Boolean-aware Attention for Dense Retrieval

Anonymous ACL submission

Abstract

We present Boolean-aware attention, a novel
attention mechanism that dynamically adjusts
token focus based on Boolean operators (e.g.,
“and", “not"). Our model employs specialized
Boolean experts, each tailored to amplify or
suppress attention for operator-specific con-
texts. A predefined gating mechanism activates
the corresponding experts based on the detected
Boolean type. Experiments on two Boolean
retrieval datasets demonstrate that integrat-
ing BoolAttn with BERT greatly enhances the
model’s capability to process Boolean queries.

1 Introduction

Boolean operations such as and, or, and not are
fundamental components of human logic and rea-
soning, serving as essential tools for combining,
including, or excluding specific information in
queries. These operations are particularly valu-
able when users have complex and precise infor-
mation needs, such as “Movies set in Vietnam but
not about war” or “Animals found only in Brazil
and Mexico.” However, traditional lexical match-
ing methods like BM25 (Robertson et al., 2009)
often fail to adequately handle queries involving ex-
clusions, frequently retrieving results that include
undesired information. Similarly, transformer-
based architectures such as BERT (Devlin, 2018)
encounter challenges in processing logical oper-
ations (Mai et al., 2024; Malaviya et al., 2023).
These models lack explicit mechanisms to inter-
pret Boolean cues and struggle with contextual de-
pendencies, leading to suboptimal performance in
handling logical semantics. To overcome these
limitations, we present a Boolean-aware attention
mechanism, an extension of the standard attention
mechanism, designed to explicitly model Boolean
logic with enhanced sensitivity to logical cues and
their contextual scopes. Our method ensures that
models can better capture and process logical con-

1980s action films that are also ltalian films excluding |EElETIGCHONMING

[Jincrease attention M Decrease attention ANDcue NOT cue

Figure 1: Token-wise attention scores are adjusted based
on Boolean type. Tokens affected by and will receive
more attention while tokens affected by not will receive
less attention score.

structs, enabling improved performance on tasks
involving complex Boolean queries.

2 Boolean-aware attention

Our Boolean-aware attention mechanism (or,
BoolAttn, for short) consists of four key com-
ponents: (1) a Cue Predictor (2.1) that detects
Boolean cues within the input sequence, (2) a Con-
textual Scope Predictor (2.2) that determines the
scope of Boolean operators, ensuring their influ-
ence is properly localized, (3) a Bias Predictor
(2.3) that adjusts attention scores based on Boolean
operations using operator-specific embeddings and
positional dependencies, and (4) a modified atten-
tion mechanism incorporating Boolean-specific
biases into the attention scores. By explicitly mod-
eling Boolean logic while preserving contextual
dependencies, BoolAttn enables transformers to bet-
ter interpret logical structures in natural language
queries. Furthermore, BoolAttn is lightweight,
modular, and fully compatible with existing trans-
former architectures, serving as a plug-and-play
enhancement for self-attention layers. The overall
architecture of BoolAttn is illustrated in Figure 2.

Boolean operator embeddings We use operator-
specific embeddings o € R% to encode the unique
semantic roles of Boolean operators, such as the
negation effect of not or the conjunctive nature
of and. These embeddings guide other modules
to produce operator-specific outputs, enabling the
model to adapt to the logical properties of each
operator.

: Bias Predictor

C ; Boolean

Attention Bias

Cue | Cue Position
: ! Predictor |
Hidden State =~

) BoolAttn Bias
BoolAttn

BoolAttn X

I
I
|
I
I
I
BoolAttn |
I
I
I
I
I
|

T
|
|
|

Self-Attention

Figure 2: Boolean-aware Attention architecture.

