413

validate these observations, we randomly sampled414

10 instances from the GSM8K dataset for detailed415

analysis.416

Embedding Fractal Layers within the decoder417

leverages high-quality intermediate representations418

from earlier full-precision layers. This arrange-419

ment consistently yields an average of N + δ to-420

kens accepted per verification step, with δ ≈ 0.74.421

Specifically, in our setup (N = 7), we observed ap-422

proximately 7.74 tokens accepted per verification423

pass.424

In comparison, employing the same number of425

layers N in an external draft model theoretically426

limits the accepted tokens per verification pass427

to exactly N . Thus, embedding layers internally428

yields additional tokens per pass without increasing429

the total number of layers, clearly demonstrating an430

advantage over external model-based approaches.431

B Dataset432

To benchmark decoding speed under heteroge-433

neous workloads we employ four public cor-434

pora—GSM8K (Cobbe et al., 2021), XSUM435

(Narayan et al., 2018), CNN/DailyMail (Nalla-436

pati et al., 2016), and HumanEval (Chen et al.,437

2021)—covering arithmetic reasoning, short/long 438

summarization, and code generation. 439

• GSM8K: Grade-school math problems, con- 440

sisting of approximately 7.5K training exam- 441

ples and 1K test examples; throughput only, 442

max 256 generated tokens. 443

• XSUM: BBC news summarization dataset 444

containing approximately 204K training, 11K 445

validation, and 11K test samples; input trun- 446

cated to 512 tokens, generation capped at 128 447

tokens. 448

• CNN/DailyMail: Long-form summarization 449

dataset with approximately 287K training, 450

13K validation, and 11K test articles paired 451

with multi-sentence summaries; same trunca- 452

tion and generation cap as XSUM. 453

• HumanEval: Code generation benchmark 454

consisting of 164 Python synthesis tasks; in- 455

put up to 512 tokens, throughput measured on 456

the first 300 generated tokens. 457

C Quantization 458

We applied 8-bit precision to quantize the injected 459

model components utilized by each Fractal Layer, 460

while the original model remained in full preci- 461

sion. This quantization strategy significantly re- 462

duces memory and computational demands and 463

crucially preserves loss-less output parity with the 464

baseline decoder. In terms of efficiency, the use 465

of 8-bit matrix multiplications (mat-muls) speeds 466

up parallel draft generation and lowers VRAM us- 467

age. Regarding quality, the final FP16 verification 468

step corrects any minor quantization errors, thereby 469

ensuring that end-to-end outputs precisely match 470

those of the baseline decoder. 471

D Hyperparameters and Settings 472

Model Params Layers n w

Llama-3 3B 3 B 28 7 7
Llama-3 8B 8 B 32 8 8
CodeLlama-13B 13 B 40 10 10

Table 3: Model specifications and hyperparameters used
in our experiments.

Hyperparameters The hyperparameters used in 473

our experiments are listed in Table 3. We set n to be 474

one-quarter of the total number of layers and define 475

6
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Model & Dataset GPUs Baseline (h) Fractal (h) ∆

Llama-3 3B (GSM8K) 2×3090 1.5 1.1 –26.7%
Llama-3 3B (XSUM) 2×3090 2.5 1.3 –48.0%
Llama-3 3B (CNN/DM) 2×3090 3.5 2.1 –40.0%

Llama-3 8B (GSM8K) 2×3090 5.2 2.9 –44.2%
Llama-3 8B (XSUM) 2×3090 6.1 3.2 –47.5%
Llama-3 8B (CNN/DM) 2×3090 10.3 5.1 –50.5%

CodeLlama-13B (HumanEval) 3×3090 12.1 4.5 –62.8%

Table 4: Wall-clock inference time per dataset. ∆ is the relative reduction of Fractal vs. baseline.

w = n. We set the gap between Fractal Layer476

insertions as the total number of layers divided by477

the number of insertions.478

Generation proceeded via greedy decoding, and479

no KV cache is utilized. Maximum output lengths480

follow the task budgets in Appendix B: 128 tokens481

(XSUM, CNN/DailyMail), 256 (GSM8K), and 512482

(HumanEval).483

Hardware and Software Environment. Exper-484

iments were run on Ubuntu 22.04 with two RTX485

3090 (24 GB) GPUs for the 3B/8B checkpoints486

and three RTX 3090s for the 13B checkpoint.487

Key libraries: Python 3.11, PyTorch 2.5 (+CUDA488

12.1, cuDNN 8.9),Transformers 4.48, BitsAnd-489

Bytes 0.45 (8-bit mode), Xformers 0.0.28.post3.490

The enviroment settings are available in the artifact491

repository.492

Compute Budget. All experiments are inference-493

only (training budget 0 GPU-h). Across all datasets494

(Table 4) the baseline decoder consumes 94.5495

GPU-h, whereas our Fractal decoder needs only496

44.9 GPU-h (-53 %).497

Code Availability. All inference scripts, log-498

parsing utilities, and plotting recipes are publicly re-499

leased at https://anonymous.4open.science/500

r/FractalLLM-B445/.501

External Resources and Licensing. All check-502

points are distributed under the Meta Llama Non-503

Commercial License; datasets are released under504

CC-BY 4.0 or comparably permissive terms. We505

use them strictly for non-commercial research and506

do not redistribute derivatives.507

E Use of AI Assistant508

Translation work in this paper was assisted by an509

AI tool. All generated output was subsequently510

reviewed and revised by the authors to ensure ac-511

curacy and clarity.512
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