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Abstract

Autoregressive decoding in large language
models (LLMs) necessitates a full forward
pass for each generated token, significantly
increasing inference latency. To address this
limitation, we propose Fractal-LLM, a lossless
self-speculative decoding method that embeds
a compressed model within selected decoder
layers of the original model. Specifically,
our approach generates multiple draft tokens
in parallel by injecting compressed layers
into selected decoder layers. These draft
tokens are subsequently verified through a
single forward pass of the original model,
ensuring the final outputs exactly match those
produced by the original model. Experimental
results across diverse benchmarks—including
GSMS8K, XSUM, CNN/DailyMail, and
HumanEval—demonstrate that our method
achieves substantial inference speed-ups (up
to 2.47x) compared to standard autoregressive
decoding, without requiring any additional
training.

1 Introduction

Recently, large language models (LLMs) have
demonstrated remarkable performance across var-
ious natural language processing tasks. However,
autoregressive decoding requires a full forward
pass for each generated token, causing significant
latency in practical applications. Speculative de-
coding methods (Chen et al., 2023; Li et al., 2024)
mitigate this issue by proposing multiple draft to-
kens simultaneously and verifying them with fewer
forward passes, thus reducing overall decoding
steps. Yet, existing approaches often require ei-
ther an external draft model (Chen et al., 2023),
additional decoding heads integrated within the
original model (Cai et al., 2024), or employ self-
speculative strategies (Zhang et al., 2024; Liu et al.,
2024) that do not fully escape the token-by-token
autoregressive decoding constraint.

In this paper, we introduce Fractal-LLM, which
embeds compressed layers within selected decoder
layers, enabling parallel draft token generation in
a single forward pass. Generated tokens are subse-
quently verified by one additional forward pass of
the original model, ensuring that outputs precisely
match those of standard autoregressive decoding.
This approach significantly reduces inference la-
tency without auxiliary models or extra training.

The contributions of this paper are summarized
as follows: (1) Layer Embedded Self-Compression:
We introduce a novel design that embeds a com-
pressed model into selected decoder layers for par-
allel token generation without removing original
layers; (2) Lossless Self-speculative Decoding: We
generate and verify tokens within a single model in
parallel, preserving output quality identical to the
base model; (3) Efficiency Analysis: We conduct a
detailed study of how the number of embedded lay-
ers and the size of the draft window jointly affect
inference speed-up.

2 Related Work

Speculative Decoding. Early research on speeding
up autoregressive generation introduced the idea
of speculative decoding, in which a small draft
model proposes multiple tokens for each step, and
the main (larger) model verifies them in a single
forward pass (Chen et al., 2023). This approach
can effectively reduce the number of sequential
decoding steps, but often requires an additional
model that must be trained or at least carefully
aligned to the target LLM. Some work, such as
MEDUSA (Cai et al., 2024), extends this paradigm
by adding multiple look-ahead heads, constructing
a tree of candidate continuations in parallel. Re-
cently, EAGLE (Li et al., 2024) further enhanced
speculative decoding by introducing feature-level
autoregression, which leverages the top-layer out-
puts of an LLM for predicting token features, and



a context-aware dynamic draft tree for improved
token acceptance rates. Ouroboros (Zhao et al.,
2024) extends speculative decoding by enabling
draft models to generate entire phrases at once,
subsequently concatenating high-quality phrases
selected during verification to significantly enhance
decoding efficiency.

Instead of relying on a second model, recent self-
speculative techniques generate drafts by skipping
layers or using partial forward passes within the
same network, then apply the full model to verify
and correct these drafts (Zhang et al., 2024; Liu
et al., 2024; Metel et al., 2024). However, these
methods commonly retain a strictly token-by-token
mechanism, thus limiting potential speedups from
token-level parallelism.

Another way to reduce latency is to generate sev-
eral tokens per iteration. Block-wise or multi-token
algorithms (Stern et al., 2018) split the sequence,
guess a chunk of tokens in parallel, then verify or
refine them before continuing. Look-ahead decod-
ing (Fu et al., 2024) uses a modified attention mask
to simultaneously predict multiple future tokens
without additional training.

