
Boolean-aware Attention for Dense Retrieval

Anonymous ACL submission

Abstract001

We present Boolean-aware attention, a novel002
attention mechanism that dynamically adjusts003
token focus based on Boolean operators (e.g.,004
“and", “not"). Our model employs specialized005
Boolean experts, each tailored to amplify or006
suppress attention for operator-specific con-007
texts. A predefined gating mechanism activates008
the corresponding experts based on the detected009
Boolean type. Experiments on two Boolean010
retrieval datasets demonstrate that integrat-011
ing BoolAttn with BERT greatly enhances the012
model’s capability to process Boolean queries.013

1 Introduction014

Boolean operations such as and, or, and not are015

fundamental components of human logic and rea-016

soning, serving as essential tools for combining,017

including, or excluding specific information in018

queries. These operations are particularly valu-019

able when users have complex and precise infor-020

mation needs, such as “Movies set in Vietnam but021

not about war” or “Animals found only in Brazil022

and Mexico.” However, traditional lexical match-023

ing methods like BM25 (Robertson et al., 2009)024

often fail to adequately handle queries involving ex-025

clusions, frequently retrieving results that include026

undesired information. Similarly, transformer-027

based architectures such as BERT (Devlin, 2018)028

encounter challenges in processing logical oper-029

ations (Mai et al., 2024; Malaviya et al., 2023).030

These models lack explicit mechanisms to inter-031

pret Boolean cues and struggle with contextual de-032

pendencies, leading to suboptimal performance in033

handling logical semantics. To overcome these034

limitations, we present a Boolean-aware attention035

mechanism, an extension of the standard attention036

mechanism, designed to explicitly model Boolean037

logic with enhanced sensitivity to logical cues and038

their contextual scopes. Our method ensures that039

models can better capture and process logical con-040

1980s action films that are also Italian films excluding Italian action films

Increase attention Decrease attention AND cue NOT cue

Figure 1: Token-wise attention scores are adjusted based
on Boolean type. Tokens affected by and will receive
more attention while tokens affected by not will receive
less attention score.

structs, enabling improved performance on tasks 041

involving complex Boolean queries. 042

2 Boolean-aware attention 043

Our Boolean-aware attention mechanism (or, 044

BoolAttn, for short) consists of four key com- 045

ponents: (1) a Cue Predictor (2.1) that detects 046

Boolean cues within the input sequence, (2) a Con- 047

textual Scope Predictor (2.2) that determines the 048

scope of Boolean operators, ensuring their influ- 049

ence is properly localized, (3) a Bias Predictor 050

(2.3) that adjusts attention scores based on Boolean 051

operations using operator-specific embeddings and 052

positional dependencies, and (4) a modified atten- 053

tion mechanism incorporating Boolean-specific 054

biases into the attention scores. By explicitly mod- 055

eling Boolean logic while preserving contextual 056

dependencies, BoolAttn enables transformers to bet- 057

ter interpret logical structures in natural language 058

queries. Furthermore, BoolAttn is lightweight, 059

modular, and fully compatible with existing trans- 060

former architectures, serving as a plug-and-play 061

enhancement for self-attention layers. The overall 062

architecture of BoolAttn is illustrated in Figure 2. 063

Boolean operator embeddings We use operator- 064

specific embeddings o ∈ Rdo to encode the unique 065

semantic roles of Boolean operators, such as the 066

negation effect of not or the conjunctive nature 067

of and. These embeddings guide other modules 068

to produce operator-specific outputs, enabling the 069

model to adapt to the logical properties of each 070

operator. 071

1



Cue
Predictor

Scope Predictor

Bias Predictor

Boolean
Attention BiasHidden State

Cue Position

MatMul

Scale

Softmax

MatMul

BoolAttn

Se
lf-

A
tte

nt
io

n

Q K V

BoolAttn Bias

BoolAttn

BoolAttn

Figure 2: Boolean-aware Attention architecture.