2.1 Boolean Cue Predictor

Boolean cues play a pivotal role in determining
the logical structure of queries. These cues dic-
tate the scope and interaction between different
query components, thereby influencing the embed-
ding of the query. For instance, cues for not (nega-
tion) include keywords like “not,” “excluding,” and
“without,” while cues for and include “and,” “as
well as,” “also,” and “including.” The Cue Predictor
(CuePred) is designed to identify the positions of
Boolean cues within the input sequence. Since the
positional information of cues remains invariant for
a given input sequence, the CuePred is employed
exclusively in the first transformer layer. The de-
tected cue positions are then propagated through
subsequent layers to inform the Scope Predictor
and Bias Predictor at each corresponding layer. No-
tably, Boolean-related retrieval datasets (Malaviya
et al., 2023) do not explicitly annotate Boolean
cues. Therefore, cue detection is formulated as
an auxiliary task during the pretraining phase, en-
abling the model to learn cue positions implicitly
and generalize effectively to downstream tasks.
The operator embeddings o are projected into the
model’s hidden space using a linear transformation

o’ =Wg,o+b,

where W, € R% 4o and b, € R are learnable
parameters, dj and d, denote the hidden and op-
erator embedding dimensions, respectively. The
projected embedding is then added to the hidden
states H before going through a shared linear layer

to compute cue scores, followed by sigmoid activa-
tion function to compute the cue probabilities:

pe = 0(W.(H+0') +b.)

where W, € R and b, € R are learnable pa-
rameters. Cue probabilities p. € RZ*! indicates
the likelihood of each position being a cue.

2.2 Boolean Scope Predictor

The Scope Predictor (ScopePred) identifies the
affected span of tokens (the scope) for a given
Boolean operator. For example, in the sentence
shown in Figure 1, the scope of not is “Italian action
film," and the model downweights the importance
of these tokens in the BoolAftn mechanism. The
predictor leverages local contextual features and
conditions on operator embeddings to determine
the scope. It combines a Conv1D layer to capture
local dependencies and a FILM layer (Feature-wise
Linear Modulation, Perez et al., 2018) to specialize
outputs for each operator.

Boolean operators primarily influence tokens
near the cue, as observed in phrases “not happy,"
where negation affects the adjacent token. To effec-
tively capture such local dependencies, ScopePred
utilizes a Conv1D layer. Especially, the hidden
states H € RB*Lxdr and cue probabilities p,. €
RZ*L are concatenated and subsequently passed
through a Conv1D layer:

S = Conv1D([H; pc])

This layer efficiently captures local patterns and de-
pendencies around the cue, making it particularly
suitable for modeling the impact of Boolean opera-
tors on nearby tokens. To adapt the predictions for
each Boolean operator, the FILM layer modulates
the Conv1D output using operator embeddings o.
Scale and shift factors are computed as:

v=W,0+b,, 8=Wgo+bg

These factors are then applied to modulate the
Conv1D output:

S=~v5S+p8

The modulated logits .S are passed through a sig-
moid activation to obtain scope probabilities:

Pscope = U(S)

Since the scope is binary (0 for outside scope, 1 for
inside scope), we use the Gumbel-Sigmoid trick to

enable discrete scope sampling while preserving
differentiability. The scope is determined by apply-
ing a learnable threshold 6 to the probabilities P
obtained from the Gumbel-Sigmoid:

S=1I(P>0) ey

To allow gradient flow through the non-
differentiable thresholding, we use a Straight-
Through Estimator (STE). This approach ensures
that the model learns to make discrete scope
predictions effectively.

Different Boolean operators impose unique struc-
tural constraints on token interactions, necessitat-
ing specialized mechanisms for scope prediction.
The and operator establishes bidirectional rein-
forcement between operands (or entities), ensuring
mutual influence, whereas not applies a unidirec-
tional effect, modifying the meaning of specific
tokens within its scope. When a negation cue like
"not" appears, it alters the interpretation of a single
token or phrase rather than forming a bidirectional
relationship. Conversely, and enforces a recipro-
cal dependency—e.g., in “A and B," both A and B
should influence each other—requiring a pairwise
rather than token-wise scope. To capture these dif-
ferences, we define the scope matrices for and and
or as follows:

Smutual =5 ST

where Sy € REBXheads XLXL captyres

symmetric token influence, while not retains a
unary mask of shape (B, heads, L, 1) as it requires
no pairwise expansion.

2.3 Bias Predictor

We use a Boolean-aware bias module to model
token-level biases in BoolAttn by incorporating
positional dependencies and operator-specific em-
beddings. This module learns to adjust attention
bias based on the relative positions of Boolean cue
(from the CuePred) and the surrounding context.