Layer Compression and Quantization. A com-
plementary approach to boosting decoding effi-
ciency is to reduce the size or depth of the network
itself. Early work such as Xu et al. (2020) and Fan
et al. (2020) demonstrates that partial or probabilis-
tic layer dropping can preserve performance while
lowering computational costs. Likewise, quantiz-
ing weights and activations often yields faster in-
ference with minimal accuracy loss (Guo et al.,
2023). However, these methods neither address the
bottleneck imposed by token-by-token decoding
nor guarantee preservation of the original model’s
output quality.

3 Method
3.1 Problem Definition

Speculative decoding generally consists of the fol-
lowing two steps: (1) Draft Phase: From the cur-
rent input sequence {z1, ..., z, } generate a new set
of K draft tokens, forming {1, ..., zp1 }; (2) Ver-
ification Phase: Subsequently, use the target model
(the original LLM) in a single forward pass to ver-
ify these draft tokens in parallel. If a certain draft
token is found to be incorrect, that position is re-
placed with the token predicted by the target LLM,
and from that token onward, a new round of the
draft phase begins.

Suppose that, until the complete sequence is gen-
erated, this pair of draft and verify phases repeats
a total of Nppese times. Following the draft —
verify phases, if we denote the time spent in each
phase as T}pqse, the overall generation time can be
expressed as

,I;fotal = Nphase X Tphase (1)

Our goal is to minimize T},4;, however, this
introduces a trade-off between the accuracy and
efficiency of the draft process (Zhang et al., 2024).
From the point of view of precision, the closer the
draft is to the output of the original model, the
greater the number of tokens that pass the verifi-
cation, potentially reducing the Npp,sc. However,
from the point of view of efficiency, ensuring that
the quality of the draft matches the original model
closely can require significant computational cost,
thus increasing Tppqse-

3.2 Layer Embedded Self-Compression

Fractal Layer. The core idea of our method is
to compress the model and inject it between the
original decoder layers. Concretely, when we des-
ignate the i-th decoder layer as a Fractal Layer,
we attach these compressed layers (including the
compressed LM head and embedding) before the
original layer L;. This arrangement facilitates mul-
tiple draft-token proposals mid-forward, leveraging
the partial hidden states up to layer (i — 1) without
having to re-run all preceding layers for each new
token.

Draft Phase. We begin by appending w (draft
window) draft tokens at the end of the input se-
quence. These tokens are newly initialized special
tokens without any contextual information. Let
h;—1 be the hidden state from the (i — 1)-th origi-
nal layer.

Fractal Layer forwards h;_, through the upper
compressed layers (L . .. L)), yielding logits that
range from the prefix’s last token to the w newly
appended tokens. We then apply the compressed
LM head to select the top token (via arg max) at
each of these positions, resulting in w + 1 new
tokens (one from the prefix’s final logit, plus w
more from the newly appended slots).

Next, we re-embed the updated sequence (con-
sisting of the original prefix plus the newly gener-
ated w+-1 tokens) using the compressed embedding
layer. We then pass this re-embedded sequence
through the lower compressed layers (L] ... L!_;),
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Figure 1: A schematic illustration of our Fractal-LLM approach. The original hidden state passes through the
compressed layers, produces provisional logits for draft tokens, re-embeds newly selected tokens, and merges them

back into the main sequence.

obtaining an updated hidden state hi_1. Finally,
we merge by replacing only the draft-token com-
ponents in h;_; with those in iALl-,l, retaining the
prefix intact. This merged state then feeds into the
original layer L;. Since the prefix’s hidden states
remain unaltered, the first newly generated token
is guaranteed to be aligned with the preceding con-
text. Furthermore, each Fractal Layer iteratively
refines subsequent draft tokens, inducing the later
draft tokens to incorporate updated contextual infor-
mation. Thus, multiple tokens can simultaneously
match the target outputs within a single compressed
forward pass, breaking the conventional one-token-
per-forward constraint. Fig. 1 provides an overview
of our method.