2.1 Boolean Cue Predictor072

Boolean cues play a pivotal role in determining073

the logical structure of queries. These cues dic-074

tate the scope and interaction between different075

query components, thereby influencing the embed-076

ding of the query. For instance, cues for not (nega-077

tion) include keywords like “not,” “excluding,” and078

“without,” while cues for and include “and,” “as079

well as,” “also,” and “including.” The Cue Predictor080

(CuePred) is designed to identify the positions of081

Boolean cues within the input sequence. Since the082

positional information of cues remains invariant for083

a given input sequence, the CuePred is employed084

exclusively in the first transformer layer. The de-085

tected cue positions are then propagated through086

subsequent layers to inform the Scope Predictor087

and Bias Predictor at each corresponding layer. No-088

tably, Boolean-related retrieval datasets (Malaviya089

et al., 2023) do not explicitly annotate Boolean090

cues. Therefore, cue detection is formulated as091

an auxiliary task during the pretraining phase, en-092

abling the model to learn cue positions implicitly093

and generalize effectively to downstream tasks.094

The operator embeddings o are projected into the
model’s hidden space using a linear transformation

o′ = Woo+ bo

where Wo ∈ Rdh×do and bo ∈ Rdh are learnable
parameters, dh and do denote the hidden and op-
erator embedding dimensions, respectively. The
projected embedding is then added to the hidden
states H before going through a shared linear layer

to compute cue scores, followed by sigmoid activa-
tion function to compute the cue probabilities:

pc = σ(Wc(H+ o′) + bc)

where Wc ∈ R1×dh and bc ∈ R are learnable pa- 095

rameters. Cue probabilities pc ∈ RB×L indicates 096

the likelihood of each position being a cue. 097

2.2 Boolean Scope Predictor 098

The Scope Predictor (ScopePred) identifies the 099

affected span of tokens (the scope) for a given 100

Boolean operator. For example, in the sentence 101

shown in Figure 1, the scope of not is “Italian action 102

film," and the model downweights the importance 103

of these tokens in the BoolAttn mechanism. The 104

predictor leverages local contextual features and 105

conditions on operator embeddings to determine 106

the scope. It combines a Conv1D layer to capture 107

local dependencies and a FiLM layer (Feature-wise 108

Linear Modulation, Perez et al., 2018) to specialize 109

outputs for each operator. 110

Boolean operators primarily influence tokens 111

near the cue, as observed in phrases “not happy," 112

where negation affects the adjacent token. To effec- 113

tively capture such local dependencies, ScopePred 114

utilizes a Conv1D layer. Especially, the hidden 115

states H ∈ RB×L×dh and cue probabilities pc ∈ 116

RB×L are concatenated and subsequently passed 117

through a Conv1D layer: 118

S = Conv1D([H;pc])

This layer efficiently captures local patterns and de-
pendencies around the cue, making it particularly
suitable for modeling the impact of Boolean opera-
tors on nearby tokens. To adapt the predictions for
each Boolean operator, the FiLM layer modulates
the Conv1D output using operator embeddings o.
Scale and shift factors are computed as:

γ = Wγo+ bγ , β = Wβo+ bβ

These factors are then applied to modulate the
Conv1D output:

S = γS + β

The modulated logits S are passed through a sig-
moid activation to obtain scope probabilities:

Pscope = σ(S)