Relative position To capture the structural influ-
ence of Boolean operators, the model first com-
putes the relative positions of tokens with respect
to the Boolean cues (e.g., “without"). Given a se-
quence of length L, the relative position of token
¢ with respect to a Boolean cue at position c is
defined as:

r,=1—2¢C

For the negation operator (not), its influence is
asymmetric, affecting only subsequent tokens. To
ensure this, we clip negative relative postions:

r; = max(0,7 — ¢), for not

For conjunctions (and) and disjuntions (or), influ-
ence is bidirectional, meaning the relative positions
are clamped with a symmetric window +d:

ri = clip(i — ¢, —d, d), for and lor

To assign different levels of importance based on
distance from the cue, we can use position embed-
dings. To make this module lightweight, instead
of using learnable positional embeddings, we use a
Gaussian kernel to weight positions. The idea of us-
ing Gaussian kernel is we hypothesize that tokens
closer to the cue are more likely to be influenced:

r2
w(r;) = exp <—2 *Za2>

where o is a learnable parameter controlling the
spread of the Gaussian influence. The computed po-
sitional weights w(r) are concatenated with token
hidden state H to form an enriched representation
before passed through a Feed-Forward Network
(FFN) to generate context-aware bias scores:

b = FFN([H, w(r)])

To account for the distinct biases associated with
different Boolean operations, an operator-specific
gate dynamically modulates the computed biases:

b/ =b- O'(Wopeop) (2)

The final bias values are regularized using softplus
to explicitly ensure non-negativity.

2.4 Operator-gating mechanism

After having Scope (Eq. 1) and Bias (Eq. 2) of
each Boolean operator, we integrate the Boolean
reasoning into the transformer’s attention mecha-
nism. This integration employs a gating mecha-
nism, dynamically weighting each operator’s influ-
ence based on its presence in the input.

The attention bias contribution for a Boolean
operator op is formulated as:

Sop = Gop - Scopeop - Bias,y,

where G, € {0;1} is a gating variable that indi-
cates the presence of the operator in the input se-
quence. This gate can be either learned through an

experts classifier or provided as an auxiliary label,
enabling conditional application of the attention
bias based on the occurrence of the operator. Since
we aim to reinforce tokens of and, or and down-
weight the importance of tokens affected by not
(Appendix A), the final Boolean-aware attention
bias is then formulated as:

and + Sor -

SBoolean = not

The Boolean-aware bias is added to the raw atten-
tion scores, ensuring that the logical structure of
sentences influences the attention mechanism:

KT

Vd

where Q, K, V are original attention matrices in
the self-attention mechanism (Vaswani, 2017).

Attention Score = Softmax(+ SBootean)V

3 Evaluation

We evaluate BoolAttn by integrating it into BERT
(uncased configuration), forming Bool-BERT, and
testing it on two Boolean retrieval datasets:
Quest (Malaviya et al.,, 2023) and BoolQues-
tions (Zhang et al., 2024). Prior to the main evalu-
ation, we pretrain BoolAttn on the GPT-generated
dataset by Mai et al., 2024 to ensure effective ini-
tialization (see Appendix B). All experiments are
repeated three times with different random seeds
{0, 42, 1234}, and we report the average results.

Entity-seeking queries QUEST features queries
with implicit Boolean operations, testing models’
ability to understand logical relationships among
entities. We employ Bool-BERT as the query en-
coder in a dual-encoder setup, paired with BERT
as the document encoder. Retrieval performance
is measured using average Recall @K, with K set
to {20, 50, 100, 1000}, as shown in Table 1. Addi-
tionally, we assess the retrievers on seven distinct
query structures to capture nuances in retrieval ca-
pabilities, with results presented in Figure 3. These
findings demonstrate that integrating the BoolAttn
plugin enhances BERTS’ effectiveness in Boolean
query understanding.

BoolQuestions We use the best-performing mod-
els from fine-tuning on Quest as starting check-
points for continuous learning on BoolQuestions’
supplementary training dataset, focusing on and,
or, and not operations. Evaluation is conducted on
the corresponding test set, adhering to the original
experimental setup by reporting Mean Reciprocal

Avg. Recall@K

Retriever 20 50 100 1000
BERT-base 0.228 0.344 0.443 0.760
Bool-BERT-base 0.254 0.379 0.483 0.788
BERT-large 0.238 0.364 0467 0.792
Bool-BERT-large 0.266 0.395 0.495 0.812

Table 1: Bool-BERT retrievers outperform standard
BERT-based models in retrieval tasks.

