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ABSTRACT

Physics-Informed Neural Networks (PINNs) have proven to be important tools
for solving both forward and inverse problems of partial differential equations
(PDEs). However, PINNs face the retraining challenge in which neural networks
need to be retrained once the parameters, or boundary/initial conditions change.
To address this challenge, meta-learning PINNs train a meta-model across a range
of PDE configurations, and the PINN models for new PDE configurations are then
generated directly or fine-tuned from the meta-model. Meta-learning PINNs are
confronted with either the issue of generalizing to significantly new PDE configu-
rations or the time-consuming process of fine-tuning. By analyzing the mathemat-
ical structure of various PDEs, in this paper we establish the direct and mathemat-
ically sound connections between PDE solutions and boundary/initial conditions,
sources and parameters. The learnable functions in these connections are trained
offline in less than 1 hour in most cases. With these connections, the solutions
for new PDE configurations can be obtained directly and vice versa, without re-
training and fine-tuning at all. Our experimental results indicate that our methods
are comparable to vanilla PINNs in terms of accuracy in forward problems, yet
at least 400 times faster than them (even over 800 times faster for variable ini-
tial/source problems). In inverse problems, our methods are much more accurate
than vanilla PINNs while being 80 times faster. Compared with meta-learning
PINNs, our methods are much more accurate and about 20 times faster than fine-
tuning. Our inference time is less than half a second in forward problems, and
at most 3 seconds in inverse problems (less than half a second for variable ini-
tial/source problems of linear PDEs). Our code will be made publicly available
upon acceptance.

1 INTRODUCTION

PDEs are crucial mathematical tools used to describe various phenomena in fields such as physics,
chemistry, and biology. They provide precise descriptions of complex systems’ dynamic behaviors
and offer a theoretical foundation for system analysis, prediction, and control. In practice, PDEs are
often required to be solved repetitively in forward problems under different configurations of param-
eters, boundary/initial conditions or sources, and it is also often necessary to repetitively find the op-
timal values of them in inverse problems given different constraints on solutions. Such many query
type of applications includes optimal design/control, data assimilation and uncertainty quantifica-
tion. Obtaining the results rapidly in each query is important for these applications. For example, it
is crucial in interactive design to immediately see the PDEs solutions or optimal configurations once
users change their design options.

Traditional numerical methods to solve PDEs, including finite difference and finite element methods,
face inefficiencies when dealing with high-dimensional, large-scale and inverse problems. Physics-
Informed Neural Networks (Raissi et al. (2019)), which utilize deep learning to solve PDEs, have
gained significant attention in recent years. PINNs approximate the solutions with the predictions of
neural networks, which are trained by embedding the PDE equations and boundary/initial conditions
into the loss function. However, this leads to one of the fundamental limitations of PINNs: they need
to be retrained when the parameters or boundary/initial conditions change, which is time-consuming
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and limits their applications in many query scenarios. Current approaches to solve this retraining
problem of PINNs are based on meta-learning (see section 2), in which a meta-model is trained
across a range of PDE configurations and the PINNs for new PDE configurations are generated
directly or fine-tuned from this meta-model. The accuracy of meta-learning PINNs is not satisfactory
yet, and the fine-tuning still consumes some time and does not meet the real-time requirement.

In this paper, through in-depth investigating the mathematical structure of various PDEs, we pro-
pose mathematically sound methods to the many query problem of PINNs by establishing the direct
analytic connections between PDE solutions and boundary/initial conditions, sources and param-
eters. The unknown parameters in these connections are learned through offline training. With
these connections, the solutions for new PDE configurations can be obtained directly and vice versa,
without retraining and fine-tuning at all, making the real-time inference in both forward and inverse
problems practical. In contrast, vanilla and meta-learning PINNs are general but agnostic to the
mathematical structure of PDEs and thus did not fully leverage the potential of PINNs. They either
need time-consuming retraining or fine-tuning, or face the issue of generalizing to significantly dif-
ferent configurations. Also, inverse problems are largely neglected by current meta-learning PINNs
researches.

We first consider linear PDEs with variable boundary/initial conditions or sources. For linear PDEs,
a solution can be expressed as a linear combination of basis solutions. We train multiple PINNs
offline to solve PDEs under various sine and cosine bases, thereby obtaining basis solutions. The
solution corresponding to an arbitrary boundary/initial/source g(x) is then obtained by the linear
combination of such basis solutions using discrete Fourier transformation (DFT) of g(x). This basis
solution method is accurate and fast since no fine-tuning is required.

For PDEs with variable parameters, we directly model the solutions as polynomials of PDE pa-
rameters with learnable coefficient functions. We derive the differential equations for coefficient
functions and train them offline with theoretical guarantees. With this polynomial model, the solu-
tions to PDEs with new parameters can be obtained immediately and no fine-tuning is needed. We
also use this polynomial model to establish the connections between solutions and variable initial
conditions for nonlinear PDEs. Finally, a simpler scaling method is proposed for some PDEs which
directly scales the solution of a canonical PINN to obtain the solutions for new parameter values.

2 RELATED WORK

Physics-Informed Neural Networks. PINNs have been successfully applied to a wide range of
scientific problems, such as fluid dynamics (Rao et al. (2020); Zhu et al. (2021)), medical imaging
(Sahli Costabal et al. (2020); van Herten et al. (2022)) and climate modeling (Lütjens et al. (2021)).
Many works have been devoted to the training of PINNs, such as loss reweighting (Wang et al.
(2021a; 2022); Yao et al. (2023); Hao et al. (2023)), resampling (Nabian et al. (2021); Zapf et al.
(2022); Hanna et al. (2022); Zeng et al. (2022); Peng et al. (2022); Tang et al. (2023); Gao & Wang
(2023); Lu et al. (2021); Daw et al. (2022); Lau et al. (2024)), and ill-conditioning of differential
operators (Krishnapriyan et al. (2021); De Ryck et al. (2023); Rohrhofer et al. (2022); Liu et al.
(2024); Rathore et al. (2024)).

Wang & Wang (2021) propose architectures that use Fourier features (Tancik et al. (2020); Ng et al.
(2024)) to effectively mitigate the spectral bias of PINNs, which is not our focus in this paper.

Many Query Problem and Meta-Learning PINNs. The reduced basis method (RBM) (Haasdonk
(2016)) is a popular numerical method for efficiently simulating parametric PDEs. It includes an
offline training stage and an online stage. The offline stage selects a number of representative pa-
rameter values via a greedy algorithm and then in the online stage a rapid reduced solution is sought
for each unseen parameter value. In inverse problems, numerical methods (Hasanoğlu & Romanov
(2021); Isakov (2017)) usually search the unknown parameters of PDEs in an iterative manner and
require to solve forward problems in each iteration, leading to high computational cost.

The conditioned PINNs method (Moseley & Markham (2020)) takes PDE parameters or boundary
conditions as additional network input and trains over many different PDE configurations, allowing
it to generalize without needing to be retrained. Recently, there has been increasing interest in us-
ing meta-learning to solve parametric PDEs. Representative methods include HyperPINN (de Avila
Belbute-Peres et al. (2021)), MAD-PINN (Huang et al. (2022)), NRPINN (Liu et al. (2022)), Meta-
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MgNet (Chen et al. (2022)) and Hyper-LR-PINNs (Cho et al. (2023)). The implementation strate-
gies of these methods can be divided into two main types: the first type (Chen et al. (2022); de Avila
Belbute-Peres et al. (2021)) involves training a meta-network to map from PDE configurations to
the parameters of the main PINN network, which generally does not require fine-tuning but of-
ten necessitates multiple networks. The second type (Huang et al. (2022); Liu et al. (2022)) in-
volves learning an effective initialization of network parameters using multiple tasks and requires
fine-tuning when the PDE configuration changes, leading to higher time cost. Additionally, since
meta-learning involves multi-task training, the difficulty of different tasks can affect training results.
Consequently, Toloubidokhti et al. (2024) proposes the difficulty-aware task sampler (DATS), and
GPT-PINN (Chen & Koohy (2024)) employs the reduced basis method for task selection. P2 INNs
(Cho et al. (2024)) resolve the retraining issue by modeling the solutions of parameterized PDEs via
explicitly encoding a latent representation of PDE parameters.

The main differences between our methods and the above ones lie in that our methods neither require
a large number of training tasks nor fine-tuning, and can solve inverse problems efficiently due to
the explicitly established analytic connections between solutions and conditions/parameters.

Operator Learning. Operator learning is another approach to solve parametric PDEs. Representa-
tive methods include DeepONet (Lu et al. (2019)) and FNO (Li et al. (2020)), which rely on supervi-
sion from explicit solutions of different configurations to train neural networks. In comparison, our
methods are unsupervised and incorporate prior knowledge of physics laws. The physics-informed
DeepONet (PI-DeepONet) method (Wang et al. (2021b)) integrates physical laws into the operator
learning framework to reduce the data collection burden.

3 PRELIMINARIES

Physics-Informed Neural Networks. The general form of a PDE is as follows:

F (u(x, t), µ) = f, x ∈ Ω, t ∈ [0, T ]

B(u(x, t)) = h, x ∈ ∂Ω, t ∈ [0, T ]; I(u(x, 0)) = g, x ∈ Ω
(1)

where F is a differential operator, B is an operator associated with the boundary condition and
operator I is for initial condition. Ω is the spatial domain and ∂Ω is its boundary, [0, T ] is the
time domain. The functions f , g, and h represent source, initial and boundary values, respectively.
µ denotes the parameter of PDE. The goal of forward problems is to obtain the solution u(x, t)
of equation 1, while the goal of inverse problems is to find the values of µ, f , g, and h given
the observed data u(xi, tj) at some points {xi, tj}. In practice, PDEs are often required to be
solved repetitively under different configurations of µ, f , g, or h, and the optimal values of them are
required to be found repetitively with different observed data u(xi, tj).