Since the scope is binary (0 for outside scope, 1 for 119

inside scope), we use the Gumbel-Sigmoid trick to 120

2



enable discrete scope sampling while preserving121

differentiability. The scope is determined by apply-122

ing a learnable threshold θ to the probabilities P123

obtained from the Gumbel-Sigmoid:124

S = I(P > θ) (1)125

To allow gradient flow through the non-126

differentiable thresholding, we use a Straight-127

Through Estimator (STE). This approach ensures128

that the model learns to make discrete scope129

predictions effectively.130

Different Boolean operators impose unique struc-131

tural constraints on token interactions, necessitat-132

ing specialized mechanisms for scope prediction.133

The and operator establishes bidirectional rein-134

forcement between operands (or entities), ensuring135

mutual influence, whereas not applies a unidirec-136

tional effect, modifying the meaning of specific137

tokens within its scope. When a negation cue like138

"not" appears, it alters the interpretation of a single139

token or phrase rather than forming a bidirectional140

relationship. Conversely, and enforces a recipro-141

cal dependency—e.g., in “A and B," both A and B142

should influence each other—requiring a pairwise143

rather than token-wise scope. To capture these dif-144

ferences, we define the scope matrices for and and145

or as follows:146

Smutual = S · ST

where Smutual ∈ RB×heads ×L×L captures147

symmetric token influence, while not retains a148

unary mask of shape (B, heads, L, 1) as it requires149

no pairwise expansion.150

2.3 Bias Predictor151

We use a Boolean-aware bias module to model152

token-level biases in BoolAttn by incorporating153

positional dependencies and operator-specific em-154

beddings. This module learns to adjust attention155

bias based on the relative positions of Boolean cue156

(from the CuePred) and the surrounding context.157

Relative position To capture the structural influ-
ence of Boolean operators, the model first com-
putes the relative positions of tokens with respect
to the Boolean cues (e.g., “without"). Given a se-
quence of length L, the relative position of token
i with respect to a Boolean cue at position c is
defined as:

ri = i− c

For the negation operator (not), its influence is
asymmetric, affecting only subsequent tokens. To
ensure this, we clip negative relative postions:

ri = max(0, i− c), for not

For conjunctions (and) and disjuntions (or), influ-
ence is bidirectional, meaning the relative positions
are clamped with a symmetric window ±d:

ri = clip(i− c,−d, d), for and /or

To assign different levels of importance based on
distance from the cue, we can use position embed-
dings. To make this module lightweight, instead
of using learnable positional embeddings, we use a
Gaussian kernel to weight positions. The idea of us-
ing Gaussian kernel is we hypothesize that tokens
closer to the cue are more likely to be influenced:

w(ri) = exp

(
− r2i
2 ∗ σ2

)
where σ is a learnable parameter controlling the
spread of the Gaussian influence. The computed po-
sitional weights w(r) are concatenated with token
hidden state H to form an enriched representation
before passed through a Feed-Forward Network
(FFN) to generate context-aware bias scores:

b = FFN([H, w(r)])

To account for the distinct biases associated with 158

different Boolean operations, an operator-specific 159

gate dynamically modulates the computed biases: 160

b′ = b · σ(Wopeop) (2) 161

The final bias values are regularized using softplus 162

to explicitly ensure non-negativity. 163

2.4 Operator-gating mechanism 164

After having Scope (Eq. 1) and Bias (Eq. 2) of 165

each Boolean operator, we integrate the Boolean 166

reasoning into the transformer’s attention mecha- 167

nism. This integration employs a gating mecha- 168

nism, dynamically weighting each operator’s influ- 169

ence based on its presence in the input. 170

The attention bias contribution for a Boolean
operator op is formulated as:

Sop = Gop · Scopeop · Biasop

where Gop ∈ {0; 1} is a gating variable that indi-
cates the presence of the operator in the input se-
quence. This gate can be either learned through an

3



experts classifier or provided as an auxiliary label,
enabling conditional application of the attention
bias based on the occurrence of the operator. Since
we aim to reinforce tokens of and, or and down-
weight the importance of tokens affected by not
(Appendix A), the final Boolean-aware attention
bias is then formulated as:

SBoolean = Sand + Sor − Snot

The Boolean-aware bias is added to the raw atten-
tion scores, ensuring that the logical structure of
sentences influences the attention mechanism:

Attention Score = Softmax(
QKT

√
d

+ SBoolean)V

where Q,K,V are original attention matrices in171

the self-attention mechanism (Vaswani, 2017).172

3 Evaluation173

We evaluate BoolAttn by integrating it into BERT174

(uncased configuration), forming Bool-BERT, and175

testing it on two Boolean retrieval datasets:176

Quest (Malaviya et al., 2023) and BoolQues-177

tions (Zhang et al., 2024). Prior to the main evalu-178

ation, we pretrain BoolAttn on the GPT-generated179

dataset by Mai et al., 2024 to ensure effective ini-180

tialization (see Appendix B). All experiments are181

repeated three times with different random seeds182

{0, 42, 1234}, and we report the average results.183

Entity-seeking queries QUEST features queries184

with implicit Boolean operations, testing models’185

ability to understand logical relationships among186

entities. We employ Bool-BERT as the query en-187

coder in a dual-encoder setup, paired with BERT188

as the document encoder. Retrieval performance189

is measured using average Recall@K, with K set190

to {20, 50, 100, 1000}, as shown in Table 1. Addi-191

tionally, we assess the retrievers on seven distinct192

query structures to capture nuances in retrieval ca-193

pabilities, with results presented in Figure 3. These194

findings demonstrate that integrating the BoolAttn195

plugin enhances BERTs’ effectiveness in Boolean196

query understanding.197

BoolQuestions We use the best-performing mod-198

els from fine-tuning on Quest as starting check-199

points for continuous learning on BoolQuestions’200

supplementary training dataset, focusing on and,201

or, and not operations. Evaluation is conducted on202

the corresponding test set, adhering to the original203

experimental setup by reporting Mean Reciprocal204

Avg. Recall@K
Retriever 20 50 100 1000
BERT-base 0.228 0.344 0.443 0.760
Bool-BERT-base 0.254 0.379 0.483 0.788
BERT-large 0.238 0.364 0.467 0.792
Bool-BERT-large 0.266 0.395 0.495 0.812

Table 1: Bool-BERT retrievers outperform standard
BERT-based models in retrieval tasks.

Figure 3: Recall@100 across different query templates.

Rank at top-10 (MRR@10). The results in Ta- 205

ble 2 highlight the effectiveness of BoolAttn in en- 206

hancing performance for Boolean-related QA tasks. 207

For comparison, the results of distillbert-dot-v5 are 208

taken from the original paper. 209

4 Conclusion 210

In this work, we introduced BoolAttn, a novel atten- 211

tion mechanism that dynamically adjusts attention 212

weights based on Boolean operators, effectively 213

capturing the distinct structural influences of con- 214

junctions, disjunctions, and negations. By integrat- 215

ing BoolAttn into BERT, we greatly improved per- 216

formance on Boolean retrieval tasks, demonstrating 217

its effectiveness in processing complex logical rela- 218

tionships within queries. These results highlight the 219

potential of Boolean-aware attention mechanisms 220

to enhance transformers’ ability to understand and 221

handle nuanced Boolean queries. 222

MRR@10
AND OR NOT

distillbert-dot-v5 0.399 0.530 0.130
BERT-base 0.412 0.545 0.128
Bool-BERT-base 0.480 0.586 0.165
Bool-BERT-large 0.532 0.610 0.182

Table 2: Performance on MS MARCO’s BoolQuestions.