Verify Phase. During verification forward, the
injected compressed network is omitted entirely,
making this step identical to a standard forward
pass of the target model. If we designate n layers
in total as Fractal Layers, then we can produce
w+n-+1 draft tokens in one forward pass, verifying
them against the full model. This guarantees that
the final output exactly matches what the original
model would produce under vanilla autoregressive
decoding.

4 Evaluation

Setup. We benchmark three open Llama check-
points— Llama-3-3B, Llama-3-8B (Grattafiori

et al.,, 2024), and CodeLlama-13B (Roziere
et al., 2023). For each Llama-3-3B, Llama-3-
8B we randomly select 300 inputs each from
GSMBS8K (Cobbe et al., 2021), XSUM (Narayan
et al., 2018), and CNN/DailyMail (Nallapati et al.,
2016). Codellama-13B is evaluated on the full
HumanEval (Chen et al., 2021) test set. Through-
put (tokens / s), relative speed-up, and theoreti-
cal FLOPs are measured under identical settings.
All experiments were conducted using RTX 3090
GPUs. Detailed implementation and hyperparame-
ters are described in Appendix D.

Results. Table 1 shows that our decoder consis-
tently out-runs the vanilla baseline on all three
tasks. On the 3B backbone we reach 14.6
tok/s on GSM8K (11.20x) and 8.5 tok/s on
XSUM (11.48%x) with only a 7 % increase in
FLOPs, demonstrating that the injected compressed
model introduce negligible overhead in total. Our
method’s effectiveness increases with larger model
sizes. For instance, the 8B model achieves a 2.12x
speedup on the CNN/DM task, even though its
compute budget is approximately 20% larger than
the baseline.

We further evaluate our method on the 13B
CodeLlama model on HumanEval (Table 2).
Fractal-LLM achieves a 2.47x throughput im-
provement, demonstrating effective scaling to
larger models and computationally intensive code-
generation tasks, while preserving output identical



Model Method | GSMSK \ XSUM \ CNN/DM
| Tok/s Acc. ~ FLOPs | Tok/s Acc. ~ FLOPs | Tok/s Acc.  FLOPs
Llama.3 3p Baseline | 1220 1.00x 2.5 X 10'% | 574 1.00x 4.6 x 10** | 3.13 1.00x 7.8 x 10
Fractal | 14.60 1.20x 2.7 x 10'* | 849 1.48x 5.0 x 10" | 551 1.69x 8.3 x 10**
Llama.3 8B Baseline | 426 1.00x 7.6 x 10| 225 1.00x 1.1 x 10*®* | 1.01 1.00x 1.8 x 10'®°
Fractal 747 175x 9.0 x10'* | 406 1.80x 1.4x10¥ | 215 212x 2.2x10%

Table 1: Throughput (tokens / sec), relative acceleration (Acc.), and estimated FLOPs of our decoding method

versus the vanila autoregressive baseline.

Model Method HumanEval
Tok/s Acc. FLOPs
Baseline 1.79 1.00x 4.1 x 10'®

CodeLlama-13B

Fractal 4.43 2.47x 4.0 x 10'°

Table 2: Throughput (tokens/s), relative acceleration
(Acc.), and average FLOPs over the first 300 decoding
steps on HumanEval.

to baseline autoregressive decoding. At this scale,
our method even slightly reduces total FLOPs com-
pared to baseline, as computational savings from
fewer full forward passes outweigh overhead from
compressed layers.

14
142 141 140 140
e
w8 144 144 143 13
-t
g @
2 ~
— 145 145 124
—~ 19)
& i)
2 &
E 6 14.5 11
54 13.9 147 146 10
3 4 5 6 7 8 9

Draft Window Size w

Figure 2: Inference acceleration (tokens/s) as a function
of number of layers (n) and the draft window size (w).