PINNs approximate the solution u(x, t) of PDEs with the prediction u(x, t; θ) of neural networks.
By sampling Nr collocation points from the interior domain Cr := Ω × (0, T ), Nb points on the
boundary Cb := ∂Ω × [0, T ] and Nb points at the beginning Ci := Ω, PINNs are trained with the
following loss function to enforce the PDE constraint and boundary and initial conditions,

Lt(θ) = λrLr(θ) + λbLb(θ) + λiLi(θ), (2)

where Lr(θ) = 1
Nr

∑
(x,t)∈Cr

∥F (u(x, t), µ)− f∥22 is the residual loss for PDEs,

Lb(θ) = 1
Nb

∑
(x,t)∈Cb

∥B(u(x, t))− h∥22 is the loss for boundary conditions, and

Li(θ) = 1
Ni

∑
(x,t)∈Ci

∥I(u(x, 0))− g∥22 is the loss for initial conditions. λr, λb and λi are
non-negative weights assigned to different losses. When the parameters or boundary/initial/sources
change, PINNs require retraining, limiting their applications in real-time scenarios.

4 METHODOLOGY

In this section, we will establish the direct connections between PDE solutions and boundary/initial
conditions, sources or parameters. We will take the Convection, Heat, two-dimensional Poisson and
Reaction equations as examples. These equations and associated boundary/initial conditions and
parameter ranges are given in Table 5 in Appendix A.
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4.1 LINEAR PDES WITH VARIABLE BOUNDARY/INITIAL CONDITIONS OR SOURCES

For a linear PDE, if ui(x, t) is a solution, then u(x, t) =
∑

i aiui(x, t) is also its solution. Thus, we
can generate ui(x, t) using PINNs under some known basis boundary/initial/sources, and then lin-
early combine them to obtain the solution u(x, t) corresponding to a general boundary/initial/source
g, where the coefficient ai comes from the spectral decomposition of g.

4.1.1 THE BASIS SOLUTION METHOD FOR VARYING INITIAL/BOUNDARY CONDITIONS

As an example, consider the Convection equation ut + βux = 0 with variable initial value g(x)
and fixed boundary condition u(0, t) = u(2π, t) (or other conditions, not necessarily periodic).
We choose the Fourier transformation to perform spectral decomposition. The following lemma
indicates that discretized {g(x)}N−1

x=0 can be decomposed using a total of only N+2 sine and cosine
bases.
Lemma 1. A discretized arbitrary initial condition g(x) (x = 0, 1, 2 · · · , N−1) can be decomposed
as g(x) =

∑N/2
i=0 aicos(

2πix
N ) + bisin(

2πix
N ) using discrete Fourier transformation (DFT), where

real coefficients {ai, bi }
N
2
i=0 are determined by the DFT coefficients.

We can solve the linear PDEs to obtain N + 2 independent solutions
{
ucos
i (x, t), usin

i (x, t)
}N

2

i=0
,

respectively, using initial conditions
{
ucos
i (x, 0) = cos( 2πixN ), usin

i (x, 0) = sin( 2πixN )
}N

2

i=0
and

boundary conditions
{
ucos
i (0, t) = ucos

i (2π, t), usin
i (0, t) = usin

i (2π, t)
}N

2

i=0
. Then, the solution

under a general initial condition g(x) is given as follows

u(x, t) =

N/2∑
i=0

aiu
cos
i (x, t) + biu

sin
i (x, t). (3)

The following lemma shows that such u(x, t) is the desired solution.
Lemma 2. u(x, t) in equation 3 is the solution of linear PDEs with variable initial condition
u(x, 0) = g(x) and the specified boundary condition.

The proof of Lemma 1 and the value of {ai, bi }
N
2
i=0 are given in Appendix E, and the proof of

Lemma 2 is given in Appendix F.

Implementation. Based on Lemmas 1 and 2, we train N + 2 independent PINNs{
ûcos
i (x, t), ûsin

i (x, t)
}N

2

u=0
offline to approximate the basis solutions

{
ucos
i (x, t), usin

i (x, t)
}

, re-
spectively, with the corresponding initial conditions and boundary conditions. The final solution
of linear PDEs under a new initial condition g(x) is given by û(x, t) =

∑N/2
i=0 aiû

cos
i (x, t) +

biû
sin
i (x, t), which can be obtained rapidly using fast Fourier transformation (FFT). A few low fre-

quency basis solutions are enough to recover û(x, t) accurately, thereby the offline training burden
can be greatly reduced.

Inverse Problems. Given observed data {ũ(xi, tj)}, the task in inverse problems is to find the

optimal coefficients {ai, bi }
N
2
i=0 as follows,

{a⋆
k, b

⋆
k} = argmin{ak,bk}

∑
i,j

(

N/2∑
k=0

akû
cos
k (xi, tj) + bkû

sin
k (xi, tj)− ũ(xi, tj))

2. (4)

This is a quadratic objective and can be solved accurately and rapidly using the least square method.

4.1.2 THE BASIS SOLUTION METHOD FOR VARYING SOURCES

We use basis solution method to solve the two-dimensional Poisson equation ∆u(x, y) = f(x, y)
with variable source f(x, y). We train basis solutions offline associated with Fourier basis sources,
and then linearly combine basis solutions to obtain the solution corresponding to an arbitrary new
source. The detail is given in Appendix B.
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4.1.3 GENERALITY OF THE BASIS SOLUTION METHOD

Despite we take the Convection and Poisson equations with simple rectangular 2D domains and
possible periodic boundary conditions as concrete examples to describe our method, our basis so-
lution method works for general domain geometry, other types of boundary condition and high-
dimensional problems. We explain this in the following.

For the boundary of a domain (possibly high-dimensional) with arbitrary geometry, the bound-
ary values at every boundary point can be concatenated into a array s(i) = g(xi), xi ∈
Rd and xi ∈ ∂Ω, i = 0, 1, 2, · · · , N − 1, and then decomposed with one-dimensional FFT as
s(i) =

∑N/2
k=0 akcos(

2πki
N ) + bksin(

2πki
N ) (see Lemma 1). The one-dimensional bases cos( 2πkiN )

and sin( 2πkiN ) can be inverse mapped into boundary points using gcosk (xi) := cos( 2πkiN ) and
gsink (xi) := sin( 2πkiN ), i = 0, 1, 2, · · · , N − 1, respectively, and serve as boundary conditions
for the high-dimensional and general domains. Basis solutions ucos

k (x, t) and usin
k (x, t) are then

obtained by training PINNs with boundary conditions gcosk (x) and gsink (x), respectively, for several
low frequencies k. Given an arbitrary boundary condition g(x), the corresponding solution is then
obtained by the linear combination of basis solutions as u(x, t) =

∑N/2
i=0 aiu

cos
i (x, t)+biu

sin
i (x, t).

Such u(x, t) satisfies the linear equations under consideration, and by u(x, t) =
∑N/2

i=0 aig
cos
i (x) +

big
cos
i (x) = g(x), x ∈ ∂Ω, it also satisfies the Dirichlet type of boundary condition.

For the Neumann type of boundary conditions ∂u
∂n = g(x), x ∈ ∂Ω, we first convert g(xi), xi ∈ ∂Ω

into an array as above, and then train basis solutions ucos
k (x, t) and usin

k (x, t) with Neumann type

of boundary conditions: ∂ucos
k

∂n (xi, t) = cos( 2πkiN ) and ∂usin
k

∂n (xi, t) = sin( 2πkiN ), xi ∈ ∂Ω, respec-

tively. By ∂u
∂n (xi, t) =

∑N/2
i=0 ai

∂ucos
i

∂n (xi, t)+ bi
∂usin

i

∂n (xi, t) = g(xi), xi ∈ ∂Ω, the Neumann type
of boundary condition is satisfied.

4.2 PDES WITH VARIABLE PARAMETERS

4.2.1 THE POLYNOMIAL MODEL

In this section, we use polynomials to model the relationship between solutions and parameters.
This polynomial model is inspired by the finite difference computation of solutions. We take the
Convection equation as an example. The derivation for the Heat equation will be given in Appendix
I. In addition to solve PDEs with variable parameters, the polynomial model is also used for the
nonlinear Reaction equation with variable initial condition, as described in Appendix J.