RandBnotC — 4

0.286

AN B AN G ey 0.431
0.39 0.565

AOTBOrC

R
0.501
e 0.5%
AandB 0,325

AT ——— 0572
21

" 0568

.

0.533
0 01 02 03 04 0s 06 07

m Bool-Bert-base m Bert-base

Figure 3: Recall@100 across different query templates.

Rank at top-10 (MRR@10). The results in Ta-
ble 2 highlight the effectiveness of BoolAttn in en-
hancing performance for Boolean-related QA tasks.
For comparison, the results of distillbert-dot-v5 are
taken from the original paper.

4 Conclusion

In this work, we introduced BoolAttn, a novel atten-
tion mechanism that dynamically adjusts attention
weights based on Boolean operators, effectively
capturing the distinct structural influences of con-
junctions, disjunctions, and negations. By integrat-
ing BoolAttn into BERT, we greatly improved per-
formance on Boolean retrieval tasks, demonstrating
its effectiveness in processing complex logical rela-
tionships within queries. These results highlight the
potential of Boolean-aware attention mechanisms
to enhance transformers’ ability to understand and
handle nuanced Boolean queries.

MRR@10
AND OR NOT
distillbert-dot-v5 ~ 0.399 0.530 0.130
BERT-base 0412 0.545 0.128
Bool-BERT-base 0.480 0.586 0.165
Bool-BERT-large 0.532 0.610 0.182

Table 2: Performance on MS MARCQO’s BoolQuestions.

Limitations

While BoolAttn greatly enhances the performance
of the backbone BERT model and is designed to
be lightweight, it still introduces a considerable
number of parameters. Specifically, Bool-BERT-
base has approximately 121M parameters, while
the large version reaches around 378M parame-
ters. This indicates that BoolAttn adds roughly 10%
more parameters to the underlying transformer ar-
chitecture, increasing computation cost and latency.
To mitigate this overhead, future work could ex-
plore parameter-sharing strategies across Boolean
modules or investigate low-rank factorization tech-
niques to reduce the parameter count without sacri-
ficing performance.

Moreover, the Scope and Bias Predictors depend
on accurate inputs from the Cue Predictor, mak-
ing the system vulnerable to error propagation. If
cues are misidentified, scope and bias predictions
may be incorrect. This is particularly challenging
when Boolean cues are implied rather than explicit.
For example, in the query “Find articles on cli-
mate policy favoring renewables over fossil fuels,"
the comparative phrase implicitly negates fossil
fuels without an explicit not operator. If the Cue
Predictor misses this, the system might retrieve
documents about both “renewables" and “fossil fu-
els", misinterpreting the intended negation. This
could lead to misleading search results, especially
in sensitive domains like legal, medical, or financial
information retrieval.

Additionally, the absence of explicit ground
truth for scope labels in existing Boolean retrieval
datasets presents a significant challenge. Since no
direct supervision is available for scope boundaries,
the optimization of BoolAttn relies on indirect sig-
nals from retrieval performance, which may not
fully capture the intended scope dynamics. This
lack of supervision makes it difficult to ensure that
BoolAttn learns the desired scope representation,
potentially leading to suboptimal generalization.

Lastly, the limited size of Boolean retrieval
datasets constrains the scalability of BoolAttn. Al-
though the model is effective in enhancing Boolean
query understanding, the small training corpus lim-
its its potential to learn complex linguistic patterns
and generalize to diverse scenarios. This scalabil-
ity issue poses challenges for deploying BoolAttn
in large-scale retrieval systems, as its performance
may degrade without sufficient training data.

Ethical considerations

This work utilizes Quest, BoolQuestions, and GPT-
generated datasets strictly for research purposes,
consistent with their original licensing terms. The
BoolAttn module is designed for academic evalu-
ation of Boolean retrieval models. Any derivative
models or results are intended solely for research
and should not be used outside of academic con-
texts. We ensured that the datasets used in this
study, including QUEST and BoolQuestions, did
not contain personally identifiable information (PII)
or offensive content. A thorough review was con-
ducted to confirm that the data complied with ethi-
cal standards.

References

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Carolin Dudschig, Barbara Kaup, Mingya Liu, and Ju-
liane Schwab. 2021. The processing of negation and
polarity: An overview. Journal of Psycholinguistic
Research, 50(6):1199-1213.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations (ICLR).