Analysis Our method’s efficiency depends signif-
icantly on two hyperparameters: (1) the number of
layers designated as Fractal Layers (n), and (2) the
number of draft tokens proposed simultaneously
(w). To clearly understand their effects, we con-
ducted an analysis using the Llama-3 3B model on
a random subset of 100 samples from the GSM8K
dataset, across different combinations of these pa-
rameters (Figure 2).

As discussed in Eq 1, total generation time
(Tyotar) depends on the number of phases (NVppqse)

and the duration per phase (Tp4s). Increasing
Fractal Layers (n) progressively refines draft to-
kens within each forward pass, enhancing accuracy
and reducing N4, but simultaneously increases
internal computations, raising Tjpqsc. Conversely,
fewer layers limit refinement quality, lowering draft
accuracy and thus potentially increasing Nppqse-

The draft window size (w) determines the num-
ber of tokens the model attempts to predict in paral-
lel during each draft phase. Setting w too large in-
troduces a high number of inaccurate tokens, which
unnecessarily increases computational overhead
through additional attention and FFN computations.
Furthermore, incorrect tokens result in more cor-
rections during the verification phase, thereby ex-
tending the total decoding time.

Experimental results indicate that setting the
draft window size equal to or slightly smaller than
the number of Fractal Layers achieves an optimal
balance between computational overhead and draft
accuracy. Additional ablation studies (Appendix A)
confirm that this configuration consistently pro-
vides stable improvements in both draft token ac-
curacy and overall decoding speed.

5 Conclusion

In this paper, we introduced Fractal-LLM, a novel
lossless self-speculative decoding framework that
integrates a compressed model into selected orig-
inal decoder layers. Our approach facilitates the
parallel generation of multiple draft tokens within
a single forward pass, significantly reducing in-
ference latency. Experimental evaluations on di-
verse benchmarks demonstrated substantial im-
provements in inference speed (up to 2.47x) while
ensuring that outputs remain identical to original
decoding. Crucially, our method offers valuable
insights by demonstrating that autoregressive de-
coding need not strictly correspond to one token
per model forward pass, enabling the completion
of multiple tokens simultaneously.



Limitations

Our proposed method was evaluated under a simpli-
fied setting that does not employ Key-Value (KV)
caching. In a typical autoregressive decoding pro-
cess, using KV caching allows reusing intermediate
computations from previous tokens, thus speeding
up inference. As part of future research, we plan
to incorporate cache management of prefix part in
practical manner.

Another limitation is that the speed-up from
Fractal Layers may vary based on their number
and positions within the decoder stack (e.g., closer
to the input or the output). Therefore we intend
to investigate more systematic strategies for select-
ing Fractal Layer positions to maximize efficiency
gains.
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Figure 3: Average correct tokens per layer.

Effect of Fractal Layer Fig 3 analyzes the im-
pact of distributing N Fractal Layers uniformly
within a 28-layer decoder architecture. We set
N =7, corresponding to one Fractal Layer every
four layers, and highlight two critical insights. To
validate these observations, we randomly sampled
10 instances from the GSM8K dataset for detailed
analysis.

Embedding Fractal Layers within the decoder
leverages high-quality intermediate representations
from earlier full-precision layers. This arrange-
ment consistently yields an average of N + ¢ to-
kens accepted per verification step, with § ~ 0.74.
Specifically, in our setup (N = 7), we observed ap-
proximately 7.74 tokens accepted per verification
pass.

In comparison, employing the same number of
layers NN in an external draft model theoretically
limits the accepted tokens per verification pass
to exactly N. Thus, embedding layers internally
yields additional tokens per pass without increasing
the total number of layers, clearly demonstrating an
advantage over external model-based approaches.

B Dataset

To benchmark decoding speed under heteroge-
neous workloads we employ four public cor-
pora—GSMS8K (Cobbe et al., 2021), XSUM
(Narayan et al., 2018), CNN/DailyMail (Nalla-
pati et al., 2016), and HumanEval (Chen et al.,

2021)—covering arithmetic reasoning, short/long
summarization, and code generation.

* GSMBS8K: Grade-school math problems, con-
sisting of approximately 7.5K training exam-
ples and 1K test examples; throughput only,
max 256 generated tokens.