The Model. We take the Convection equation ut + βux = 0 as an example to describe the
derivation of our polynomial model. By finite difference discretization, using ui

j to denote the
approximated solution at point (xj , ti), we have ui+1

j = (1 − λβ)ui
j + λβui

j−1, where λ = τ
h ,

τ and h are time step size and spatial step size, respectively. Using this expression recursively
and denoting γ = λβ, we then have ui+2

j = ui
j(1 − 2γ + γ2) + ui

j−1(2γ − 2γ2) + ui
j−2γ

2

= ui
j +γ(−2ui

j +2ui
j−1)+γ2(ui

j − 2ui
j−1+ui

j−2), which is a polynomial of γ. By this argument,
one can infer that the solution u(x, t) at any point (x, t) is a polynomial of γ, with the coefficients
being specific to (x, t) and determined by the initial value u(x, 0). For a given initial condition,
we can write the polynomial expression of u(x, t) as u(x, t) =

∑Np

j=0 wj(x, t)γ
j , where the jth

coefficient wj(x, t) is a function of space and time, Np is maximal power of γ. In finite difference
method, γ < 1 is required to ensure stability, therefore for β ∈ (0, P ), we can write the polynomial
as

u(x, t) =

Np∑
j=0

wj(x, t)(β/P )j . (5)

The remaining task is how to learn coefficient functions wj(x, t). They should make the Convection
equation ut + βux = 0 satisfied. Therefore,

Np∑
j=0

∂twj(x, t)(β/P )j + β

Np∑
j=0

∂xwj(x, t)(β/P )j = 0, (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

which leads to
Np∑
j=0

∂twj(x, t)(β/P )j + P

Np+1∑
j=1

∂xwj−1(x, t)(β/P )j = 0, (7)

Np∑
j=1

[∂twj(x, t) + P∂xwj−1(x, t)](β/P )j + ∂tw0(x, t)(β/P )0 + P∂xwNp(x, t)(β/P )Np+1 = 0, (8)

Since β can have arbitrary value, we have{
∂twj(x, t) + P∂xwj−1(x, t) = 0, j = 1, 2, · · · , Np

∂tw0(x, t) = 0,
(9)

∂xwNp(x, t) = 0. (10)
We now consider the initial condition and boundary condition. The initial condition u(x, 0)) = g(x)

yields
∑Np

j=0 wj(x, 0)(β/P )j = g(x). Again by the fact that β can be arbitrary, we have{
wj(x, 0) = 0, j = 1, 2, · · · , Np

w0(x, 0) = g(x).
(11)

For the periodic boundary condition u(0, t) = u(L, t), we have
∑Np

j=0 wj(0, t)(β/P )j =∑Np

j=0 wj(L, t)(β/P )j , hence
wj(0, t) = wj(L, t), j = 0, 1, · · · , Np. (12)

Alternatively, if boundary condition u(x, t) = h(x), x ∈ ∂Ω (assume g(x) = h(x), x ∈ ∂Ω)
is used, by

∑Np

j=0 wj(x, t)(β/P )j = h(x), x ∈ ∂Ω, we will have wj(x, t) = 0, j =

1, 2, · · · , Np, and w0(x, t) = h(x), x ∈ ∂Ω.

Theoretical Analysis. Do equations 9,10,11 and 12 have exact solutions? How accurate is the
polynomial model in equation 5? We have the following theorem to answer these theoretical ques-
tions and establish the upper bound of loss for our polynomial model, whose proof is given in
Appendix H.
Theorem 1. For the Convection equation ut + βux = 0, x ∈ [0, L], t ∈ [0, 1] with ini-
tial condition u(x, 0) = g(x) and periodic boundary condition u(0, t) = u(L, t) (or gener-
ally, u(x, t) = h(x), x ∈ ∂Ω), suppose g(x) is differentiable up to the (Np + 1)-th order
and satisfies the periodic conditions g(0) = g(L) and ∂ng

∂xn (0) = ∂ng
∂xn (L), n = 1, 2, · · · , Np

(or generally, h(x) = g(x) and ∂nh
∂xn (x) = 0, n = 1, 2, · · · , Np, x ∈ ∂Ω). If we solve

wj(x, t) (j = 0, 1, 2, · · · , Np) using equations 9, 11, 12 and neglecting equation 10, then
wj(x, t) (j = 1, 2, · · · , Np) can be solved exactly, and the total loss Lt = λrLr + λbLb + λiLi is

at most λr(maxx
∂Np+1g(x)

∂xNp+1 )2(P
Np+1

Np!
( β
P )Np+1)2.

Implementation. We use neural networks to approximate the coefficient functions wj(x, t) (j =
0, 1, · · · , Np). They are offline trained using losses corresponding to equations 9,11 and 12, like in
PINNs. From the loss bound given in Theorem 1, we can see that in order to control the loss, since
β
P < 1 and the term PNp

Np!
decreases with Np when Np > P , we can increase Np to decrease the

total loss. Solutions close to true counterparts will be resulted form this low loss.

In our implementation, when varying the parameter β with fixed initial condition g(x) = sinx

(hence (maxx∈[0,2π]
∂Np+1g(x)

∂xNp+1 )2 = 1) and λr = 1, setting Np = 29 is enough to achieve PNp+1

Np!
<

1 and consequently low error for β ∈ (0, 10]. For analytic initial conditions, we can directly use the
theoretical solutions of wj(x, t) (j = 0, 1, · · · , Np) (given in equations 31, 32 and 33 in Appendix
H). If such theoretical analysis on the loss bound and the number of polynomials is unavailable for
other equations, one can rely on experiments to set Np.

Inverse Problems. Given observed data {ũ(xi, tj)}, the goal of inverse problems in the polyno-
mial model is to search the optimal parameter β based on equation 5,

β⋆ = argminβ

∑
i,j

(

Np∑
k=0

wk(xi, tj)(β/P )k − ũ(xi, tj))
2. (13)

In our implementation, we use gradient descent optimization in PyTorch to search β⋆.

6
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Generality of the Polynomial Model. Our polynomial model u(x, t) =

Np∑
j=0

wj(x, t)(β/P )j

works for complex domains, high-dimensional problems and other types of boundary condition
(Dirichlet, Neumann). The optimization of wj(x, t) is similar to that of u(x, t) in vanilla PINNs,
using residual loss and boundary/initial condition loss for wj(x, t). Therefore, like vanilla PINNs,
the polynomial model works for complex domains and high-dimensionality by sampling collocation
points. Our polynomial model also works for both Dirichlet and Neumann boundary conditions by
optimizing wj(x, t) with one of them.

Nonlinear Equations. Our polynomial model can be extended to nonlinear equations. Take the
Burgers’ equation ut+uux−νuxx = 0 as an example. Inspired by its finite difference discretization
un+1
j = −un

j (1+
2τν
h2 )− τ

hu
n
j u

n
j +

τ
hu

n
j u

n
j+1− τ

h2 ν(u
n
j+1−un

j−1), we use the polynomial expression

u(x, t) =
∑Np

i=0 wi(x, t)ν
ϕi(x,t) to model the varying parameter problem. We train wi(x, t) and

ϕi(x, t) in this model in a multi-task manner using multiple values of ν with corresponding residual
loss and initial/boundary condition loss for u(x, t).

We can use polynomial expression u(x, t) =
∑Np

i=0 wi(x, t)
∏

j (u
0
j )

ϕij(x,t) to model the varying
initial condition problem. The training of it and the Navier-Stokes equation are leaved to our future
work.

4.2.2 THE SCALING METHOD

For the Convection, Heat and Reaction equations, we can see that the derivative ut is proportional
to the parameter. The scaling method is designed to deal with such equations, which is simpler
and easier to implement than the polynomial model. The details of the scaling method are given in
Appendix K.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Settings in Our Methods. In this section, we experimentally verify the performance of our
methods. The PDEs used in our experiments and their configurations of parameters and bound-
ary/initial/sources are given in Table 5 in Appendix A. In our basis solution method, we set
M,N = 512. The Convection and Heat equations are trained offline using 10 low frequency sine
and cosine bases corresponding to i = 0, 1, . . . , 9 in equation 3, and the Poisson equation is trained
offline with 100 low frequency bases corresponding to i, j = 0, 1, . . . , 9 in equation 15. In our
polynomial model, the maximal power Np is set to 29 for the Convection and Heat equations and
6 for the Reaction equation, based on our theoretical analysis in Theorem 1 and Theorem 2. Np is
empirically set to 40 for the Burgers’ equation.

Methods Compared. We compare our methods with DATS (including DATS+HyperPINN
and DATS+MAD-PINN) (Toloubidokhti et al. (2024)), GPT-PINN (Chen & Koohy (2024))
and vanilla PINNs using L2 relative error, training and inference times as evaluation metrics.
DATS+HyperPINN and GPT-PINN are only applicable to PDEs with variable parameters, and
DATS+MAD-PINN is applicable to PDEs with both variable parameters and variable boundary
conditions. The settings of DATS and GPT-PINN are consistent with the original papers. We also
compare with PI-DeepONet (Wang et al. (2021b)) and P2INNs (Cho et al. (2024)).

Our basis solution method uses bases cos( 2πixN ) and sin( 2πixN ), i = 0, 1, · · · , 9 as initial conditions
to train the model, therefore we use the same 20 initial conditions to train PI-DeepONet. However,
PI-DeepONet requires a large number of training samples to generalize (at least 1,000 training sam-
ples of initial conditions in (Wang et al. 2021)). During testing, we use testing initial conditions
(see table 6 and table 7 in Appendix D.1) that are apparently different from those used in training.
Therefore, PI-DeepONet obtained a higher relative error.

Training and Testing Tasks. For DATS+HyperPINN and DATS+MAD-PINN, we manually spec-
ify 5 parameters in (0,10] as training tasks for the Convection and Heat equations, and 4 parameters

7
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in (0,5] for the Reaction equation. For GPT-PINN, we only specify the same parameter ranges, and
parameters used for training are selected adaptively by algorithm. For PDEs with variable bound-
ary/initial conditions, we select a set of specific boundary/initial conditions for each equation (6
configurations for the Convection, Heat and Poisson equations, and 4 configurations for the Reac-
tion equation). See Tables 6-12 in Appendix D for the specific configurations selected. More on
training and testing tasks, and network and optimization details are given in Appendix C.