4



Limitations223

While BoolAttn greatly enhances the performance224

of the backbone BERT model and is designed to225

be lightweight, it still introduces a considerable226

number of parameters. Specifically, Bool-BERT-227

base has approximately 121M parameters, while228

the large version reaches around 378M parame-229

ters. This indicates that BoolAttn adds roughly 10%230

more parameters to the underlying transformer ar-231

chitecture, increasing computation cost and latency.232

To mitigate this overhead, future work could ex-233

plore parameter-sharing strategies across Boolean234

modules or investigate low-rank factorization tech-235

niques to reduce the parameter count without sacri-236

ficing performance.237

Moreover, the Scope and Bias Predictors depend238

on accurate inputs from the Cue Predictor, mak-239

ing the system vulnerable to error propagation. If240

cues are misidentified, scope and bias predictions241

may be incorrect. This is particularly challenging242

when Boolean cues are implied rather than explicit.243

For example, in the query “Find articles on cli-244

mate policy favoring renewables over fossil fuels,"245

the comparative phrase implicitly negates fossil246

fuels without an explicit not operator. If the Cue247

Predictor misses this, the system might retrieve248

documents about both “renewables" and “fossil fu-249

els", misinterpreting the intended negation. This250

could lead to misleading search results, especially251

in sensitive domains like legal, medical, or financial252

information retrieval.253

Additionally, the absence of explicit ground254

truth for scope labels in existing Boolean retrieval255

datasets presents a significant challenge. Since no256

direct supervision is available for scope boundaries,257

the optimization of BoolAttn relies on indirect sig-258

nals from retrieval performance, which may not259

fully capture the intended scope dynamics. This260

lack of supervision makes it difficult to ensure that261

BoolAttn learns the desired scope representation,262

potentially leading to suboptimal generalization.263

Lastly, the limited size of Boolean retrieval264

datasets constrains the scalability of BoolAttn. Al-265

though the model is effective in enhancing Boolean266

query understanding, the small training corpus lim-267

its its potential to learn complex linguistic patterns268

and generalize to diverse scenarios. This scalabil-269

ity issue poses challenges for deploying BoolAttn270

in large-scale retrieval systems, as its performance271

may degrade without sufficient training data.272

Ethical considerations 273

This work utilizes Quest, BoolQuestions, and GPT- 274

generated datasets strictly for research purposes, 275

consistent with their original licensing terms. The 276

BoolAttn module is designed for academic evalu- 277

ation of Boolean retrieval models. Any derivative 278

models or results are intended solely for research 279

and should not be used outside of academic con- 280

texts. We ensured that the datasets used in this 281

study, including QUEST and BoolQuestions, did 282

not contain personally identifiable information (PII) 283

or offensive content. A thorough review was con- 284

ducted to confirm that the data complied with ethi- 285

cal standards. 286

References 287

Jacob Devlin. 2018. Bert: Pre-training of deep bidi- 288
rectional transformers for language understanding. 289
arXiv preprint arXiv:1810.04805. 290

Carolin Dudschig, Barbara Kaup, Mingya Liu, and Ju- 291
liane Schwab. 2021. The processing of negation and 292
polarity: An overview. Journal of Psycholinguistic 293
Research, 50(6):1199–1213. 294

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick 295
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 296
Wen-tau Yih. 2020. Dense passage retrieval for 297
open-domain question answering. arXiv preprint 298
arXiv:2004.04906. 299

Diederik P Kingma and Jimmy Ba. 2015. Adam: A 300
method for stochastic optimization. In International 301
Conference on Learning Representations (ICLR). 302

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 303
weight decay regularization. In International Confer- 304
ence on Learning Representations (ICLR). 305

Quan Mai, Susan Gauch, and Douglas Adams. 2024. 306
Setbert: Enhancing retrieval performance for boolean 307
logic and set operation queries. arXiv preprint 308
arXiv:2406.17282. 309

Chaitanya Malaviya, Peter Shaw, Ming-Wei Chang, 310
Kenton Lee, and Kristina Toutanova. 2023. Quest: 311
A retrieval dataset of entity-seeking queries 312
with implicit set operations. arXiv preprint 313
arXiv:2305.11694. 314

Adam Paszke, Sam Gross, Francisco Massa, Adam 315
Lerer, James Bradbury, Gregory Chanan, Trevor 316
Killeen, Zeming Lin, Natalia Gimelshein, Luca 317
Antiga, et al. 2019. Pytorch: An imperative style, 318
high-performance deep learning library. Advances in 319
neural information processing systems, 32. 320

Ethan Perez, Florian Strub, Harm De Vries, Vincent 321
Dumoulin, and Aaron Courville. 2018. Film: Vi- 322
sual reasoning with a general conditioning layer. In 323

5



Proceedings of the AAAI conference on artificial in-324
telligence, volume 32.325

Stephen Robertson, Hugo Zaragoza, et al. 2009. The326
probabilistic relevance framework: Bm25 and be-327
yond. Foundations and Trends® in Information Re-328
trieval, 3(4):333–389.329

A Vaswani. 2017. Attention is all you need. Advances330
in Neural Information Processing Systems.331

Daniel M Wegner. 1994. Ironic processes of mental332
control. Psychological review, 101(1):34.333

Thomas Wolf. 2020. Transformers: State-of-the-334
art natural language processing. arXiv preprint335
arXiv:1910.03771.336

Zongmeng Zhang, Jinhua Zhu, Wengang Zhou, Xiang337
Qi, Peng Zhang, and Houqiang Li. 2024. Boolques-338
tions: Does dense retrieval understand boolean logic339
in language? arXiv preprint arXiv:2411.12235.340