Quan Mai, Susan Gauch, and Douglas Adams. 2024.
Setbert: Enhancing retrieval performance for boolean
logic and set operation queries. arXiv preprint
arXiv:2406.17282.

Chaitanya Malaviya, Peter Shaw, Ming-Wei Chang,
Kenton Lee, and Kristina Toutanova. 2023. Quest:
A retrieval dataset of entity-seeking queries
with implicit set operations. arXiv preprint
arXiv:2305.11694.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Ethan Perez, Florian Strub, Harm De Vries, Vincent
Dumoulin, and Aaron Courville. 2018. Film: Vi-
sual reasoning with a general conditioning layer. In

Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-389.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Daniel M Wegner. 1994. Ironic processes of mental
control. Psychological review, 101(1):34.

Thomas Wolf. 2020. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

Zongmeng Zhang, Jinhua Zhu, Wengang Zhou, Xiang
Qi, Peng Zhang, and Hougiang Li. 2024. Boolques-
tions: Does dense retrieval understand boolean logic
in language? arXiv preprint arXiv:2411.12235.

A Why downweight attention scores for
negation

Negation treatment is a challenging problem for
current dense retrieval models (Zhang et al., 2024;
Malaviya et al., 2023; Mai et al., 2024).

The phenomenon where attempting to suppress
specific thoughts leads to their increased promi-
nence is well-documented in psychological liter-
ature. This is exemplified by the “pink elephant"
paradox: when instructed not to think of a pink
elephant, ones often find it challenging to avoid the
image. This counterproductive effect is known as
ironic process theory (Wegner, 1994), which posits
that deliberate efforts to suppress certain thoughts
can make them more persistent.

In the context of language processing, negation
requires the brain to first represent the concept
being negated before it can suppress or modify
it. This two-step process suggests that negation
involves initial activation followed by inhibition
(Dudschig et al., 2021).

Building upon these insights, our hypothesis
proposes that in Boolean-aware attention mech-
anisms, tokens affected by negation should be
downweighted. By reducing the influence of these
negated tokens, the model can more accurately
capture the intended logical structure of the input,
aligning with the cognitive processes involved in
handling negation.

B Pretrain Boolean-aware Attention

Introducing new parameters in BoolAttn poses a
risk of overfitting due to the limited size of Boolean

retrieval datasets compared to the model’s capac-
ity when integrated into transformer layers. This
imbalance may lead the model to memorize the
training data rather than generalizing effectively,
resulting in suboptimal performance. To mitigate
this, we pretrain Bool-BERT on Mai et al., 2024’s
GPT-generated dataset on two auxiliary tasks: cue
prediction and expert classification (gate selection).
The cue position prediction loss is calculated as
follows:

1
B x L

)

ﬁcue - - (yi,j 10gpi,j+

B
= 1

L

17
(1 —y;)log(1 —p; ;)

where y is the ground-truth label and p is the pre-
dicted probability that token j in batch i is a cue.
The original dataset only includes “and,” “or," and
“not" as Boolean cues. To enhance model robust-
ness, we augment the dataset by replacing cues
with their semantic equivalents, such as substituting
“and" with “as well as," “are also," or “including,"
and replacing “not" with “other than" or “exclud-
ing." Consequently, multiple cue tokens can appear
in a single sequence. We use BERT’s tokenizer,
followed by a word-matching approach to label the
cue tokens.

The second task in pretraining phase is Booealn
expert classfication. This task is a multi-label
classification problem designed to identify which
Boolean operators are present in a given input se-
quence. Since a sequence may contain more than
one Boolean operation, this task requires predict-
ing multiple labels simultaneously (one for each
operator). Given E Boolean experts (3 if we use
and, or, not), the loss is defined as

E
(i i log pi 1+

1
Loate = —

(1 —yix)log(l —pig)

where y is the ground-truth label and p; ; is the
predicted probability for operator k in batch .
Until now we only pretrain the CuePred and
Gate modules, the parameters for ScopePred and
BiasPred remain uninitialized. To provide these
modules with a reasonable starting point without
overfitting them to Boolean logic, we train them on
the Boolean sentence classification task from Mai
et al., 2024 using a standard triplet loss. Although
Mai et al., 2024 reported that triplet loss hinders

performance on Boolean queries, we deliberately
use it to provide an "okay" initialization, allowing
the modules to learn actively during the main tasks.
The pretraining objective is defined as follows:

ﬁpretrain = ﬁcue + Egate + aﬁtriplet

where « is set to a small value, we used 0.2. During
pretraining, only the BoolAttn modules and BERT’s
embedding layer are updated, while the other layers
are frozen. We train for a single epoch with a low
learning rate of 1e — 5.