5.2 RESULTS

Variable Boundary/Initial/Source Problems. We report the L2 errors of compared methods in
Table 1, and offline training and online inference costs in Table 2. The reported mean errors and
standard deviations are computed from the error for each instance configuration given in Tables
6-9, respectively, for each equation. For DATS+MAD-PINN, we report the training errors as in
(Toloubidokhti et al. (2024)). In contrast, our methods directly generalize to arbitrary new boundary
conditions without fine-tuning. It can be seen from Table 1 that the errors of our methods are close
to 1% for most equations and comparable to those of vanilla PINNs in forward problems, while
DATS+MAD-PINN has large errors for the considered equations due to the difficulty of simulta-
neous training of multiple distinct tasks. Table 2 shows that our inference time is less than half a
second, on average over 800 times faster than vanilla PINNs which require retraining. Our basis
solution method significantly outperforms PI-DeepOnet when training with the same set of sine and
cosine initial conditions. This is due to the fact that our basis solution method accurately reconstructs
arbitrary boundary/initial conditions using only a limited number of low frequency Fourier bases,
while PI-DeepOnet requires large number of diverse training samples of boundary/initial conditions
to generalize. Our method is also faster than PI-DeepONet in both training and inference.

Tables 1 and 2 also report the performance of our methods and vanilla PINNs on inverse problems.
Our method is better than vanilla PINNs in terms of L2 error. Vanilla PINN has a large error for
the Poisson equation. This is due to the fact that the unknown sources at all internal collocation
points need to be recovered in vanilla PINNs. In contrast, our basis solution method only needs to
optimize a few coefficients associated with low frequency bases. In terms of inference time, our
basis solution method usually can solve the inverse problems within half a second, on average over
1100 times faster than vanilla PINNs.

Figures 1 and 2 (and figure 6 in Appendix D.3) visualize the results of compared methods, which
clearly demonstrate that our method produces satisfactory solutions and is more accurate than other
methods. For the testing initial condition u(x, 0) = sin(3x+ π

3 ) (x ∈ [0, 2π]) that has a phase shift
compared with training initial conditions, the slices at t=0 and t=1 in figures 1 and 6 demonstrate
that our method achieves accurate solutions (almost overlapping with the exact solutions), while the
unsuccessful generalization of other methods is exhibited by the obvious shift of their solutions with
respect to the exact ones.

Variable Parameter Problems. The mean L2 errors for variable parameter problems are reported
in Table 3, and offline training and online inference costs are reported in Table 4. The errors for
all instance parameters are given in Tables 10-12 in Appendix D, respectively, for each equation.
It can be seen from Table 3 that our polynomial and scaling methods achieve low errors that are
comparable to or less than those of vanilla PINNs. The errors of DATS and GPT-PINN are much
higher than ours, especially when the parameters are large as shown in Tables 10 and 12. In contrast,
our polynomial and scaling methods perform consistently well for different values of parameters,
showing the generalization superiority of our methods. For inverse problems, the errors of our meth-
ods are much lower than those of vanilla PINNs, due to the fact that only hundreds of sampled data
points are used. The visualization in Figs.3 and 4 again shows that our methods produce much more
accurate solutions than meta-learning PINNs. We then further test the extrapolation performance of
the polynomial method for parameter values up to 20. We set P = 20 and Np = 60 which is big
enough to make PNp+1

Np!
< 1, and compute the solutions using equation 5 for β = 1, 2, 3, · · · , 19 and

obtain the relative errors. The results for the Convection and Heat equations are given in table 3. It is
shown that our polynomial method achieves much lower errors than vanilla PINNs which encounter
optimization difficulties for large parameter values (Krishnapriyan et al. (2021)). We also compare
with P2INNs (Cho et al. (2024)), and find that our method achieves lower errors, attributing to the
explicit analytic connection between solutions and parameters in our model.
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Figure 1: Prediction results of different methods for variable initial condition problem of Heat equa-
tion when u(x, 0) = sin(3x+ π

3 ).

Figure 2: Prediction results of different methods for variable source problem of Poisson equation
when f(x, y) = −10 sin(x+ π

3 ) cos(3x+ π
3 ).

Table 4 shows that the inference time of our methods is less than half a second, on average about 20
times faster than the fine-tuning in GPT-PINN, and over 400 times faster than vanilla PINNs. For
inverse problems, our methods are over 80 times faster than vanilla PINNs which need retraining.

For the Burgers’ equation with varying parameter, the results in table 3 and table 4 show that our
polynomial model has achieved lower error in inverse problems and is much faster than vanilla
PINN in inference (170 times faster in forward and 55 times faster in inverse), with a slightly higher
error than it in foreword problems. Figure 5 visualizes the high quality prediction of our polynomial
model for the Burgers’ equation.

More visualizations on predictions, learned basis solutions, learned coefficient functions, canonical
ans scaled solutions are provided in Appendices D.3 to D.6, respectively. Ablation studies are
included in Appendix D.2 to explore the effect of the number of reserved Fourier bases and using a
single network to train all basis solutions.

Table 1: The relative L2 error of each method when changing the boundary/initial/source conditions.

PDEs
Forward Inverse

Basis (Ours) DATS+MAD PI-DeepONet vanilla PINN Basis (Ours) vanilla PINN

Convection 0.014±0.006 0.098±0.052 0.534±0.053 0.015±0.006 0.014±0.006 0.015±0.008
Heat 0.012±0.006 0.098±0.023 0.434±0.022 0.003±0.003 0.014±0.003 0.025±0.016

Poisson 0.025±0.004 0.599±0.233 - 0.003±0.002 0.018±0.003 0.313±0.034
Reaction 0.009±0.001 0.588±0.394 - 0.024±0.014 0.001±9e-04 0.002±0.001

Table 2: Time cost of each method when changing the boundary/initial/source conditions.

PDEs

Forward Inverse

Offline Training Time (h) Inference Time (s) Inference Time (s)

Basis (Ours) DATS+MAD PI-DeepONet Basis (Ours) PI-DeepONet vanilla PINN (retraining time) Basis (Ours) vanilla PINN

Convection 0.45 0.66 0.56 0.14 0.98 115 0.18 118
Heat 0.65 0.83 0.71 0.10 0.95 160 0.05 166

Poisson 5.5 5.78 - 0.40 - 215 0.41 193
Reaction 0.16 0.45 - 0.32 - 190 2.97 170

6 CONCLUSION AND FUTURE WORK

By establishing the analytic connections between PDE solutions and boundary/initial conditions,
sources or parameters, we propose methods in this work to solve the retraining problem of PINNs in
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which neural networks need to be retrained once the PDE configurations change. The basis solution
method applies to linear PDEs with variable boundary/initial conditions or sources, the polynomial
model mainly applies to linear or nonlinear PDEs with variable parameters. Our methods are very
fast as well as accurate, making the applications of PINNs to interactive engineering design possible.

A limitation of our methods is that we have considered general but fixed boundary shapes, and
solving PDEs with varying geometry in real-time is one of our future work. We also want to explore
the problem of varying boundary/initial conditions and parameters simultaneously. Finally, we will
investigate more nonlinear PDEs in our future work.

Figure 3: Prediction results of different methods for variable parameter problem of Convection
equation when β = 9.

Figure 4: Prediction results of different methods for variable parameter problem of Reaction equa-
tion when ρ = 4.8.

Figure 5: Prediction results of different methods for the Burgers’ equation (ν = 0.01).

Table 3: The relative L2 error of each method when changing the parameters.

PDE
Forward Inverse

Ours DATS+Hyper DATS+MAD GPT-PINN vanilla PINN P2INN Ours vanilla PINN

Convection (Polynomial) 0.014±4e-04
0.108±0.071 0.181±0.193 0.128±0.214 0.013±5e-04 0.007±0.005 0.489±0.470

Convection (Scaling) 0.014±7e-06

Heat (Polynomial) 2e-04±4e-04
0.018±0.004 0.020±0.003 0.190±0.186 0.014±0.014

0.041±0.088
0.112±0.139

Heat (Scaling) 0.002±4e-04 2e-04±3e-04
Reaction 0.005±0.006 0.011±0.009 0.095±0.102 0.056±0.089 0.028±0.038 0.002±0.001 0.013±0.008

Burgers (Polynomial) 0.027±0.024 0.011±0.005 0.031± 0.047 0.042±0.077

Convection (Polynomial), β ∈ (0, 20) 0.021±0.028 0.1978 0.0464
Heat (Polynomial), α ∈ (0, 20) 0.067±0.179 1.2825 0.3745

Table 4: Time cost of each method when changing the parameters.

PDEs

Forward Inverse

Offline Training Time (h) Inference Time (s) Inference Time (s)

Ours DATS+Hyper DATS+MAD GPT-PINN Ours GPT-PINN vanilla PINN (retraining time) Ours vanilla PINN

Convection (Polynomial) 0.21(s)
0.78 0.50 0.27

0.42
7.2 156

2.99
165

Convection (Scaling) 0.13 0.39 3.12

Heat (Polynomial) 0.17(s)
0.74 0.67 0.42

0.41
6 164

3.01
178

Heat (Scaling) 0.04 0.43 3.10

Reaction (Scaling) 0.05 0.86 0.41 0.12 0.40 8.61 170 1.30 175

Burgers (Polynomial) 7.30 1.41 242 3.00 165
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A EXEMPLAR PDES AND THEIR CONFIGURATIONS

Table 5: The configurations considered for each PDE benchmark.