A Why downweight attention scores for341

negation342

Negation treatment is a challenging problem for343

current dense retrieval models (Zhang et al., 2024;344

Malaviya et al., 2023; Mai et al., 2024).345

The phenomenon where attempting to suppress346

specific thoughts leads to their increased promi-347

nence is well-documented in psychological liter-348

ature. This is exemplified by the “pink elephant"349

paradox: when instructed not to think of a pink350

elephant, ones often find it challenging to avoid the351

image. This counterproductive effect is known as352

ironic process theory (Wegner, 1994), which posits353

that deliberate efforts to suppress certain thoughts354

can make them more persistent.355

In the context of language processing, negation356

requires the brain to first represent the concept357

being negated before it can suppress or modify358

it. This two-step process suggests that negation359

involves initial activation followed by inhibition360

(Dudschig et al., 2021).361

Building upon these insights, our hypothesis362

proposes that in Boolean-aware attention mech-363

anisms, tokens affected by negation should be364

downweighted. By reducing the influence of these365

negated tokens, the model can more accurately366

capture the intended logical structure of the input,367

aligning with the cognitive processes involved in368

handling negation.369

B Pretrain Boolean-aware Attention370

Introducing new parameters in BoolAttn poses a371

risk of overfitting due to the limited size of Boolean372

retrieval datasets compared to the model’s capac- 373

ity when integrated into transformer layers. This 374

imbalance may lead the model to memorize the 375

training data rather than generalizing effectively, 376

resulting in suboptimal performance. To mitigate 377

this, we pretrain Bool-BERT on Mai et al., 2024’s 378

GPT-generated dataset on two auxiliary tasks: cue 379

prediction and expert classification (gate selection). 380

The cue position prediction loss is calculated as 381

follows: 382

Lcue = − 1

B × L

B∑
i=1

L∑
j=1

(yi,j log pi,j+ 383

(1− yi,j) log(1− pi,j) 384

where y is the ground-truth label and p is the pre- 385

dicted probability that token j in batch i is a cue. 386

The original dataset only includes “and,” “or," and 387

“not" as Boolean cues. To enhance model robust- 388

ness, we augment the dataset by replacing cues 389

with their semantic equivalents, such as substituting 390

“and" with “as well as," “are also," or “including," 391

and replacing “not" with “other than" or “exclud- 392

ing." Consequently, multiple cue tokens can appear 393

in a single sequence. We use BERT’s tokenizer, 394

followed by a word-matching approach to label the 395

cue tokens. 396

The second task in pretraining phase is Booealn 397

expert classfication. This task is a multi-label 398

classification problem designed to identify which 399

Boolean operators are present in a given input se- 400

quence. Since a sequence may contain more than 401

one Boolean operation, this task requires predict- 402

ing multiple labels simultaneously (one for each 403

operator). Given E Boolean experts (3 if we use 404

and, or, not), the loss is defined as 405

Lgate = − 1

B × E

B∑
i=1

E∑
k=1

(yi,k log pi,k+ 406

(1− yi,k) log(1− pi,k) 407

where y is the ground-truth label and pi,k is the 408

predicted probability for operator k in batch i. 409

Until now we only pretrain the CuePred and 410

Gate modules, the parameters for ScopePred and 411

BiasPred remain uninitialized. To provide these 412

modules with a reasonable starting point without 413

overfitting them to Boolean logic, we train them on 414

the Boolean sentence classification task from Mai 415

et al., 2024 using a standard triplet loss. Although 416

Mai et al., 2024 reported that triplet loss hinders 417

6



performance on Boolean queries, we deliberately418

use it to provide an "okay" initialization, allowing419

the modules to learn actively during the main tasks.420

The pretraining objective is defined as follows:421

Lpretrain = Lcue + Lgate + αLtriplet

where α is set to a small value, we used 0.2. During422