* XSUM: BBC news summarization dataset
containing approximately 204K training, 11K
validation, and 11K test samples; input trun-
cated to 512 tokens, generation capped at 128
tokens.

CNN/DailyMail: Long-form summarization
dataset with approximately 287K training,
13K validation, and 11K test articles paired
with multi-sentence summaries; same trunca-
tion and generation cap as XSUM.

 HumanEval: Code generation benchmark
consisting of 164 Python synthesis tasks; in-
put up to 512 tokens, throughput measured on
the first 300 generated tokens.

C Quantization

We applied 8-bit precision to quantize the injected
model components utilized by each Fractal Layer,
while the original model remained in full preci-
sion. This quantization strategy significantly re-
duces memory and computational demands and
crucially preserves loss-less output parity with the
baseline decoder. In terms of efficiency, the use
of 8-bit matrix multiplications (mat-muls) speeds
up parallel draft generation and lowers VRAM us-
age. Regarding quality, the final FP16 verification
step corrects any minor quantization errors, thereby
ensuring that end-to-end outputs precisely match
those of the baseline decoder.

D Hyperparameters and Settings

Model Params Layers n w
Llama-3 3B 3B 28 7 7
Llama-3 8B 8B 32 8 8
CodeLlama-13B 13 B 40 10 10

Table 3: Model specifications and hyperparameters used
in our experiments.

Hyperparameters The hyperparameters used in
our experiments are listed in Table 3. We set n to be
one-quarter of the total number of layers and define
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Model & Dataset GPUs Baseline (h)  Fractal (h) A

Llama-3 3B (GSM8K) 2x3090 1.5 1.1 -26.7%
Llama-3 3B (XSUM) 2x3090 2.5 1.3 -48.0%
Llama-3 3B (CNN/DM) 2x3090 3.5 2.1 -40.0%
Llama-3 8B (GSM8K) 2x3090 5.2 2.9 —44.2%
Llama-3 8B (XSUM) 2x3090 6.1 32 —47.5%
Llama-3 8B (CNN/DM) 2x3090 10.3 5.1 -50.5%
CodeLlama-13B (HumanEval)  3x3090 12.1 4.5 -62.8%

Table 4: Wall-clock inference time per dataset. A is the relative reduction of Fractal vs. baseline.

w = n. We set the gap between Fractal Layer
insertions as the total number of layers divided by
the number of insertions.

Generation proceeded via greedy decoding, and
no KV cache is utilized. Maximum output lengths
follow the task budgets in Appendix B: 128 tokens
(XSUM, CNN/DailyMail), 256 (GSM8K), and 512
(HumanEvwal).

Hardware and Software Environment. Exper-
iments were run on Ubuntu 22.04 with two RTX
3090 (24 GB) GPUs for the 3B/8B checkpoints
and three RTX 3090s for the 13B checkpoint.
Key libraries: Python 3.11, PyTorch 2.5 (+CUDA
12.1, cuDNN 8.9),Transformers 4.48, BitsAnd-
Bytes 0.45 (8-bit mode), Xformers 0.0.28.post3.
The enviroment settings are available in the artifact
repository.

Compute Budget. All experiments are inference-
only (training budget 0 GPU-h). Across all datasets
(Table 4) the baseline decoder consumes 94.5
GPU-h, whereas our Fractal decoder needs only
44.9 GPU-h (-53 %).

Code Availability. All inference scripts, log-
parsing utilities, and plotting recipes are publicly re-
leased at https://anonymous.4open.science/
r/FractalLLM-B445/.

External Resources and Licensing. All check-
points are distributed under the Meta Liama Non-
Commercial License; datasets are released under
CC-BY 4.0 or comparably permissive terms. We
use them strictly for non-commercial research and
do not redistribute derivatives.

E Use of AI Assistant

Translation work in this paper was assisted by an
Al tool. All generated output was subsequently
reviewed and revised by the authors to ensure ac-
curacy and clarity.
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