PDEs Formulations Boundary/Initial/Source Configurations

Convection ∂u
∂t + β ∂u

∂x = 0
x ∈ [0, 2π], t ∈ [0, 1]

u(x, 0) = sin(ax+ b)
u(0, t) = u(2π, t)

a ∈ (0, 3], b ∈ [0, π]
β ∈ (0, 20]

Heat ∂u
∂t = α∂2u

∂x2

x ∈ [0, 2π], t ∈ [0, 1]
u(x, 0) = sin(ax+ b)

u(0, t) = u(0, 0) u(2π, t) = u(2π, 0)
or u(0, t) = u(2π, t)

a ∈ (0, 3], b ∈ [0, π]
α ∈ (0, 20]

Poisson ∆u(x, y) = f(x, y)
x, y ∈ [−π, π]

f(x, y) =
−(a21 + b21)sin(a1x+ a2)cos(b1y + b2)

u(x, y)|∂Ω = sin(a1x+ a2)cos(b1y + b2)|∂Ω

a1, b1 ∈ (0, 3]
a2, b2 ∈ [0, π]

Reaction ∂u
∂t − ρu(1− u) = 0
x ∈ [0, 2π], t ∈ [0, 1]

u(x, 0) = αh(x)
αh(x)+1−0.5∗h(x)

or u(x, 0) = h(x)

h(x) = exp(− (x−π)2

2(π/4)2 )

u(0, t) = u(2π, t)

ρ ∈ (0, 5]
α ∈ (0, 3]

Burgers ∂u
∂t + u∂u

∂x − ν ∂2u
∂x2 = 0

x ∈ [−1, 1], t ∈ [0, 1]
u(x, 0) = −sin(πx)
u(−1, t) = u(1, t) = 0

ν ∈ [0.01, 0.2]

B THE BASIS SOLUTION METHOD FOR VARYING SOURCES: THE DETAILS

Given an arbitrary discretized source f(x, y) (x = 0, 1, · · · ,M − 1; y = 0, 1, · · · , N − 1) and
supposing M and N are even, we have the following decomposition of f(x, y).
Lemma 3. f(x, y) can be decomposed as

f(x, y) =

M/2∑
u=0

N/2∑
v=0

[A(u, v)cos2π(
ux

M
)cos2π(

vy

N
) +B(u, v)sin2π(

ux

M
)sin2π(

vy

N
)

+ C(u, v)cos2π(
ux

M
)sin2π(

vy

N
) +D(u, v)sin2π(

ux

M
)cos2π(

vy

N
)],

(14)

where the four matrices A,B,C and D come from the two-dimensional DFT of f(x, y).

The proof of Lemma 3 is presented in Appendix G. We train 4(M2 +1)(N2 +1) PINNs offline to obtain
solutions

{
ûcc
ij (x, y), û

ss
ij (x, y), û

cs
ij (x, y), û

sc
ij (x, y)

}
, respectively, for the Poisson equation with

sources cos2π( ixM )cos2π( jyN ), sin2π( ixM )sin2π( jyN ), cos2π( ixM )sin2π( jyN ), sin2π( ixM )cos2π( jyN )
and corresponding boundary conditions (can be defined on boundaries with arbitrary geometry).
The solution for a new source f(x, y) is then obtained by

û(x, y) =

M/2∑
i=0

N/2∑
j=0

A(i, j)ûcc
ij (x, y) +B(i, j)ûss

ij (x, y) + C(i, j)ûcs
ij (x, y) +D(i, j)ûsc

ij (x, y). (15)

The terms in equation 15 corresponding to high frequencies can be discarded without much accuracy
degradation for û(x, y).

C MORE ON EXPERIMENTAL SETTINGS

Training and Testing Tasks. DATS+HyperPINN and DATS+MAD-PINN need training tasks.
Since there is no fine-tuning in DATS+HyperPINN and there is no open source code for the fine-
tuning in DATS+MAD-PINN, we use all selected configurations as their training tasks and no
fine-tuning is used. Therefore, we only report training errors for these methods. In addition, we
empirically found that when the parameters are big, gradient vanishing sometimes happens in GPT-
PINN during fine-tuning. The errors before fine-tuning are thus reported for GPT-PINN. We use
the same set of initial conditions as for our basis solution method, i.e., cos( 2πixN ) and sin( 2πixN ),
i = 0, 1, · · · , 9, to train PI-DeepONet.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In our methods, for variable boundary/initial condition problems, we fix the parameters to β = 1
for the Convection equation, α = 0.2 for the Heat equation and ρ = 0.1 for the Reaction equation.
For variable parameter problems, the initial conditions are fixed to g(x) = sin(x) for Convec-
tion and Heat equations, and to h(x) = exp(− (x−π)2

2(π/4)2 ) for the Reaction equation. In our poly-
nomial model for the Convection and Heat equations, we directly use our theoretical solutions of
wj(x, t) (j = 0, 1, · · · , Np) (given in equations 31, 32 and 33 in Appendix H, and equation 43 in
Appendix I, respectively). The selected specific configurations in Tables 6-12 are almost all new to
our methods (except β = 1 for the Convection equation and α = 1 for the Heat equation, which are,
respectively, used in the offline training of canonical equations in the scaling method). Thus, the
errors reported for our methods are testing errors. For the Burgers’ equation, the parameter values
of ν used in training are 0.03, 0.05, 0.07, 0.09, 0.1, 0.12, 0.14, 0.16, respectively, and those used for
testing (given table 13 in Appendix D.1) are 0.01, 0.08, 0.15, 0.18, 0.20, respectively.

Network and Optimization. The network architecture in DATS and GPT-PINN are all kept the
same as original papers. Both our methods and vanilla PINNs are trained using fully connected
neural networks of size [2, 100, 100, 100, 100, 1]. A learning rate of 1e-3 is used with the ADAM
optimizer, and all methods are trained for 20,000 epochs except for GPT-PINN, whose training
epochs is kept as default. A Nvidia 3090 GPU is used for the training and inference of all compared
methods.

In variable boundary/initial condition problems, for the Convection, Heat and Poisson equations,
our basis solution method and vanilla PINNs both sample 10,000 internal points and 100 points on
each boundary. For the Reaction equation, we use 3600 internal points, 256 initial points, and 50
points on each boundary to learn wj(x, t). In our scaling method, we use 30,000 internal points for
the canonical Convection equation, and 10,000 internal points for the canonical Heat and Reaction
equations.

In inverse problems, 100 true values are randomly sampled for the Convection and Heat equations.
Due to the large number of bases for the two-dimensional Poisson equation, 1000 points are ran-
domly sampled. 512 points are sampled for the inverse problem of Reaction equation, and 250
points are sampled for the inverse problem of Burgers’ equation. DATS and GPT-PINN did not deal
with inverse problems. For vanilla PINNs, the same number of sampled data points as ours is used
in inverse problems, and the number of collocation points in inverse problems is identical to that in
forward problems. In contrast, our methods do not need collocation points at all in inverse problems.

L2 Error Metric for Inverse Problems. For variable parameter problems, we directly compute
the relative L2 errors between optimal parameters found and their ground truth. For variable bound-
ary/initial/source problems, the relative L2 errors reported in our experiments are computed between
the recovered boundary/initial/sources and their ground truth.

D MORE EXPERIMENTAL RESULTS

D.1 L2 ERRORS FOR EACH PDE UNDER DIFFERENT INITIAL CONDITIONS, SOURCES OR
PARAMETERS

Table 6: Relative L2 error for the Convection equation with variable initial condition.

Convection Forward Inverse

Initial Condition Basis (Ours) DATS+MAD PI-DeepONet vanilla PINN Basis (Ours) vanilla PINN

sin(x+ π
3 ) 0.007 0.042 0.523 0.008 0.007 0.008

sin(x+ 2π
3 ) 0.006 0.045 0.501 0.007 0.006 0.007

sin(2x+ π
3 ) 0.015 0.066 0.495 0.015 0.015 0.013

sin(2x+ 2π
3 ) 0.013 0.144 0.649 0.015 0.013 0.015

sin(3x+ π
3 ) 0.023 0.148 0.507 0.022 0.023 0.023

sin(3x+ 2π
3 ) 0.021 0.146 0.532 0.022 0.021 0.026
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Table 7: Relative L2 error for the Heat equations with variable initial condition.

Heat Forward Inverse

Initial Condition Basis (Ours) DATS+MAD PI-DeepONet vanilla PINN Basis (Ours) vanilla PINN

sin(x+ π
3 ) 0.007 0.093 0.405 0.0005 0.008 0.006

sin(x+ 2π
3 ) 0.005 0.086 0.453 0.0005 0.007 0.005

sin(2x+ π
3 ) 0.013 0.097 0.463 0.0016 0.015 0.024

sin(2x+ 2π
3 ) 0.012 0.067 0.447 0.0016 0.013 0.035

sin(3x+ π
3 ) 0.020 0.109 0.427 0.0026 0.021 0.041

sin(3x+ 2π
3 ) 0.019 0.135 0.410 0.0094 0.020 0.039

Table 8: Relative L2 error for the Poisson equation with variable source.

Poisson Forward Inverse

Source Basis (Ours) DATS+MAD vanilla PINN Basis (Ours) vanilla PINN

−10sin(x+ π
3 )cos(3x+ π

3 ) 0.025 0.476 0.002 0.020 0.341

−10sin(x+ 2π
3 )cos(3x+ 2π

3 ) 0.026 0.353 0.002 0.022 0.351

−8sin(2x+ π
3 )cos(2x+ π

3 ) 0.020 0.654 0.003 0.014 0.269

−8sin(2x+ 2π
3 )cos(2x+ 2π

3 ) 0.020 0.977 0.003 0.014 0.273

−10sin(3x+ π
3 )cos(x+ π

3 ) 0.031 0.726 0.002 0.021 0.323

−10sin(3x+ 2π
3 )cos(x+ 2π

3 ) 0.030 0.413 0.007 0.020 0.323

Table 9: Relative L2 error for the Reaction equation with variable initial condition.