pretraining, only the BoolAttn modules and BERT’s423

embedding layer are updated, while the other layers424

are frozen. We train for a single epoch with a low425

learning rate of 1e− 5.426

C BoolAttn hyperparameters and settings427

All experiments are conducted on two NVIDIA428

Quadro RTX 8000 GPUs, each with 50GB of mem-429

ory. We use PyTorch (Paszke et al., 2019) as our430

deep learning framework and leverage Hugging431

Face’s Transformers library (Wolf, 2020) for pre-432

trained models and model implementation.433

Hyperparameters (1) Operator embedding di-434

mension dh: 10. (2) Threshold θ is initialized at435

0.5. (3) Relative postion window: 5. (4) Gaussian436

kernal sigma: σ: 2.437

Gating mechanism For the learnable gate mech-438

anism, we employ a simple FFN followed by a439

sigmoid activation, with logits scaled by a small440

temperature value of 0.1 to enhance sensitivity. Un-441

like softmax, which enforces mutual exclusivity,442

sigmoid is better suited for Boolean logic since443

multiple Boolean operators can coexist within a444

single query. By applying a hard threshold to the445

sigmoid outputs, the gates can selectively activate446

multiple Boolean experts, allowing them to con-447

tribute to the final attention scores as needed.448

The gating mechanism introduces a performance449

bottleneck as it relies on accurately activating the450

Boolean experts corresponding to the operators451

present in the query. This dependency can lead452

to suboptimal performance (Table 3). Improving453

this gating strategy is left for future work. However,454

in real-world applications, users could explicitly455

specify the Boolean logic in their queries. This456

information could then be used as an auxiliary la-457

bel to activate the relevant Boolean experts—an458

approach we currently employ.459

D Dense Retriever460

We adopt a dual-encoder framework (Karpukhin461

et al., 2020) for our retriever.462

Avg. Recall@K
Retriever 50 100 1000
Bool-Bert-base 0.379 0.483 0.788
Bool-Bert-base-gate 0.371 0.470 0.775

Table 3: Learnable gate introduces bottleneck.

Avg. Recall@K
Retriever 50 100 1000
BERT-Base 0.134 0.182 0.453
BERT-Large 0.227 0.300 0.627
T5-Base 0.372 0.455 0.726
T5-Large 0.386 0.476 0.757
BERT-Base-Ours 0.344 0.443 0.760

Table 4: Importance of choosing different positive sam-
ples, results for QUEST dataset.

Unlike Malaviya et al., 2023 and Mai et al., 2024, 463

which use a fixed positive document per query, we 464

sample different positive documents at each train- 465

ing step. This encourages the encoders to explore 466

diverse relevant documents for the same query, 467

which is crucial for multi-answer retrieval tasks 468

where multiple correct answers exist. This is par- 469

ticularly important for boolean queries: negation 470

excludes a subset of answers, disjunctions (unions) 471

expand the answer set, and conjunctions (intersec- 472

tions) narrow it. By introducing varied positive 473

samples, our approach enhances model robustness 474

and generalization. Furthermore, we empirically 475

found that using random negative samples is more 476

effective than hard negative samples (i.e., incorrect 477

answers retrieved by BM25), particularly for the 478

QUEST dataset. Table 4 shows the improvement 479

when using different positive documents and nor- 480

mal negative samples, T5 and BERT results taken 481

from Malaviya et al., 2023 and Mai et al., 2024, 482

respectively. 483

Hyperparameters 484

1. Max query length: 64. 485

2. Max document length: 256. 486

3. Negative document per sample: 5. 487

4. Positive document: 1, shuffled every step. 488

5. Batch size: 32. 489

6. Optimizer: AdamW (Kingma and Ba, 2015) 490

with weight decay 0.01 (Loshchilov and Hut- 491

ter, 2019). 492

7



7. Learning rate: 5e-5.493

8. Epoch: 40.494

9. Evaluation every epoch, keep best.495

8


	Introduction
	Boolean-aware attention
	Boolean Cue Predictor
	Boolean Scope Predictor
	Bias Predictor
	Operator-gating mechanism

	Evaluation
	Conclusion
	Why downweight attention scores for negation
	Pretrain Boolean-aware Attention
	BoolAttn hyperparameters and settings
	Dense Retriever