C BoolAttn hyperparameters and settings

All experiments are conducted on two NVIDIA
Quadro RTX 8000 GPUs, each with S0GB of mem-
ory. We use PyTorch (Paszke et al., 2019) as our
deep learning framework and leverage Hugging
Face’s Transformers library (Wolf, 2020) for pre-
trained models and model implementation.

Hyperparameters (1) Operator embedding di-
mension dj: 10. (2) Threshold 6 is initialized at
0.5. (3) Relative postion window: 5. (4) Gaussian
kernal sigma: o: 2.

Gating mechanism For the learnable gate mech-
anism, we employ a simple FFN followed by a
sigmoid activation, with logits scaled by a small
temperature value of 0.1 to enhance sensitivity. Un-
like softmax, which enforces mutual exclusivity,
sigmoid is better suited for Boolean logic since
multiple Boolean operators can coexist within a
single query. By applying a hard threshold to the
sigmoid outputs, the gates can selectively activate
multiple Boolean experts, allowing them to con-
tribute to the final attention scores as needed.

The gating mechanism introduces a performance
bottleneck as it relies on accurately activating the
Boolean experts corresponding to the operators
present in the query. This dependency can lead
to suboptimal performance (Table 3). Improving
this gating strategy is left for future work. However,
in real-world applications, users could explicitly
specify the Boolean logic in their queries. This
information could then be used as an auxiliary la-
bel to activate the relevant Boolean experts—an
approach we currently employ.

D Dense Retriever

We adopt a dual-encoder framework (Karpukhin
et al., 2020) for our retriever.

Avg. Recall@K

Retriever 50 100 1000
Bool-Bert-base 0.379 0.483 0.788
Bool-Bert-base-gate 0.371 0.470 0.775

Table 3: Learnable gate introduces bottleneck.

Avg. Recall@K

Retriever 50 100 1000
BERT-Base 0.134 0.182 0.453
BERT-Large 0.227 0300 0.627
T5-Base 0.372 0.455 0.726
T5-Large 0.386 0.476 0.757
BERT-Base-Ours 0.344 0.443 0.760

Table 4: Importance of choosing different positive sam-
ples, results for QUEST dataset.

Unlike Malaviya et al., 2023 and Mai et al., 2024,
which use a fixed positive document per query, we
sample different positive documents at each train-
ing step. This encourages the encoders to explore
diverse relevant documents for the same query,
which is crucial for multi-answer retrieval tasks
where multiple correct answers exist. This is par-
ticularly important for boolean queries: negation
excludes a subset of answers, disjunctions (unions)
expand the answer set, and conjunctions (intersec-
tions) narrow it. By introducing varied positive
samples, our approach enhances model robustness
and generalization. Furthermore, we empirically
found that using random negative samples is more
effective than hard negative samples (i.e., incorrect
answers retrieved by BM25), particularly for the
QUEST dataset. Table 4 shows the improvement
when using different positive documents and nor-
mal negative samples, T5 and BERT results taken
from Malaviya et al., 2023 and Mai et al., 2024,
respectively.

Hyperparameters
1. Max query length: 64.
2. Max document length: 256.
3. Negative document per sample: 5.
4. Positive document: 1, shuffled every step.
5. Batch size: 32.

6. Optimizer: AdamW (Kingma and Ba, 2015)
with weight decay 0.01 (Loshchilov and Hut-
ter, 2019).

7. Learning rate: Se-5.
8. Epoch: 40.

9. Evaluation every epoch, keep best.

	Introduction
	Boolean-aware attention
	Boolean Cue Predictor
	Boolean Scope Predictor
	Bias Predictor
	Operator-gating mechanism

	Evaluation
	Conclusion
	Why downweight attention scores for negation
	Pretrain Boolean-aware Attention
	BoolAttn hyperparameters and settings
	Dense Retriever