Reaction Forward Inverse

Initial Condition Polynomial (Ours) DATS+MAD vanilla PINN Polynomial (Ours) vanilla PINN
0.1h(x)

0.1h(x)+1−0.5h(x) , h(x) = exp(− (x−π)2

2(π/4)2 ) 0.008 0.006 0.045 0.002 0.002

0.5h(x)
0.5h(x)+1−0.5h(x) , h(x) = exp(− (x−π)2

2(π/4)2 ) 0.009 0.696 0.012 7e-4 0.004

h(x)
h(x)+1−0.5h(x) , h(x) = exp(− (x−π)2

2(π/4)2 ) 0.009 0.789 0.020 5e-4 8e-4

3h(x)
3h(x)+1−0.5h(x) , h(x) = exp(− (x−π)2

2(π/4)2 ) 0.011 0.862 0.021 4e-4 6e-4

Table 10: Relative L2 error for the Convection equation with variable parameter.

Convection
Forward Inverse

Polynomial Scaling DATS+Hyper DATS+MAD GPT-PINN vanilla PINN Polynomial Scaling vanilla PINN

β = 1 0.013 0.013 0.031 0.049 0.033 0.013 0.015 0.01 0.004
β = 3 0.014 0.014 0.065 0.022 0.021 0.014 0.006 0.006 0.003
β = 5 0.014 0.014 0.077 0.067 0.003 0.014 0.003 0.003 0.58
β = 7 0.014 0.014 0.179 0.309 0.078 0.013 8e-04 0.002 1.02
β = 9 0.014 0.015 0.189 0.460 0.508 0.013 0.010 0.001 0.84

Table 11: Relative L2 error for the Heat equation with variable parameter.

Heat
Forward Inverse

Polynomial Scaling DATS+Hyper DATS+MAD GPT-PINN vanilla PINN Polynomial Scaling vanilla PINN

α = 1 1e-08 0.001 0.014 0.019 0.419 0.002 4e-04 8e-04 0.002
α = 3 1e-07 0.002 0.018 0.025 0.031 0.004 0.002 9e-05 0.007
α = 5 1e-06 0.002 0.019 0.016 0.013 0.004 0.004 1e-04 0.050
α = 7 1e-06 0.002 0.024 0.020 0.136 0.027 8e-04 3e-05 0.170
α = 9 0.001 0.002 0.015 0.020 0.353 0.032 0.199 9e-05 0.330
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Table 12: Relative L2 error for the Reaction equation with variable parameter.

Reaction
Forward Inverse

Scaling (Ours) DATS+Hyper DATS+MAD GPT-PINN vanilla PINN Scaling (Ours) vanilla PINN

ρ = 0.5 0.001 0.007 0.034 0.008 0.003 0.004 0.014
ρ = 0.8 0.001 0.004 0.015 0.004 0.010 0.003 0.004
ρ = 3.2 0.005 0.008 0.092 0.024 0.017 0.001 0.009
ρ = 4.8 0.014 0.025 0.240 0.189 0.085 0.002 0.023

Table 13: Relative L2 error for the Burgers’ equation with variable parameter.

Burgers
Forward Inverse

Polynomial vanilla PINN Polynomial vanilla PINN

ν = 0.01 0.0731 0.0114 0.1248 0.1953
ν = 0.08 0.0292 0.0148 0.0054 0.0051
ν = 0.15 0.0118 0.0056 0.0140 0.0035
ν = 0.18 0.0097 0.0187 0.0023 0.0041
ν = 0.2 0.0090 0.0069 0.0092 0.0032

D.2 ABLATION STUDY

D.2.1 THE EFFECT OF NUMBER OF BASES

For our basis solution method, the number of Fourier bases is set to 10 for the Convection and
Heat equations to use only lower frequency bases, since as is well-known in signal processing, the
boundary/initial values primarily consist of low frequency components. We tried with more Fourier
bases, including 15 and 20 bases, and the results are given in table 14, which shows that the testing
errors are almost the same for different number of bases. Therefore, ten bases suffice to achieve
accurate solutions.

Table 14: Relative L2 testing error for the Convection equation and Heat equation with different
number of bases.

Number of Bases
Convection Heat

10 15 20 10 15 20

sin(x+ π
3 ) 0.0072 0.0072 0.0072 0.0068 0.0068 0.0068

sin(x+ 2π
3 ) 0.0059 0.0059 0.0059 0.0053 0.0053 0.0053

sin(2x+ π
3 ) 0.0149 0.0149 0.0149 0.0138 0.0138 0.0136

sin(2x+ 2π
3 ) 0.0137 0.0138 0.0138 0.0125 0.0125 0.0125

sin(3x+ π
3 ) 0.0222 0.0222 0.0222 0.0206 0.0203 0.0201

sin(3x+ 2π
3 ) 0.0212 0.0214 0.0214 0.0186 0.0186 0.0185

D.2.2 USING A SINGLE NETWORK TO TRAIN ALL BASIS SOLUTIONS

We also train a single network to produce all basis solutions and compare with the results of training
an independent network for each basis solution. The results are given in table 15. Comparing it with
table 6, table 7 and table 2, one can see that training a single network yields slightly higher relative
errors with smaller parameter count and faster training.
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Table 15: Relative L2 testing error and time cost of using a single network to train all basis solutions.

PDEs Convection Heat

Relative L2 Error

sin(x+ π
3 ) 0.008 0.008

sin(x+ 2π
3 ) 0.008 0.006

sin(2x+ π
3 ) 0.016 0.017

sin(2x+ 2π
3 ) 0.015 0.014

sin(3x+ π
3 ) 0.023 0.023

sin(3x+ 2π
3 ) 0.022 0.022

Time Cost
training time (h) 0.21 0.37
inference time (s) 0.15 0.05

D.3 VISUALIZATION OF PREDICTION RESULTS OF DIFFERENT METHODS

Figure 6: Prediction results of different methods for variable initial condition problem of Convection
equation when u(x, 0) = sin(3x+ π

3 ).

Figure 7: Prediction results of different methods for variable initial condition problem of Reaction
equation when u(x, 0) = 3h(x)

3h(x)+1−0.5h(x) , where h(x) = exp(− (x−π)2

2(π/4)2 ).

Figure 8: Prediction results of different methods for variable parameter problem of Heat equation
when α=1.
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D.4 VISUALIZATION OF LEARNED BASIS SOLUTIONS FOR THE BASIS SOLUTION METHOD

Figure 9: Visualization of basis solutions ûsin
i (x, t) and ûcos

i (x, t) (i = 1, 2, 3, 4) in our basis
solution method: the Convection equation.

Figure 10: Visualization of basis solutions ûsin
i (x, t) and ûcos

i (x, t) (i = 1, 2, 3, 4) in our basis
solution method: the Heat equation.

Figure 11: Visualization of basis solutions ûcc
ij (x, y), û

ss
ij (x, y), û

cs
ij (x, y) and ûsc

ij (x, y) (i = 1; j =
1, 2) in our basis solution method: the Poisson equation.
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D.5 VISUALIZATION OF LEARNED COEFFICIENT FUNCTIONS FOR THE POLYNOMIAL
MODEL

Figure 12: Visualization of learned wj(x, t) in the polynomial model of Convection equation.

Figure 13: Visualization of learned wj(x, t) in the polynomial model of Heat equation.

Figure 14: Visualization of learned wj(x, t) in the polynomial model of Reaction equation.

D.6 VISUALIZATION OF CANONICAL SOLUTION AND SCALED SOLUTIONS

Figure 15: Visualization of canonical solution and scaled solutions for the Reaction equation.

E PROOF OF LEMMA 1

Proof. Given an arbitrary initial condition {g(xi)}N−1
i=0 (suppose N is even), its discrete Fourier

transformation (DFT) and inverse discrete Fourier transformation (IDFT) are as follows, respec-
tively,

G(u) =

N−1∑
x=0

g(x)e−j 2πux
N , g(x) =

1

N

N−1∑
u=0

G(u)ej
2πux

N , x, u = 0, 1, 2 · · · , N − 1, (16)
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where j =
√
−1. Let G(u) = R(u) + jI(u), we have

g(x) =
1

N

N−1∑
u=0

(R(u) + jI(u))(cos
2πux

N
+ jsin

2πux

N
)

=
1

N

N−1∑
u=0

(R(u)cos
2πux

N
− I(u)sin

2πux

N
),

(17)

where the imaginary part in the right hand side of equation 17 is discard since g(x) is real.

We now use the conjugate symmetry of DFT to reduce the number of terms in the summation, which
will lead to a saving of the number of PINNs trained offline. The conjugate symmetry G(u) =

G⋆(N − u) yields R(u) = R(N − u), I(u) = −I(N − u). Using cos 2π(N−u)x
N = cos( 2πuxN ) and

sin 2π(N−u)x
N = −sin( 2πuxN ), we have

g(x) =
1

N

N
2 −1∑
u=1

[R(u)cos(
2πux

N
)− I(u)sin(

2πux

N
)

+R(N − u)cos(
2π(N − u)x

N
)− I(N − u)sin(

2π(N − u)x

N
)]

+
1

N
[R(0)cos(

2π0x

N
)− I(0)sin(

2π0x

N
)] +

1

N
[R(

N

2
)cos(

2πN
2 x

N
)− I(

N

2
)sin(

2πN
2 x

N
)]

=
2

N

N
2 −1∑
u=1

[R(u)cos(
2πux

N
)− I(u)sin(

2πux

N
] +

1

N
[R(0)cos(

2π0x

N
)− I(0)sin(

2π0x

N
)]

+
1

N
[R(

N

2
)cos(

2πN
2 x

N
)− I(

N

2
)sin(

2πN
2 x

N
)], x = 0, 1, 2 · · · , N − 1.

(18)

Grouping the coefficients associated with different bases in equation 18 into a vector a and a vector
b,

a :=

(
1

N
R(0),

{
2

N
R(u)

}N
2 −1

u=1

,
1

N
R(N/2)

)
,

b :=

(
− 1

N
I(0),

{
− 2

N
I(u)

}N
2 −1

u=1

,− 1

N
I(N/2)

)
.

(19)

equation 18 can then be written as

g(x) =

N/2∑
i=0

aicos(
2πix

N
) + bisin(

2πix

N
), x = 0, 1, 2 · · · , N − 1. (20)

Therefore, an arbitrary initial condition {g(xi)}N−1
i=0 can be decomposed by DFT using N +2 bases{

cos( 2πuxN ), sin( 2πuxN )
}N

2

u=0
.

F PROOF OF LEMMA 2

Proof. It is easy to see that u(x, t) satisfies the linear PDEs since ucos
i (x, t) and usin

i (x, t)

satisfy them. For the initial condition, u(x, 0) =
∑N/2

i=0 aiu
cos
i (x, 0) + biu

sin
i (x, 0) =∑N/2

i=0 aicos(
2πix
N ) + bisin(

2πix
N ) = g(x). Furthermore, by u(0, t) =

∑N/2
i=0 aiu

cos
i (0, t) +

biu
sin
i (0, t) =

∑N/2
i=0 aiu

cos
i (2π, t) + biu

sin
i (2π, t) = u(2π, t), the periodic boundary condition

is satisfied as well. Other boundary conditions can be proved similarly. Therefore, equation 3 is the
desired solution of linear PDEs under the variable initial condition.
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G PROOF OF LEMMA 3

Proof. Given an arbitrary source {f(m,n) |m = 0, 1, · · · ,M − 1;n = 0, 1, · · · , N − 1} (suppose
M and N are even), its two-dimensional DFT and IDFT are as follows, respectively,

F (u, v) =

M−1∑
m=0

N−1∑
n=0

f(m,n)e−j2π(um
M + vn

N ),

f(m,n) =
1

M ·N

M−1∑
u=0

N−1∑
v=0

F (u, v)ej2π(
um
M + vn

N ).

(21)

Let F (u, v) = R(u, v) + jI(u, v), we have

f(m,n) =
1

M ·N

M−1∑
u=0

N−1∑
v=0

[R(u, v) + jI(u, v)][cos2π(
um

M
+

vn

N
) + jsin2π(

um

M
+

vn

N
)].

(22)
Using the conjugate symmetry F (u, v) = F ∗(M − u,N − v), F (0, v) = F ∗(0, N − v), F (u, 0) =
F ∗(M − u, 0), we have R(u, v) = R(M − u,N − v), I(u, v) = −I(M − u,N − v) and so on.
Neglecting the imaginary part in reconstructed f(m,n), we have

f(m,n) =
1

M ·N

M−1∑
u=0

N−1∑
v=0

[R(u, v)cos2π(
um

M
+

vn

N
)− I(u, v)sin2π(

um

M
+

vn

N
)]

=
1

M ·N
[R(0, 0)cos2π0− I(0, 0)sin2π0]

+
2

M ·N

N
2 −1∑
v=1

[R(0, v)cos2π(
vn

N
)− I(0, v)sin2π(

vn

N
)]

+
1

M ·N
[R(0,

N

2
)cos2π

N
2 n

N
− I(0,

N

2
)sin2π

N
2 n

N
]

+
2

M ·N

M
2 −1∑
u=1

[R(u, 0)cos
2πum

M
− I(u, 0)sin2π

um

M
]

+
1

M ·N
[R(

M

2
, 0)cos2π

M
2 m

M
− I(

M

2
, 0)sin2π

M
2 m

M
]

+
2

M ·N

M
2 −1∑
u=1

N−1∑
v=1

[R(u, v)cos2π(
um

M
+

vn

N
)− I(u, v)sin2π(

um

M
+

vn

N
)]

+
2

M ·N

N
2 −1∑
v=1

[R(
M

2
, v)cos2π(

M
2 m

M
+

vn

N
)− I(

M

2
, v)sin2π(

M
2 m

M
+

vn

N
)]

+
1

M ·N
[R(

M

2
,
N

2
)cos2π(

M
2 m

M
+

N
2 n

N
)− I(

M

2
,
N

2
)sin2π(

M
2 m

M
+

N
2 n

N
)].

(23)

For the term
∑N−1

v=1 [R(u, v)cos2π(umM + vn
N )] in equation 23, we have

N−1∑
v=1

[R(u, v)cos2π(
um

M
+

vn

N
)]

=

N−1∑
v=1

R(u, v)[cos2π(
um

M
)cos2π(

vn

N
)− sin2π(

um

M
)sin2π(

vn

N
)]

= 2

N
2 −1∑
v=1

R(u, v)[cos2π(
um

M
)cos2π(

vn

N
)]

+R(u,
N

2
)[cos2π(

um

M
)cos2π(

N
2 n

N
)− sin2π(

um

M
)sin2π(

N
2 n

N
)].

(24)
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Similarly,

N−1∑
v=1

[I(u, v)sin2π(
um

M
+

vn

N
)]

=

N−1∑
v=1

I(u, v)[sin2π(
um

M
)cos2π(

vn

N
) + cos2π(

um

M
)sin2π(

vn

N
)]

= 2

N
2 −1∑
v=1

I(u, v)[sin2π(
um

M
)cos2π(

vn

N
)]

+ I(u,
N

2
)[sin2π(

um

M
)cos2π(

N
2 n

N
) + cos2π(

um

M
)sin2π(

N
2 n

N
)].

(25)

Other terms in equation 23 can be expanded similarly using cos2π(umM + vn
N ) =

cos2π(umM )cos2π( vnN )− sin2π(umM )sin2π( vnN ) and sin2π(umM + vn
N ) = sin2π(umM )cos2π( vnN )+

cos2π(umM )sin2π( vnN ). Therefore, we can use

cos2π(
ux

M
)cos2π(

vy

N
), sin2π(

ux

M
)sin2π(

vy

N
),

cos2π(
ux

M
)sin2π(

vy

N
), sin2π(

ux

M
)cos2π(

vy

N
),

u = 0, 1, · · · , M
2
; v = 0, 1, · · · , N

2

(26)

as two-dimensional DFT bases. Similar to the case of Convection equation, we group the coeffi-
cients in equation 23 associated with these bases into four matrices A,B,C and D, and then write
equation 23 as

f(x, y) =

M/2∑
u=0

N/2∑
v=0

[A(u, v)cos2π(
ux

M
)cos2π(

vy

N
) +B(u, v)sin2π(

ux

M
)sin2π(

vy

N
)

+ C(u, v)cos2π(
ux

M
)sin2π(

vy

N
) +D(u, v)sin2π(

ux

M
)cos2π(

vy

N
)].

(27)

H THE PROOF OF THEOREM 1

Proof. For the Convection equation, the total loss is

Lt = λrLr + λbLb + λiLi

= λr
1

Nr

∑
(x,t)∈Cr

∥ut(x, t) + βux(x, t)∥22

+λb
1

Nb

∑
t∈Cb

∥u(0, t)− u(L, t)∥22

+λi
1

Ni

∑
x∈Ci

∥u(x, 0)− g(x)∥22 .

(28)
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Using the polynomial expression in 5, we have

Lt =λr
1

Nr

∑
(x,t)∈Cr

||
Np∑
j=1

[∂twj(x, t) + P∂xwj−1(x, t)](β/P )j + ∂tw0(x, t)(β/P )0

+ P∂xwNp
(x, t)(β/P )Np+1||22

+λb
1

Nb

∑
t∈Cb

||
Np∑
j=0

wj(0, t)(β/P )j −
Np∑
j=0

wj(L, t)(β/P )j ||22

+λi
1

Ni

∑
x∈Ci

||
Np∑
j=0

wj(x, 0)(β/P )j − g(x)||22.

(29)

By 9,11 and 12, we have

Lt = λr
P 2

Nr

∑
(x,t)∈Cr

∥∥∂xwNp
(x, t)(β/P )Np+1

∥∥2
2
. (30)

As for the solutions wj(x, t) (j = 0, 1, 2, · · · , Np), from 9 and 11, we have

w0(x, t) = g(x). (31)

By ∂tw1(x, t) = −P∂xw0(x, t) and 11, we have

w1(x, t) = −P
∂g(x)

∂x
t, (32)

Applying ∂twi(x, t) = −P∂xwi−1(x, t) and 11 recursively and neglecting equation 10, we have

wNp(x, t) =
(−P )Np

Np!

∂Npg(x)

∂xNp
tNp . (33)

The periodic boundary conditions are satisfied by such wj(x, t) (j = 0, 1, · · · , Np) due to g(0) =

g(L) and ∂ng
∂xn (0) = ∂ng

∂xn (L), n = 1, 2, · · · , Np. Therefore, wj(x, t) (j = 0, 1, · · · , Np) can be

solved exactly if we neglect equation 10. However, since usually ∂Np+1g(x)

∂xNp+1 ̸= 0, 10 may not be
satisfied, thus 9, 10,11 and 12 together may have no solutions.

The total loss becomes

Lt = λr
P 2

Nr

∑
(x,t)∈Cr

∥∥∥∥PNp

Np!

∂Np+1g(x)

∂xNp+1
tNp(

β

P
)Np+1

∥∥∥∥2
2

≤ λr
P 2

Nr

∑
(x,t)∈Cr

(max
x

∂Np+1g(x)

∂xNp+1
)2(

PNp

Np!
(
β

P
)Np+1)2

= λr(max
x

∂Np+1g(x)

∂xNp+1
)2(

PNp+1

Np!
(
β

P
)Np+1)2.

(34)

This gives the upper bound of loss.

I THE POLYNOMIAL MODEL FOR THE HEAT EQUATION WITH VARIABLE
PARAMETER

For the Heat equation ut = αuxx with variable parameter α ∈ (0, P ), we can write the polynomial
model as

u(x, t) =

Np∑
j=0

wj(x, t)(α/P )j . (35)
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Substituting equation 35 into ut = αuxx, we have

Np∑
j=0

∂twj(x, t)(α/P )j − α

Np∑
j=0

∂xxwj(x, t)(α/P )j = 0, (36)

which leads to
Np∑
j=0

∂twj(x, t)(α/P )j − P

Np+1∑
j=1

∂xxwj−1(x, t)(α/P )j = 0, (37)

Np∑
j=1

[∂twj(x, t)− P∂xxwj−1(x, t)](α/P )j + ∂tw0(x, t)− P∂xxwNp
(x, t)(α/P )Np+1 = 0, (38)

Since α can be variable, then{
∂twj(x, t)− P∂xxwj−1(x, t) = 0, j = 1, 2, · · · , Np

∂tw0(x, t) = 0
(39)

∂xxwNp
(x, t) = 0. (40)

The initial condition u(x, 0) = g(x) yields
∑Np

j=0 wj(x, 0)(α/P )j = g(x), thus{
wj(x, 0) = 0, j = 1, 2, · · · , Np

w0(x, 0) = g(x)
(41)

For the periodic boundary condition u(0, t) = u(L, t), we have

wj(0, t) = wj(L, t), j = 0, 1, · · · , Np. (42)

We have the following theorem to establish the bound of loss of our polynomial model for the Heat
equation.
Theorem 2. For the Heat equation ut = αuxx, x ∈ [0, L], t ∈ [0, 1] with initial condition u(x, 0) =
g(x) and periodic boundary condition u(0, t) = u(L, t), suppose g(x) is differentiable up to the
(2Np + 2)-th order and satisfies the periodic conditions g(0) = g(L) and ∂ng

∂xn (0) =
∂ng
∂xn (L), n =

2, 4, · · · , 2Np. If we solve wj(x, t) (j = 0, 1, 2, · · · , Np) using equations 39, 41 and 42 and neglect
equation 40, then wj(x, t) (j = 0, 1, 2, · · · , Np) can be solved exactly, and the total loss Lt =

λrLr + λbLb + λiLi is at most λr(maxx
∂2Np+2g(x)

∂x2Np+2 )2(P
Np+1

Np!
( αP )Np+1)2.

Proof. Applying equation 39 and equation 41 recursively and neglecting equation 40, we have

w0(x, t) = g(x),

w1(x, t) = P
∂2g(x)

∂x2
t, · · · ,

wNp
(x, t) =

PNp

Np!

∂2Npg(x)

∂x2Np
tNp .

(43)

The periodic boundary conditions are satisfied by wj(x, t) (j = 0, 1, · · · , Np) due to g(0) = g(L)

and ∂ng
∂xn (0) =

∂ng
∂xn (L), n = 2, 4, · · · , 2Np. Therefore, wj(x, t) (j = 0, 1, · · · , Np) can be solved

exactly if we neglect equation 40. The total loss is

Lt = λr
P 2

Nr

∑
(x,t)∈Cr

∥∥∥∥PNp

Np!

∂2Np+2g(x)

∂x2Np+2
tNp(

α

P
)Np+1

∥∥∥∥2
2

≤ λr(max
x

∂2Np+2g(x)

∂x2Np+2
)2(

PNp+1

Np!
(
α

P
)Np+1)2.

(44)

This completes the proof.
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I.1 IMPLEMENTATION

When varying the parameter α with fixed initial condition g(x) = sinx and λr = 1, we set Np = 29
in our experiments and achieve very low error for α ∈ (0, 10].

J THE POLYNOMIAL MODEL FOR THE REACTION EQUATION WITH
VARIABLE INITIAL CONDITION

The Reaction equation ut − ρu(1−u) = 0 is a nonlinear ordinary differential equation. We assume
the parameter ρ is fixed and only consider to vary the initial condition. From the finite difference
discretization ui+1

j = ui
j + τρui

j(1−ui
j) = ui

j(1+ τρ)− (ui
j)

2τρ, we can infer that the solution ui
j

is a polynomial of initial value u0
j , thus we model the relationship between the solution u(x, t) and

initial condition g(x) as follows,

u(x, t) =

Np∑
j=0

wj(x, t)g
j(x). (45)

Substituting equation 45 into ut − ρu(1− u) = 0, we have
Np∑
j=0

∂twj(x, t)g
j(x)− ρ

Np∑
j=0

wj(x, t)g
j(x)(1−

Np∑
k=0

wk(x, t)g
k(x)) = 0, (46)

which leads to
Np∑
j=0

∂twjg
j − ρ

Np∑
j=0

wjg
j + ρ

Np∑
j,k=0

wjwkg
j+k = 0. (47)

Since g(x) can be arbitrary, we have{
∂twi − ρwi + ρ

∑
{j,k=0,1,··· ,Np|j+k=i} wjwk = 0, i = 0, 1, 2, · · · , Np,∑

{j,k=1,2,··· ,Np|j+k=i} wjwk = 0, i = Np + 1, Np + 2, · · · , 2Np,
(48)

The initial condition u(x, 0) = g(x) leads to{
wj(x, 0) = 0, j = 0, 2, 3, · · · , Np

w1(x, 0) = 1.
(49)

The periodic boundary condition u(0, t) = u(L, t) leads to

wj(0, t) = wj(L, t), j = 0, 1, · · · , Np. (50)

We then train neural networks to approximate the coefficient functions wj(x, t) (j = 0, 1, · · · , Np)
using losses associated with equations 48,49 and 50.

For inverse problems, based on equation 45, we use gradient descent search to find the initial values
g(xi) at discretized points {xi}.

In our implementation, the analytic solution to the Reaction equation is given by u(x, t) =
αh(x)eρt

αh(x)eρt+1−0.5h(x) , where h(x) := exp(− (x−π)2

2(π/4)2 ). Therefore, the initial condition is u(x, 0) =
αh(x)

αh(x)+1−0.5h(x) . We vary the value of α to change the initial condition. Note that 0 < 1−0.5h(x) <

1 since 0 < h(x) ≤ 1, we have g(x) = u(x, 0) < 1 if α > 0. Thus, the term gj(x) in equation 45
decreases exponentially with j, and we found in our experiments that Np = 6 is enough to achieve
low approximation error.

K THE DETAILS OF THE SCALING METHOD

K.1 CANONICAL SOLUTION AND SCALED SOLUTIONS

Take the Convection equation as an example to describe our scaling method, which is simpler and
easier to implement than the polynomial model. Suppose the boundary/initial conditions are fixed.
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We call the Convection equation ut+ux = 0 (with β = 1) as the canonical Convection equation, and
train a PINN to approximate its solution u(x, t). Given a Convection equation ut+βux = 0 (β ̸= 1)
with unknown solution uβ(x, t), we want to scale u(x, t) to obtain uβ(x, t). We have the following
lemma to achieve this goal, whose proof in provided in Appendix K.2.

Lemma 4. The function uβ(x, t) := u(x, βt) is the solution of the equation ∂uβ(x,t)
∂t +β

∂uβ(x,t)
∂x =

0 (β ̸= 1) with initial condition uβ(x, 0) = g(x) and periodic boundary condition uβ(0, t) =
uβ(L, t) (or other conditions, not necessarily periodic), where u(x, t) is the solution of canonical
Convection equation with initial condition u(x, 0) = g(x) and boundary condition u(0, t) = u(L, t)
(or other non-periodic boundary conditions).

Implementation. When training PINNs to approximate the canonical solution u(x, t), for β ∈
(0, P ], the scaled time domain [0, PT ] is used, which will require more collocation points if P ≫ 1.
We then scale the PINNs’ canonical solutions û(x, t) to obtain uβ(x, t) = û(x, βt).

K.2 PROOF OF LEMMA 4

Proof. By canonical equation, we have

∂u(x′, t′)

∂t′
+

∂u(x′, t′)

∂x′ = 0. (51)

Let x
′
= x, t

′
= βt, we then have

∂u(x, βt)

∂t

∂t

∂t′
+

∂u(x, βt)

∂x

∂x

∂x′ =
∂u(x, βt)

β∂t
+

∂u(x, βt)

∂x
= 0. (52)

Therefore,
∂uβ(x, t)

∂t
+ β

∂uβ(x, t)

∂x
= 0. (53)

By
uβ(x, 0) = u(x, β0) = g(x), uβ(0, t) = u(0, βt) = u(L, βt) = uβ(L, t), (54)

the initial condition uβ(x, 0) = g(x) and boundary condition uβ(0, t) = uβ(L, t) are also satisfied
by uβ(x, t). Consequently, uβ(x, t) := u(x, βt) is the desired solution.

K.3 INVERSE PROBLEMS

Given observed data {ũ(xi, tj)}, the goal of inverse problems in the scaling method is to obtain the
optimal parameter β. This is achieved by the following optimization problem,

β⋆ = argminβ

∑
i,j

(û(xi, βtj)− ũ(xi, tj))
2. (55)

In our implementation, we use gradient descent optimization in PyTorch to search β⋆, in which the
gradient of û(xi, βtj) with respect to β is fulfilled by the auto-differentiation since û(xi, βtj) is the
output of a neural network.
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